Abstract

We describe curved-mirror Fabry-Perot cavities with embedded silicon nitride membranes, fabricated using a monolithic surface-micromachining process. The presence of the suspended membranes was confirmed by confocal microscopy, and their properties were verified through optical studies and thermomechanical calibration of mechanical/vibrational noise spectra measured at room temperature and atmospheric pressure. The cavities exhibit reflectance-limited finesse (F ∼ 103) and wavelength-scale mode volumes (VM ∼ 10·λ3). The short cavity length (L ∼ 2·λ) results in large optomechanical coupling, which is desirable for numerous applications in sensing and quantum information.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
    [Crossref]
  2. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
    [Crossref]
  3. T. M. Karg, B. Gouraud, C. T. Ngai, G.-L. Schmid, K. Hammerer, and P. Treutlein, “Light-mediated strong coupling between a mechanical oscillator and atomic spins 1 meter apart,” Science 369(6500), 174–179 (2020).
    [Crossref]
  4. M. Aspelmeyer, P. Meystre, and K. Schwab, “Quantum optomechanics,” Phys. Today 65(7), 29–35 (2012).
    [Crossref]
  5. J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
    [Crossref]
  6. J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
    [Crossref]
  7. J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
    [Crossref]
  8. D. J. Wilson, C. A. Regal, S. B. Papp, and H. J. Kimble, “Cavity optomechanics with stoichiometric SiN films,” Phys. Rev. Lett. 103(20), 207204 (2009).
    [Crossref]
  9. C. Reinhardt, T. Muller, A. Bourassa, and J. C. Sankey, “Ultralow-Noise SiN trampoline resonators for sensing and optomechanics,” Phys. Rev. X 6(2), 021001 (2016).
    [Crossref]
  10. T. P. Purdy, R. W. Peterson, and C. A. Regal, “Observation of Radiation Pressure Shot Noise on a Macroscopic Object,” Science 339(6121), 801–804 (2013).
    [Crossref]
  11. R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nat. Phys. 10(4), 321–326 (2014).
    [Crossref]
  12. R. A. Norte, J. P. Moura, and S. Groblacher, “Mechanical resonators for quantum optomechanics experiments at room temperature,” Phys. Rev. Lett. 116(14), 147202 (2016).
    [Crossref]
  13. Y. Tsaturyan, A. Barg, E. S. Polzik, and A. Schliesser, “Ultracoherent nanomechanical resonators via soft clamping and dissipation dilution,” Nat. Nanotechnol. 12(8), 776–783 (2017).
    [Crossref]
  14. M. Rossi, D. Mason, J. Chen, Y. Tsaturyan, and A. Schliesser, “Measurement-based quantum control of mechanical motion,” Nature 563(7729), 53–58 (2018).
    [Crossref]
  15. N. E. Flowers-Jacobs, S. W. Hoch, J. C. Sankey, A. Kashkanova, A. M. Jayich, C. Deutsch, J. Reichel, and J. G. E. Harris, “Fiber-cavity-based optomechanical device,” Appl. Phys. Lett. 101(22), 221109 (2012).
    [Crossref]
  16. V. Dumont, S. Bernard, C. Reinhardt, A. Kato, M. Ruf, and J. C. Sankey, “Flexure-tuned membrane-at-the-edge optomechanical system,” Opt. Express 27(18), 25731–25748 (2019).
    [Crossref]
  17. F. Fogliano, B. Besga, A. Reigue, P. Heringlake, L. Mercier de Lepinay, C. Venaph, J. Reichel, B. Pigeau, and O. Arcizet, “Cavity nano-optomechanics in the ultrastrong coupling regime with ultrasensitive force sensors,” https://arxiv.org/abs/1904.01140 .
  18. M. H. Bitarafan, H. Ramp, T. W. Allen, C. Potts, X. Rojas, A. J. R. MacDonald, J. P. Davis, and R. G. DeCorby, “Thermomechanical characterization of on-chip buckled dome Fabry–Perot microcavities,” J. Opt. Soc. Am. B 32(6), 1214–1220 (2015).
    [Crossref]
  19. M. H. Bitarafan and R. G. DeCorby, “Small-mode-volume, channel-connected Fabry-Perot microcavities on a chip,” Appl. Opt. 56(36), 9992–9997 (2017).
    [Crossref]
  20. J. Maldaner, S. Al-Sumaidae, G. J. Hornig, L. J. LeBlanc, and R. G. DeCorby, “Liquid infiltration of monolithic open-access Fabry-Perot microcavities,” Appl. Opt. (to be published).
  21. L. R. Arana, N. de Mas, R. Schmidt, A. J. Franz, M. A. Schmidt, and K. F. Jensen, “Isotropic etching of silicon in fluorine gas for MEMS micromachining,” J. Micromech. Microeng. 17(2), 384–392 (2007).
    [Crossref]
  22. J. J. Miller, R. N. Carter, K. B. McNabb, J.-P. S. DesOrmeaux, C. C. Striemer, J. D. Winans, and T. R. Gaborski, “Lift-off of large-scale ultrathin nanomembranes,” J. Micromech. Microeng. 25(1), 015011 (2015).
    [Crossref]
  23. D. R. Southworth, H. G. Craighead, and J. M. Parpia, “Pressure dependent resonant frequency of micromechanical drumhead resonators,” Appl. Phys. Lett. 94(21), 213506 (2009).
    [Crossref]
  24. V. P. Adiga, B. Ilic, R. A. Barton, I. Wilson-Rae, H. G. Craighead, and J. M. Parpia, “Approaching intrinsic performance in ultra-thin silicon nitride drum resonators,” J. Appl. Phys. 112(6), 064323 (2012).
    [Crossref]
  25. J. W. Hutchinson and Z. Suo, “Mixed mode cracking in layered materials,” Adv. Appl. Mech. 29, 63–191 (1991).
    [Crossref]
  26. A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10(9), 095008 (2008).
    [Crossref]
  27. B. D. Hauer, C. Doolin, K. S. D. Beach, and J. P. Davis, “A general procedure for thermomechanical calibration of nano/micro-mechanical resonators,” Ann. Phys. 339, 181–207 (2013).
    [Crossref]
  28. M. A. G. Suijlen, J. J. Koning, M. A. J. van Gils, and H. C. W. Beijerinck, “Squeeze film damping in the free molecular flow regime with full thermal accommodation,” Sens. Actuators, A 156(1), 171–179 (2009).
    [Crossref]
  29. G. Rempe, R. J. Thompson, H. J. Kimble, and R. Lalezari, “Measurement of ultralow losses in an optical interferometer,” Opt. Lett. 17(5), 363–365 (1992).
    [Crossref]
  30. G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
    [Crossref]
  31. J. Maldaner, S. Al-Sumaidae, and R. G. DeCorby, “Theoretical study of silicon-based Bragg mirrors for cavity QED applications,” J. Opt. Soc. Am. B, submitted for publication.
  32. T. Ojanen and K. Borkje, “Ground-state cooling of mechanical motion in the unresolved sideband regime by use of optomechanically induced transparency,” Phys. Rev. A 90(1), 013824 (2014).
    [Crossref]
  33. J. S. Bennett, K. Khosla, L. S. Madsen, M. R. Vanner, H. Rubinsztein-Dunlop, and W. P. Bowen, “A quantum optomechanical interface beyond the resolved sideband limit,” New J. Phys. 18(5), 053030 (2016).
    [Crossref]
  34. G. Reetz, R. Fischer, G. G. T. Assumpcao, D. P. McNally, P. S. Burns, J. C. Sankey, and C. A. Regal, “Analysis of membrane phononic crystals with wide band gaps and low-mass defects,” Phys. Rev. Appl. 12(4), 044027 (2019).
    [Crossref]
  35. K. Borkje, “Critical quantum fluctuations and photon antibunching in optomechanical systems with large single-photon cooperativity,” Phys. Rev. A 101(5), 053833 (2020).
    [Crossref]

