Abstract

We demonstrate an on-chip spectrometer readily integrable with CMOS electronics. The structure is comprised of a SiO2/Si3N4/SiO2 waveguide atop a silicon substrate. A transversely chirped grating is fabricated, in a single-step optical lithography process, on a portion of the waveguide to provide angle and wavelength dependent coupling to the guided mode. The spectral and angular information is encoded in the spatial dependence of the grating period. A uniform pitch grating area, separated from the collection area by an unpatterned propagation region, provides the out-coupling to a CMOS detector array. A resolution of 0.3 nm at 633 nm with a spectral coverage tunable across the visible and NIR (to ∼ 1 µm limited by the Si photodetector) by changing the angle of incidence, is demonstrated without the need for any signal processing deconvolution. This on-chip spectrometer concept will cost effectively enable a broad range of applications that are beyond the reach of current integrated spectroscopic technologies.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Cheben, J. H. Schmid, A. Delâge, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides,” Opt. Express 15(5), 2299–2306 (2007).
    [Crossref]
  2. B. Momeni, E. S. Hosseini, M. Askari, M. Soltani M, and A. Adibi, “Integrated photonic crystal spectrometers for sensing applications,” Opt. Commun. 282(15), 3168–3171 (2009).
    [Crossref]
  3. Z. Xia, A. A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, “High resolution on-chip spectroscopy based on miniaturized microdonut resonators,” Opt. Express 19(13), 12356–12364 (2011).
    [Crossref]
  4. A. V. Velasco, P. Cheben, P. J. Bock, A. Delâge, J. H. Schmid, J. Lapointe, S. Janz, M. L. Calvo, D.-X. Xu, M. Florjańczyk, and M. Vachon, “High-resolution Fourier-transform spectrometer on a chip with microphotonic silicon spiral waveguides,” Opt. Lett. 38(5), 706–708 (2013).
    [Crossref]
  5. M. C. M. M. Souza, A. Grieco, N. C. Frateschi, and Y. Fainman, “Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction,” Nat. Commun. 9(1), 665 (2018).
    [Crossref]
  6. S. Xie, Y. Meng, J. Bland-Hawthorn, S. Veilleux, and M. Dagenais, “Silicon nitride/silicon dioxide echelle grating spectrometer for operation near 1.55 µm,” IEEE Photonics J. 10(6), 1–7 (2018).
    [Crossref]
  7. B. Momeni, E. S. Hosseini, M. Askari, M. Soltani, and A. Adibi, “Integrated photonic crystal spectrometers for sensing applications,” Opt. Commun. 282(15), 3168–3171 (2009).
    [Crossref]
  8. G. Micó, B. Gargallo, D. Pastor, and P. Muñoz, “Integrated optic sensing spectrometer: concept and design,” Sensors 19(5), 1018 (2019).
    [Crossref]
  9. D. M. Kita, B. Miranda, A. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9(1), 4405 (2018).
    [Crossref]
  10. J. Rantanen, “Process analytical applications of Raman spectroscopy,” J. Pharm. Pharmacol. 59(2), 171–177 (2007).
    [Crossref]
  11. R. S. Saltzman, “Ultraviolet/visible spectroscopy in process analyses,” in Encyclopedia of Analytical Chemistry (John Wiley and Sons, 2011).
  12. R. Karoui and C. Blecker, “Fluorescence spectroscopy measurement for quality assessment of food systems - a review,” Food Bioprocess Technol. 4(3), 364–386 (2011).
    [Crossref]
  13. A. P. Craig, A. S. Franca, and J. Irudayaraj, “Surface-enhanced Raman spectroscopy applied to food safety,” Annu. Rev. Food Sci. Technol. 4(1), 369–380 (2013).
    [Crossref]
  14. L. Hong and K. Sengupta, “Fully integrated optical spectrometer in visible and near-IR in CMOS,” IEEE Trans. Biomed. Circuits Syst. 11(6), 1176–1191 (2017).
    [Crossref]
  15. R. F. Wolffenbuttel, “MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15(7), S145–S152 (2005).
    [Crossref]
  16. J. H. Correia, M. Bartek, and R. F. Wolffenbuttel, “High-selectivity single-chip spectrometer in silicon for operation in visible part of the spectrum,” IEEE Trans. Electron Devices 47(3), 553–559 (2000).
    [Crossref]
  17. M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, “Integrated waveguide Fabry-Pérot microcavities with silicon/air Bragg mirrors,” Opt. Lett. 32(5), 533–535 (2007).
    [Crossref]
  18. T. Russin, M. Fralick, M. Kerber, A. Wang, and R. Waters, “Development of a MEMS-based Raman spectrometer,” IEEE Sensors Conf., pp. 56–60. (2010).
  19. M. Ebermann, N. Neumann, K. Hiller, M. Seifert, M. Meinig, and S. Kurth, “Tunable MEMS Fabry-Pérot filters for infrared microspectrometers: a review,” Proc. SPIE 9760, 97600H (2016).
    [Crossref]
  20. S.-W. Wang, C. Xia, X. Chen, W. Lu, M. Li, H. Wang, W. Zheng, and T. Zhang, “Concept of a high-resolution miniature spectrometer using an integrated filter array,” Opt. Lett. 32(6), 632–634 (2007).
    [Crossref]
  21. J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523(7558), 67–70 (2015).
    [Crossref]
  22. Z. Yang, T. Albrow-Owen, H. Cui, J. Alexander-Webber, F. Gu, X. Wang, T.-C. Wu, M. Zhuge, C. Williams, P. Wang, A. V. Zayats, W. Cai, L. Dai, S. Hofmann, M. Overend, L. Tong, Q. Yang, Z. Sun, and T. Hasan, “Single-nanowire spectrometers,” Science 365(6457), 1017–1020 (2019).
    [Crossref]
  23. N. K. Pervez, W. Cheng, Z. Jia, M. P. Cox, H. M. Edrees, and I. Kymissis, “Photonic crystal spectrometer,” Opt. Express 18(8), 8277–8282 (2010).
    [Crossref]
  24. C. Peroz, S. Dhuey, A. Goltsov, M. Volger, B. Harteneck, I. Ivonin, A. Bugrov, S. Cabrini, S. Bavin, and Y. Yankov, “Digital spectrometer-on-chip fabricated by step and repeat nanoimprint lithography and pre-spin coated films,” Microelectron. Eng. 88(8), 2092–2095 (2011).
    [Crossref]
  25. X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett. 100(2), 023110 (2012).
    [Crossref]
  26. Z. Wang, S. Yi, A. Chen, M. Zhou, T. S. Luk, A. James, J. Nogan, W. Ross, G. Joe, A. Shahsafi, K. X. Wang, M. A. Kats, and Y. Zu, “Single-shot on-chip spectral sensors based on photonic crystal slabs,” Nat. Commun. 10(1), 1020 (2019).
    [Crossref]
  27. B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
    [Crossref]
  28. G. Fortin and N. McCarthy, “Chirped holographic grating used as the dispersive element in an optical spectrometer,” Appl. Opt. 44(23), 4874 (2005).
    [Crossref]
  29. P. Wang and R. Menon, “Computational spectrometer based on a broadband diffractive optic,” Opt. Express 22(12), 14575 (2014).
    [Crossref]
  30. Y. Tsur and A. Arie, “On-chip plasmonic spectrometer,” Opt. Lett. 41(15), 3523–3526 (2016).
    [Crossref]
  31. Y. Horie, A. Arbabi, E. Arbabi, S. M. Kamali, and A. Faraon, “Wide bandwidth and high resolution planar filter array based on DBR-metasurface-DBR structures,” Opt. Express 24(11), 11677–11682 (2016).
    [Crossref]
  32. M. Faraji-Dana, E. Arbabi, A. Arbabi, S. M. Kamali, H. Kwon, and A. Faraon, “Compact folded metasurface spectrometer,” Nat. Commun. 9(1), 4196–4203 (2018).
    [Crossref]
  33. Y.-J. Hung, C.-W. Kao, T.-C. Kao, C.-W. Huang, J.-J. Lin, and C.-C. Yin, “Optical spectrometer based on a continuously chirped guided mode resonance filter,” Opt. Express 26(21), 27515 (2018).
    [Crossref]
  34. A. Neumann, J. Ghasemi, S. Nezhadbadeh, X. Nie, P. Zarkesh-Ha, and S. R. J. Brueck, “CMOS-compatible plenoptic detector for LED lighting applications,” Opt. Express 23(18), 23208–23216 (2015).
    [Crossref]
  35. X. He, S. Benoit, R. Kaspi, and S. R. J. Brueck, “Optically pumped continuously tunable mid-IR distributed-feedback semiconductor laser,” IEEE J. Quantum Electron. 52(10), 1–10 (2016).
    [Crossref]
  36. S. Benoit and S. R. J. Brueck, “Design of chirped gratings using interferometric lithography,” IEEE Photonics J. 10(2), 1–13 (2018).
    [Crossref]
  37. Lumerical Nanophotonic FDTD Simulation Software, https://www.lumerical.com/%20products/fdtd/
  38. J. C. Brazas and L. Li, “Analysis of input-grating couplers having finite lengths,” Appl. Opt. 34(19), 3786–3792 (1995).
    [Crossref]
  39. https://www.hamamatsu.com/resources/pdf/ssd/s11639-01_kmpd1163e.pdf

