Abstract

We present a numerical investigation on the effect of introducing the second ring of antiresonant tubes on the guiding properties of the negative-curvature fiber. We determine the range of structural parameters for achieving the optimum light guidance in the double-ring geometry. Our study shows that the double-ring negative-curvature fiber can improve the confinement loss by up to four orders of magnitude with considerably better bending and single-mode performance when compared to its single-ring counterpart.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Negative curvature fibers

Chengli Wei, R. Joseph Weiblen, Curtis R. Menyuk, and Jonathan Hu
Adv. Opt. Photon. 9(3) 504-561 (2017)

Nested antiresonant nodeless hollow core fiber

Francesco Poletti
Opt. Express 22(20) 23807-23828 (2014)

Effect of core boundary curvature on the confinement losses of hollow antiresonant fibers

Walter Belardi and Jonathan C. Knight
Opt. Express 21(19) 21912-21917 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
    [Crossref]
  2. F. Couny, F. Benabid, and P. S. Light, “Large pitch kagomé-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
    [Crossref]
  3. F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
    [Crossref]
  4. M. Michieletto, J. K. Lyngsø, C. Jakobsen, J. Lægsgaard, O. Bang, and T. T. Alkeskjold, “Hollow-core fibers for high power pulse delivery,” Opt. Express 24(7), 7103–7119 (2016).
    [Crossref]
  5. P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
    [Crossref]
  6. M. R. A. Hassan, F. Yu, W. J. Wadsworth, and J. C. Knight, “Cavity-based mid-IR fiber gas laser pumped by a diode laser,” Optica 3(3), 218–221 (2016).
    [Crossref]
  7. M. I. Hasan, N. Akhmediev, A. Mussot, and W. Chang, “Midinfrared pulse generation by pumping in the normal-dispersion regime of a gas-filled hollow-core fiber,” Phys. Rev. Appl. 12(1), 014050 (2019).
    [Crossref]
  8. L. Vincentti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18(22), 23133–23146 (2010).
    [Crossref]
  9. Y. Y. Wang, N. V. Sheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
    [Crossref]
  10. F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22(20), 23807–23828 (2014).
    [Crossref]
  11. M. I. Hasan, N. Akhmediev, and W. Chang, “Positive and negative curvatures nested in an antiresonant hollow-core fiber,” Opt. Lett. 42(4), 703–706 (2017).
    [Crossref]
  12. C. Wei, J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
    [Crossref]
  13. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow - core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 µm,” Opt. Express 19(2), 1441–1448 (2011).
    [Crossref]
  14. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3–4 µm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
    [Crossref]
  15. A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21(8), 9514–9519 (2013).
    [Crossref]
  16. L. Vincetti and V. Setti, “Extra loss due to Fano resonances in inhibited coupling fibers based on a lattice of tubes,” Opt. Express 20(13), 14350–14361 (2012).
    [Crossref]
  17. W. Belardi and J. C. Knight, “Hollow antiresonant fibers with reduced attenuation,” Opt. Lett. 39(7), 1853–1856 (2014).
    [Crossref]
  18. B. Debord, A. Amsanpally, M. Chafer, A. Bas, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérome, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4(2), 209–217 (2017).
    [Crossref]
  19. S. F. Gao, Y. Y. Wang, W. Ding, D. L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
    [Crossref]
  20. T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavík, E. Numkam Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3 dB/km data transmitting antiresonant hollow core fibre,” 2018 European Conference on Optical Communication (ECOC), Rome, 2018, pp. 1–3.
  21. X. Huang, S. Yoo, and K. T. Yong, “Function of second cladding layer in hollow-core tube lattice fibers,” Sci. Rep. 7(1), 1618 (2017).
    [Crossref]
  22. S. Yan, S. Lou, W. Zhang, and Z. Lian, “Single-polarization single-mode double-ring hollow-core anti-resonant fiber,” Opt. Express 26(24), 31160–31171 (2018).
    [Crossref]
  23. X. Chen, X. Hu, L. Yang, J. Peng, H. Li, N. Dai, and J. Li, “Double negative curvature anti-resonance hollow core fiber,” Opt. Express 27(14), 19548–19554 (2019).
    [Crossref]
  24. G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. S. J. Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express 15(20), 12680–12685 (2007).
    [Crossref]
  25. M. Alharbi, T. Bradely, B. Debord, C. Fourcade-Dutin, D. Ghosh, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part II: Cladding effect on confinement and bend loss,” Opt. Express 21(23), 28609–28616 (2013).
    [Crossref]
  26. X. Huang, W. Qi, D. Ho, K. T. Yong, F. Luan, and S. Yoo, “Hollow core anti-resonant fiber with split cladding,” Opt. Express 24(7), 7670–7678 (2016).
    [Crossref]
  27. S. Yan, S. Lou, X. Wang, W. Zhang, and T. Zhao, “Single-mode large-mode-area double-ring hollow-core anti-resonant fiber for high power delivery in mid-infrared region,” Opt. Fiber Technol. 46, 118–124 (2018).
    [Crossref]
  28. R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
    [Crossref]