2020 (2)

T. M. Karg, B. Gouraud, C. T. Ngai, G.-L. Schmid, K. Hammerer, and P. Treutlein, “Light-mediated strong coupling between a mechanical oscillator and atomic spins 1 meter apart,” Science 369(6500), 174–179 (2020).
[Crossref]

K. Borkje, “Critical quantum fluctuations and photon antibunching in optomechanical systems with large single-photon cooperativity,” Phys. Rev. A 101(5), 053833 (2020).
[Crossref]

2019 (3)

G. Reetz, R. Fischer, G. G. T. Assumpcao, D. P. McNally, P. S. Burns, J. C. Sankey, and C. A. Regal, “Analysis of membrane phononic crystals with wide band gaps and low-mass defects,” Phys. Rev. Appl. 12(4), 044027 (2019).
[Crossref]

G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
[Crossref]

V. Dumont, S. Bernard, C. Reinhardt, A. Kato, M. Ruf, and J. C. Sankey, “Flexure-tuned membrane-at-the-edge optomechanical system,” Opt. Express 27(18), 25731–25748 (2019).
[Crossref]

2018 (1)

M. Rossi, D. Mason, J. Chen, Y. Tsaturyan, and A. Schliesser, “Measurement-based quantum control of mechanical motion,” Nature 563(7729), 53–58 (2018).
[Crossref]

2017 (2)

Y. Tsaturyan, A. Barg, E. S. Polzik, and A. Schliesser, “Ultracoherent nanomechanical resonators via soft clamping and dissipation dilution,” Nat. Nanotechnol. 12(8), 776–783 (2017).
[Crossref]

M. H. Bitarafan and R. G. DeCorby, “Small-mode-volume, channel-connected Fabry-Perot microcavities on a chip,” Appl. Opt. 56(36), 9992–9997 (2017).
[Crossref]

2016 (3)

J. S. Bennett, K. Khosla, L. S. Madsen, M. R. Vanner, H. Rubinsztein-Dunlop, and W. P. Bowen, “A quantum optomechanical interface beyond the resolved sideband limit,” New J. Phys. 18(5), 053030 (2016).
[Crossref]

R. A. Norte, J. P. Moura, and S. Groblacher, “Mechanical resonators for quantum optomechanics experiments at room temperature,” Phys. Rev. Lett. 116(14), 147202 (2016).
[Crossref]

C. Reinhardt, T. Muller, A. Bourassa, and J. C. Sankey, “Ultralow-Noise SiN trampoline resonators for sensing and optomechanics,” Phys. Rev. X 6(2), 021001 (2016).
[Crossref]

2015 (2)

M. H. Bitarafan, H. Ramp, T. W. Allen, C. Potts, X. Rojas, A. J. R. MacDonald, J. P. Davis, and R. G. DeCorby, “Thermomechanical characterization of on-chip buckled dome Fabry–Perot microcavities,” J. Opt. Soc. Am. B 32(6), 1214–1220 (2015).
[Crossref]

J. J. Miller, R. N. Carter, K. B. McNabb, J.-P. S. DesOrmeaux, C. C. Striemer, J. D. Winans, and T. R. Gaborski, “Lift-off of large-scale ultrathin nanomembranes,” J. Micromech. Microeng. 25(1), 015011 (2015).
[Crossref]

2014 (3)

T. Ojanen and K. Borkje, “Ground-state cooling of mechanical motion in the unresolved sideband regime by use of optomechanically induced transparency,” Phys. Rev. A 90(1), 013824 (2014).
[Crossref]

R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nat. Phys. 10(4), 321–326 (2014).
[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

2013 (2)

T. P. Purdy, R. W. Peterson, and C. A. Regal, “Observation of Radiation Pressure Shot Noise on a Macroscopic Object,” Science 339(6121), 801–804 (2013).
[Crossref]

B. D. Hauer, C. Doolin, K. S. D. Beach, and J. P. Davis, “A general procedure for thermomechanical calibration of nano/micro-mechanical resonators,” Ann. Phys. 339, 181–207 (2013).
[Crossref]

2012 (3)

V. P. Adiga, B. Ilic, R. A. Barton, I. Wilson-Rae, H. G. Craighead, and J. M. Parpia, “Approaching intrinsic performance in ultra-thin silicon nitride drum resonators,” J. Appl. Phys. 112(6), 064323 (2012).
[Crossref]

M. Aspelmeyer, P. Meystre, and K. Schwab, “Quantum optomechanics,” Phys. Today 65(7), 29–35 (2012).
[Crossref]

N. E. Flowers-Jacobs, S. W. Hoch, J. C. Sankey, A. Kashkanova, A. M. Jayich, C. Deutsch, J. Reichel, and J. G. E. Harris, “Fiber-cavity-based optomechanical device,” Appl. Phys. Lett. 101(22), 221109 (2012).
[Crossref]

2011 (2)

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref]

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref]

2009 (3)

D. J. Wilson, C. A. Regal, S. B. Papp, and H. J. Kimble, “Cavity optomechanics with stoichiometric SiN films,” Phys. Rev. Lett. 103(20), 207204 (2009).
[Crossref]

M. A. G. Suijlen, J. J. Koning, M. A. J. van Gils, and H. C. W. Beijerinck, “Squeeze film damping in the free molecular flow regime with full thermal accommodation,” Sens. Actuators, A 156(1), 171–179 (2009).
[Crossref]

D. R. Southworth, H. G. Craighead, and J. M. Parpia, “Pressure dependent resonant frequency of micromechanical drumhead resonators,” Appl. Phys. Lett. 94(21), 213506 (2009).
[Crossref]

2008 (3)

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10(9), 095008 (2008).
[Crossref]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[Crossref]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
[Crossref]

2007 (1)

L. R. Arana, N. de Mas, R. Schmidt, A. J. Franz, M. A. Schmidt, and K. F. Jensen, “Isotropic etching of silicon in fluorine gas for MEMS micromachining,” J. Micromech. Microeng. 17(2), 384–392 (2007).
[Crossref]

1992 (1)

1991 (1)

J. W. Hutchinson and Z. Suo, “Mixed mode cracking in layered materials,” Adv. Appl. Mech. 29, 63–191 (1991).
[Crossref]

Adiga, V. P.

V. P. Adiga, B. Ilic, R. A. Barton, I. Wilson-Rae, H. G. Craighead, and J. M. Parpia, “Approaching intrinsic performance in ultra-thin silicon nitride drum resonators,” J. Appl. Phys. 112(6), 064323 (2012).
[Crossref]

Allen, T. W.

Allman, M. S.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref]

Al-Sumaidae, S.

J. Maldaner, S. Al-Sumaidae, G. J. Hornig, L. J. LeBlanc, and R. G. DeCorby, “Liquid infiltration of monolithic open-access Fabry-Perot microcavities,” Appl. Opt. (to be published).

J. Maldaner, S. Al-Sumaidae, and R. G. DeCorby, “Theoretical study of silicon-based Bragg mirrors for cavity QED applications,” J. Opt. Soc. Am. B, submitted for publication.

