Abstract

Some imaging techniques reduce the effect of optical aberrations either by detecting and actively compensating for them or by utilizing interferometry. A microscope based on a Mach-Zehnder interferometer has been recently introduced to allow obtaining sharp images of light-transmitting objects in the presence of strong aberrations. However, the method is not capable of imaging microstructures on opaque substrates. In this work, we use a Michelson interferometer to demonstrate imaging of reflecting and back-scattering objects on any substrate with micrometer-scale resolution. The system is remarkably insensitive to both deterministic and random aberrations that can completely destroy the object’s intensity image.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Interferometric imaging with three objectives

Thomas Huelsnitz and Peter Kner
J. Opt. Soc. Am. A 33(2) 179-191 (2016)

Correlated-photon imaging with cancellation of object-induced aberration

D. S. Simon and A. V. Sergienko
J. Opt. Soc. Am. B 28(2) 247-252 (2011)

Three-dimensional integral imaging of micro-objects

Ju-Seog Jang and Bahram Javidi
Opt. Lett. 29(11) 1230-1232 (2004)

References

  • View by:
  • |
  • |
  • |

  1. M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light: Sci. Appl. 3(4), e165 (2014).
    [Crossref]
  2. A. J. Jesus-Silva, J. G. Silva, C. H. Monken, and E. J. S. Fonseca, “Experimental cancellation of aberrations in intensity correlation in classical optics,” Phys. Rev. A 97(1), 013832 (2018).
    [Crossref]
  3. T.-L. Kelly and J. Munch, “Phase-aberration correction with dual liquid-crystal spatial light modulators,” Appl. Opt. 37(22), 5184–5189 (1998).
    [Crossref]
  4. A. Dubois, L. Vabre, A.-C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a linnik microscope,” Appl. Opt. 41(4), 805–812 (2002).
    [Crossref]
  5. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23(4), 244–246 (1998).
    [Crossref]
  6. G. Indebetouw and P. Klysubun, “Imaging through scattering media with depth resolution by use of low-coherence gating in spatiotemporal digital holography,” Opt. Lett. 25(4), 212–214 (2000).
    [Crossref]
  7. P. Xiao, M. Fink, and A. C. Boccara, “Full-field spatially incoherent illumination interferometry: a spatial resolution almost insensitive to aberrations,” Opt. Lett. 41(17), 3920–3923 (2016).
    [Crossref]
  8. Z. Zhang, Z. Su, Q. Deng, J. Ye, J. Peng, and J. Zhong, “Lensless single-pixel imaging by using lcd: application to small-size and multi-functional scanner,” Opt. Express 27(3), 3731–3745 (2019).
    [Crossref]
  9. R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98(11), 111115 (2011).
    [Crossref]
  10. D. S. Simon and A. V. Sergienko, “Correlated-photon imaging with cancellation of object-induced aberration,” J. Opt. Soc. Am. B 28(2), 247–252 (2011).
    [Crossref]
  11. T. Shirai, H. Kellock, T. Setälä, and A. T. Friberg, “Imaging through an aberrating medium with classical ghost diffraction,” J. Opt. Soc. Am. A 29(7), 1288–1292 (2012).
    [Crossref]
  12. T. Shirai, Chapter one - modern aspects of intensity interferometry with classical light, Progress in Optics, vol. 62T. D. Visser, ed. (Elsevier, 2017), pp. 1–72.
  13. Z. Yang, L. Zhao, X. Zhao, W. Qin, and J. Li, “Lensless ghost imaging through the strongly scattering medium,” Chin. Phys. B 25(2), 024202 (2016).