2019 (3)

G. Micó, B. Gargallo, D. Pastor, and P. Muñoz, “Integrated optic sensing spectrometer: concept and design,” Sensors 19(5), 1018 (2019).
[Crossref]

Z. Yang, T. Albrow-Owen, H. Cui, J. Alexander-Webber, F. Gu, X. Wang, T.-C. Wu, M. Zhuge, C. Williams, P. Wang, A. V. Zayats, W. Cai, L. Dai, S. Hofmann, M. Overend, L. Tong, Q. Yang, Z. Sun, and T. Hasan, “Single-nanowire spectrometers,” Science 365(6457), 1017–1020 (2019).
[Crossref]

Z. Wang, S. Yi, A. Chen, M. Zhou, T. S. Luk, A. James, J. Nogan, W. Ross, G. Joe, A. Shahsafi, K. X. Wang, M. A. Kats, and Y. Zu, “Single-shot on-chip spectral sensors based on photonic crystal slabs,” Nat. Commun. 10(1), 1020 (2019).
[Crossref]

2018 (6)

M. Faraji-Dana, E. Arbabi, A. Arbabi, S. M. Kamali, H. Kwon, and A. Faraon, “Compact folded metasurface spectrometer,” Nat. Commun. 9(1), 4196–4203 (2018).
[Crossref]

Y.-J. Hung, C.-W. Kao, T.-C. Kao, C.-W. Huang, J.-J. Lin, and C.-C. Yin, “Optical spectrometer based on a continuously chirped guided mode resonance filter,” Opt. Express 26(21), 27515 (2018).
[Crossref]

S. Benoit and S. R. J. Brueck, “Design of chirped gratings using interferometric lithography,” IEEE Photonics J. 10(2), 1–13 (2018).
[Crossref]

D. M. Kita, B. Miranda, A. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9(1), 4405 (2018).
[Crossref]

M. C. M. M. Souza, A. Grieco, N. C. Frateschi, and Y. Fainman, “Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction,” Nat. Commun. 9(1), 665 (2018).
[Crossref]

S. Xie, Y. Meng, J. Bland-Hawthorn, S. Veilleux, and M. Dagenais, “Silicon nitride/silicon dioxide echelle grating spectrometer for operation near 1.55 µm,” IEEE Photonics J. 10(6), 1–7 (2018).
[Crossref]

2017 (1)

L. Hong and K. Sengupta, “Fully integrated optical spectrometer in visible and near-IR in CMOS,” IEEE Trans. Biomed. Circuits Syst. 11(6), 1176–1191 (2017).
[Crossref]

2016 (4)

M. Ebermann, N. Neumann, K. Hiller, M. Seifert, M. Meinig, and S. Kurth, “Tunable MEMS Fabry-Pérot filters for infrared microspectrometers: a review,” Proc. SPIE 9760, 97600H (2016).
[Crossref]

X. He, S. Benoit, R. Kaspi, and S. R. J. Brueck, “Optically pumped continuously tunable mid-IR distributed-feedback semiconductor laser,” IEEE J. Quantum Electron. 52(10), 1–10 (2016).
[Crossref]

Y. Tsur and A. Arie, “On-chip plasmonic spectrometer,” Opt. Lett. 41(15), 3523–3526 (2016).
[Crossref]

Y. Horie, A. Arbabi, E. Arbabi, S. M. Kamali, and A. Faraon, “Wide bandwidth and high resolution planar filter array based on DBR-metasurface-DBR structures,” Opt. Express 24(11), 11677–11682 (2016).
[Crossref]

2015 (2)

2014 (1)

2013 (3)

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
[Crossref]

A. P. Craig, A. S. Franca, and J. Irudayaraj, “Surface-enhanced Raman spectroscopy applied to food safety,” Annu. Rev. Food Sci. Technol. 4(1), 369–380 (2013).
[Crossref]

A. V. Velasco, P. Cheben, P. J. Bock, A. Delâge, J. H. Schmid, J. Lapointe, S. Janz, M. L. Calvo, D.-X. Xu, M. Florjańczyk, and M. Vachon, “High-resolution Fourier-transform spectrometer on a chip with microphotonic silicon spiral waveguides,” Opt. Lett. 38(5), 706–708 (2013).
[Crossref]

2012 (1)

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett. 100(2), 023110 (2012).
[Crossref]

2011 (3)

C. Peroz, S. Dhuey, A. Goltsov, M. Volger, B. Harteneck, I. Ivonin, A. Bugrov, S. Cabrini, S. Bavin, and Y. Yankov, “Digital spectrometer-on-chip fabricated by step and repeat nanoimprint lithography and pre-spin coated films,” Microelectron. Eng. 88(8), 2092–2095 (2011).
[Crossref]

Z. Xia, A. A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, “High resolution on-chip spectroscopy based on miniaturized microdonut resonators,” Opt. Express 19(13), 12356–12364 (2011).
[Crossref]

R. Karoui and C. Blecker, “Fluorescence spectroscopy measurement for quality assessment of food systems - a review,” Food Bioprocess Technol. 4(3), 364–386 (2011).
[Crossref]

2010 (1)

2009 (2)

B. Momeni, E. S. Hosseini, M. Askari, M. Soltani M, and A. Adibi, “Integrated photonic crystal spectrometers for sensing applications,” Opt. Commun. 282(15), 3168–3171 (2009).
[Crossref]

B. Momeni, E. S. Hosseini, M. Askari, M. Soltani, and A. Adibi, “Integrated photonic crystal spectrometers for sensing applications,” Opt. Commun. 282(15), 3168–3171 (2009).
[Crossref]

2007 (4)

2005 (2)

R. F. Wolffenbuttel, “MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15(7), S145–S152 (2005).
[Crossref]

G. Fortin and N. McCarthy, “Chirped holographic grating used as the dispersive element in an optical spectrometer,” Appl. Opt. 44(23), 4874 (2005).
[Crossref]

2000 (1)

J. H. Correia, M. Bartek, and R. F. Wolffenbuttel, “High-selectivity single-chip spectrometer in silicon for operation in visible part of the spectrum,” IEEE Trans. Electron Devices 47(3), 553–559 (2000).
[Crossref]

1995 (1)

Adibi, A.

