Abstract

A Michelson interferometric fiber-optic acoustic sensor based on a large-area gold diaphragm is proposed in this paper. The Michelson interferometer (MI) based on 3×3 coupler is comprised of two beams that reflected from the gold diaphragm and a cleaved fiber end face. Thickness and diameter of the gold diaphragm are 300 nm and 2.5 mm, respectively. Based on the phase difference between each output port of the 3×3 fiber coupler, an ellipse fitting differential cross multiplication (EF-DCM) interrogation process is induced for phase demodulation, which can overcome the phase distortion caused by property degradation of 3×3 coupler. Experimental results show that the sensor has a phase sensitivity of about -130.6 dB re 1 rad/μPa@100 Hz. A flat response range between 0.8 to 250 Hz is realized with the sensitivity fluctuation below 0.7 dB. Besides, the signal-to-noise ratio (SNR) and minimal detectable pressure (MDP) of the sensor are 57.9 dB and 10.2 mPa/Hz1/2 at 5 Hz. The proposed sensor exhibits superiorities of compact size, high sensitivity, flat low-frequency response and ease of mass production, which gives the sensor great potential for low-frequency acoustic sensing and photo-acoustic spectroscopy.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Xia, J. Liu, X. Cui, J. Li, W. Chen, and C. Liu, “Abnormal infrasound signals before 92 M ≧ 7.0 worldwide earthquakes during 2002–2008,” Asian J. Earth Sci. 41(4-5), 434–441 (2011).
    [Crossref]
  2. G. V. Batanov, “Characteristics of etiology of immediate hypersensitivity in conditions of exposure to infrasound,” Radiats Biol Radioecol. 35(1), 78–82 (1995).
  3. F. Tanimola and D. Hill, “Distributed fibre optic sensors for pipeline protection,” J. Nat. Gas Sci. Eng. 1(4-5), 134–143 (2009).
    [Crossref]
  4. J. P. Wooler and R. I. Crickmore, “Fiber-optic microphones for battlefield acoustics,” Appl. Opt. 46(13), 2486–2491 (2007).
    [Crossref]
  5. Z. Gong, K. Chen, Y. Yang, X. Zhou, and Q. Yu, “Photoacoustic spectroscopy based multi-gas detection using high-sensitivity fiber-optic low-frequency acoustic sensor,” Sens. Actuators, B 260(1), 357–363 (2018).
    [Crossref]
  6. J. Xu, L. Headings, and M. Dapino, “High sensitivity polyvinylidene fluoride microphone based on area ratio amplification and minimal capacitance,” IEEE Sens. J. 15(5), 2839–2847 (2015).
    [Crossref]
  7. N. Ledermann, P. Muralt, J. Baborowski, M. Forster, and J. Pellaux, “Piezoelectric Pb (Zrx, Ti1− x) O3 thin film cantilever and bridge acoustic sensors for miniaturized photoacoustic gas detectors,” J. Micromech. Microeng. 14(12), 1650–1658 (2004).
    [Crossref]
  8. J. G. V. Teixeira, I. T. Leite, S. Silva, and O. Frazao, “Advanced fiber-optic acoustic sensors,” Photonic Sens. 4(3), 198–208 (2014).
    [Crossref]
  9. X. Bao, D. Zhou, C. Baker, and L. Chen, “Recent development in the distributed fiber optic acoustic and ultrasonic detection,” J. Lightwave Technol. 35(16), 3256–3267 (2017).
    [Crossref]
  10. Q. Wu and Y. Okabe, “High-sensitivity ultrasonic phase-shifted fiber Bragg grating balanced sensing system,” Opt. Express 20(27), 28353–28362 (2012).
    [Crossref]
  11. J. O. Gaudron, F. Surre, T. Sun, and K. T. V. Grattan, “LPG-based optical fibre sensor for acoustic wave detection,” Sens. Actuators, A 173(1), 97–101 (2012).
    [Crossref]
  12. L. Hu, G. Liu, Y. Zhu, X. Luo, and M. Han, “Laser frequency noise cancelation in a phase-shifted fiber Bragg grating ultrasonic sensor system using a reference grating channel,” IEEE Photonics J. 8(1), 1–8 (2016).
    [Crossref]
  13. C. Lyu, C. Wu, H. Y. Tam, C. Lu, and J. Ma, “Polarimetric heterodyning fiber laser sensor for directional acoustic signal measurement,” Opt. Express 21(15), 18273–18280 (2013).
    [Crossref]
  14. X. Bai, Y. Liang, H. Sun, L. Jin, J. Ma, B. O. Guan, and L. Wang, “Sensitivity characteristics of broadband fiber-laser-based ultrasound sensors for photoacoustic microscopy,” Opt. Express 25(15), 17616–17626 (2017).
    [Crossref]
  15. W. Yang, L. Jin, Y. Liang, J. Ma, and B. Guan, “Corrugated-diaphragm based fiber laser hydrophone with Sub-100 μPa/Hz1/2 resolution,” Sensors 17(6), 1219 (2017).
    [Crossref]
  16. Y. Xu, L. Zhang, S. Gao, P. Lu, S. Mihailov, and X. Bao, “Highly sensitive fiber random-grating-based random laser sensor for ultrasound detection,” Opt. Lett. 42(7), 1353–1356 (2017).
    [Crossref]
  17. L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV Adhesive Diaphragm-Based FPI Sensor for Very-Low-Frequency Acoustic Sensing,” IEEE Photonics J. 8(1), 1–9 (2016).
    [Crossref]
  18. F. Xu, J. Shi, K. Gong, H. Li, R. Hui, and B. Yu, “Fiber-optic acoustic pressure sensor based on large-area nanolayer silver diaghragm,” Opt. Lett. 39(10), 2838–2840 (2014).
    [Crossref]
  19. X. Fu, P. Lu, J. Zhang, Z. Qu, Y. Li, P. Hu, W. Yan, W. Ni, D. Liu, and J. Zhang, “Micromachined extrinsic fabry-pérot cavity for low-frequency acoustic wave sensing,” Opt. Express 27(17), 24300–24310 (2019).
    [Crossref]
  20. J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang, and S. Fan, “Fiber-optic Fabry–Perot acoustic sensor with multilayer grapheme diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
    [Crossref]
  21. W. Ni, P. Lu, X. Fu, W. Zhang, P. Shum, H. Sun, C. Yang, D. Liu, and J. Zhang, “Ultrathin graphene diaphragm-based extrinsic Fabry-Perot interferometer for ultra-wideband fiber optic acoustic sensing,” Opt. Express 26(16), 20758–20767 (2018).
    [Crossref]
  22. D. Pawar, C. N. Rao, R. K. Choubey, and S. N. Kale, “Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections,” Appl. Phys. Lett. 108(4), 041912 (2016).
    [Crossref]
  23. S. Wang, P. Lu, L. Zhang, D. Liu, and J. Zhang, “Optical Fiber Acoustic Sensor Based on Nonstandard Fused Coupler and Aluminum Foil,” IEEE Sens. J. 14(7), 2293–2298 (2014).
    [Crossref]
  24. F. Wang, Z. Shao, J. Xie, Z. Hu, H. Luo, and Y. Hu, “Extrinsic Fabry–Pérot underwater acoustic sensor based on micromachined center-embossed diaphragm,” J. Lightwave Technol. 32(23), 4268–4636 (2014).
    [Crossref]
  25. L. Liu, P. Lu, H. Liao, S. Wang, W. Yang, D. Liu, and J. Zhang, “Fiber-optic michelson interferometric acoustic sensor based on a PP/PET diaphragm,” IEEE Sens. J. 16(9), 3054–3058 (2016).
    [Crossref]
  26. J. Ma, Y. Yu, and W. Jin, “Demodulation of diaphragm based acoustic sensor using Sagnac interferometer with stable phase bias,” Opt. Express 23(22), 29268–29278 (2015).
    [Crossref]
  27. W. Wang, N. Wu, Y. Tian, C. Niezrecki, and X. Wang, “Miniature all-silica optical fiber pressure sensor with an ultrathin uniform diaphragm,” Opt. Express 18(9), 9006–9014 (2010).
    [Crossref]
  28. W. Jo, O. C. Akkaya, O. Solgaard, and M. J. Digonnet, “Miniature fiber acoustic sensors using a photonic-crystal diaphragm,” Opt. Fiber Technol. 19(6), 785–792 (2013).
    [Crossref]
  29. Y. Zhao, M. Chen, F. Xia, and R. Lv, “Small in-fiber Fabry-Perot low-frequency acoustic pressure sensor with PDMS diaphragm embedded in hollow-core fiber,” Sens. Actuators, A 270(1), 162–169 (2018).
    [Crossref]
  30. T. Liu, J. Cui, D. Chen, L. Xiao, and D. Sun, “A new demodulation technique for optical fiber interferometric sensors with [3×3] directional couplers,” Chin. Opt. Lett. 6(1), 12–15 (2008).
    [Crossref]
  31. S. T. Shih, M. H. Chen, and W. W. Lin, “Analysis of fibre optic michelson interferometric sensor distortion caused by the imperfect properties of its 3×3 coupler,” IEE Proc.: Optoelectron. 144(6), 377–382 (1997).
    [Crossref]
  32. M. Sheploak and J. Dugundji, “Large deflections of clamped circular plates under initial tension and transitions to membrane behavior,” J. Appl. Mech. 65(1), 107–115 (1998).
    [Crossref]
  33. L.E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics (Wiley-VCH, 1999), Chap. 4.
  34. W. Zhang, P. Lu, W. Ni, W. Xiong, D. Liu, and J. Zhang, “Gold-Diaphragm Based Fabry-Perot Ultrasonic Sensor for Partial Discharge Detection and Localization,” IEEE Photonics J. 12(3), 1–12 (2020).
    [Crossref]