Andrews, R. W.

R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nat. Phys. 10(4), 321–326 (2014).
[Crossref]

Arana, L. R.

L. R. Arana, N. de Mas, R. Schmidt, A. J. Franz, M. A. Schmidt, and K. F. Jensen, “Isotropic etching of silicon in fluorine gas for MEMS micromachining,” J. Micromech. Microeng. 17(2), 384–392 (2007).
[Crossref]

Arcizet, O.

F. Fogliano, B. Besga, A. Reigue, P. Heringlake, L. Mercier de Lepinay, C. Venaph, J. Reichel, B. Pigeau, and O. Arcizet, “Cavity nano-optomechanics in the ultrastrong coupling regime with ultrasensitive force sensors,” https://arxiv.org/abs/1904.01140 .

Arndt, M.

G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
[Crossref]

Asenbaum, P.

G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
[Crossref]

Aspelmeyer, M.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

M. Aspelmeyer, P. Meystre, and K. Schwab, “Quantum optomechanics,” Phys. Today 65(7), 29–35 (2012).
[Crossref]

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref]

Assumpcao, G. G. T.

G. Reetz, R. Fischer, G. G. T. Assumpcao, D. P. McNally, P. S. Burns, J. C. Sankey, and C. A. Regal, “Analysis of membrane phononic crystals with wide band gaps and low-mass defects,” Phys. Rev. Appl. 12(4), 044027 (2019).
[Crossref]

Barg, A.

Y. Tsaturyan, A. Barg, E. S. Polzik, and A. Schliesser, “Ultracoherent nanomechanical resonators via soft clamping and dissipation dilution,” Nat. Nanotechnol. 12(8), 776–783 (2017).
[Crossref]

Barton, R. A.

V. P. Adiga, B. Ilic, R. A. Barton, I. Wilson-Rae, H. G. Craighead, and J. M. Parpia, “Approaching intrinsic performance in ultra-thin silicon nitride drum resonators,” J. Appl. Phys. 112(6), 064323 (2012).
[Crossref]

Beach, K. S. D.

B. D. Hauer, C. Doolin, K. S. D. Beach, and J. P. Davis, “A general procedure for thermomechanical calibration of nano/micro-mechanical resonators,” Ann. Phys. 339, 181–207 (2013).
[Crossref]

Beijerinck, H. C. W.

M. A. G. Suijlen, J. J. Koning, M. A. J. van Gils, and H. C. W. Beijerinck, “Squeeze film damping in the free molecular flow regime with full thermal accommodation,” Sens. Actuators, A 156(1), 171–179 (2009).
[Crossref]

Bennett, J. S.

J. S. Bennett, K. Khosla, L. S. Madsen, M. R. Vanner, H. Rubinsztein-Dunlop, and W. P. Bowen, “A quantum optomechanical interface beyond the resolved sideband limit,” New J. Phys. 18(5), 053030 (2016).
[Crossref]

Bernard, S.

Besga, B.

F. Fogliano, B. Besga, A. Reigue, P. Heringlake, L. Mercier de Lepinay, C. Venaph, J. Reichel, B. Pigeau, and O. Arcizet, “Cavity nano-optomechanics in the ultrastrong coupling regime with ultrasensitive force sensors,” https://arxiv.org/abs/1904.01140 .

Bitarafan, M. H.

Borkje, K.

K. Borkje, “Critical quantum fluctuations and photon antibunching in optomechanical systems with large single-photon cooperativity,” Phys. Rev. A 101(5), 053833 (2020).
[Crossref]

T. Ojanen and K. Borkje, “Ground-state cooling of mechanical motion in the unresolved sideband regime by use of optomechanically induced transparency,” Phys. Rev. A 90(1), 013824 (2014).
[Crossref]

Bourassa, A.

C. Reinhardt, T. Muller, A. Bourassa, and J. C. Sankey, “Ultralow-Noise SiN trampoline resonators for sensing and optomechanics,” Phys. Rev. X 6(2), 021001 (2016).
[Crossref]

Bowen, W. P.

J. S. Bennett, K. Khosla, L. S. Madsen, M. R. Vanner, H. Rubinsztein-Dunlop, and W. P. Bowen, “A quantum optomechanical interface beyond the resolved sideband limit,” New J. Phys. 18(5), 053030 (2016).
[Crossref]

Burns, P. S.

G. Reetz, R. Fischer, G. G. T. Assumpcao, D. P. McNally, P. S. Burns, J. C. Sankey, and C. A. Regal, “Analysis of membrane phononic crystals with wide band gaps and low-mass defects,” Phys. Rev. Appl. 12(4), 044027 (2019).
[Crossref]

Carter, R. N.

J. J. Miller, R. N. Carter, K. B. McNabb, J.-P. S. DesOrmeaux, C. C. Striemer, J. D. Winans, and T. R. Gaborski, “Lift-off of large-scale ultrathin nanomembranes,” J. Micromech. Microeng. 25(1), 015011 (2015).
[Crossref]

Chan, J.

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref]

Chen, J.

M. Rossi, D. Mason, J. Chen, Y. Tsaturyan, and A. Schliesser, “Measurement-based quantum control of mechanical motion,” Nature 563(7729), 53–58 (2018).
[Crossref]

Cicak, K.

R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nat. Phys. 10(4), 321–326 (2014).
[Crossref]

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref]

Clerk, A. A.

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10(9), 095008 (2008).
[Crossref]

Craighead, H. G.

V. P. Adiga, B. Ilic, R. A. Barton, I. Wilson-Rae, H. G. Craighead, and J. M. Parpia, “Approaching intrinsic performance in ultra-thin silicon nitride drum resonators,” J. Appl. Phys. 112(6), 064323 (2012).
[Crossref]

D. R. Southworth, H. G. Craighead, and J. M. Parpia, “Pressure dependent resonant frequency of micromechanical drumhead resonators,” Appl. Phys. Lett. 94(21), 213506 (2009).
[Crossref]

Davis, J. P.

M. H. Bitarafan, H. Ramp, T. W. Allen, C. Potts, X. Rojas, A. J. R. MacDonald, J. P. Davis, and R. G. DeCorby, “Thermomechanical characterization of on-chip buckled dome Fabry–Perot microcavities,” J. Opt. Soc. Am. B 32(6), 1214–1220 (2015).
[Crossref]

B. D. Hauer, C. Doolin, K. S. D. Beach, and J. P. Davis, “A general procedure for thermomechanical calibration of nano/micro-mechanical resonators,” Ann. Phys. 339, 181–207 (2013).
[Crossref]

de Mas, N.

L. R. Arana, N. de Mas, R. Schmidt, A. J. Franz, M. A. Schmidt, and K. F. Jensen, “Isotropic etching of silicon in fluorine gas for MEMS micromachining,” J. Micromech. Microeng. 17(2), 384–392 (2007).
[Crossref]

DeCorby, R. G.

M. H. Bitarafan and R. G. DeCorby, “Small-mode-volume, channel-connected Fabry-Perot microcavities on a chip,” Appl. Opt. 56(36), 9992–9997 (2017).
[Crossref]

M. H. Bitarafan, H. Ramp, T. W. Allen, C. Potts, X. Rojas, A. J. R. MacDonald, J. P. Davis, and R. G. DeCorby, “Thermomechanical characterization of on-chip buckled dome Fabry–Perot microcavities,” J. Opt. Soc. Am. B 32(6), 1214–1220 (2015).
[Crossref]

J. Maldaner, S. Al-Sumaidae, G. J. Hornig, L. J. LeBlanc, and R. G. DeCorby, “Liquid infiltration of monolithic open-access Fabry-Perot microcavities,” Appl. Opt. (to be published).