    [Crossref]
  14. A. Dubois and A. C. Boccara, Full-Field Optical Coherence Tomography (Springer Berlin Heidelberg, 2008), pp. 565–591.
  15. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43(14), 2874–2883 (2004).
    [Crossref]
  16. B. I. Erkmen and J. H. Shapiro, “Unified theory of ghost imaging with gaussian-state light,” Phys. Rev. A 77(4), 043809 (2008).
    [Crossref]
  17. F. Ferri, D. Magatti, V. G. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92(26), 261109 (2008).
    [Crossref]
  18. M. J. Padgett and R. W. Boyd, “An introduction to ghost imaging: quantum and classical,” Phil. Trans. R. Soc. A 375(2099), 20160233 (2017).
    [Crossref]
  19. P. Clemente, V. Durán, E. Tajahuerce, V. Torres-Company, and J. Lancis, “Single-pixel digital ghost holography,” Phys. Rev. A 86(4), 041803 (2012).
    [Crossref]
  20. Y. Liu, J. Suo, Y. Zhang, and Q. Dai, “Single-pixel phase and fluorescence microscope,” Opt. Express 26(25), 32451–32462 (2018).
    [Crossref]
  21. S.-H. Zhang, L. Gao, J. Xiong, L.-J. Feng, D.-Z. Cao, and K. Wang, “Spatial interference: From coherent to incoherent,” Phys. Rev. Lett. 102(7), 073904 (2009).
    [Crossref]
  22. S.-H. Zhang, S. Gan, D.-Z. Cao, J. Xiong, X. Zhang, and K. Wang, “Phase-reversal diffraction in incoherent light,” Phys. Rev. A 80(3), 031805 (2009).
    [Crossref]
  23. E. Tajahuerce, V. Durán, P. Clemente, E. Irles, F. Soldevila, P. Andrés, and J. Lancis, “Image transmission through dynamic scattering media by single-pixel photodetection,” Opt. Express 22(14), 16945–16955 (2014).
    [Crossref]
  24. Y. Jauregui-Sánchez, P. Clemente, J. Lancis, and E. Tajahuerce, “Single-pixel imaging with fourier filtering: application to vision through scattering media,” Opt. Lett. 44(3), 679–682 (2019).
    [Crossref]
  25. E. Ilina, M. Nyman, I. Švagždytė, N. Chekurov, M. Kaivola, T. Setälä, and A. Shevchenko, “Aberration-insensitive microscopy using optical field-correlation imaging,” APL Photonics 4(6), 066102 (2019).
    [Crossref]
  26. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley Series in Pure and Applied Optics) (John Wiley & Sons, 1991).
  27. M. Koivurova, H. Partanen, J. Turunen, and A. T. Friberg, “Grating interferometer for light-efficient spatial coherence measurement of arbitrary sources,” Appl. Opt. 56(18), 5216–5227 (2017).
    [Crossref]
  28. S. I. Kim, Y. S. Choi, Y. N. Ham, C. Y. Park, and J. M. Kim, “Holographic diffuser by use of a silver halide sensitized gelatin process,” Appl. Opt. 42(14), 2482–2491 (2003).
    [Crossref]

2019 (3)

2018 (2)

Y. Liu, J. Suo, Y. Zhang, and Q. Dai, “Single-pixel phase and fluorescence microscope,” Opt. Express 26(25), 32451–32462 (2018).
[Crossref]

A. J. Jesus-Silva, J. G. Silva, C. H. Monken, and E. J. S. Fonseca, “Experimental cancellation of aberrations in intensity correlation in classical optics,” Phys. Rev. A 97(1), 013832 (2018).
[Crossref]

2017 (2)

M. J. Padgett and R. W. Boyd, “An introduction to ghost imaging: quantum and classical,” Phil. Trans. R. Soc. A 375(2099), 20160233 (2017).
[Crossref]

M. Koivurova, H. Partanen, J. Turunen, and A. T. Friberg, “Grating interferometer for light-efficient spatial coherence measurement of arbitrary sources,” Appl. Opt. 56(18), 5216–5227 (2017).
[Crossref]

2016 (2)