Z. Xia, A. A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, “High resolution on-chip spectroscopy based on miniaturized microdonut resonators,” Opt. Express 19(13), 12356–12364 (2011).
[Crossref]

B. Momeni, E. S. Hosseini, M. Askari, M. Soltani M, and A. Adibi, “Integrated photonic crystal spectrometers for sensing applications,” Opt. Commun. 282(15), 3168–3171 (2009).
[Crossref]

B. Momeni, E. S. Hosseini, M. Askari, M. Soltani, and A. Adibi, “Integrated photonic crystal spectrometers for sensing applications,” Opt. Commun. 282(15), 3168–3171 (2009).
[Crossref]

Albrow-Owen, T.

Z. Yang, T. Albrow-Owen, H. Cui, J. Alexander-Webber, F. Gu, X. Wang, T.-C. Wu, M. Zhuge, C. Williams, P. Wang, A. V. Zayats, W. Cai, L. Dai, S. Hofmann, M. Overend, L. Tong, Q. Yang, Z. Sun, and T. Hasan, “Single-nanowire spectrometers,” Science 365(6457), 1017–1020 (2019).
[Crossref]

Alexander-Webber, J.

Z. Yang, T. Albrow-Owen, H. Cui, J. Alexander-Webber, F. Gu, X. Wang, T.-C. Wu, M. Zhuge, C. Williams, P. Wang, A. V. Zayats, W. Cai, L. Dai, S. Hofmann, M. Overend, L. Tong, Q. Yang, Z. Sun, and T. Hasan, “Single-nanowire spectrometers,” Science 365(6457), 1017–1020 (2019).
[Crossref]

Arbabi, A.

M. Faraji-Dana, E. Arbabi, A. Arbabi, S. M. Kamali, H. Kwon, and A. Faraon, “Compact folded metasurface spectrometer,” Nat. Commun. 9(1), 4196–4203 (2018).
[Crossref]

Y. Horie, A. Arbabi, E. Arbabi, S. M. Kamali, and A. Faraon, “Wide bandwidth and high resolution planar filter array based on DBR-metasurface-DBR structures,” Opt. Express 24(11), 11677–11682 (2016).
[Crossref]

Arbabi, E.

M. Faraji-Dana, E. Arbabi, A. Arbabi, S. M. Kamali, H. Kwon, and A. Faraon, “Compact folded metasurface spectrometer,” Nat. Commun. 9(1), 4196–4203 (2018).
[Crossref]

Y. Horie, A. Arbabi, E. Arbabi, S. M. Kamali, and A. Faraon, “Wide bandwidth and high resolution planar filter array based on DBR-metasurface-DBR structures,” Opt. Express 24(11), 11677–11682 (2016).
[Crossref]

Arie, A.

Askari, M.

B. Momeni, E. S. Hosseini, M. Askari, M. Soltani, and A. Adibi, “Integrated photonic crystal spectrometers for sensing applications,” Opt. Commun. 282(15), 3168–3171 (2009).
[Crossref]

B. Momeni, E. S. Hosseini, M. Askari, M. Soltani M, and A. Adibi, “Integrated photonic crystal spectrometers for sensing applications,” Opt. Commun. 282(15), 3168–3171 (2009).
[Crossref]

Bao, J.

J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523(7558), 67–70 (2015).
[Crossref]

Bartek, M.

J. H. Correia, M. Bartek, and R. F. Wolffenbuttel, “High-selectivity single-chip spectrometer in silicon for operation in visible part of the spectrum,” IEEE Trans. Electron Devices 47(3), 553–559 (2000).
[Crossref]

Bavin, S.

C. Peroz, S. Dhuey, A. Goltsov, M. Volger, B. Harteneck, I. Ivonin, A. Bugrov, S. Cabrini, S. Bavin, and Y. Yankov, “Digital spectrometer-on-chip fabricated by step and repeat nanoimprint lithography and pre-spin coated films,” Microelectron. Eng. 88(8), 2092–2095 (2011).
[Crossref]

Bawendi, M. G.

J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523(7558), 67–70 (2015).
[Crossref]

Benoit, S.

S. Benoit and S. R. J. Brueck, “Design of chirped gratings using interferometric lithography,” IEEE Photonics J. 10(2), 1–13 (2018).
[Crossref]

X. He, S. Benoit, R. Kaspi, and S. R. J. Brueck, “Optically pumped continuously tunable mid-IR distributed-feedback semiconductor laser,” IEEE J. Quantum Electron. 52(10), 1–10 (2016).
[Crossref]

Bland-Hawthorn, J.

S. Xie, Y. Meng, J. Bland-Hawthorn, S. Veilleux, and M. Dagenais, “Silicon nitride/silicon dioxide echelle grating spectrometer for operation near 1.55 µm,” IEEE Photonics J. 10(6), 1–7 (2018).
[Crossref]

Blecker, C.

R. Karoui and C. Blecker, “Fluorescence spectroscopy measurement for quality assessment of food systems - a review,” Food Bioprocess Technol. 4(3), 364–386 (2011).
[Crossref]

Bock, P. J.

Bono, D.

D. M. Kita, B. Miranda, A. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9(1), 4405 (2018).
[Crossref]

Brazas, J. C.

Brueck, S. R. J.

S. Benoit and S. R. J. Brueck, “Design of chirped gratings using interferometric lithography,” IEEE Photonics J. 10(2), 1–13 (2018).
[Crossref]

X. He, S. Benoit, R. Kaspi, and S. R. J. Brueck, “Optically pumped continuously tunable mid-IR distributed-feedback semiconductor laser,” IEEE J. Quantum Electron. 52(10), 1–10 (2016).
[Crossref]

A. Neumann, J. Ghasemi, S. Nezhadbadeh, X. Nie, P. Zarkesh-Ha, and S. R. J. Brueck, “CMOS-compatible plenoptic detector for LED lighting applications,” Opt. Express 23(18), 23208–23216 (2015).
[Crossref]

Bugrov, A.

C. Peroz, S. Dhuey, A. Goltsov, M. Volger, B. Harteneck, I. Ivonin, A. Bugrov, S. Cabrini, S. Bavin, and Y. Yankov, “Digital spectrometer-on-chip fabricated by step and repeat nanoimprint lithography and pre-spin coated films,” Microelectron. Eng. 88(8), 2092–2095 (2011).
[Crossref]

Cabrini, S.