J. Maldaner, S. Al-Sumaidae, and R. G. DeCorby, “Theoretical study of silicon-based Bragg mirrors for cavity QED applications,” J. Opt. Soc. Am. B, submitted for publication.

DesOrmeaux, J.-P. S.

J. J. Miller, R. N. Carter, K. B. McNabb, J.-P. S. DesOrmeaux, C. C. Striemer, J. D. Winans, and T. R. Gaborski, “Lift-off of large-scale ultrathin nanomembranes,” J. Micromech. Microeng. 25(1), 015011 (2015).
[Crossref]

Deutsch, C.

N. E. Flowers-Jacobs, S. W. Hoch, J. C. Sankey, A. Kashkanova, A. M. Jayich, C. Deutsch, J. Reichel, and J. G. E. Harris, “Fiber-cavity-based optomechanical device,” Appl. Phys. Lett. 101(22), 221109 (2012).
[Crossref]

Donner, T.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref]

Doolin, C.

B. D. Hauer, C. Doolin, K. S. D. Beach, and J. P. Davis, “A general procedure for thermomechanical calibration of nano/micro-mechanical resonators,” Ann. Phys. 339, 181–207 (2013).
[Crossref]

Dumont, V.

Felgner, A.

G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
[Crossref]

Fischer, R.

G. Reetz, R. Fischer, G. G. T. Assumpcao, D. P. McNally, P. S. Burns, J. C. Sankey, and C. A. Regal, “Analysis of membrane phononic crystals with wide band gaps and low-mass defects,” Phys. Rev. Appl. 12(4), 044027 (2019).
[Crossref]

Flowers-Jacobs, N. E.

N. E. Flowers-Jacobs, S. W. Hoch, J. C. Sankey, A. Kashkanova, A. M. Jayich, C. Deutsch, J. Reichel, and J. G. E. Harris, “Fiber-cavity-based optomechanical device,” Appl. Phys. Lett. 101(22), 221109 (2012).
[Crossref]

Fogliano, F.

F. Fogliano, B. Besga, A. Reigue, P. Heringlake, L. Mercier de Lepinay, C. Venaph, J. Reichel, B. Pigeau, and O. Arcizet, “Cavity nano-optomechanics in the ultrastrong coupling regime with ultrasensitive force sensors,” https://arxiv.org/abs/1904.01140 .

Franz, A. J.

L. R. Arana, N. de Mas, R. Schmidt, A. J. Franz, M. A. Schmidt, and K. F. Jensen, “Isotropic etching of silicon in fluorine gas for MEMS micromachining,” J. Micromech. Microeng. 17(2), 384–392 (2007).
[Crossref]

Gaborski, T. R.

J. J. Miller, R. N. Carter, K. B. McNabb, J.-P. S. DesOrmeaux, C. C. Striemer, J. D. Winans, and T. R. Gaborski, “Lift-off of large-scale ultrathin nanomembranes,” J. Micromech. Microeng. 25(1), 015011 (2015).
[Crossref]

Girvin, S. M.

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10(9), 095008 (2008).
[Crossref]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[Crossref]

Gouraud, B.

T. M. Karg, B. Gouraud, C. T. Ngai, G.-L. Schmid, K. Hammerer, and P. Treutlein, “Light-mediated strong coupling between a mechanical oscillator and atomic spins 1 meter apart,” Science 369(6500), 174–179 (2020).
[Crossref]

Groblacher, S.

R. A. Norte, J. P. Moura, and S. Groblacher, “Mechanical resonators for quantum optomechanics experiments at room temperature,” Phys. Rev. Lett. 116(14), 147202 (2016).
[Crossref]

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref]

Hammerer, K.

T. M. Karg, B. Gouraud, C. T. Ngai, G.-L. Schmid, K. Hammerer, and P. Treutlein, “Light-mediated strong coupling between a mechanical oscillator and atomic spins 1 meter apart,” Science 369(6500), 174–179 (2020).
[Crossref]

Harlow, J. W.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref]

Harris, J. G. E.

N. E. Flowers-Jacobs, S. W. Hoch, J. C. Sankey, A. Kashkanova, A. M. Jayich, C. Deutsch, J. Reichel, and J. G. E. Harris, “Fiber-cavity-based optomechanical device,” Appl. Phys. Lett. 101(22), 221109 (2012).
[Crossref]

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10(9), 095008 (2008).
[Crossref]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[Crossref]

Hauer, B. D.

B. D. Hauer, C. Doolin, K. S. D. Beach, and J. P. Davis, “A general procedure for thermomechanical calibration of nano/micro-mechanical resonators,” Ann. Phys. 339, 181–207 (2013).
[Crossref]

Heringlake, P.

F. Fogliano, B. Besga, A. Reigue, P. Heringlake, L. Mercier de Lepinay, C. Venaph, J. Reichel, B. Pigeau, and O. Arcizet, “Cavity nano-optomechanics in the ultrastrong coupling regime with ultrasensitive force sensors,” https://arxiv.org/abs/1904.01140 .

Hill, J. T.

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref]

Hoch, S. W.

N. E. Flowers-Jacobs, S. W. Hoch, J. C. Sankey, A. Kashkanova, A. M. Jayich, C. Deutsch, J. Reichel, and J. G. E. Harris, “Fiber-cavity-based optomechanical device,” Appl. Phys. Lett. 101(22), 221109 (2012).
[Crossref]

Hornig, G. J.

J. Maldaner, S. Al-Sumaidae, G. J. Hornig, L. J. LeBlanc, and R. G. DeCorby, “Liquid infiltration of monolithic open-access Fabry-Perot microcavities,” Appl. Opt. (to be published).

Hüser, D.

G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
[Crossref]

Hutchinson, J. W.

J. W. Hutchinson and Z. Suo, “Mixed mode cracking in layered materials,” Adv. Appl. Mech. 29, 63–191 (1991).
[Crossref]

Ilic, B.

V. P. Adiga, B. Ilic, R. A. Barton, I. Wilson-Rae, H. G. Craighead, and J. M. Parpia, “Approaching intrinsic performance in ultra-thin silicon nitride drum resonators,” J. Appl. Phys. 112(6), 064323 (2012).
[Crossref]

Jayich, A. M.

N. E. Flowers-Jacobs, S. W. Hoch, J. C. Sankey, A. Kashkanova, A. M. Jayich, C. Deutsch, J. Reichel, and J. G. E. Harris, “Fiber-cavity-based optomechanical device,” Appl. Phys. Lett. 101(22), 221109 (2012).
[Crossref]

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10(9), 095008 (2008).
[Crossref]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[Crossref]

Jensen, K. F.

L. R. Arana, N. de Mas, R. Schmidt, A. J. Franz, M. A. Schmidt, and K. F. Jensen, “Isotropic etching of silicon in fluorine gas for MEMS micromachining,” J. Micromech. Microeng. 17(2), 384–392 (2007).
[Crossref]

Karg, T. M.

T. M. Karg, B. Gouraud, C. T. Ngai, G.-L. Schmid, K. Hammerer, and P. Treutlein, “Light-mediated strong coupling between a mechanical oscillator and atomic spins 1 meter apart,” Science 369(6500), 174–179 (2020).
[Crossref]

Kashkanova, A.