2020 (1)

W. Zhang, P. Lu, W. Ni, W. Xiong, D. Liu, and J. Zhang, “Gold-Diaphragm Based Fabry-Perot Ultrasonic Sensor for Partial Discharge Detection and Localization,” IEEE Photonics J. 12(3), 1–12 (2020).
[Crossref]

2019 (1)

2018 (3)

Z. Gong, K. Chen, Y. Yang, X. Zhou, and Q. Yu, “Photoacoustic spectroscopy based multi-gas detection using high-sensitivity fiber-optic low-frequency acoustic sensor,” Sens. Actuators, B 260(1), 357–363 (2018).
[Crossref]

Y. Zhao, M. Chen, F. Xia, and R. Lv, “Small in-fiber Fabry-Perot low-frequency acoustic pressure sensor with PDMS diaphragm embedded in hollow-core fiber,” Sens. Actuators, A 270(1), 162–169 (2018).
[Crossref]

W. Ni, P. Lu, X. Fu, W. Zhang, P. Shum, H. Sun, C. Yang, D. Liu, and J. Zhang, “Ultrathin graphene diaphragm-based extrinsic Fabry-Perot interferometer for ultra-wideband fiber optic acoustic sensing,” Opt. Express 26(16), 20758–20767 (2018).
[Crossref]

2017 (4)

2016 (4)

L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV Adhesive Diaphragm-Based FPI Sensor for Very-Low-Frequency Acoustic Sensing,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

L. Hu, G. Liu, Y. Zhu, X. Luo, and M. Han, “Laser frequency noise cancelation in a phase-shifted fiber Bragg grating ultrasonic sensor system using a reference grating channel,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

D. Pawar, C. N. Rao, R. K. Choubey, and S. N. Kale, “Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections,” Appl. Phys. Lett. 108(4), 041912 (2016).
[Crossref]

L. Liu, P. Lu, H. Liao, S. Wang, W. Yang, D. Liu, and J. Zhang, “Fiber-optic michelson interferometric acoustic sensor based on a PP/PET diaphragm,” IEEE Sens. J. 16(9), 3054–3058 (2016).
[Crossref]

2015 (2)

J. Ma, Y. Yu, and W. Jin, “Demodulation of diaphragm based acoustic sensor using Sagnac interferometer with stable phase bias,” Opt. Express 23(22), 29268–29278 (2015).
[Crossref]

J. Xu, L. Headings, and M. Dapino, “High sensitivity polyvinylidene fluoride microphone based on area ratio amplification and minimal capacitance,” IEEE Sens. J. 15(5), 2839–2847 (2015).
[Crossref]

2014 (4)

F. Xu, J. Shi, K. Gong, H. Li, R. Hui, and B. Yu, “Fiber-optic acoustic pressure sensor based on large-area nanolayer silver diaghragm,” Opt. Lett. 39(10), 2838–2840 (2014).
[Crossref]

J. G. V. Teixeira, I. T. Leite, S. Silva, and O. Frazao, “Advanced fiber-optic acoustic sensors,” Photonic Sens. 4(3), 198–208 (2014).
[Crossref]

S. Wang, P. Lu, L. Zhang, D. Liu, and J. Zhang, “Optical Fiber Acoustic Sensor Based on Nonstandard Fused Coupler and Aluminum Foil,” IEEE Sens. J. 14(7), 2293–2298 (2014).
[Crossref]

F. Wang, Z. Shao, J. Xie, Z. Hu, H. Luo, and Y. Hu, “Extrinsic Fabry–Pérot underwater acoustic sensor based on micromachined center-embossed diaphragm,” J. Lightwave Technol. 32(23), 4268–4636 (2014).
[Crossref]