2019 (2)

M. I. Hasan, N. Akhmediev, A. Mussot, and W. Chang, “Midinfrared pulse generation by pumping in the normal-dispersion regime of a gas-filled hollow-core fiber,” Phys. Rev. Appl. 12(1), 014050 (2019).
[Crossref]

X. Chen, X. Hu, L. Yang, J. Peng, H. Li, N. Dai, and J. Li, “Double negative curvature anti-resonance hollow core fiber,” Opt. Express 27(14), 19548–19554 (2019).
[Crossref]

2018 (3)

S. F. Gao, Y. Y. Wang, W. Ding, D. L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

S. Yan, S. Lou, W. Zhang, and Z. Lian, “Single-polarization single-mode double-ring hollow-core anti-resonant fiber,” Opt. Express 26(24), 31160–31171 (2018).
[Crossref]

S. Yan, S. Lou, X. Wang, W. Zhang, and T. Zhao, “Single-mode large-mode-area double-ring hollow-core anti-resonant fiber for high power delivery in mid-infrared region,” Opt. Fiber Technol. 46, 118–124 (2018).
[Crossref]

2017 (4)

2016 (3)

2014 (3)

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22(20), 23807–23828 (2014).
[Crossref]

W. Belardi and J. C. Knight, “Hollow antiresonant fibers with reduced attenuation,” Opt. Lett. 39(7), 1853–1856 (2014).
[Crossref]

2013 (3)

2012 (2)

2011 (2)

2010 (1)

2007 (2)

G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. S. J. Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express 15(20), 12680–12685 (2007).
[Crossref]

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
[Crossref]

2006 (1)

1999 (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref]

Abdolvand, A.

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Akhmediev, N.

M. I. Hasan, N. Akhmediev, A. Mussot, and W. Chang, “Midinfrared pulse generation by pumping in the normal-dispersion regime of a gas-filled hollow-core fiber,” Phys. Rev. Appl. 12(1), 014050 (2019).
[Crossref]

M. I. Hasan, N. Akhmediev, and W. Chang, “Positive and negative curvatures nested in an antiresonant hollow-core fiber,” Opt. Lett. 42(4), 703–706 (2017).
[Crossref]

Alharbi, M.

Alkeskjold, T. T.

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref]

Amsanpally, A.

Baddela, N.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Bang, O.

Bas, A.

Bawn, S.

T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavík, E. Numkam Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3 dB/km data transmitting antiresonant hollow core fibre,” 2018 European Conference on Optical Communication (ECOC), Rome, 2018, pp. 1–3.

Belardi, W.

Benabid, F.

Biriukov, A. S.

Birks, T. A.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref]

Blondy, J. M.

Bradely, T.

Bradley, T. D.

T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavík, E. Numkam Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3 dB/km data transmitting antiresonant hollow core fibre,” 2018 European Conference on Optical Communication (ECOC), Rome, 2018, pp. 1–3.

Burger, S.

Chafer, M.

Chang, W.

M. I. Hasan, N. Akhmediev, A. Mussot, and W. Chang, “Midinfrared pulse generation by pumping in the normal-dispersion regime of a gas-filled hollow-core fiber,” Phys. Rev. Appl. 12(1), 014050 (2019).
[Crossref]

M. I. Hasan, N. Akhmediev, and W. Chang, “Positive and negative curvatures nested in an antiresonant hollow-core fiber,” Opt. Lett. 42(4), 703–706 (2017).
[Crossref]

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Chen, X.