P. Xiao, M. Fink, and A. C. Boccara, “Full-field spatially incoherent illumination interferometry: a spatial resolution almost insensitive to aberrations,” Opt. Lett. 41(17), 3920–3923 (2016).
[Crossref]

Z. Yang, L. Zhao, X. Zhao, W. Qin, and J. Li, “Lensless ghost imaging through the strongly scattering medium,” Chin. Phys. B 25(2), 024202 (2016).
[Crossref]

2014 (2)

2012 (2)

T. Shirai, H. Kellock, T. Setälä, and A. T. Friberg, “Imaging through an aberrating medium with classical ghost diffraction,” J. Opt. Soc. Am. A 29(7), 1288–1292 (2012).
[Crossref]

P. Clemente, V. Durán, E. Tajahuerce, V. Torres-Company, and J. Lancis, “Single-pixel digital ghost holography,” Phys. Rev. A 86(4), 041803 (2012).
[Crossref]

2011 (2)

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98(11), 111115 (2011).
[Crossref]

D. S. Simon and A. V. Sergienko, “Correlated-photon imaging with cancellation of object-induced aberration,” J. Opt. Soc. Am. B 28(2), 247–252 (2011).
[Crossref]

2009 (2)

S.-H. Zhang, L. Gao, J. Xiong, L.-J. Feng, D.-Z. Cao, and K. Wang, “Spatial interference: From coherent to incoherent,” Phys. Rev. Lett. 102(7), 073904 (2009).
[Crossref]

S.-H. Zhang, S. Gan, D.-Z. Cao, J. Xiong, X. Zhang, and K. Wang, “Phase-reversal diffraction in incoherent light,” Phys. Rev. A 80(3), 031805 (2009).
[Crossref]

2008 (2)

B. I. Erkmen and J. H. Shapiro, “Unified theory of ghost imaging with gaussian-state light,” Phys. Rev. A 77(4), 043809 (2008).
[Crossref]

F. Ferri, D. Magatti, V. G. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92(26), 261109 (2008).
[Crossref]

2004 (1)

2003 (1)

2002 (1)

2000 (1)

1998 (2)

Andrés, P.

Beaurepaire, E.

Blanchot, L.

Boccara, A. C.

Boccara, A.-C.

Boccara, C.

Booth, M. J.

M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light: Sci. Appl. 3(4), e165 (2014).
[Crossref]

Boyd, R. W.

M. J. Padgett and R. W. Boyd, “An introduction to ghost imaging: quantum and classical,” Phil. Trans. R. Soc. A 375(2099), 20160233 (2017).
[Crossref]

Cao, D.-Z.

S.-H. Zhang, L. Gao, J. Xiong, L.-J. Feng, D.-Z. Cao, and K. Wang, “Spatial interference: From coherent to incoherent,” Phys. Rev. Lett. 102(7), 073904 (2009).
[Crossref]

S.-H. Zhang, S. Gan, D.-Z. Cao, J. Xiong, X. Zhang, and K. Wang, “Phase-reversal diffraction in incoherent light,” Phys. Rev. A 80(3), 031805 (2009).
[Crossref]

Chekurov, N.

E. Ilina, M. Nyman, I. Švagždytė, N. Chekurov, M. Kaivola, T. Setälä, and A. Shevchenko, “Aberration-insensitive microscopy using optical field-correlation imaging,” APL Photonics 4(6), 066102 (2019).
[Crossref]

Choi, Y. S.

Clemente, P.

Dai, Q.

Deacon, K. S.

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98(11), 111115 (2011).
[Crossref]

Deng, Q.

Dubois, A.

Durán, V.

Erkmen, B. I.

B. I. Erkmen and J. H. Shapiro, “Unified theory of ghost imaging with gaussian-state light,” Phys. Rev. A 77(4), 043809 (2008).
[Crossref]

Feng, L.-J.