2013 (3)

W. Jo, O. C. Akkaya, O. Solgaard, and M. J. Digonnet, “Miniature fiber acoustic sensors using a photonic-crystal diaphragm,” Opt. Fiber Technol. 19(6), 785–792 (2013).
[Crossref]

C. Lyu, C. Wu, H. Y. Tam, C. Lu, and J. Ma, “Polarimetric heterodyning fiber laser sensor for directional acoustic signal measurement,” Opt. Express 21(15), 18273–18280 (2013).
[Crossref]

J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang, and S. Fan, “Fiber-optic Fabry–Perot acoustic sensor with multilayer grapheme diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

2012 (2)

Q. Wu and Y. Okabe, “High-sensitivity ultrasonic phase-shifted fiber Bragg grating balanced sensing system,” Opt. Express 20(27), 28353–28362 (2012).
[Crossref]

J. O. Gaudron, F. Surre, T. Sun, and K. T. V. Grattan, “LPG-based optical fibre sensor for acoustic wave detection,” Sens. Actuators, A 173(1), 97–101 (2012).
[Crossref]

2011 (1)

Y. Xia, J. Liu, X. Cui, J. Li, W. Chen, and C. Liu, “Abnormal infrasound signals before 92 M ≧ 7.0 worldwide earthquakes during 2002–2008,” Asian J. Earth Sci. 41(4-5), 434–441 (2011).
[Crossref]

2010 (1)

2009 (1)

F. Tanimola and D. Hill, “Distributed fibre optic sensors for pipeline protection,” J. Nat. Gas Sci. Eng. 1(4-5), 134–143 (2009).
[Crossref]

2008 (1)

2007 (1)

2004 (1)

N. Ledermann, P. Muralt, J. Baborowski, M. Forster, and J. Pellaux, “Piezoelectric Pb (Zrx, Ti1− x) O3 thin film cantilever and bridge acoustic sensors for miniaturized photoacoustic gas detectors,” J. Micromech. Microeng. 14(12), 1650–1658 (2004).
[Crossref]

1998 (1)

M. Sheploak and J. Dugundji, “Large deflections of clamped circular plates under initial tension and transitions to membrane behavior,” J. Appl. Mech. 65(1), 107–115 (1998).
[Crossref]

1997 (1)

S. T. Shih, M. H. Chen, and W. W. Lin, “Analysis of fibre optic michelson interferometric sensor distortion caused by the imperfect properties of its 3×3 coupler,” IEE Proc.: Optoelectron. 144(6), 377–382 (1997).
[Crossref]

1995 (1)

G. V. Batanov, “Characteristics of etiology of immediate hypersensitivity in conditions of exposure to infrasound,” Radiats Biol Radioecol. 35(1), 78–82 (1995).

Akkaya, O. C.

W. Jo, O. C. Akkaya, O. Solgaard, and M. J. Digonnet, “Miniature fiber acoustic sensors using a photonic-crystal diaphragm,” Opt. Fiber Technol. 19(6), 785–792 (2013).
[Crossref]

Baborowski, J.

N. Ledermann, P. Muralt, J. Baborowski, M. Forster, and J. Pellaux, “Piezoelectric Pb (Zrx, Ti1− x) O3 thin film cantilever and bridge acoustic sensors for miniaturized photoacoustic gas detectors,” J. Micromech. Microeng. 14(12), 1650–1658 (2004).
[Crossref]

Bai, X.

Baker, C.

Bao, X.

Batanov, G. V.

G. V. Batanov, “Characteristics of etiology of immediate hypersensitivity in conditions of exposure to infrasound,” Radiats Biol Radioecol. 35(1), 78–82 (1995).

Chen, D.

Chen, K.

Z. Gong, K. Chen, Y. Yang, X. Zhou, and Q. Yu, “Photoacoustic spectroscopy based multi-gas detection using high-sensitivity fiber-optic low-frequency acoustic sensor,” Sens. Actuators, B 260(1), 357–363 (2018).
[Crossref]

Chen, L.

Chen, M.

Y. Zhao, M. Chen, F. Xia, and R. Lv, “Small in-fiber Fabry-Perot low-frequency acoustic pressure sensor with PDMS diaphragm embedded in hollow-core fiber,” Sens. Actuators, A 270(1), 162–169 (2018).
[Crossref]

Chen, M. H.

S. T. Shih, M. H. Chen, and W. W. Lin, “Analysis of fibre optic michelson interferometric sensor distortion caused by the imperfect properties of its 3×3 coupler,” IEE Proc.: Optoelectron. 144(6), 377–382 (1997).
[Crossref]

Chen, W.

Y. Xia, J. Liu, X. Cui, J. Li, W. Chen, and C. Liu, “Abnormal infrasound signals before 92 M ≧ 7.0 worldwide earthquakes during 2002–2008,” Asian J. Earth Sci. 41(4-5), 434–441 (2011).
[Crossref]

Choubey, R. K.

D. Pawar, C. N. Rao, R. K. Choubey, and S. N. Kale, “Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections,” Appl. Phys. Lett. 108(4), 041912 (2016).
[Crossref]

Coppens, A. B.

L.E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics (Wiley-VCH, 1999), Chap. 4.

Crickmore, R. I.

Cui, J.

Cui, X.

Y. Xia, J. Liu, X. Cui, J. Li, W. Chen, and C. Liu, “Abnormal infrasound signals before 92 M ≧ 7.0 worldwide earthquakes during 2002–2008,” Asian J. Earth Sci. 41(4-5), 434–441 (2011).
[Crossref]

Dapino, M.

J. Xu, L. Headings, and M. Dapino, “High sensitivity polyvinylidene fluoride microphone based on area ratio amplification and minimal capacitance,” IEEE Sens. J. 15(5), 2839–2847 (2015).
[Crossref]

Digonnet, M. J.

W. Jo, O. C. Akkaya, O. Solgaard, and M. J. Digonnet, “Miniature fiber acoustic sensors using a photonic-crystal diaphragm,” Opt. Fiber Technol. 19(6), 785–792 (2013).
[Crossref]

Dugundji, J.

M. Sheploak and J. Dugundji, “Large deflections of clamped circular plates under initial tension and transitions to membrane behavior,” J. Appl. Mech. 65(1), 107–115 (1998).
[Crossref]

Fan, S.

J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang, and S. Fan, “Fiber-optic Fabry–Perot acoustic sensor with multilayer grapheme diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

Forster, M.

N. Ledermann, P. Muralt, J. Baborowski, M. Forster, and J. Pellaux, “Piezoelectric Pb (Zrx, Ti1− x) O3 thin film cantilever and bridge acoustic sensors for miniaturized photoacoustic gas detectors,” J. Micromech. Microeng. 14(12), 1650–1658 (2004).
[Crossref]

Frazao, O.