Chen, Y.

T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavík, E. Numkam Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3 dB/km data transmitting antiresonant hollow core fibre,” 2018 European Conference on Optical Communication (ECOC), Rome, 2018, pp. 1–3.

Cole, J. H.

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
[Crossref]

Couny, F.

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref]

Dai, N.

Davidson, I. A.

T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavík, E. Numkam Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3 dB/km data transmitting antiresonant hollow core fibre,” 2018 European Conference on Optical Communication (ECOC), Rome, 2018, pp. 1–3.

Debord, B.

Dianov, E. M.

Ding, W.

S. F. Gao, Y. Y. Wang, W. Ding, D. L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

Fourcade-Dutin, C.

Gao, S. F.

S. F. Gao, Y. Y. Wang, W. Ding, D. L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

Gérome, F.

Gérôme, F.

Ghosh, D.

Gray, D. R.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Gu, S.

S. F. Gao, Y. Y. Wang, W. Ding, D. L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

Hasan, M. I.

M. I. Hasan, N. Akhmediev, A. Mussot, and W. Chang, “Midinfrared pulse generation by pumping in the normal-dispersion regime of a gas-filled hollow-core fiber,” Phys. Rev. Appl. 12(1), 014050 (2019).
[Crossref]

M. I. Hasan, N. Akhmediev, and W. Chang, “Positive and negative curvatures nested in an antiresonant hollow-core fiber,” Opt. Lett. 42(4), 703–706 (2017).
[Crossref]

Hassan, M. R. A.

Hayes, J. R.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavík, E. Numkam Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3 dB/km data transmitting antiresonant hollow core fibre,” 2018 European Conference on Optical Communication (ECOC), Rome, 2018, pp. 1–3.

Ho, D.

Hölzer, P.

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Hu, J.

C. Wei, J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

Hu, X.

Huang, X.

X. Huang, S. Yoo, and K. T. Yong, “Function of second cladding layer in hollow-core tube lattice fibers,” Sci. Rep. 7(1), 1618 (2017).
[Crossref]

X. Huang, W. Qi, D. Ho, K. T. Yong, F. Luan, and S. Yoo, “Hollow core anti-resonant fiber with split cladding,” Opt. Express 24(7), 7670–7678 (2016).
[Crossref]

Hugonnot, E.

Jakobsen, C.

Jasion, G. T.

T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavík, E. Numkam Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3 dB/km data transmitting antiresonant hollow core fibre,” 2018 European Conference on Optical Communication (ECOC), Rome, 2018, pp. 1–3.

Jiang, D. L.

S. F. Gao, Y. Y. Wang, W. Ding, D. L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

Knight, J. C.

Kolyadin, A. N.

Kosolapov, A. F.

Lægsgaard, J.

Li, H.

Li, J.

Li, Z.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Lian, Z.

Light, P. S.

Lou, S.

S. Yan, S. Lou, X. Wang, W. Zhang, and T. Zhao, “Single-mode large-mode-area double-ring hollow-core anti-resonant fiber for high power delivery in mid-infrared region,” Opt. Fiber Technol. 46, 118–124 (2018).
[Crossref]

S. Yan, S. Lou, W. Zhang, and Z. Lian, “Single-polarization single-mode double-ring hollow-core anti-resonant fiber,” Opt. Express 26(24), 31160–31171 (2018).
[Crossref]

Luan, F.

Lyngsø, J. K.

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref]

Maurel, M.

Menyuk, C. R.

C. Wei, J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

Michieletto, M.

Mussot, A.

M. I. Hasan, N. Akhmediev, A. Mussot, and W. Chang, “Midinfrared pulse generation by pumping in the normal-dispersion regime of a gas-filled hollow-core fiber,” Phys. Rev. Appl. 12(1), 014050 (2019).
[Crossref]

Numkam Fokoua, E.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavík, E. Numkam Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3 dB/km data transmitting antiresonant hollow core fibre,” 2018 European Conference on Optical Communication (ECOC), Rome, 2018, pp. 1–3.

Pearce, G. J.

Peng, J.