C. Peroz, S. Dhuey, A. Goltsov, M. Volger, B. Harteneck, I. Ivonin, A. Bugrov, S. Cabrini, S. Bavin, and Y. Yankov, “Digital spectrometer-on-chip fabricated by step and repeat nanoimprint lithography and pre-spin coated films,” Microelectron. Eng. 88(8), 2092–2095 (2011).
[Crossref]

Cai, W.

Z. Yang, T. Albrow-Owen, H. Cui, J. Alexander-Webber, F. Gu, X. Wang, T.-C. Wu, M. Zhuge, C. Williams, P. Wang, A. V. Zayats, W. Cai, L. Dai, S. Hofmann, M. Overend, L. Tong, Q. Yang, Z. Sun, and T. Hasan, “Single-nanowire spectrometers,” Science 365(6457), 1017–1020 (2019).
[Crossref]

Calvo, M. L.

Cao, H.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
[Crossref]

Chamanzar, M.

Cheben, P.

Chen, A.

Z. Wang, S. Yi, A. Chen, M. Zhou, T. S. Luk, A. James, J. Nogan, W. Ross, G. Joe, A. Shahsafi, K. X. Wang, M. A. Kats, and Y. Zu, “Single-shot on-chip spectral sensors based on photonic crystal slabs,” Nat. Commun. 10(1), 1020 (2019).
[Crossref]

Chen, X.

Cheng, W.

Correia, J. H.

J. H. Correia, M. Bartek, and R. F. Wolffenbuttel, “High-selectivity single-chip spectrometer in silicon for operation in visible part of the spectrum,” IEEE Trans. Electron Devices 47(3), 553–559 (2000).
[Crossref]

Cox, M. P.

Craig, A. P.

A. P. Craig, A. S. Franca, and J. Irudayaraj, “Surface-enhanced Raman spectroscopy applied to food safety,” Annu. Rev. Food Sci. Technol. 4(1), 369–380 (2013).
[Crossref]

Cui, H.

Z. Yang, T. Albrow-Owen, H. Cui, J. Alexander-Webber, F. Gu, X. Wang, T.-C. Wu, M. Zhuge, C. Williams, P. Wang, A. V. Zayats, W. Cai, L. Dai, S. Hofmann, M. Overend, L. Tong, Q. Yang, Z. Sun, and T. Hasan, “Single-nanowire spectrometers,” Science 365(6457), 1017–1020 (2019).
[Crossref]

Dagenais, M.

S. Xie, Y. Meng, J. Bland-Hawthorn, S. Veilleux, and M. Dagenais, “Silicon nitride/silicon dioxide echelle grating spectrometer for operation near 1.55 µm,” IEEE Photonics J. 10(6), 1–7 (2018).
[Crossref]

Dai, L.

Z. Yang, T. Albrow-Owen, H. Cui, J. Alexander-Webber, F. Gu, X. Wang, T.-C. Wu, M. Zhuge, C. Williams, P. Wang, A. V. Zayats, W. Cai, L. Dai, S. Hofmann, M. Overend, L. Tong, Q. Yang, Z. Sun, and T. Hasan, “Single-nanowire spectrometers,” Science 365(6457), 1017–1020 (2019).
[Crossref]

Delâge, A.

Densmore, A.

Dhuey, S.

C. Peroz, S. Dhuey, A. Goltsov, M. Volger, B. Harteneck, I. Ivonin, A. Bugrov, S. Cabrini, S. Bavin, and Y. Yankov, “Digital spectrometer-on-chip fabricated by step and repeat nanoimprint lithography and pre-spin coated films,” Microelectron. Eng. 88(8), 2092–2095 (2011).
[Crossref]

Ebermann, M.

M. Ebermann, N. Neumann, K. Hiller, M. Seifert, M. Meinig, and S. Kurth, “Tunable MEMS Fabry-Pérot filters for infrared microspectrometers: a review,” Proc. SPIE 9760, 97600H (2016).
[Crossref]

Edrees, H. M.

Eftekhar, A. A.

Englund, D.

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett. 100(2), 023110 (2012).
[Crossref]

Fainman, Y.

M. C. M. M. Souza, A. Grieco, N. C. Frateschi, and Y. Fainman, “Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction,” Nat. Commun. 9(1), 665 (2018).
[Crossref]

Faraji-Dana, M.

M. Faraji-Dana, E. Arbabi, A. Arbabi, S. M. Kamali, H. Kwon, and A. Faraon, “Compact folded metasurface spectrometer,” Nat. Commun. 9(1), 4196–4203 (2018).
[Crossref]

Faraon, A.

M. Faraji-Dana, E. Arbabi, A. Arbabi, S. M. Kamali, H. Kwon, and A. Faraon, “Compact folded metasurface spectrometer,” Nat. Commun. 9(1), 4196–4203 (2018).
[Crossref]

Y. Horie, A. Arbabi, E. Arbabi, S. M. Kamali, and A. Faraon, “Wide bandwidth and high resolution planar filter array based on DBR-metasurface-DBR structures,” Opt. Express 24(11), 11677–11682 (2016).
[Crossref]

Favela, A.

D. M. Kita, B. Miranda, A. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9(1), 4405 (2018).
[Crossref]

Florjanczyk, M.

Fortin, G.

Fralick, M.

T. Russin, M. Fralick, M. Kerber, A. Wang, and R. Waters, “Development of a MEMS-based Raman spectrometer,” IEEE Sensors Conf., pp. 56–60. (2010).

Franca, A. S.

A. P. Craig, A. S. Franca, and J. Irudayaraj, “Surface-enhanced Raman spectroscopy applied to food safety,” Annu. Rev. Food Sci. Technol. 4(1), 369–380 (2013).
[Crossref]

Frateschi, N. C.

M. C. M. M. Souza, A. Grieco, N. C. Frateschi, and Y. Fainman, “Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction,” Nat. Commun. 9(1), 665 (2018).
[Crossref]

Gan, X.

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett. 100(2), 023110 (2012).
[Crossref]

Gargallo, B.

G. Micó, B. Gargallo, D. Pastor, and P. Muñoz, “Integrated optic sensing spectrometer: concept and design,” Sensors 19(5), 1018 (2019).
[Crossref]

Ghasemi, J.

Goltsov, A.

C. Peroz, S. Dhuey, A. Goltsov, M. Volger, B. Harteneck, I. Ivonin, A. Bugrov, S. Cabrini, S. Bavin, and Y. Yankov, “Digital spectrometer-on-chip fabricated by step and repeat nanoimprint lithography and pre-spin coated films,” Microelectron. Eng. 88(8), 2092–2095 (2011).
[Crossref]

Grieco, A.

M. C. M. M. Souza, A. Grieco, N. C. Frateschi, and Y. Fainman, “Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction,” Nat. Commun. 9(1), 665 (2018).
[Crossref]

Gu, F.

Z. Yang, T. Albrow-Owen, H. Cui, J. Alexander-Webber, F. Gu, X. Wang, T.-C. Wu, M. Zhuge, C. Williams, P. Wang, A. V. Zayats, W. Cai, L. Dai, S. Hofmann, M. Overend, L. Tong, Q. Yang, Z. Sun, and T. Hasan, “Single-nanowire spectrometers,” Science 365(6457), 1017–1020 (2019).
[Crossref]

Gu, T.