S.-H. Zhang, L. Gao, J. Xiong, L.-J. Feng, D.-Z. Cao, and K. Wang, “Spatial interference: From coherent to incoherent,” Phys. Rev. Lett. 102(7), 073904 (2009).
[Crossref]

Ferri, F.

F. Ferri, D. Magatti, V. G. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92(26), 261109 (2008).
[Crossref]

Fink, M.

Fonseca, E. J. S.

A. J. Jesus-Silva, J. G. Silva, C. H. Monken, and E. J. S. Fonseca, “Experimental cancellation of aberrations in intensity correlation in classical optics,” Phys. Rev. A 97(1), 013832 (2018).
[Crossref]

Friberg, A. T.

Gan, S.

S.-H. Zhang, S. Gan, D.-Z. Cao, J. Xiong, X. Zhang, and K. Wang, “Phase-reversal diffraction in incoherent light,” Phys. Rev. A 80(3), 031805 (2009).
[Crossref]

Gao, L.

S.-H. Zhang, L. Gao, J. Xiong, L.-J. Feng, D.-Z. Cao, and K. Wang, “Spatial interference: From coherent to incoherent,” Phys. Rev. Lett. 102(7), 073904 (2009).
[Crossref]

Gatti, A.

F. Ferri, D. Magatti, V. G. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92(26), 261109 (2008).
[Crossref]

Grieve, K.

Ham, Y. N.

Ilina, E.

E. Ilina, M. Nyman, I. Švagždytė, N. Chekurov, M. Kaivola, T. Setälä, and A. Shevchenko, “Aberration-insensitive microscopy using optical field-correlation imaging,” APL Photonics 4(6), 066102 (2019).
[Crossref]

Indebetouw, G.

Irles, E.

Jauregui-Sánchez, Y.

Jesus-Silva, A. J.

A. J. Jesus-Silva, J. G. Silva, C. H. Monken, and E. J. S. Fonseca, “Experimental cancellation of aberrations in intensity correlation in classical optics,” Phys. Rev. A 97(1), 013832 (2018).
[Crossref]

Kaivola, M.

E. Ilina, M. Nyman, I. Švagždytė, N. Chekurov, M. Kaivola, T. Setälä, and A. Shevchenko, “Aberration-insensitive microscopy using optical field-correlation imaging,” APL Photonics 4(6), 066102 (2019).
[Crossref]

Kellock, H.

Kelly, T.-L.

Kim, J. M.

Kim, S. I.

Klysubun, P.

Koivurova, M.

Lancis, J.

Lebec, M.

Lecaque, R.

Li, J.

Z. Yang, L. Zhao, X. Zhao, W. Qin, and J. Li, “Lensless ghost imaging through the strongly scattering medium,” Chin. Phys. B 25(2), 024202 (2016).
[Crossref]

Liu, Y.

Magatti, D.

F. Ferri, D. Magatti, V. G. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92(26), 261109 (2008).
[Crossref]

Meyers, R. E.

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98(11), 111115 (2011).
[Crossref]

Moneron, G.

Monken, C. H.

A. J. Jesus-Silva, J. G. Silva, C. H. Monken, and E. J. S. Fonseca, “Experimental cancellation of aberrations in intensity correlation in classical optics,” Phys. Rev. A 97(1), 013832 (2018).
[Crossref]

Munch, J.

Nyman, M.

E. Ilina, M. Nyman, I. Švagždytė, N. Chekurov, M. Kaivola, T. Setälä, and A. Shevchenko, “Aberration-insensitive microscopy using optical field-correlation imaging,” APL Photonics 4(6), 066102 (2019).
[Crossref]

Padgett, M. J.

M. J. Padgett and R. W. Boyd, “An introduction to ghost imaging: quantum and classical,” Phil. Trans. R. Soc. A 375(2099), 20160233 (2017).
[Crossref]

Park, C. Y.

Partanen, H.

Peng, J.

Qin, W.