Petrovich, M. N.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavík, E. Numkam Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3 dB/km data transmitting antiresonant hollow core fibre,” 2018 European Conference on Optical Communication (ECOC), Rome, 2018, pp. 1–3.

Plotnichenko, V. G.

Poletti, F.

F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22(20), 23807–23828 (2014).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavík, E. Numkam Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3 dB/km data transmitting antiresonant hollow core fibre,” 2018 European Conference on Optical Communication (ECOC), Rome, 2018, pp. 1–3.

Poulton, C. G.

Pryamikov, A. D.

Qi, W.

Richardson, D. J.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavík, E. Numkam Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3 dB/km data transmitting antiresonant hollow core fibre,” 2018 European Conference on Optical Communication (ECOC), Rome, 2018, pp. 1–3.

Roberts, P. J.

Y. Y. Wang, N. V. Sheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[Crossref]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref]

Russell, P. S. J.

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. S. J. Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express 15(20), 12680–12685 (2007).
[Crossref]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref]

Sakr, H.

T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavík, E. Numkam Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3 dB/km data transmitting antiresonant hollow core fibre,” 2018 European Conference on Optical Communication (ECOC), Rome, 2018, pp. 1–3.

Sandoghchi, S. R.

T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavík, E. Numkam Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3 dB/km data transmitting antiresonant hollow core fibre,” 2018 European Conference on Optical Communication (ECOC), Rome, 2018, pp. 1–3.

Schermer, R. T.

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
[Crossref]

Scol, F.

Semjonov, S. L.

Setti, V.

Sheeler, N. V.

Slavík, R.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavík, E. Numkam Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3 dB/km data transmitting antiresonant hollow core fibre,” 2018 European Conference on Optical Communication (ECOC), Rome, 2018, pp. 1–3.

Taranta, A.

T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavík, E. Numkam Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3 dB/km data transmitting antiresonant hollow core fibre,” 2018 European Conference on Optical Communication (ECOC), Rome, 2018, pp. 1–3.

Thomas, J. P.

T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavík, E. Numkam Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3 dB/km data transmitting antiresonant hollow core fibre,” 2018 European Conference on Optical Communication (ECOC), Rome, 2018, pp. 1–3.

Travers, J. C.

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Vincentti, L.

Vincetti, L.

Wadsworth, W. J.

Wang, P.

S. F. Gao, Y. Y. Wang, W. Ding, D. L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

Wang, X.

S. Yan, S. Lou, X. Wang, W. Zhang, and T. Zhao, “Single-mode large-mode-area double-ring hollow-core anti-resonant fiber for high power delivery in mid-infrared region,” Opt. Fiber Technol. 46, 118–124 (2018).
[Crossref]

Wang, Y. Y.

S. F. Gao, Y. Y. Wang, W. Ding, D. L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

Y. Y. Wang, N. V. Sheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[Crossref]

Wei, C.

C. Wei, J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

Weiblen, J.

C. Wei, J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

Wheeler, N. V.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Wiederhecker, G. S.

Yan, S.

S. Yan, S. Lou, X. Wang, W. Zhang, and T. Zhao, “Single-mode large-mode-area double-ring hollow-core anti-resonant fiber for high power delivery in mid-infrared region,” Opt. Fiber Technol. 46, 118–124 (2018).
[Crossref]

S. Yan, S. Lou, W. Zhang, and Z. Lian, “Single-polarization single-mode double-ring hollow-core anti-resonant fiber,” Opt. Express 26(24), 31160–31171 (2018).
[Crossref]

Yang, L.

Yong, K. T.

X. Huang, S. Yoo, and K. T. Yong, “Function of second cladding layer in hollow-core tube lattice fibers,” Sci. Rep. 7(1), 1618 (2017).
[Crossref]

X. Huang, W. Qi, D. Ho, K. T. Yong, F. Luan, and S. Yoo, “Hollow core anti-resonant fiber with split cladding,” Opt. Express 24(7), 7670–7678 (2016).
[Crossref]

Yoo, S.

X. Huang, S. Yoo, and K. T. Yong, “Function of second cladding layer in hollow-core tube lattice fibers,” Sci. Rep. 7(1), 1618 (2017).
[Crossref]

X. Huang, W. Qi, D. Ho, K. T. Yong, F. Luan, and S. Yoo, “Hollow core anti-resonant fiber with split cladding,” Opt. Express 24(7), 7670–7678 (2016).
[Crossref]

Yu, F.