D. M. Kita, B. Miranda, A. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9(1), 4405 (2018).
[Crossref]

Harteneck, B.

C. Peroz, S. Dhuey, A. Goltsov, M. Volger, B. Harteneck, I. Ivonin, A. Bugrov, S. Cabrini, S. Bavin, and Y. Yankov, “Digital spectrometer-on-chip fabricated by step and repeat nanoimprint lithography and pre-spin coated films,” Microelectron. Eng. 88(8), 2092–2095 (2011).
[Crossref]

Hasan, T.

Z. Yang, T. Albrow-Owen, H. Cui, J. Alexander-Webber, F. Gu, X. Wang, T.-C. Wu, M. Zhuge, C. Williams, P. Wang, A. V. Zayats, W. Cai, L. Dai, S. Hofmann, M. Overend, L. Tong, Q. Yang, Z. Sun, and T. Hasan, “Single-nanowire spectrometers,” Science 365(6457), 1017–1020 (2019).
[Crossref]

Hatami, F.

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett. 100(2), 023110 (2012).
[Crossref]

He, X.

X. He, S. Benoit, R. Kaspi, and S. R. J. Brueck, “Optically pumped continuously tunable mid-IR distributed-feedback semiconductor laser,” IEEE J. Quantum Electron. 52(10), 1–10 (2016).
[Crossref]

Hiller, K.

M. Ebermann, N. Neumann, K. Hiller, M. Seifert, M. Meinig, and S. Kurth, “Tunable MEMS Fabry-Pérot filters for infrared microspectrometers: a review,” Proc. SPIE 9760, 97600H (2016).
[Crossref]

Hofmann, S.

Z. Yang, T. Albrow-Owen, H. Cui, J. Alexander-Webber, F. Gu, X. Wang, T.-C. Wu, M. Zhuge, C. Williams, P. Wang, A. V. Zayats, W. Cai, L. Dai, S. Hofmann, M. Overend, L. Tong, Q. Yang, Z. Sun, and T. Hasan, “Single-nanowire spectrometers,” Science 365(6457), 1017–1020 (2019).
[Crossref]

Hong, L.

L. Hong and K. Sengupta, “Fully integrated optical spectrometer in visible and near-IR in CMOS,” IEEE Trans. Biomed. Circuits Syst. 11(6), 1176–1191 (2017).
[Crossref]

Horie, Y.

Hosseini, E. S.

B. Momeni, E. S. Hosseini, M. Askari, M. Soltani, and A. Adibi, “Integrated photonic crystal spectrometers for sensing applications,” Opt. Commun. 282(15), 3168–3171 (2009).
[Crossref]

B. Momeni, E. S. Hosseini, M. Askari, M. Soltani M, and A. Adibi, “Integrated photonic crystal spectrometers for sensing applications,” Opt. Commun. 282(15), 3168–3171 (2009).
[Crossref]

Hu, J.

D. M. Kita, B. Miranda, A. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9(1), 4405 (2018).
[Crossref]

Huang, C.-W.

Hung, Y.-J.

Irudayaraj, J.

A. P. Craig, A. S. Franca, and J. Irudayaraj, “Surface-enhanced Raman spectroscopy applied to food safety,” Annu. Rev. Food Sci. Technol. 4(1), 369–380 (2013).
[Crossref]

Ivonin, I.

C. Peroz, S. Dhuey, A. Goltsov, M. Volger, B. Harteneck, I. Ivonin, A. Bugrov, S. Cabrini, S. Bavin, and Y. Yankov, “Digital spectrometer-on-chip fabricated by step and repeat nanoimprint lithography and pre-spin coated films,” Microelectron. Eng. 88(8), 2092–2095 (2011).
[Crossref]

James, A.

Z. Wang, S. Yi, A. Chen, M. Zhou, T. S. Luk, A. James, J. Nogan, W. Ross, G. Joe, A. Shahsafi, K. X. Wang, M. A. Kats, and Y. Zu, “Single-shot on-chip spectral sensors based on photonic crystal slabs,” Nat. Commun. 10(1), 1020 (2019).
[Crossref]

Janz, S.

Jia, Z.

Joe, G.

Z. Wang, S. Yi, A. Chen, M. Zhou, T. S. Luk, A. James, J. Nogan, W. Ross, G. Joe, A. Shahsafi, K. X. Wang, M. A. Kats, and Y. Zu, “Single-shot on-chip spectral sensors based on photonic crystal slabs,” Nat. Commun. 10(1), 1020 (2019).
[Crossref]

Kamali, S. M.

M. Faraji-Dana, E. Arbabi, A. Arbabi, S. M. Kamali, H. Kwon, and A. Faraon, “Compact folded metasurface spectrometer,” Nat. Commun. 9(1), 4196–4203 (2018).
[Crossref]

Y. Horie, A. Arbabi, E. Arbabi, S. M. Kamali, and A. Faraon, “Wide bandwidth and high resolution planar filter array based on DBR-metasurface-DBR structures,” Opt. Express 24(11), 11677–11682 (2016).
[Crossref]

Kao, C.-W.

Kao, T.-C.

Karoui, R.

R. Karoui and C. Blecker, “Fluorescence spectroscopy measurement for quality assessment of food systems - a review,” Food Bioprocess Technol. 4(3), 364–386 (2011).
[Crossref]

Kaspi, R.

X. He, S. Benoit, R. Kaspi, and S. R. J. Brueck, “Optically pumped continuously tunable mid-IR distributed-feedback semiconductor laser,” IEEE J. Quantum Electron. 52(10), 1–10 (2016).
[Crossref]

Kats, M. A.

Z. Wang, S. Yi, A. Chen, M. Zhou, T. S. Luk, A. James, J. Nogan, W. Ross, G. Joe, A. Shahsafi, K. X. Wang, M. A. Kats, and Y. Zu, “Single-shot on-chip spectral sensors based on photonic crystal slabs,” Nat. Commun. 10(1), 1020 (2019).
[Crossref]

Kerber, M.

T. Russin, M. Fralick, M. Kerber, A. Wang, and R. Waters, “Development of a MEMS-based Raman spectrometer,” IEEE Sensors Conf., pp. 56–60. (2010).

Kita, D. M.

D. M. Kita, B. Miranda, A. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9(1), 4405 (2018).
[Crossref]

Kurth, S.

M. Ebermann, N. Neumann, K. Hiller, M. Seifert, M. Meinig, and S. Kurth, “Tunable MEMS Fabry-Pérot filters for infrared microspectrometers: a review,” Proc. SPIE 9760, 97600H (2016).
[Crossref]

Kwon, H.

M. Faraji-Dana, E. Arbabi, A. Arbabi, S. M. Kamali, H. Kwon, and A. Faraon, “Compact folded metasurface spectrometer,” Nat. Commun. 9(1), 4196–4203 (2018).
[Crossref]

Kymissis, I.

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett. 100(2), 023110 (2012).
[Crossref]

N. K. Pervez, W. Cheng, Z. Jia, M. P. Cox, H. M. Edrees, and I. Kymissis, “Photonic crystal spectrometer,” Opt. Express 18(8), 8277–8282 (2010).
[Crossref]

Lamontagne, B.