N. E. Flowers-Jacobs, S. W. Hoch, J. C. Sankey, A. Kashkanova, A. M. Jayich, C. Deutsch, J. Reichel, and J. G. E. Harris, “Fiber-cavity-based optomechanical device,” Appl. Phys. Lett. 101(22), 221109 (2012).
[Crossref]

Kato, A.

Khosla, K.

J. S. Bennett, K. Khosla, L. S. Madsen, M. R. Vanner, H. Rubinsztein-Dunlop, and W. P. Bowen, “A quantum optomechanical interface beyond the resolved sideband limit,” New J. Phys. 18(5), 053030 (2016).
[Crossref]

Kimble, H. J.

D. J. Wilson, C. A. Regal, S. B. Papp, and H. J. Kimble, “Cavity optomechanics with stoichiometric SiN films,” Phys. Rev. Lett. 103(20), 207204 (2009).
[Crossref]

G. Rempe, R. J. Thompson, H. J. Kimble, and R. Lalezari, “Measurement of ultralow losses in an optical interferometer,” Opt. Lett. 17(5), 363–365 (1992).
[Crossref]

Kippenberg, T. J.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
[Crossref]

Koning, J. J.

M. A. G. Suijlen, J. J. Koning, M. A. J. van Gils, and H. C. W. Beijerinck, “Squeeze film damping in the free molecular flow regime with full thermal accommodation,” Sens. Actuators, A 156(1), 171–179 (2009).
[Crossref]

Krause, A.

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref]

Kuhn, S.

G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
[Crossref]

Lalezari, R.

LeBlanc, L. J.

J. Maldaner, S. Al-Sumaidae, G. J. Hornig, L. J. LeBlanc, and R. G. DeCorby, “Liquid infiltration of monolithic open-access Fabry-Perot microcavities,” Appl. Opt. (to be published).

Lehnert, K. W.

R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nat. Phys. 10(4), 321–326 (2014).
[Crossref]

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref]

Li, D.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref]

MacDonald, A. J. R.

Madsen, L. S.

J. S. Bennett, K. Khosla, L. S. Madsen, M. R. Vanner, H. Rubinsztein-Dunlop, and W. P. Bowen, “A quantum optomechanical interface beyond the resolved sideband limit,” New J. Phys. 18(5), 053030 (2016).
[Crossref]

Maldaner, J.

J. Maldaner, S. Al-Sumaidae, and R. G. DeCorby, “Theoretical study of silicon-based Bragg mirrors for cavity QED applications,” J. Opt. Soc. Am. B, submitted for publication.

J. Maldaner, S. Al-Sumaidae, G. J. Hornig, L. J. LeBlanc, and R. G. DeCorby, “Liquid infiltration of monolithic open-access Fabry-Perot microcavities,” Appl. Opt. (to be published).

Marquardt, F.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[Crossref]

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10(9), 095008 (2008).
[Crossref]

Mason, D.

M. Rossi, D. Mason, J. Chen, Y. Tsaturyan, and A. Schliesser, “Measurement-based quantum control of mechanical motion,” Nature 563(7729), 53–58 (2018).
[Crossref]

Mayer Alegre, T. P.

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref]

McNabb, K. B.

J. J. Miller, R. N. Carter, K. B. McNabb, J.-P. S. DesOrmeaux, C. C. Striemer, J. D. Winans, and T. R. Gaborski, “Lift-off of large-scale ultrathin nanomembranes,” J. Micromech. Microeng. 25(1), 015011 (2015).
[Crossref]

McNally, D. P.

G. Reetz, R. Fischer, G. G. T. Assumpcao, D. P. McNally, P. S. Burns, J. C. Sankey, and C. A. Regal, “Analysis of membrane phononic crystals with wide band gaps and low-mass defects,” Phys. Rev. Appl. 12(4), 044027 (2019).
[Crossref]

Mercier de Lepinay, L.

F. Fogliano, B. Besga, A. Reigue, P. Heringlake, L. Mercier de Lepinay, C. Venaph, J. Reichel, B. Pigeau, and O. Arcizet, “Cavity nano-optomechanics in the ultrastrong coupling regime with ultrasensitive force sensors,” https://arxiv.org/abs/1904.01140 .

Meystre, P.

M. Aspelmeyer, P. Meystre, and K. Schwab, “Quantum optomechanics,” Phys. Today 65(7), 29–35 (2012).
[Crossref]

Millen, J.

G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
[Crossref]

Miller, J. J.

J. J. Miller, R. N. Carter, K. B. McNabb, J.-P. S. DesOrmeaux, C. C. Striemer, J. D. Winans, and T. R. Gaborski, “Lift-off of large-scale ultrathin nanomembranes,” J. Micromech. Microeng. 25(1), 015011 (2015).
[Crossref]

Minniberger, S.

G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
[Crossref]

Moura, J. P.

R. A. Norte, J. P. Moura, and S. Groblacher, “Mechanical resonators for quantum optomechanics experiments at room temperature,” Phys. Rev. Lett. 116(14), 147202 (2016).
[Crossref]

Muller, T.

C. Reinhardt, T. Muller, A. Bourassa, and J. C. Sankey, “Ultralow-Noise SiN trampoline resonators for sensing and optomechanics,” Phys. Rev. X 6(2), 021001 (2016).
[Crossref]

Ngai, C. T.

T. M. Karg, B. Gouraud, C. T. Ngai, G.-L. Schmid, K. Hammerer, and P. Treutlein, “Light-mediated strong coupling between a mechanical oscillator and atomic spins 1 meter apart,” Science 369(6500), 174–179 (2020).
[Crossref]

Norte, R. A.

R. A. Norte, J. P. Moura, and S. Groblacher, “Mechanical resonators for quantum optomechanics experiments at room temperature,” Phys. Rev. Lett. 116(14), 147202 (2016).
[Crossref]

Ojanen, T.

T. Ojanen and K. Borkje, “Ground-state cooling of mechanical motion in the unresolved sideband regime by use of optomechanically induced transparency,” Phys. Rev. A 90(1), 013824 (2014).
[Crossref]

Painter, O.

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref]

Papp, S. B.

D. J. Wilson, C. A. Regal, S. B. Papp, and H. J. Kimble, “Cavity optomechanics with stoichiometric SiN films,” Phys. Rev. Lett. 103(20), 207204 (2009).
[Crossref]

Parpia, J. M.

V. P. Adiga, B. Ilic, R. A. Barton, I. Wilson-Rae, H. G. Craighead, and J. M. Parpia, “Approaching intrinsic performance in ultra-thin silicon nitride drum resonators,” J. Appl. Phys. 112(6), 064323 (2012).
[Crossref]

D. R. Southworth, H. G. Craighead, and J. M. Parpia, “Pressure dependent resonant frequency of micromechanical drumhead resonators,” Appl. Phys. Lett. 94(21), 213506 (2009).
[Crossref]

Peterson, R. W.

R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nat. Phys. 10(4), 321–326 (2014).
[Crossref]

T. P. Purdy, R. W. Peterson, and C. A. Regal, “Observation of Radiation Pressure Shot Noise on a Macroscopic Object,” Science 339(6121), 801–804 (2013).
[Crossref]

Pigeau, B.

F. Fogliano, B. Besga, A. Reigue, P. Heringlake, L. Mercier de Lepinay, C. Venaph, J. Reichel, B. Pigeau, and O. Arcizet, “Cavity nano-optomechanics in the ultrastrong coupling regime with ultrasensitive force sensors,” https://arxiv.org/abs/1904.01140 .