Z. Yang, L. Zhao, X. Zhao, W. Qin, and J. Li, “Lensless ghost imaging through the strongly scattering medium,” Chin. Phys. B 25(2), 024202 (2016).
[Crossref]

Saint-Jalmes, H.

Sala, V. G.

F. Ferri, D. Magatti, V. G. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92(26), 261109 (2008).
[Crossref]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley Series in Pure and Applied Optics) (John Wiley & Sons, 1991).

Sergienko, A. V.

Setälä, T.

E. Ilina, M. Nyman, I. Švagždytė, N. Chekurov, M. Kaivola, T. Setälä, and A. Shevchenko, “Aberration-insensitive microscopy using optical field-correlation imaging,” APL Photonics 4(6), 066102 (2019).
[Crossref]

T. Shirai, H. Kellock, T. Setälä, and A. T. Friberg, “Imaging through an aberrating medium with classical ghost diffraction,” J. Opt. Soc. Am. A 29(7), 1288–1292 (2012).
[Crossref]

Shapiro, J. H.

B. I. Erkmen and J. H. Shapiro, “Unified theory of ghost imaging with gaussian-state light,” Phys. Rev. A 77(4), 043809 (2008).
[Crossref]

Shevchenko, A.

E. Ilina, M. Nyman, I. Švagždytė, N. Chekurov, M. Kaivola, T. Setälä, and A. Shevchenko, “Aberration-insensitive microscopy using optical field-correlation imaging,” APL Photonics 4(6), 066102 (2019).
[Crossref]

Shih, Y.

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98(11), 111115 (2011).
[Crossref]

Shirai, T.

T. Shirai, H. Kellock, T. Setälä, and A. T. Friberg, “Imaging through an aberrating medium with classical ghost diffraction,” J. Opt. Soc. Am. A 29(7), 1288–1292 (2012).
[Crossref]

T. Shirai, Chapter one - modern aspects of intensity interferometry with classical light, Progress in Optics, vol. 62T. D. Visser, ed. (Elsevier, 2017), pp. 1–72.

Silva, J. G.

A. J. Jesus-Silva, J. G. Silva, C. H. Monken, and E. J. S. Fonseca, “Experimental cancellation of aberrations in intensity correlation in classical optics,” Phys. Rev. A 97(1), 013832 (2018).
[Crossref]

Simon, D. S.

Soldevila, F.

Su, Z.

Suo, J.

Švagždyte, I.

E. Ilina, M. Nyman, I. Švagždytė, N. Chekurov, M. Kaivola, T. Setälä, and A. Shevchenko, “Aberration-insensitive microscopy using optical field-correlation imaging,” APL Photonics 4(6), 066102 (2019).
[Crossref]

Tajahuerce, E.

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley Series in Pure and Applied Optics) (John Wiley & Sons, 1991).

Torres-Company, V.

P. Clemente, V. Durán, E. Tajahuerce, V. Torres-Company, and J. Lancis, “Single-pixel digital ghost holography,” Phys. Rev. A 86(4), 041803 (2012).
[Crossref]

Turunen, J.

Vabre, L.

Wang, K.

S.-H. Zhang, S. Gan, D.-Z. Cao, J. Xiong, X. Zhang, and K. Wang, “Phase-reversal diffraction in incoherent light,” Phys. Rev. A 80(3), 031805 (2009).
[Crossref]

S.-H. Zhang, L. Gao, J. Xiong, L.-J. Feng, D.-Z. Cao, and K. Wang, “Spatial interference: From coherent to incoherent,” Phys. Rev. Lett. 102(7), 073904 (2009).
[Crossref]

Xiao, P.

Xiong, J.

S.-H. Zhang, L. Gao, J. Xiong, L.-J. Feng, D.-Z. Cao, and K. Wang, “Spatial interference: From coherent to incoherent,” Phys. Rev. Lett. 102(7), 073904 (2009).
[Crossref]

S.-H. Zhang, S. Gan, D.-Z. Cao, J. Xiong, X. Zhang, and K. Wang, “Phase-reversal diffraction in incoherent light,” Phys. Rev. A 80(3), 031805 (2009).
[Crossref]

Yang, Z.