J. G. V. Teixeira, I. T. Leite, S. Silva, and O. Frazao, “Advanced fiber-optic acoustic sensors,” Photonic Sens. 4(3), 198–208 (2014).
[Crossref]

Frey, A. R.

L.E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics (Wiley-VCH, 1999), Chap. 4.

Fu, X.

Gao, S.

Gaudron, J. O.

J. O. Gaudron, F. Surre, T. Sun, and K. T. V. Grattan, “LPG-based optical fibre sensor for acoustic wave detection,” Sens. Actuators, A 173(1), 97–101 (2012).
[Crossref]

Gong, K.

Gong, Z.

Z. Gong, K. Chen, Y. Yang, X. Zhou, and Q. Yu, “Photoacoustic spectroscopy based multi-gas detection using high-sensitivity fiber-optic low-frequency acoustic sensor,” Sens. Actuators, B 260(1), 357–363 (2018).
[Crossref]

Grattan, K. T. V.

J. O. Gaudron, F. Surre, T. Sun, and K. T. V. Grattan, “LPG-based optical fibre sensor for acoustic wave detection,” Sens. Actuators, A 173(1), 97–101 (2012).
[Crossref]

Guan, B.

W. Yang, L. Jin, Y. Liang, J. Ma, and B. Guan, “Corrugated-diaphragm based fiber laser hydrophone with Sub-100 μPa/Hz1/2 resolution,” Sensors 17(6), 1219 (2017).
[Crossref]

Guan, B. O.

Han, M.

L. Hu, G. Liu, Y. Zhu, X. Luo, and M. Han, “Laser frequency noise cancelation in a phase-shifted fiber Bragg grating ultrasonic sensor system using a reference grating channel,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

Headings, L.

J. Xu, L. Headings, and M. Dapino, “High sensitivity polyvinylidene fluoride microphone based on area ratio amplification and minimal capacitance,” IEEE Sens. J. 15(5), 2839–2847 (2015).
[Crossref]

Hill, D.

F. Tanimola and D. Hill, “Distributed fibre optic sensors for pipeline protection,” J. Nat. Gas Sci. Eng. 1(4-5), 134–143 (2009).
[Crossref]

Ho, H. L.

J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang, and S. Fan, “Fiber-optic Fabry–Perot acoustic sensor with multilayer grapheme diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

Hu, L.

L. Hu, G. Liu, Y. Zhu, X. Luo, and M. Han, “Laser frequency noise cancelation in a phase-shifted fiber Bragg grating ultrasonic sensor system using a reference grating channel,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

Hu, P.

Hu, Y.

F. Wang, Z. Shao, J. Xie, Z. Hu, H. Luo, and Y. Hu, “Extrinsic Fabry–Pérot underwater acoustic sensor based on micromachined center-embossed diaphragm,” J. Lightwave Technol. 32(23), 4268–4636 (2014).
[Crossref]

Hu, Z.

F. Wang, Z. Shao, J. Xie, Z. Hu, H. Luo, and Y. Hu, “Extrinsic Fabry–Pérot underwater acoustic sensor based on micromachined center-embossed diaphragm,” J. Lightwave Technol. 32(23), 4268–4636 (2014).
[Crossref]

Hui, R.

Jin, L.

X. Bai, Y. Liang, H. Sun, L. Jin, J. Ma, B. O. Guan, and L. Wang, “Sensitivity characteristics of broadband fiber-laser-based ultrasound sensors for photoacoustic microscopy,” Opt. Express 25(15), 17616–17626 (2017).
[Crossref]

W. Yang, L. Jin, Y. Liang, J. Ma, and B. Guan, “Corrugated-diaphragm based fiber laser hydrophone with Sub-100 μPa/Hz1/2 resolution,” Sensors 17(6), 1219 (2017).
[Crossref]

Jin, W.

J. Ma, Y. Yu, and W. Jin, “Demodulation of diaphragm based acoustic sensor using Sagnac interferometer with stable phase bias,” Opt. Express 23(22), 29268–29278 (2015).
[Crossref]

J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang, and S. Fan, “Fiber-optic Fabry–Perot acoustic sensor with multilayer grapheme diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

Jo, W.

W. Jo, O. C. Akkaya, O. Solgaard, and M. J. Digonnet, “Miniature fiber acoustic sensors using a photonic-crystal diaphragm,” Opt. Fiber Technol. 19(6), 785–792 (2013).
[Crossref]

Kale, S. N.

D. Pawar, C. N. Rao, R. K. Choubey, and S. N. Kale, “Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections,” Appl. Phys. Lett. 108(4), 041912 (2016).
[Crossref]

Kinsler, L.E.

L.E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics (Wiley-VCH, 1999), Chap. 4.

Ledermann, N.

N. Ledermann, P. Muralt, J. Baborowski, M. Forster, and J. Pellaux, “Piezoelectric Pb (Zrx, Ti1− x) O3 thin film cantilever and bridge acoustic sensors for miniaturized photoacoustic gas detectors,” J. Micromech. Microeng. 14(12), 1650–1658 (2004).
[Crossref]

Leite, I. T.

J. G. V. Teixeira, I. T. Leite, S. Silva, and O. Frazao, “Advanced fiber-optic acoustic sensors,” Photonic Sens. 4(3), 198–208 (2014).
[Crossref]

Li, H.

Li, J.

Y. Xia, J. Liu, X. Cui, J. Li, W. Chen, and C. Liu, “Abnormal infrasound signals before 92 M ≧ 7.0 worldwide earthquakes during 2002–2008,” Asian J. Earth Sci. 41(4-5), 434–441 (2011).
[Crossref]

Li, Y.

Liang, Y.

W. Yang, L. Jin, Y. Liang, J. Ma, and B. Guan, “Corrugated-diaphragm based fiber laser hydrophone with Sub-100 μPa/Hz1/2 resolution,” Sensors 17(6), 1219 (2017).
[Crossref]

X. Bai, Y. Liang, H. Sun, L. Jin, J. Ma, B. O. Guan, and L. Wang, “Sensitivity characteristics of broadband fiber-laser-based ultrasound sensors for photoacoustic microscopy,” Opt. Express 25(15), 17616–17626 (2017).
[Crossref]

Liao, H.

L. Liu, P. Lu, H. Liao, S. Wang, W. Yang, D. Liu, and J. Zhang, “Fiber-optic michelson interferometric acoustic sensor based on a PP/PET diaphragm,” IEEE Sens. J. 16(9), 3054–3058 (2016).
[Crossref]

Lin, W. W.