Polzik, E. S.

Y. Tsaturyan, A. Barg, E. S. Polzik, and A. Schliesser, “Ultracoherent nanomechanical resonators via soft clamping and dissipation dilution,” Nat. Nanotechnol. 12(8), 776–783 (2017).
[Crossref]

Potts, C.

Purdy, T. P.

R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nat. Phys. 10(4), 321–326 (2014).
[Crossref]

T. P. Purdy, R. W. Peterson, and C. A. Regal, “Observation of Radiation Pressure Shot Noise on a Macroscopic Object,” Science 339(6121), 801–804 (2013).
[Crossref]

Ramp, H.

Reetz, G.

G. Reetz, R. Fischer, G. G. T. Assumpcao, D. P. McNally, P. S. Burns, J. C. Sankey, and C. A. Regal, “Analysis of membrane phononic crystals with wide band gaps and low-mass defects,” Phys. Rev. Appl. 12(4), 044027 (2019).
[Crossref]

Regal, C. A.

G. Reetz, R. Fischer, G. G. T. Assumpcao, D. P. McNally, P. S. Burns, J. C. Sankey, and C. A. Regal, “Analysis of membrane phononic crystals with wide band gaps and low-mass defects,” Phys. Rev. Appl. 12(4), 044027 (2019).
[Crossref]

R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nat. Phys. 10(4), 321–326 (2014).
[Crossref]

T. P. Purdy, R. W. Peterson, and C. A. Regal, “Observation of Radiation Pressure Shot Noise on a Macroscopic Object,” Science 339(6121), 801–804 (2013).
[Crossref]

D. J. Wilson, C. A. Regal, S. B. Papp, and H. J. Kimble, “Cavity optomechanics with stoichiometric SiN films,” Phys. Rev. Lett. 103(20), 207204 (2009).
[Crossref]

Reichel, J.

N. E. Flowers-Jacobs, S. W. Hoch, J. C. Sankey, A. Kashkanova, A. M. Jayich, C. Deutsch, J. Reichel, and J. G. E. Harris, “Fiber-cavity-based optomechanical device,” Appl. Phys. Lett. 101(22), 221109 (2012).
[Crossref]

F. Fogliano, B. Besga, A. Reigue, P. Heringlake, L. Mercier de Lepinay, C. Venaph, J. Reichel, B. Pigeau, and O. Arcizet, “Cavity nano-optomechanics in the ultrastrong coupling regime with ultrasensitive force sensors,” https://arxiv.org/abs/1904.01140 .

Reigue, A.

F. Fogliano, B. Besga, A. Reigue, P. Heringlake, L. Mercier de Lepinay, C. Venaph, J. Reichel, B. Pigeau, and O. Arcizet, “Cavity nano-optomechanics in the ultrastrong coupling regime with ultrasensitive force sensors,” https://arxiv.org/abs/1904.01140 .

Reinhardt, C.

V. Dumont, S. Bernard, C. Reinhardt, A. Kato, M. Ruf, and J. C. Sankey, “Flexure-tuned membrane-at-the-edge optomechanical system,” Opt. Express 27(18), 25731–25748 (2019).
[Crossref]

C. Reinhardt, T. Muller, A. Bourassa, and J. C. Sankey, “Ultralow-Noise SiN trampoline resonators for sensing and optomechanics,” Phys. Rev. X 6(2), 021001 (2016).
[Crossref]

Rempe, G.

Rojas, X.

Rossi, M.

M. Rossi, D. Mason, J. Chen, Y. Tsaturyan, and A. Schliesser, “Measurement-based quantum control of mechanical motion,” Nature 563(7729), 53–58 (2018).
[Crossref]

Rubinsztein-Dunlop, H.

J. S. Bennett, K. Khosla, L. S. Madsen, M. R. Vanner, H. Rubinsztein-Dunlop, and W. P. Bowen, “A quantum optomechanical interface beyond the resolved sideband limit,” New J. Phys. 18(5), 053030 (2016).
[Crossref]

Ruf, M.

Safavi-Naeini, A. H.

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref]

Salter, C.

G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
[Crossref]

Sankey, J. C.

G. Reetz, R. Fischer, G. G. T. Assumpcao, D. P. McNally, P. S. Burns, J. C. Sankey, and C. A. Regal, “Analysis of membrane phononic crystals with wide band gaps and low-mass defects,” Phys. Rev. Appl. 12(4), 044027 (2019).
[Crossref]

V. Dumont, S. Bernard, C. Reinhardt, A. Kato, M. Ruf, and J. C. Sankey, “Flexure-tuned membrane-at-the-edge optomechanical system,” Opt. Express 27(18), 25731–25748 (2019).
[Crossref]

C. Reinhardt, T. Muller, A. Bourassa, and J. C. Sankey, “Ultralow-Noise SiN trampoline resonators for sensing and optomechanics,” Phys. Rev. X 6(2), 021001 (2016).
[Crossref]

N. E. Flowers-Jacobs, S. W. Hoch, J. C. Sankey, A. Kashkanova, A. M. Jayich, C. Deutsch, J. Reichel, and J. G. E. Harris, “Fiber-cavity-based optomechanical device,” Appl. Phys. Lett. 101(22), 221109 (2012).
[Crossref]

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10(9), 095008 (2008).
[Crossref]

Schalko, J.

G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
[Crossref]

Schliesser, A.

M. Rossi, D. Mason, J. Chen, Y. Tsaturyan, and A. Schliesser, “Measurement-based quantum control of mechanical motion,” Nature 563(7729), 53–58 (2018).
[Crossref]

Y. Tsaturyan, A. Barg, E. S. Polzik, and A. Schliesser, “Ultracoherent nanomechanical resonators via soft clamping and dissipation dilution,” Nat. Nanotechnol. 12(8), 776–783 (2017).
[Crossref]

Schmid, G.-L.

T. M. Karg, B. Gouraud, C. T. Ngai, G.-L. Schmid, K. Hammerer, and P. Treutlein, “Light-mediated strong coupling between a mechanical oscillator and atomic spins 1 meter apart,” Science 369(6500), 174–179 (2020).
[Crossref]

Schmid, U.

G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
[Crossref]

Schmidt, M. A.

L. R. Arana, N. de Mas, R. Schmidt, A. J. Franz, M. A. Schmidt, and K. F. Jensen, “Isotropic etching of silicon in fluorine gas for MEMS micromachining,” J. Micromech. Microeng. 17(2), 384–392 (2007).
[Crossref]

Schmidt, R.

L. R. Arana, N. de Mas, R. Schmidt, A. J. Franz, M. A. Schmidt, and K. F. Jensen, “Isotropic etching of silicon in fluorine gas for MEMS micromachining,” J. Micromech. Microeng. 17(2), 384–392 (2007).
[Crossref]

Schneider, M.

G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
[Crossref]

Schwab, K.

M. Aspelmeyer, P. Meystre, and K. Schwab, “Quantum optomechanics,” Phys. Today 65(7), 29–35 (2012).
[Crossref]

Simmonds, R. W.

R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nat. Phys. 10(4), 321–326 (2014).
[Crossref]

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref]

Sirois, A. J.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref]

Southworth, D. R.

D. R. Southworth, H. G. Craighead, and J. M. Parpia, “Pressure dependent resonant frequency of micromechanical drumhead resonators,” Appl. Phys. Lett. 94(21), 213506 (2009).
[Crossref]

Striemer, C. C.