Z. Yang, L. Zhao, X. Zhao, W. Qin, and J. Li, “Lensless ghost imaging through the strongly scattering medium,” Chin. Phys. B 25(2), 024202 (2016).
[Crossref]

Ye, J.

Zhang, S.-H.

S.-H. Zhang, S. Gan, D.-Z. Cao, J. Xiong, X. Zhang, and K. Wang, “Phase-reversal diffraction in incoherent light,” Phys. Rev. A 80(3), 031805 (2009).
[Crossref]

S.-H. Zhang, L. Gao, J. Xiong, L.-J. Feng, D.-Z. Cao, and K. Wang, “Spatial interference: From coherent to incoherent,” Phys. Rev. Lett. 102(7), 073904 (2009).
[Crossref]

Zhang, X.

S.-H. Zhang, S. Gan, D.-Z. Cao, J. Xiong, X. Zhang, and K. Wang, “Phase-reversal diffraction in incoherent light,” Phys. Rev. A 80(3), 031805 (2009).
[Crossref]

Zhang, Y.

Zhang, Z.

Zhao, L.

Z. Yang, L. Zhao, X. Zhao, W. Qin, and J. Li, “Lensless ghost imaging through the strongly scattering medium,” Chin. Phys. B 25(2), 024202 (2016).
[Crossref]

Zhao, X.

Z. Yang, L. Zhao, X. Zhao, W. Qin, and J. Li, “Lensless ghost imaging through the strongly scattering medium,” Chin. Phys. B 25(2), 024202 (2016).
[Crossref]

Zhong, J.

APL Photonics (1)

E. Ilina, M. Nyman, I. Švagždytė, N. Chekurov, M. Kaivola, T. Setälä, and A. Shevchenko, “Aberration-insensitive microscopy using optical field-correlation imaging,” APL Photonics 4(6), 066102 (2019).
[Crossref]

Appl. Opt. (5)

Appl. Phys. Lett. (2)

F. Ferri, D. Magatti, V. G. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92(26), 261109 (2008).
[Crossref]

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98(11), 111115 (2011).
[Crossref]

Chin. Phys. B (1)

Z. Yang, L. Zhao, X. Zhao, W. Qin, and J. Li, “Lensless ghost imaging through the strongly scattering medium,” Chin. Phys. B 25(2), 024202 (2016).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Light: Sci. Appl. (1)

M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light: Sci. Appl. 3(4), e165 (2014).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Phil. Trans. R. Soc. A (1)

M. J. Padgett and R. W. Boyd, “An introduction to ghost imaging: quantum and classical,” Phil. Trans. R. Soc. A 375(2099), 20160233 (2017).
[Crossref]

Phys. Rev. A (4)

P. Clemente, V. Durán, E. Tajahuerce, V. Torres-Company, and J. Lancis, “Single-pixel digital ghost holography,” Phys. Rev. A 86(4), 041803 (2012).
[Crossref]

B. I. Erkmen and J. H. Shapiro, “Unified theory of ghost imaging with gaussian-state light,” Phys. Rev. A 77(4), 043809 (2008).
[Crossref]

A. J. Jesus-Silva, J. G. Silva, C. H. Monken, and E. J. S. Fonseca, “Experimental cancellation of aberrations in intensity correlation in classical optics,” Phys. Rev. A 97(1), 013832 (2018).
[Crossref]

S.-H. Zhang, S. Gan, D.-Z. Cao, J. Xiong, X. Zhang, and K. Wang, “Phase-reversal diffraction in incoherent light,” Phys. Rev. A 80(3), 031805 (2009).
[Crossref]

Phys. Rev. Lett. (1)

S.-H. Zhang, L. Gao, J. Xiong, L.-J. Feng, D.-Z. Cao, and K. Wang, “Spatial interference: From coherent to incoherent,” Phys. Rev. Lett. 102(7), 073904 (2009).
[Crossref]

Other (3)

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley Series in Pure and Applied Optics) (John Wiley & Sons, 1991).