Zhang, W.

S. Yan, S. Lou, W. Zhang, and Z. Lian, “Single-polarization single-mode double-ring hollow-core anti-resonant fiber,” Opt. Express 26(24), 31160–31171 (2018).
[Crossref]

S. Yan, S. Lou, X. Wang, W. Zhang, and T. Zhao, “Single-mode large-mode-area double-ring hollow-core anti-resonant fiber for high power delivery in mid-infrared region,” Opt. Fiber Technol. 46, 118–124 (2018).
[Crossref]

Zhang, X.

S. F. Gao, Y. Y. Wang, W. Ding, D. L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

Zhao, T.

S. Yan, S. Lou, X. Wang, W. Zhang, and T. Zhao, “Single-mode large-mode-area double-ring hollow-core anti-resonant fiber for high power delivery in mid-infrared region,” Opt. Fiber Technol. 46, 118–124 (2018).
[Crossref]

Adv. Opt. Photonics (1)

C. Wei, J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

IEEE J. Quantum Electron. (1)

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
[Crossref]

Nat. Commun. (1)

S. F. Gao, Y. Y. Wang, W. Ding, D. L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

Nat. Photonics (2)

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Opt. Express (12)

L. Vincentti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18(22), 23133–23146 (2010).
[Crossref]

M. Michieletto, J. K. Lyngsø, C. Jakobsen, J. Lægsgaard, O. Bang, and T. T. Alkeskjold, “Hollow-core fibers for high power pulse delivery,” Opt. Express 24(7), 7103–7119 (2016).
[Crossref]

F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22(20), 23807–23828 (2014).
[Crossref]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow - core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 µm,” Opt. Express 19(2), 1441–1448 (2011).
[Crossref]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3–4 µm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[Crossref]

A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21(8), 9514–9519 (2013).
[Crossref]

L. Vincetti and V. Setti, “Extra loss due to Fano resonances in inhibited coupling fibers based on a lattice of tubes,” Opt. Express 20(13), 14350–14361 (2012).
[Crossref]

S. Yan, S. Lou, W. Zhang, and Z. Lian, “Single-polarization single-mode double-ring hollow-core anti-resonant fiber,” Opt. Express 26(24), 31160–31171 (2018).
[Crossref]

X. Chen, X. Hu, L. Yang, J. Peng, H. Li, N. Dai, and J. Li, “Double negative curvature anti-resonance hollow core fiber,” Opt. Express 27(14), 19548–19554 (2019).
[Crossref]

G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. S. J. Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express 15(20), 12680–12685 (2007).
[Crossref]

M. Alharbi, T. Bradely, B. Debord, C. Fourcade-Dutin, D. Ghosh, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part II: Cladding effect on confinement and bend loss,” Opt. Express 21(23), 28609–28616 (2013).
[Crossref]

X. Huang, W. Qi, D. Ho, K. T. Yong, F. Luan, and S. Yoo, “Hollow core anti-resonant fiber with split cladding,” Opt. Express 24(7), 7670–7678 (2016).
[Crossref]

Opt. Fiber Technol. (1)

S. Yan, S. Lou, X. Wang, W. Zhang, and T. Zhao, “Single-mode large-mode-area double-ring hollow-core anti-resonant fiber for high power delivery in mid-infrared region,” Opt. Fiber Technol. 46, 118–124 (2018).
[Crossref]

Opt. Lett. (4)

Optica (2)

Phys. Rev. Appl. (1)

M. I. Hasan, N. Akhmediev, A. Mussot, and W. Chang, “Midinfrared pulse generation by pumping in the normal-dispersion regime of a gas-filled hollow-core fiber,” Phys. Rev. Appl. 12(1), 014050 (2019).
[Crossref]

Sci. Rep. (1)

X. Huang, S. Yoo, and K. T. Yong, “Function of second cladding layer in hollow-core tube lattice fibers,” Sci. Rep. 7(1), 1618 (2017).
[Crossref]

Science (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref]

Other (1)