J. J. Miller, R. N. Carter, K. B. McNabb, J.-P. S. DesOrmeaux, C. C. Striemer, J. D. Winans, and T. R. Gaborski, “Lift-off of large-scale ultrathin nanomembranes,” J. Micromech. Microeng. 25(1), 015011 (2015).
[Crossref]

Suijlen, M. A. G.

M. A. G. Suijlen, J. J. Koning, M. A. J. van Gils, and H. C. W. Beijerinck, “Squeeze film damping in the free molecular flow regime with full thermal accommodation,” Sens. Actuators, A 156(1), 171–179 (2009).
[Crossref]

Suo, Z.

J. W. Hutchinson and Z. Suo, “Mixed mode cracking in layered materials,” Adv. Appl. Mech. 29, 63–191 (1991).
[Crossref]

Teufel, J. D.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref]

Thompson, J. D.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[Crossref]

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10(9), 095008 (2008).
[Crossref]

Thompson, R. J.

Treutlein, P.

T. M. Karg, B. Gouraud, C. T. Ngai, G.-L. Schmid, K. Hammerer, and P. Treutlein, “Light-mediated strong coupling between a mechanical oscillator and atomic spins 1 meter apart,” Science 369(6500), 174–179 (2020).
[Crossref]

Trupke, M.

G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
[Crossref]

Tsaturyan, Y.

M. Rossi, D. Mason, J. Chen, Y. Tsaturyan, and A. Schliesser, “Measurement-based quantum control of mechanical motion,” Nature 563(7729), 53–58 (2018).
[Crossref]

Y. Tsaturyan, A. Barg, E. S. Polzik, and A. Schliesser, “Ultracoherent nanomechanical resonators via soft clamping and dissipation dilution,” Nat. Nanotechnol. 12(8), 776–783 (2017).
[Crossref]

Vahala, K. J.

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
[Crossref]

van Gils, M. A. J.

M. A. G. Suijlen, J. J. Koning, M. A. J. van Gils, and H. C. W. Beijerinck, “Squeeze film damping in the free molecular flow regime with full thermal accommodation,” Sens. Actuators, A 156(1), 171–179 (2009).
[Crossref]

Vanner, M. R.

J. S. Bennett, K. Khosla, L. S. Madsen, M. R. Vanner, H. Rubinsztein-Dunlop, and W. P. Bowen, “A quantum optomechanical interface beyond the resolved sideband limit,” New J. Phys. 18(5), 053030 (2016).
[Crossref]

Venaph, C.

F. Fogliano, B. Besga, A. Reigue, P. Heringlake, L. Mercier de Lepinay, C. Venaph, J. Reichel, B. Pigeau, and O. Arcizet, “Cavity nano-optomechanics in the ultrastrong coupling regime with ultrasensitive force sensors,” https://arxiv.org/abs/1904.01140 .

Wachter, G.

G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
[Crossref]

Whittaker, J. D.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref]

Wilson, D. J.

D. J. Wilson, C. A. Regal, S. B. Papp, and H. J. Kimble, “Cavity optomechanics with stoichiometric SiN films,” Phys. Rev. Lett. 103(20), 207204 (2009).
[Crossref]

Wilson-Rae, I.

V. P. Adiga, B. Ilic, R. A. Barton, I. Wilson-Rae, H. G. Craighead, and J. M. Parpia, “Approaching intrinsic performance in ultra-thin silicon nitride drum resonators,” J. Appl. Phys. 112(6), 064323 (2012).
[Crossref]

Winans, J. D.

J. J. Miller, R. N. Carter, K. B. McNabb, J.-P. S. DesOrmeaux, C. C. Striemer, J. D. Winans, and T. R. Gaborski, “Lift-off of large-scale ultrathin nanomembranes,” J. Micromech. Microeng. 25(1), 015011 (2015).
[Crossref]

Yang, C.

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10(9), 095008 (2008).
[Crossref]

Zwickl, B. M.

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10(9), 095008 (2008).
[Crossref]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[Crossref]

Adv. Appl. Mech. (1)

J. W. Hutchinson and Z. Suo, “Mixed mode cracking in layered materials,” Adv. Appl. Mech. 29, 63–191 (1991).
[Crossref]

Ann. Phys. (1)

B. D. Hauer, C. Doolin, K. S. D. Beach, and J. P. Davis, “A general procedure for thermomechanical calibration of nano/micro-mechanical resonators,” Ann. Phys. 339, 181–207 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

N. E. Flowers-Jacobs, S. W. Hoch, J. C. Sankey, A. Kashkanova, A. M. Jayich, C. Deutsch, J. Reichel, and J. G. E. Harris, “Fiber-cavity-based optomechanical device,” Appl. Phys. Lett. 101(22), 221109 (2012).
[Crossref]

D. R. Southworth, H. G. Craighead, and J. M. Parpia, “Pressure dependent resonant frequency of micromechanical drumhead resonators,” Appl. Phys. Lett. 94(21), 213506 (2009).
[Crossref]

J. Appl. Phys. (1)

V. P. Adiga, B. Ilic, R. A. Barton, I. Wilson-Rae, H. G. Craighead, and J. M. Parpia, “Approaching intrinsic performance in ultra-thin silicon nitride drum resonators,” J. Appl. Phys. 112(6), 064323 (2012).
[Crossref]

J. Micromech. Microeng. (2)

L. R. Arana, N. de Mas, R. Schmidt, A. J. Franz, M. A. Schmidt, and K. F. Jensen, “Isotropic etching of silicon in fluorine gas for MEMS micromachining,” J. Micromech. Microeng. 17(2), 384–392 (2007).
[Crossref]

J. J. Miller, R. N. Carter, K. B. McNabb, J.-P. S. DesOrmeaux, C. C. Striemer, J. D. Winans, and T. R. Gaborski, “Lift-off of large-scale ultrathin nanomembranes,” J. Micromech. Microeng. 25(1), 015011 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

Light: Sci. Appl. (1)

G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
[Crossref]

Nat. Nanotechnol. (1)

Y. Tsaturyan, A. Barg, E. S. Polzik, and A. Schliesser, “Ultracoherent nanomechanical resonators via soft clamping and dissipation dilution,” Nat. Nanotechnol. 12(8), 776–783 (2017).
[Crossref]

Nat. Phys. (1)

R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nat. Phys. 10(4), 321–326 (2014).
[Crossref]

Nature (4)

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[Crossref]

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[Crossref]

M. Rossi, D. Mason, J. Chen, Y. Tsaturyan, and A. Schliesser, “Measurement-based quantum control of mechanical motion,” Nature 563(7729), 53–58 (2018).
[Crossref]

New J. Phys. (2)

J. S. Bennett, K. Khosla, L. S. Madsen, M. R. Vanner, H. Rubinsztein-Dunlop, and W. P. Bowen, “A quantum optomechanical interface beyond the resolved sideband limit,” New J. Phys. 18(5), 053030 (2016).
[Crossref]

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10(9), 095008 (2008).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (2)

T. Ojanen and K. Borkje, “Ground-state cooling of mechanical motion in the unresolved sideband regime by use of optomechanically induced transparency,” Phys. Rev. A 90(1), 013824 (2014).
[Crossref]

K. Borkje, “Critical quantum fluctuations and photon antibunching in optomechanical systems with large single-photon cooperativity,” Phys. Rev. A 101(5), 053833 (2020).
[Crossref]