S. T. Shih, M. H. Chen, and W. W. Lin, “Analysis of fibre optic michelson interferometric sensor distortion caused by the imperfect properties of its 3×3 coupler,” IEE Proc.: Optoelectron. 144(6), 377–382 (1997).
[Crossref]

Liu, C.

Y. Xia, J. Liu, X. Cui, J. Li, W. Chen, and C. Liu, “Abnormal infrasound signals before 92 M ≧ 7.0 worldwide earthquakes during 2002–2008,” Asian J. Earth Sci. 41(4-5), 434–441 (2011).
[Crossref]

Liu, D.

W. Zhang, P. Lu, W. Ni, W. Xiong, D. Liu, and J. Zhang, “Gold-Diaphragm Based Fabry-Perot Ultrasonic Sensor for Partial Discharge Detection and Localization,” IEEE Photonics J. 12(3), 1–12 (2020).
[Crossref]

X. Fu, P. Lu, J. Zhang, Z. Qu, Y. Li, P. Hu, W. Yan, W. Ni, D. Liu, and J. Zhang, “Micromachined extrinsic fabry-pérot cavity for low-frequency acoustic wave sensing,” Opt. Express 27(17), 24300–24310 (2019).
[Crossref]

W. Ni, P. Lu, X. Fu, W. Zhang, P. Shum, H. Sun, C. Yang, D. Liu, and J. Zhang, “Ultrathin graphene diaphragm-based extrinsic Fabry-Perot interferometer for ultra-wideband fiber optic acoustic sensing,” Opt. Express 26(16), 20758–20767 (2018).
[Crossref]

L. Liu, P. Lu, H. Liao, S. Wang, W. Yang, D. Liu, and J. Zhang, “Fiber-optic michelson interferometric acoustic sensor based on a PP/PET diaphragm,” IEEE Sens. J. 16(9), 3054–3058 (2016).
[Crossref]

L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV Adhesive Diaphragm-Based FPI Sensor for Very-Low-Frequency Acoustic Sensing,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

S. Wang, P. Lu, L. Zhang, D. Liu, and J. Zhang, “Optical Fiber Acoustic Sensor Based on Nonstandard Fused Coupler and Aluminum Foil,” IEEE Sens. J. 14(7), 2293–2298 (2014).
[Crossref]

Liu, G.

L. Hu, G. Liu, Y. Zhu, X. Luo, and M. Han, “Laser frequency noise cancelation in a phase-shifted fiber Bragg grating ultrasonic sensor system using a reference grating channel,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

Liu, J.

Y. Xia, J. Liu, X. Cui, J. Li, W. Chen, and C. Liu, “Abnormal infrasound signals before 92 M ≧ 7.0 worldwide earthquakes during 2002–2008,” Asian J. Earth Sci. 41(4-5), 434–441 (2011).
[Crossref]

Liu, L.

L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV Adhesive Diaphragm-Based FPI Sensor for Very-Low-Frequency Acoustic Sensing,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

L. Liu, P. Lu, H. Liao, S. Wang, W. Yang, D. Liu, and J. Zhang, “Fiber-optic michelson interferometric acoustic sensor based on a PP/PET diaphragm,” IEEE Sens. J. 16(9), 3054–3058 (2016).
[Crossref]

Liu, T.

Lu, C.

Lu, P.

W. Zhang, P. Lu, W. Ni, W. Xiong, D. Liu, and J. Zhang, “Gold-Diaphragm Based Fabry-Perot Ultrasonic Sensor for Partial Discharge Detection and Localization,” IEEE Photonics J. 12(3), 1–12 (2020).
[Crossref]

X. Fu, P. Lu, J. Zhang, Z. Qu, Y. Li, P. Hu, W. Yan, W. Ni, D. Liu, and J. Zhang, “Micromachined extrinsic fabry-pérot cavity for low-frequency acoustic wave sensing,” Opt. Express 27(17), 24300–24310 (2019).
[Crossref]

W. Ni, P. Lu, X. Fu, W. Zhang, P. Shum, H. Sun, C. Yang, D. Liu, and J. Zhang, “Ultrathin graphene diaphragm-based extrinsic Fabry-Perot interferometer for ultra-wideband fiber optic acoustic sensing,” Opt. Express 26(16), 20758–20767 (2018).
[Crossref]

Y. Xu, L. Zhang, S. Gao, P. Lu, S. Mihailov, and X. Bao, “Highly sensitive fiber random-grating-based random laser sensor for ultrasound detection,” Opt. Lett. 42(7), 1353–1356 (2017).
[Crossref]

L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV Adhesive Diaphragm-Based FPI Sensor for Very-Low-Frequency Acoustic Sensing,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

L. Liu, P. Lu, H. Liao, S. Wang, W. Yang, D. Liu, and J. Zhang, “Fiber-optic michelson interferometric acoustic sensor based on a PP/PET diaphragm,” IEEE Sens. J. 16(9), 3054–3058 (2016).
[Crossref]

S. Wang, P. Lu, L. Zhang, D. Liu, and J. Zhang, “Optical Fiber Acoustic Sensor Based on Nonstandard Fused Coupler and Aluminum Foil,” IEEE Sens. J. 14(7), 2293–2298 (2014).
[Crossref]

Luo, H.

F. Wang, Z. Shao, J. Xie, Z. Hu, H. Luo, and Y. Hu, “Extrinsic Fabry–Pérot underwater acoustic sensor based on micromachined center-embossed diaphragm,” J. Lightwave Technol. 32(23), 4268–4636 (2014).
[Crossref]

Luo, X.

L. Hu, G. Liu, Y. Zhu, X. Luo, and M. Han, “Laser frequency noise cancelation in a phase-shifted fiber Bragg grating ultrasonic sensor system using a reference grating channel,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

Lv, R.

Y. Zhao, M. Chen, F. Xia, and R. Lv, “Small in-fiber Fabry-Perot low-frequency acoustic pressure sensor with PDMS diaphragm embedded in hollow-core fiber,” Sens. Actuators, A 270(1), 162–169 (2018).
[Crossref]

Lyu, C.

Ma, J.

Mihailov, S.

Muralt, P.

N. Ledermann, P. Muralt, J. Baborowski, M. Forster, and J. Pellaux, “Piezoelectric Pb (Zrx, Ti1− x) O3 thin film cantilever and bridge acoustic sensors for miniaturized photoacoustic gas detectors,” J. Micromech. Microeng. 14(12), 1650–1658 (2004).
[Crossref]

Ni, W.

Niezrecki, C.

Okabe, Y.

Pawar, D.

D. Pawar, C. N. Rao, R. K. Choubey, and S. N. Kale, “Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections,” Appl. Phys. Lett. 108(4), 041912 (2016).
[Crossref]

Pellaux, J.