Lapointe, J.

Li, L.

Li, M.

Li, Q.

Liew, S. F.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
[Crossref]

Lin, H.

D. M. Kita, B. Miranda, A. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9(1), 4405 (2018).
[Crossref]

Lin, J.-J.

Lu, W.

Luk, T. S.

Z. Wang, S. Yi, A. Chen, M. Zhou, T. S. Luk, A. James, J. Nogan, W. Ross, G. Joe, A. Shahsafi, K. X. Wang, M. A. Kats, and Y. Zu, “Single-shot on-chip spectral sensors based on photonic crystal slabs,” Nat. Commun. 10(1), 1020 (2019).
[Crossref]

McCarthy, N.

Meinig, M.

M. Ebermann, N. Neumann, K. Hiller, M. Seifert, M. Meinig, and S. Kurth, “Tunable MEMS Fabry-Pérot filters for infrared microspectrometers: a review,” Proc. SPIE 9760, 97600H (2016).
[Crossref]

Meng, Y.

S. Xie, Y. Meng, J. Bland-Hawthorn, S. Veilleux, and M. Dagenais, “Silicon nitride/silicon dioxide echelle grating spectrometer for operation near 1.55 µm,” IEEE Photonics J. 10(6), 1–7 (2018).
[Crossref]

Menon, R.

Michon, J.

D. M. Kita, B. Miranda, A. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9(1), 4405 (2018).
[Crossref]

Micó, G.

G. Micó, B. Gargallo, D. Pastor, and P. Muñoz, “Integrated optic sensing spectrometer: concept and design,” Sensors 19(5), 1018 (2019).
[Crossref]

Miranda, B.

D. M. Kita, B. Miranda, A. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9(1), 4405 (2018).
[Crossref]

Momeni, B.

Z. Xia, A. A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, “High resolution on-chip spectroscopy based on miniaturized microdonut resonators,” Opt. Express 19(13), 12356–12364 (2011).
[Crossref]

B. Momeni, E. S. Hosseini, M. Askari, M. Soltani M, and A. Adibi, “Integrated photonic crystal spectrometers for sensing applications,” Opt. Commun. 282(15), 3168–3171 (2009).
[Crossref]

B. Momeni, E. S. Hosseini, M. Askari, M. Soltani, and A. Adibi, “Integrated photonic crystal spectrometers for sensing applications,” Opt. Commun. 282(15), 3168–3171 (2009).
[Crossref]

Muñoz, P.

G. Micó, B. Gargallo, D. Pastor, and P. Muñoz, “Integrated optic sensing spectrometer: concept and design,” Sensors 19(5), 1018 (2019).
[Crossref]

Neumann, A.

Neumann, N.

M. Ebermann, N. Neumann, K. Hiller, M. Seifert, M. Meinig, and S. Kurth, “Tunable MEMS Fabry-Pérot filters for infrared microspectrometers: a review,” Proc. SPIE 9760, 97600H (2016).
[Crossref]

Nezhadbadeh, S.

Nie, X.

Nogan, J.

Z. Wang, S. Yi, A. Chen, M. Zhou, T. S. Luk, A. James, J. Nogan, W. Ross, G. Joe, A. Shahsafi, K. X. Wang, M. A. Kats, and Y. Zu, “Single-shot on-chip spectral sensors based on photonic crystal slabs,” Nat. Commun. 10(1), 1020 (2019).
[Crossref]

Overend, M.

Z. Yang, T. Albrow-Owen, H. Cui, J. Alexander-Webber, F. Gu, X. Wang, T.-C. Wu, M. Zhuge, C. Williams, P. Wang, A. V. Zayats, W. Cai, L. Dai, S. Hofmann, M. Overend, L. Tong, Q. Yang, Z. Sun, and T. Hasan, “Single-nanowire spectrometers,” Science 365(6457), 1017–1020 (2019).
[Crossref]

Pastor, D.

G. Micó, B. Gargallo, D. Pastor, and P. Muñoz, “Integrated optic sensing spectrometer: concept and design,” Sensors 19(5), 1018 (2019).
[Crossref]

Peroz, C.

C. Peroz, S. Dhuey, A. Goltsov, M. Volger, B. Harteneck, I. Ivonin, A. Bugrov, S. Cabrini, S. Bavin, and Y. Yankov, “Digital spectrometer-on-chip fabricated by step and repeat nanoimprint lithography and pre-spin coated films,” Microelectron. Eng. 88(8), 2092–2095 (2011).
[Crossref]

Pervez, N.

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett. 100(2), 023110 (2012).
[Crossref]

Pervez, N. K.

Post, E.

Pruessner, M. W.

Rabinovich, W. S.

Rantanen, J.

J. Rantanen, “Process analytical applications of Raman spectroscopy,” J. Pharm. Pharmacol. 59(2), 171–177 (2007).
[Crossref]

Redding, B.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
[Crossref]

Ross, W.

Z. Wang, S. Yi, A. Chen, M. Zhou, T. S. Luk, A. James, J. Nogan, W. Ross, G. Joe, A. Shahsafi, K. X. Wang, M. A. Kats, and Y. Zu, “Single-shot on-chip spectral sensors based on photonic crystal slabs,” Nat. Commun. 10(1), 1020 (2019).
[Crossref]

Russin, T.

T. Russin, M. Fralick, M. Kerber, A. Wang, and R. Waters, “Development of a MEMS-based Raman spectrometer,” IEEE Sensors Conf., pp. 56–60. (2010).

Saltzman, R. S.

R. S. Saltzman, “Ultraviolet/visible spectroscopy in process analyses,” in Encyclopedia of Analytical Chemistry (John Wiley and Sons, 2011).

Sarma, R.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
[Crossref]

Schmid, J. H.

Seifert, M.

M. Ebermann, N. Neumann, K. Hiller, M. Seifert, M. Meinig, and S. Kurth, “Tunable MEMS Fabry-Pérot filters for infrared microspectrometers: a review,” Proc. SPIE 9760, 97600H (2016).
[Crossref]

Sengupta, K.

L. Hong and K. Sengupta, “Fully integrated optical spectrometer in visible and near-IR in CMOS,” IEEE Trans. Biomed. Circuits Syst. 11(6), 1176–1191 (2017).
[Crossref]

Shahsafi, A.

Z. Wang, S. Yi, A. Chen, M. Zhou, T. S. Luk, A. James, J. Nogan, W. Ross, G. Joe, A. Shahsafi, K. X. Wang, M. A. Kats, and Y. Zu, “Single-shot on-chip spectral sensors based on photonic crystal slabs,” Nat. Commun. 10(1), 1020 (2019).
[Crossref]

Soltani, M.

Z. Xia, A. A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, “High resolution on-chip spectroscopy based on miniaturized microdonut resonators,” Opt. Express 19(13), 12356–12364 (2011).
[Crossref]

B. Momeni, E. S. Hosseini, M. Askari, M. Soltani, and A. Adibi, “Integrated photonic crystal spectrometers for sensing applications,” Opt. Commun. 282(15), 3168–3171 (2009).
[Crossref]

Soltani M, M.

B. Momeni, E. S. Hosseini, M. Askari, M. Soltani M, and A. Adibi, “Integrated photonic crystal spectrometers for sensing applications,” Opt. Commun. 282(15), 3168–3171 (2009).
[Crossref]

Souza, M. C. M. M.