Phys. Rev. Appl. (1)

G. Reetz, R. Fischer, G. G. T. Assumpcao, D. P. McNally, P. S. Burns, J. C. Sankey, and C. A. Regal, “Analysis of membrane phononic crystals with wide band gaps and low-mass defects,” Phys. Rev. Appl. 12(4), 044027 (2019).
[Crossref]

Phys. Rev. Lett. (2)

D. J. Wilson, C. A. Regal, S. B. Papp, and H. J. Kimble, “Cavity optomechanics with stoichiometric SiN films,” Phys. Rev. Lett. 103(20), 207204 (2009).
[Crossref]

R. A. Norte, J. P. Moura, and S. Groblacher, “Mechanical resonators for quantum optomechanics experiments at room temperature,” Phys. Rev. Lett. 116(14), 147202 (2016).
[Crossref]

Phys. Rev. X (1)

C. Reinhardt, T. Muller, A. Bourassa, and J. C. Sankey, “Ultralow-Noise SiN trampoline resonators for sensing and optomechanics,” Phys. Rev. X 6(2), 021001 (2016).
[Crossref]

Phys. Today (1)

M. Aspelmeyer, P. Meystre, and K. Schwab, “Quantum optomechanics,” Phys. Today 65(7), 29–35 (2012).
[Crossref]

Rev. Mod. Phys. (1)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

Science (3)

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
[Crossref]

T. M. Karg, B. Gouraud, C. T. Ngai, G.-L. Schmid, K. Hammerer, and P. Treutlein, “Light-mediated strong coupling between a mechanical oscillator and atomic spins 1 meter apart,” Science 369(6500), 174–179 (2020).
[Crossref]

T. P. Purdy, R. W. Peterson, and C. A. Regal, “Observation of Radiation Pressure Shot Noise on a Macroscopic Object,” Science 339(6121), 801–804 (2013).
[Crossref]

Sens. Actuators, A (1)

M. A. G. Suijlen, J. J. Koning, M. A. J. van Gils, and H. C. W. Beijerinck, “Squeeze film damping in the free molecular flow regime with full thermal accommodation,” Sens. Actuators, A 156(1), 171–179 (2009).
[Crossref]

Other (3)

J. Maldaner, S. Al-Sumaidae, and R. G. DeCorby, “Theoretical study of silicon-based Bragg mirrors for cavity QED applications,” J. Opt. Soc. Am. B, submitted for publication.

J. Maldaner, S. Al-Sumaidae, G. J. Hornig, L. J. LeBlanc, and R. G. DeCorby, “Liquid infiltration of monolithic open-access Fabry-Perot microcavities,” Appl. Opt. (to be published).

F. Fogliano, B. Besga, A. Reigue, P. Heringlake, L. Mercier de Lepinay, C. Venaph, J. Reichel, B. Pigeau, and O. Arcizet, “Cavity nano-optomechanics in the ultrastrong coupling regime with ultrasensitive force sensors,” https://arxiv.org/abs/1904.01140 .

Supplementary Material (1)

NameDescription
» Supplement 1       Table and Figure showing higher-order mechanical modes predicted by COMSOL simulations

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic cross-sectional view (not to scale) of a buckled dome microcavity with an embedded free-standing Si3N4 membrane. For the devices discussed here, the sacrificial layer is ∼ 200 nm thick, and sets the spacing between the membrane and the bottom mirror. (b) Microscope image of a completed membrane-in-cavity device. The green ‘flower’ shape is the suspended membrane, and the circular interference fringes arise from the buckled profile of the upper mirror. As is evident, many of these first-generation devices suffered from imperfect alignment between the etch hole pattern (thus the suspended membrane) and the buckled dome microcavity. The small blue dots inside the membrane area were visible on approximately half of the fabricated devices, and are believed to be pinholes in the thin etch blocking layer, which allow the XeF2 to locally attack the underlying mirror. (c) Microscope image of a suspended SiN membrane fabricated independently of the optical cavity process. (d) Microscope image of a purposely detached membrane fabricated independently of the optical cavity process, showing that the XeF2-based sacrificial etching of a-Si leaves the etch-stop layer surface (SiO2, green in the image) clean and smooth. Note, however, the ‘scalloping’ faintly visible on the central region of the membranes in parts c. and d. (see the main text).
Fig. 2.
Fig. 2. Images of the ‘case-study’ MIM cavity described in the main text. (a) Standard microscope image; the concentric interference fringes arise from the profile of the buckled upper mirror and the ‘flower-shaped’ region in the center is the sacrificial etched cavity and suspended membrane. (b) Confocal microscope image with the focus set at the top surface of the upper mirror (outside the buckled regions). (c) Confocal image with the focus set ∼ 3.3 μm below the top surface, where the membrane layer is located. (d) Profile of the buckled dome (upper mirror of the cavity) as determined using the confocal microscope (blue symbols), and fit to the profile predicted for a circular delamination buckle (red solid line).
Fig. 3.
Fig. 3. Transfer-matrix predictions for the planar-equivalent model of the cavity shown in Fig. 2. (a) Transmittance spectrum showing a resonant mode at ∼ 1550 nm with linewidth ∼0.29 nm (Q ∼ 5000). (b) Field intensity (E·E*) profile for the resonant mode from part a. The SiN membrane essentially acts as an additional layer in the bottom mirror, and is roughly centered on a field anti-node. (c) Variation in resonant wavelength with change in membrane position. (d) Change in resonant frequency versus membrane displacement. The predicted linear optomechanical coupling strength is G/(2π) ∼ 25 GHz/nm.
Fig. 4.
Fig. 4. (a) Spectral transmission scan for a dome without etch holes, thus with no released membrane. The insets show mode-field intensity profiles imaged at the resonant wavelengths indicated. (b) Spectral transmission scan for the case study dome from Fig. 2. The insets show selected mode-field intensity profiles, as in part a.
Fig. 5.
Fig. 5. FFT spectra extracted from ‘tuned-to-slope’ measurements for (a) a ‘regular’ cavity with no etch holes, and thus no released membrane, and (b) the case-study cavity shown in Fig. 2. Both were captured with time-averaged power at the detector P0 ∼ 23 μW. The resonances in part a. are attributable to vibrational modes of the buckled upper mirror of the cavity, and are also present in part b. The additional resonances in part b. are attributed to the vibrational modes of the released SiN membrane inside the cavity.
Fig. 6.
Fig. 6. (a) Comparison between the experimental vibrational spectra (with P0 ∼ 8 μW, see main text) and predicted (0,1), (0,2), and (0,3) resonance frequencies obtained using a finite-element numerical solver (COMSOL). The red dashed lines indicate frequencies predicted using an areal spring model for trapped gas beneath the membrane, and the black dotted lines indicate frequencies predicted using the COMSOL fluid physics modules for this trapped gas. The insets show the predicted vibrational mode shapes. (b) The curves show the results of a thermomechanical fitting procedure (see main text), performed on the experimental vibrational resonance at ∼ 10.5 MHz (i.e., the (0,1) mode). The displacement spectral density extracted from the experimental data (blue solid line) is compared to that predicted for a damped harmonic oscillator subject to Brownian motion (red dashed line).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S w w ( f ) = S w w W + α S z z ( f )
S z z ( f ) = k B T f n 2 π 3 m eff , n Q n [ ( f 2 f n 2 ) 2 + ( f f n / Q n ) 2 ]
α = ( d P / d P d z d z ) 2 = ( P 0 S η G λ ) 2 ,