T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavík, E. Numkam Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3 dB/km data transmitting antiresonant hollow core fibre,” 2018 European Conference on Optical Communication (ECOC), Rome, 2018, pp. 1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Idealized cross-section of a typical double-ring negative-curvature fiber (DR-NCF). D is the core diameter. t is the glass-web thickness of the antiresonant tubes. ${n_1}$ and ${d_1}$ are the number and the diameter of the antiresonant tubes in the inner ring, and ${n_2}$ and ${d_2}$ are those in the outer ring. In our numerical study, we set D = 30 µm, $t$ = 0.43 µm and ${n_1}$ = 6 to ensures a decent guidance at 1.06-µm wavelength, while letting ${d_1}$, ${n_2}$ and ${d_2}$ to be free parameters. Finite element modeling convergence tests for (b) the perfectly-matched layer thickness, and (c) the mesh size where the maximum mesh size in the silica and hollow regions are ${\lambda _0}/({6m} )$ and ${\lambda _0}/({4m} )$, respectively.
Fig. 2.
Fig. 2. (a) Confinement loss in the fundamental mode as a function of ${d_1}/D$ for SR-NCF with six antiresonant tubes, and DR-NCF with ${n_2}$ = 12 and ${d_2}/D$ = 0.667. (b) Confinement loss in the fundamental mode as a function of ${d_2}/D$ for DR-NCF with ${n_2}$ = 6, 12, 18, 24 and 30. The optimum ${d_1}/D$ = 0.663 obtained from (a) is used in the calculations. The vertical-dashed lines indicate the points where the outer ring tubes are in contact with each other. Top-right corner shows idealized cross-sections of the fibers.
Fig. 3.
Fig. 3. Comparison of the confinement loss between SR-NCF, a nested-element nodeless fiber (NANF), a conjoined-tube fiber (CTF), a two-ring split cladding fiber (2SCF) and DR-NCF with ${n_2}$ = 12, ${d_1}/D$ = 0.663 and ${d_2}/D$ = 0.667. The right-hand side panel illustrates idealized cross-sections of these fibers.
Fig. 4.
Fig. 4. (a) Bend-induced loss in the fundamental mode as a function of ${d_2}/D$ for DR-NCF with ${n_2}$ = 12, 18, 24 and 30. The optimum ${d_1}/D$ = 0.663 obtained from Fig. 2(a) is used. The inset is the 3-dB contour plot of the intensity profile showing the light leakage from the core into one of the outer antiresonant tubes when ${d_2}/D$ = 0.667. The best bending performance at ${R_c}$ = 7 cm is observed when ${d_2}/D$ = 0.5. (b) Bend-induced loss as a function of ${d_1}/D$ while ${n_2}$ and ${d_2}$/D are set at 12 and 0.5, respectively. The inset is the 3-dB contour plot of the intensity profile showing the light leakage from the core into one of the inner antiresonant tubes when ${d_1}/D$ = 0.773. The bending performance of a six-tube SR-NCF as a function of ${d_1}/D$ is presented as a reference. The bend-induced loss plotted for ${R_c}$ = 5 cm and 10 cm when ${n_2}$ = 12 clearly demonstrate the effect of changing bending radius.
Fig. 5.
Fig. 5. (a) Higher-order mode extinction ratio (HOMER) for DR-NCF as a function of ${d_2}/D$ for ${n_2}$ = 12, 18, 24 and 30, while ${d_1}/D$ is set at 0.663. (b) The confinement loss of several higher-order modes as a function of ${d_2}/D$ for DR-NCF with ${n_2}$ = 12 and ${d_1}/D$ = 0.663.
Fig. 6.
Fig. 6. (a) Illustration of the edge formation between the adjacent antiresonant tubes in the inner and outer rings caused by the fabrication imperfection. (b) Comparison of the confinement loss between the ideal DR-NCF (black, ${n_2}$ = 12, ${d_1}/D$ = 0.663 and ${d_2}/D$ = 0.667) and those with the fabrication-induced deformations (blue, green and red, 5%, 7% and 10% errors, respectively). We define the percentage fabrication error as the length of the edge as a fraction of the circumference of the inner tube, i.e. ${l_e}/\pi {d_1} \times 100\%$