M. C. M. M. Souza, A. Grieco, N. C. Frateschi, and Y. Fainman, “Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction,” Nat. Commun. 9(1), 665 (2018).
[Crossref]

Stievater, T. H.

Sun, Z.

Z. Yang, T. Albrow-Owen, H. Cui, J. Alexander-Webber, F. Gu, X. Wang, T.-C. Wu, M. Zhuge, C. Williams, P. Wang, A. V. Zayats, W. Cai, L. Dai, S. Hofmann, M. Overend, L. Tong, Q. Yang, Z. Sun, and T. Hasan, “Single-nanowire spectrometers,” Science 365(6457), 1017–1020 (2019).
[Crossref]

Tong, L.

Z. Yang, T. Albrow-Owen, H. Cui, J. Alexander-Webber, F. Gu, X. Wang, T.-C. Wu, M. Zhuge, C. Williams, P. Wang, A. V. Zayats, W. Cai, L. Dai, S. Hofmann, M. Overend, L. Tong, Q. Yang, Z. Sun, and T. Hasan, “Single-nanowire spectrometers,” Science 365(6457), 1017–1020 (2019).
[Crossref]

Tsur, Y.

Vachon, M.

Veilleux, S.

S. Xie, Y. Meng, J. Bland-Hawthorn, S. Veilleux, and M. Dagenais, “Silicon nitride/silicon dioxide echelle grating spectrometer for operation near 1.55 µm,” IEEE Photonics J. 10(6), 1–7 (2018).
[Crossref]

Velasco, A. V.

Volger, M.

C. Peroz, S. Dhuey, A. Goltsov, M. Volger, B. Harteneck, I. Ivonin, A. Bugrov, S. Cabrini, S. Bavin, and Y. Yankov, “Digital spectrometer-on-chip fabricated by step and repeat nanoimprint lithography and pre-spin coated films,” Microelectron. Eng. 88(8), 2092–2095 (2011).
[Crossref]

Waldron, P.

Wang, A.

T. Russin, M. Fralick, M. Kerber, A. Wang, and R. Waters, “Development of a MEMS-based Raman spectrometer,” IEEE Sensors Conf., pp. 56–60. (2010).

Wang, H.

Wang, K. X.

Z. Wang, S. Yi, A. Chen, M. Zhou, T. S. Luk, A. James, J. Nogan, W. Ross, G. Joe, A. Shahsafi, K. X. Wang, M. A. Kats, and Y. Zu, “Single-shot on-chip spectral sensors based on photonic crystal slabs,” Nat. Commun. 10(1), 1020 (2019).
[Crossref]

Wang, P.

Z. Yang, T. Albrow-Owen, H. Cui, J. Alexander-Webber, F. Gu, X. Wang, T.-C. Wu, M. Zhuge, C. Williams, P. Wang, A. V. Zayats, W. Cai, L. Dai, S. Hofmann, M. Overend, L. Tong, Q. Yang, Z. Sun, and T. Hasan, “Single-nanowire spectrometers,” Science 365(6457), 1017–1020 (2019).
[Crossref]

P. Wang and R. Menon, “Computational spectrometer based on a broadband diffractive optic,” Opt. Express 22(12), 14575 (2014).
[Crossref]

Wang, S.-W.

Wang, X.

Z. Yang, T. Albrow-Owen, H. Cui, J. Alexander-Webber, F. Gu, X. Wang, T.-C. Wu, M. Zhuge, C. Williams, P. Wang, A. V. Zayats, W. Cai, L. Dai, S. Hofmann, M. Overend, L. Tong, Q. Yang, Z. Sun, and T. Hasan, “Single-nanowire spectrometers,” Science 365(6457), 1017–1020 (2019).
[Crossref]

Wang, Z.

Z. Wang, S. Yi, A. Chen, M. Zhou, T. S. Luk, A. James, J. Nogan, W. Ross, G. Joe, A. Shahsafi, K. X. Wang, M. A. Kats, and Y. Zu, “Single-shot on-chip spectral sensors based on photonic crystal slabs,” Nat. Commun. 10(1), 1020 (2019).
[Crossref]

Waters, R.

T. Russin, M. Fralick, M. Kerber, A. Wang, and R. Waters, “Development of a MEMS-based Raman spectrometer,” IEEE Sensors Conf., pp. 56–60. (2010).

Williams, C.

Z. Yang, T. Albrow-Owen, H. Cui, J. Alexander-Webber, F. Gu, X. Wang, T.-C. Wu, M. Zhuge, C. Williams, P. Wang, A. V. Zayats, W. Cai, L. Dai, S. Hofmann, M. Overend, L. Tong, Q. Yang, Z. Sun, and T. Hasan, “Single-nanowire spectrometers,” Science 365(6457), 1017–1020 (2019).
[Crossref]

Wolffenbuttel, R. F.

R. F. Wolffenbuttel, “MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15(7), S145–S152 (2005).
[Crossref]

J. H. Correia, M. Bartek, and R. F. Wolffenbuttel, “High-selectivity single-chip spectrometer in silicon for operation in visible part of the spectrum,” IEEE Trans. Electron Devices 47(3), 553–559 (2000).
[Crossref]

Wu, T.-C.

Z. Yang, T. Albrow-Owen, H. Cui, J. Alexander-Webber, F. Gu, X. Wang, T.-C. Wu, M. Zhuge, C. Williams, P. Wang, A. V. Zayats, W. Cai, L. Dai, S. Hofmann, M. Overend, L. Tong, Q. Yang, Z. Sun, and T. Hasan, “Single-nanowire spectrometers,” Science 365(6457), 1017–1020 (2019).
[Crossref]

Xia, C.

Xia, Z.

Xie, S.

S. Xie, Y. Meng, J. Bland-Hawthorn, S. Veilleux, and M. Dagenais, “Silicon nitride/silicon dioxide echelle grating spectrometer for operation near 1.55 µm,” IEEE Photonics J. 10(6), 1–7 (2018).
[Crossref]

Xu, D.-X.

Yang, Q.

Z. Yang, T. Albrow-Owen, H. Cui, J. Alexander-Webber, F. Gu, X. Wang, T.-C. Wu, M. Zhuge, C. Williams, P. Wang, A. V. Zayats, W. Cai, L. Dai, S. Hofmann, M. Overend, L. Tong, Q. Yang, Z. Sun, and T. Hasan, “Single-nanowire spectrometers,” Science 365(6457), 1017–1020 (2019).
[Crossref]

Yang, Z.

Z. Yang, T. Albrow-Owen, H. Cui, J. Alexander-Webber, F. Gu, X. Wang, T.-C. Wu, M. Zhuge, C. Williams, P. Wang, A. V. Zayats, W. Cai, L. Dai, S. Hofmann, M. Overend, L. Tong, Q. Yang, Z. Sun, and T. Hasan, “Single-nanowire spectrometers,” Science 365(6457), 1017–1020 (2019).
[Crossref]

Yankov, Y.

C. Peroz, S. Dhuey, A. Goltsov, M. Volger, B. Harteneck, I. Ivonin, A. Bugrov, S. Cabrini, S. Bavin, and Y. Yankov, “Digital spectrometer-on-chip fabricated by step and repeat nanoimprint lithography and pre-spin coated films,” Microelectron. Eng. 88(8), 2092–2095 (2011).
[Crossref]

Yegnanarayanan, S.