T. Shirai, Chapter one - modern aspects of intensity interferometry with classical light, Progress in Optics, vol. 62T. D. Visser, ed. (Elsevier, 2017), pp. 1–72.

A. Dubois and A. C. Boccara, Full-Field Optical Coherence Tomography (Springer Berlin Heidelberg, 2008), pp. 565–591.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. The experimental setup: $\mathrm {MO}_1$, $\mathrm {MO}_2$ and $\mathrm {MO}_3$$10\times$, $4\times$ and $4\times$ microscope objectives, respectively; $\mathrm {P}_1$ and $\mathrm {P}_2$ – linear polarizers, BS – polarizing beam splitter; QWP – quarter-wave plate; M – mirror; O – object; D – diffuser; CP – compensating glass plate; BPF – bandpass filter; L – lens; C - camera. In the reference arm, mirror M and microscope objective $\mathrm {MO}_3$ can be translated along the direction shown by the arrows.
Fig. 2.
Fig. 2. Optical images of the amplitude-modulated logo of the University of Eastern Finland (a) and the phase-modulated logo of Aalto University (d). The images are obtained without aberrations and with the reference arm blocked (a) and open (d). Pictures (b) and (e) show the object image obtained from the sample arm with induced focusing error. Images (c) and (f) are the ghost-like interferometric images retrieved from the interference pattern of the reference beam and the disturbed object beam.
Fig. 3.
Fig. 3. Optical images of an amplitude-modulated logo (a) and a phase-modulated logo (e) obtained without aberrations. Pictures (b) and (f) show the images obtained from the sample arm after covering the sample with the optical diffuser. The third and the fourth columns contain the interferometric images of the samples retrieved from the interference patterns. The diffuser is placed in contact with the object in the third column, and at a distance of a few millimeters in the fourth column.
Fig. 4.
Fig. 4. Optical images of a metal microwire. The image (a) is a microscope white-light image. The images (b) and (c) are taken, respectively, before and after introducing a defocusing error, using the LED illumination. The image (d) is the image retrieved from the interferometric data.
Fig. 5.
Fig. 5. Imaging a two-level microchip surface. (a) The ordinary intensity image obtained with the reference arm blocked. Here the right-hand side is elevated above the left-hand side by about 50 µm. The dark vertical stripe in the middle is a tilted surface between the two levels. The image is sharp only along the left edge of the tilted surface. (b) The retrieved interferometric image. The resolution is high for both the bottom and top surfaces. In (c) and (d), the images are obtained without the band-pass filter at two different reference-arm lengths, with the length difference of 50 µm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

U r ( u , v ) = U ( u , v ) e i ϕ rs , and
U s ( u , v ) = h im ( u , v ) [ R ( u , v ) U obj ( u , v ) ] ,
I ( u , v ) = | U s ( u , v ) | 2 + | U r ( u , v ) | 2 + 2 Re { U s ( u , v ) U r ( u , v ) } ,
U s ( u , v ) U r ( u , v ) = h im ( u x , v y ) R ( x , y ) U obj ( x , y ) U ( u , v ) e i ϕ rs d x d y .
U s ( u , v ) U r ( u , v ) = I i e i ϕ rs h im ( u x , v y ) g ( u x , v y ) R ( x , y ) d x d y ,
I int ( u , v ) = 4 I i | h im ( u x , v y ) g ( u x , v y ) R ( x , y ) d x d y | ,
I int ( u , v ) | h im ( u , v ) g ( u , v ) R ( u , v ) | .
I int ( u , v ) | h im ( u , v ) h obj ( u , v ) [ 1 2 H ( u ) ] | ,