N. Ledermann, P. Muralt, J. Baborowski, M. Forster, and J. Pellaux, “Piezoelectric Pb (Zrx, Ti1− x) O3 thin film cantilever and bridge acoustic sensors for miniaturized photoacoustic gas detectors,” J. Micromech. Microeng. 14(12), 1650–1658 (2004).
[Crossref]

Qu, Z.

Rao, C. N.

D. Pawar, C. N. Rao, R. K. Choubey, and S. N. Kale, “Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections,” Appl. Phys. Lett. 108(4), 041912 (2016).
[Crossref]

Sanders, J. V.

L.E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics (Wiley-VCH, 1999), Chap. 4.

Shao, Z.

F. Wang, Z. Shao, J. Xie, Z. Hu, H. Luo, and Y. Hu, “Extrinsic Fabry–Pérot underwater acoustic sensor based on micromachined center-embossed diaphragm,” J. Lightwave Technol. 32(23), 4268–4636 (2014).
[Crossref]

Sheploak, M.

M. Sheploak and J. Dugundji, “Large deflections of clamped circular plates under initial tension and transitions to membrane behavior,” J. Appl. Mech. 65(1), 107–115 (1998).
[Crossref]

Shi, J.

Shih, S. T.

S. T. Shih, M. H. Chen, and W. W. Lin, “Analysis of fibre optic michelson interferometric sensor distortion caused by the imperfect properties of its 3×3 coupler,” IEE Proc.: Optoelectron. 144(6), 377–382 (1997).
[Crossref]

Shum, P.

Silva, S.

J. G. V. Teixeira, I. T. Leite, S. Silva, and O. Frazao, “Advanced fiber-optic acoustic sensors,” Photonic Sens. 4(3), 198–208 (2014).
[Crossref]

Solgaard, O.

W. Jo, O. C. Akkaya, O. Solgaard, and M. J. Digonnet, “Miniature fiber acoustic sensors using a photonic-crystal diaphragm,” Opt. Fiber Technol. 19(6), 785–792 (2013).
[Crossref]

Sun, D.

Sun, H.

Sun, T.

J. O. Gaudron, F. Surre, T. Sun, and K. T. V. Grattan, “LPG-based optical fibre sensor for acoustic wave detection,” Sens. Actuators, A 173(1), 97–101 (2012).
[Crossref]

Sun, Y.

L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV Adhesive Diaphragm-Based FPI Sensor for Very-Low-Frequency Acoustic Sensing,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

Surre, F.

J. O. Gaudron, F. Surre, T. Sun, and K. T. V. Grattan, “LPG-based optical fibre sensor for acoustic wave detection,” Sens. Actuators, A 173(1), 97–101 (2012).
[Crossref]

Tam, H. Y.

Tanimola, F.

F. Tanimola and D. Hill, “Distributed fibre optic sensors for pipeline protection,” J. Nat. Gas Sci. Eng. 1(4-5), 134–143 (2009).
[Crossref]

Teixeira, J. G. V.

J. G. V. Teixeira, I. T. Leite, S. Silva, and O. Frazao, “Advanced fiber-optic acoustic sensors,” Photonic Sens. 4(3), 198–208 (2014).
[Crossref]

Tian, Y.

Wang, F.

F. Wang, Z. Shao, J. Xie, Z. Hu, H. Luo, and Y. Hu, “Extrinsic Fabry–Pérot underwater acoustic sensor based on micromachined center-embossed diaphragm,” J. Lightwave Technol. 32(23), 4268–4636 (2014).
[Crossref]

Wang, L.

Wang, S.

L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV Adhesive Diaphragm-Based FPI Sensor for Very-Low-Frequency Acoustic Sensing,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

L. Liu, P. Lu, H. Liao, S. Wang, W. Yang, D. Liu, and J. Zhang, “Fiber-optic michelson interferometric acoustic sensor based on a PP/PET diaphragm,” IEEE Sens. J. 16(9), 3054–3058 (2016).
[Crossref]

S. Wang, P. Lu, L. Zhang, D. Liu, and J. Zhang, “Optical Fiber Acoustic Sensor Based on Nonstandard Fused Coupler and Aluminum Foil,” IEEE Sens. J. 14(7), 2293–2298 (2014).
[Crossref]

Wang, W.

Wang, X.

Wooler, J. P.

Wu, C.

Wu, N.

Wu, Q.

Xia, F.

Y. Zhao, M. Chen, F. Xia, and R. Lv, “Small in-fiber Fabry-Perot low-frequency acoustic pressure sensor with PDMS diaphragm embedded in hollow-core fiber,” Sens. Actuators, A 270(1), 162–169 (2018).
[Crossref]

Xia, Y.

Y. Xia, J. Liu, X. Cui, J. Li, W. Chen, and C. Liu, “Abnormal infrasound signals before 92 M ≧ 7.0 worldwide earthquakes during 2002–2008,” Asian J. Earth Sci. 41(4-5), 434–441 (2011).
[Crossref]

Xiao, L.

Xie, J.

F. Wang, Z. Shao, J. Xie, Z. Hu, H. Luo, and Y. Hu, “Extrinsic Fabry–Pérot underwater acoustic sensor based on micromachined center-embossed diaphragm,” J. Lightwave Technol. 32(23), 4268–4636 (2014).
[Crossref]

Xiong, W.

W. Zhang, P. Lu, W. Ni, W. Xiong, D. Liu, and J. Zhang, “Gold-Diaphragm Based Fabry-Perot Ultrasonic Sensor for Partial Discharge Detection and Localization,” IEEE Photonics J. 12(3), 1–12 (2020).
[Crossref]

Xu, F.

Xu, H.

L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV Adhesive Diaphragm-Based FPI Sensor for Very-Low-Frequency Acoustic Sensing,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

Xu, J.

J. Xu, L. Headings, and M. Dapino, “High sensitivity polyvinylidene fluoride microphone based on area ratio amplification and minimal capacitance,” IEEE Sens. J. 15(5), 2839–2847 (2015).
[Crossref]

Xu, Y.

Xuan, H.

J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang, and S. Fan, “Fiber-optic Fabry–Perot acoustic sensor with multilayer grapheme diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

Yan, W.

Yang, C.

Yang, W.

W. Yang, L. Jin, Y. Liang, J. Ma, and B. Guan, “Corrugated-diaphragm based fiber laser hydrophone with Sub-100 μPa/Hz1/2 resolution,” Sensors 17(6), 1219 (2017).
[Crossref]

L. Liu, P. Lu, H. Liao, S. Wang, W. Yang, D. Liu, and J. Zhang, “Fiber-optic michelson interferometric acoustic sensor based on a PP/PET diaphragm,” IEEE Sens. J. 16(9), 3054–3058 (2016).
[Crossref]

Yang, Y.

Z. Gong, K. Chen, Y. Yang, X. Zhou, and Q. Yu, “Photoacoustic spectroscopy based multi-gas detection using high-sensitivity fiber-optic low-frequency acoustic sensor,” Sens. Actuators, B 260(1), 357–363 (2018).
[Crossref]

J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang, and S. Fan, “Fiber-optic Fabry–Perot acoustic sensor with multilayer grapheme diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

Yao, Q.

L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV Adhesive Diaphragm-Based FPI Sensor for Very-Low-Frequency Acoustic Sensing,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

Yu, B.

Yu, Q.

Z. Gong, K. Chen, Y. Yang, X. Zhou, and Q. Yu, “Photoacoustic spectroscopy based multi-gas detection using high-sensitivity fiber-optic low-frequency acoustic sensor,” Sens. Actuators, B 260(1), 357–363 (2018).
[Crossref]

Yu, Y.

Zhang, J.

W. Zhang, P. Lu, W. Ni, W. Xiong, D. Liu, and J. Zhang, “Gold-Diaphragm Based Fabry-Perot Ultrasonic Sensor for Partial Discharge Detection and Localization,” IEEE Photonics J. 12(3), 1–12 (2020).
[Crossref]

X. Fu, P. Lu, J. Zhang, Z. Qu, Y. Li, P. Hu, W. Yan, W. Ni, D. Liu, and J. Zhang, “Micromachined extrinsic fabry-pérot cavity for low-frequency acoustic wave sensing,” Opt. Express 27(17), 24300–24310 (2019).
[Crossref]

X. Fu, P. Lu, J. Zhang, Z. Qu, Y. Li, P. Hu, W. Yan, W. Ni, D. Liu, and J. Zhang, “Micromachined extrinsic fabry-pérot cavity for low-frequency acoustic wave sensing,” Opt. Express 27(17), 24300–24310 (2019).
[Crossref]

W. Ni, P. Lu, X. Fu, W. Zhang, P. Shum, H. Sun, C. Yang, D. Liu, and J. Zhang, “Ultrathin graphene diaphragm-based extrinsic Fabry-Perot interferometer for ultra-wideband fiber optic acoustic sensing,” Opt. Express 26(16), 20758–20767 (2018).
[Crossref]

L. Liu, P. Lu, H. Liao, S. Wang, W. Yang, D. Liu, and J. Zhang, “Fiber-optic michelson interferometric acoustic sensor based on a PP/PET diaphragm,” IEEE Sens. J. 16(9), 3054–3058 (2016).
[Crossref]

L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV Adhesive Diaphragm-Based FPI Sensor for Very-Low-Frequency Acoustic Sensing,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

S. Wang, P. Lu, L. Zhang, D. Liu, and J. Zhang, “Optical Fiber Acoustic Sensor Based on Nonstandard Fused Coupler and Aluminum Foil,” IEEE Sens. J. 14(7), 2293–2298 (2014).
[Crossref]

Zhang, L.

Y. Xu, L. Zhang, S. Gao, P. Lu, S. Mihailov, and X. Bao, “Highly sensitive fiber random-grating-based random laser sensor for ultrasound detection,” Opt. Lett. 42(7), 1353–1356 (2017).
[Crossref]

S. Wang, P. Lu, L. Zhang, D. Liu, and J. Zhang, “Optical Fiber Acoustic Sensor Based on Nonstandard Fused Coupler and Aluminum Foil,” IEEE Sens. J. 14(7), 2293–2298 (2014).
[Crossref]

Zhang, W.

W. Zhang, P. Lu, W. Ni, W. Xiong, D. Liu, and J. Zhang, “Gold-Diaphragm Based Fabry-Perot Ultrasonic Sensor for Partial Discharge Detection and Localization,” IEEE Photonics J. 12(3), 1–12 (2020).
[Crossref]

W. Ni, P. Lu, X. Fu, W. Zhang, P. Shum, H. Sun, C. Yang, D. Liu, and J. Zhang, “Ultrathin graphene diaphragm-based extrinsic Fabry-Perot interferometer for ultra-wideband fiber optic acoustic sensing,” Opt. Express 26(16), 20758–20767 (2018).
[Crossref]

Zhao, Y.

Y. Zhao, M. Chen, F. Xia, and R. Lv, “Small in-fiber Fabry-Perot low-frequency acoustic pressure sensor with PDMS diaphragm embedded in hollow-core fiber,” Sens. Actuators, A 270(1), 162–169 (2018).
[Crossref]

Zhou, D.

Zhou, X.

Z. Gong, K. Chen, Y. Yang, X. Zhou, and Q. Yu, “Photoacoustic spectroscopy based multi-gas detection using high-sensitivity fiber-optic low-frequency acoustic sensor,” Sens. Actuators, B 260(1), 357–363 (2018).
[Crossref]

Zhu, Y.

L. Hu, G. Liu, Y. Zhu, X. Luo, and M. Han, “Laser frequency noise cancelation in a phase-shifted fiber Bragg grating ultrasonic sensor system using a reference grating channel,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

D. Pawar, C. N. Rao, R. K. Choubey, and S. N. Kale, “Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections,” Appl. Phys. Lett. 108(4), 041912 (2016).
[Crossref]

Asian J. Earth Sci. (1)

Y. Xia, J. Liu, X. Cui, J. Li, W. Chen, and C. Liu, “Abnormal infrasound signals before 92 M ≧ 7.0 worldwide earthquakes during 2002–2008,” Asian J. Earth Sci. 41(4-5), 434–441 (2011).
[Crossref]

Chin. Opt. Lett. (1)

IEE Proc.: Optoelectron. (1)

S. T. Shih, M. H. Chen, and W. W. Lin, “Analysis of fibre optic michelson interferometric sensor distortion caused by the imperfect properties of its 3×3 coupler,” IEE Proc.: Optoelectron. 144(6), 377–382 (1997).
[Crossref]

IEEE Photonics J. (3)

W. Zhang, P. Lu, W. Ni, W. Xiong, D. Liu, and J. Zhang, “Gold-Diaphragm Based Fabry-Perot Ultrasonic Sensor for Partial Discharge Detection and Localization,” IEEE Photonics J. 12(3), 1–12 (2020).
[Crossref]

L. Hu, G. Liu, Y. Zhu, X. Luo, and M. Han, “Laser frequency noise cancelation in a phase-shifted fiber Bragg grating ultrasonic sensor system using a reference grating channel,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV Adhesive Diaphragm-Based FPI Sensor for Very-Low-Frequency Acoustic Sensing,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang, and S. Fan, “Fiber-optic Fabry–Perot acoustic sensor with multilayer grapheme diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

IEEE Sens. J. (3)

S. Wang, P. Lu, L. Zhang, D. Liu, and J. Zhang, “Optical Fiber Acoustic Sensor Based on Nonstandard Fused Coupler and Aluminum Foil,” IEEE Sens. J. 14(7), 2293–2298 (2014).
[Crossref]

L. Liu, P. Lu, H. Liao, S. Wang, W. Yang, D. Liu, and J. Zhang, “Fiber-optic michelson interferometric acoustic sensor based on a PP/PET diaphragm,” IEEE Sens. J. 16(9), 3054–3058 (2016).
[Crossref]

J. Xu, L. Headings, and M. Dapino, “High sensitivity polyvinylidene fluoride microphone based on area ratio amplification and minimal capacitance,” IEEE Sens. J. 15(5), 2839–2847 (2015).
[Crossref]

J. Appl. Mech. (1)

M. Sheploak and J. Dugundji, “Large deflections of clamped circular plates under initial tension and transitions to membrane behavior,” J. Appl. Mech. 65(1), 107–115 (1998).
[Crossref]

J. Lightwave Technol. (2)

F. Wang, Z. Shao, J. Xie, Z. Hu, H. Luo, and Y. Hu, “Extrinsic Fabry–Pérot underwater acoustic sensor based on micromachined center-embossed diaphragm,” J. Lightwave Technol. 32(23), 4268–4636 (2014).
[Crossref]

X. Bao, D. Zhou, C. Baker, and L. Chen, “Recent development in the distributed fiber optic acoustic and ultrasonic detection,” J. Lightwave Technol. 35(16), 3256–3267 (2017).
[Crossref]

J. Micromech. Microeng. (1)

N. Ledermann, P. Muralt, J. Baborowski, M. Forster, and J. Pellaux, “Piezoelectric Pb (Zrx, Ti1− x) O3 thin film cantilever and bridge acoustic sensors for miniaturized photoacoustic gas detectors,” J. Micromech. Microeng. 14(12), 1650–1658 (2004).
[Crossref]

J. Nat. Gas Sci. Eng. (1)

F. Tanimola and D. Hill, “Distributed fibre optic sensors for pipeline protection,” J. Nat. Gas Sci. Eng. 1(4-5), 134–143 (2009).
[Crossref]

Opt. Express (7)

Opt. Fiber Technol. (1)

W. Jo, O. C. Akkaya, O. Solgaard, and M. J. Digonnet, “Miniature fiber acoustic sensors using a photonic-crystal diaphragm,” Opt. Fiber Technol. 19(6), 785–792 (2013).
[Crossref]

Opt. Lett. (2)

Photonic Sens. (1)

J. G. V. Teixeira, I. T. Leite, S. Silva, and O. Frazao, “Advanced fiber-optic acoustic sensors,” Photonic Sens. 4(3), 198–208 (2014).
[Crossref]

Radiats Biol Radioecol. (1)

G. V. Batanov, “Characteristics of etiology of immediate hypersensitivity in conditions of exposure to infrasound,” Radiats Biol Radioecol. 35(1), 78–82 (1995).

Sens. Actuators, A (2)

J. O. Gaudron, F. Surre, T. Sun, and K. T. V. Grattan, “LPG-based optical fibre sensor for acoustic wave detection,” Sens. Actuators, A 173(1), 97–101 (2012).
[Crossref]

Y. Zhao, M. Chen, F. Xia, and R. Lv, “Small in-fiber Fabry-Perot low-frequency acoustic pressure sensor with PDMS diaphragm embedded in hollow-core fiber,” Sens. Actuators, A 270(1), 162–169 (2018).
[Crossref]

Sens. Actuators, B (1)

Z. Gong, K. Chen, Y. Yang, X. Zhou, and Q. Yu, “Photoacoustic spectroscopy based multi-gas detection using high-sensitivity fiber-optic low-frequency acoustic sensor,” Sens. Actuators, B 260(1), 357–363 (2018).
[Crossref]

Sensors (1)

W. Yang, L. Jin, Y. Liang, J. Ma, and B. Guan, “Corrugated-diaphragm based fiber laser hydrophone with Sub-100 μPa/Hz1/2 resolution,” Sensors 17(6), 1219 (2017).
[Crossref]

Other (1)

L.E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics (Wiley-VCH, 1999), Chap. 4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Simulation of deformation and first-order resonant frequency of diaphragm. (a) Deformation amplitude of diaphragm under 1 Pa sound pressure of 100 Hz. (b) Resonant frequency under different radius and tensile stress.
Fig. 2.
Fig. 2. Simulation of the influence of diaphragm parameters on sensitivity. (a) Influence of thickness and radius on low frequency sensitivity. (b) Influence of thickness and radius on sensitivity curve.
Fig. 3.
Fig. 3. Fabrication and structure of MI sensor. (a) The structure of the MI sensor. (b) Schematic diagraph of the cavity length adjusting system. (c) Image of the finished sensor head.
Fig. 4.
Fig. 4. Simulation of the scattering attenuation. (a) Simplified model of light scattering attenuation of the sensor head. (b) Light propagation in the fiber at 1550 nm simulated with BPM. (c) Simulated relationship between scattering loss and air gap length.
Fig. 5.
Fig. 5. Interferential spectrum of the MI sensor head.
Fig. 6.
Fig. 6. Schematic of the sensing system
Fig. 7.
Fig. 7. (a) Time domain signal acquired from the two PDs when the sound frequency is 200 Hz. (b) Scattered plot of the two channels and the fitted ellipse curve.
Fig. 8.
Fig. 8. Demodulated acoustic waves with fitting curves at different frequencies. (a) 1 Hz. (b) 5 Hz. (c) 200 Hz. (d) Relationship between the applied sound pressure and amplitude of the demodulation signal at 5 Hz.
Fig. 9.
Fig. 9. Fast Fourier transform spectrum and time domain signal (illustration) of different frequency. (a) 20 Hz. (b) 250 Hz.
Fig. 10.
Fig. 10. Signal noise ratio and noise equal pressure for the frequency range of 0.8-250 Hz.
Fig. 11.
Fig. 11. Frequency response and simulation curve of the proposed sensor.

Tables (1)

Tables Icon

Table 1. Comparison between our work and other reported schemes

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

η ( t , r ) = p a k 2 T [ J 0 ( k r ) J 0 ( k a ) 1 ] e j ω t ,
f r 1 = 2.405 2 π a P ρ ,
S φ = 4 π k 2 P h λ [ 1 J 0 ( k a ) 1 ] .
V 1  =  A 1  +  B 1 cos [ 4 π n Δ L λ + φ ( t ) + φ 12 + φ 0 ] ,
V 2 = A 2  +  B 2 cos [ 4 π n Δ L λ + φ ( t ) + φ 21 + φ 0 ] ,

Metrics