Yi, S.

Z. Wang, S. Yi, A. Chen, M. Zhou, T. S. Luk, A. James, J. Nogan, W. Ross, G. Joe, A. Shahsafi, K. X. Wang, M. A. Kats, and Y. Zu, “Single-shot on-chip spectral sensors based on photonic crystal slabs,” Nat. Commun. 10(1), 1020 (2019).
[Crossref]

Yin, C.-C.

Zarkesh-Ha, P.

Zayats, A. V.

Z. Yang, T. Albrow-Owen, H. Cui, J. Alexander-Webber, F. Gu, X. Wang, T.-C. Wu, M. Zhuge, C. Williams, P. Wang, A. V. Zayats, W. Cai, L. Dai, S. Hofmann, M. Overend, L. Tong, Q. Yang, Z. Sun, and T. Hasan, “Single-nanowire spectrometers,” Science 365(6457), 1017–1020 (2019).
[Crossref]

Zhang, T.

Zheng, W.

Zhou, M.

Z. Wang, S. Yi, A. Chen, M. Zhou, T. S. Luk, A. James, J. Nogan, W. Ross, G. Joe, A. Shahsafi, K. X. Wang, M. A. Kats, and Y. Zu, “Single-shot on-chip spectral sensors based on photonic crystal slabs,” Nat. Commun. 10(1), 1020 (2019).
[Crossref]

Zhuge, M.

Z. Yang, T. Albrow-Owen, H. Cui, J. Alexander-Webber, F. Gu, X. Wang, T.-C. Wu, M. Zhuge, C. Williams, P. Wang, A. V. Zayats, W. Cai, L. Dai, S. Hofmann, M. Overend, L. Tong, Q. Yang, Z. Sun, and T. Hasan, “Single-nanowire spectrometers,” Science 365(6457), 1017–1020 (2019).
[Crossref]

Zu, Y.

Z. Wang, S. Yi, A. Chen, M. Zhou, T. S. Luk, A. James, J. Nogan, W. Ross, G. Joe, A. Shahsafi, K. X. Wang, M. A. Kats, and Y. Zu, “Single-shot on-chip spectral sensors based on photonic crystal slabs,” Nat. Commun. 10(1), 1020 (2019).
[Crossref]

Annu. Rev. Food Sci. Technol. (1)

A. P. Craig, A. S. Franca, and J. Irudayaraj, “Surface-enhanced Raman spectroscopy applied to food safety,” Annu. Rev. Food Sci. Technol. 4(1), 369–380 (2013).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett. 100(2), 023110 (2012).
[Crossref]

Food Bioprocess Technol. (1)

R. Karoui and C. Blecker, “Fluorescence spectroscopy measurement for quality assessment of food systems - a review,” Food Bioprocess Technol. 4(3), 364–386 (2011).
[Crossref]

IEEE J. Quantum Electron. (1)

X. He, S. Benoit, R. Kaspi, and S. R. J. Brueck, “Optically pumped continuously tunable mid-IR distributed-feedback semiconductor laser,” IEEE J. Quantum Electron. 52(10), 1–10 (2016).
[Crossref]

IEEE Photonics J. (2)

S. Benoit and S. R. J. Brueck, “Design of chirped gratings using interferometric lithography,” IEEE Photonics J. 10(2), 1–13 (2018).
[Crossref]

S. Xie, Y. Meng, J. Bland-Hawthorn, S. Veilleux, and M. Dagenais, “Silicon nitride/silicon dioxide echelle grating spectrometer for operation near 1.55 µm,” IEEE Photonics J. 10(6), 1–7 (2018).
[Crossref]

IEEE Trans. Biomed. Circuits Syst. (1)

L. Hong and K. Sengupta, “Fully integrated optical spectrometer in visible and near-IR in CMOS,” IEEE Trans. Biomed. Circuits Syst. 11(6), 1176–1191 (2017).
[Crossref]

IEEE Trans. Electron Devices (1)

J. H. Correia, M. Bartek, and R. F. Wolffenbuttel, “High-selectivity single-chip spectrometer in silicon for operation in visible part of the spectrum,” IEEE Trans. Electron Devices 47(3), 553–559 (2000).
[Crossref]

J. Micromech. Microeng. (1)

R. F. Wolffenbuttel, “MEMS-based optical mini- and microspectrometers for the visible and infrared spectral range,” J. Micromech. Microeng. 15(7), S145–S152 (2005).
[Crossref]

J. Pharm. Pharmacol. (1)

J. Rantanen, “Process analytical applications of Raman spectroscopy,” J. Pharm. Pharmacol. 59(2), 171–177 (2007).
[Crossref]

Microelectron. Eng. (1)

C. Peroz, S. Dhuey, A. Goltsov, M. Volger, B. Harteneck, I. Ivonin, A. Bugrov, S. Cabrini, S. Bavin, and Y. Yankov, “Digital spectrometer-on-chip fabricated by step and repeat nanoimprint lithography and pre-spin coated films,” Microelectron. Eng. 88(8), 2092–2095 (2011).
[Crossref]

Nat. Commun. (4)

Z. Wang, S. Yi, A. Chen, M. Zhou, T. S. Luk, A. James, J. Nogan, W. Ross, G. Joe, A. Shahsafi, K. X. Wang, M. A. Kats, and Y. Zu, “Single-shot on-chip spectral sensors based on photonic crystal slabs,” Nat. Commun. 10(1), 1020 (2019).
[Crossref]

M. Faraji-Dana, E. Arbabi, A. Arbabi, S. M. Kamali, H. Kwon, and A. Faraon, “Compact folded metasurface spectrometer,” Nat. Commun. 9(1), 4196–4203 (2018).
[Crossref]

M. C. M. M. Souza, A. Grieco, N. C. Frateschi, and Y. Fainman, “Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction,” Nat. Commun. 9(1), 665 (2018).
[Crossref]

D. M. Kita, B. Miranda, A. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9(1), 4405 (2018).
[Crossref]

Nat. Photonics (1)

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
[Crossref]

Nature (1)

J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523(7558), 67–70 (2015).
[Crossref]

Opt. Commun. (2)

B. Momeni, E. S. Hosseini, M. Askari, M. Soltani M, and A. Adibi, “Integrated photonic crystal spectrometers for sensing applications,” Opt. Commun. 282(15), 3168–3171 (2009).
[Crossref]

B. Momeni, E. S. Hosseini, M. Askari, M. Soltani, and A. Adibi, “Integrated photonic crystal spectrometers for sensing applications,” Opt. Commun. 282(15), 3168–3171 (2009).
[Crossref]

Opt. Express (7)

Opt. Lett. (4)

Proc. SPIE (1)

M. Ebermann, N. Neumann, K. Hiller, M. Seifert, M. Meinig, and S. Kurth, “Tunable MEMS Fabry-Pérot filters for infrared microspectrometers: a review,” Proc. SPIE 9760, 97600H (2016).
[Crossref]

Science (1)

Z. Yang, T. Albrow-Owen, H. Cui, J. Alexander-Webber, F. Gu, X. Wang, T.-C. Wu, M. Zhuge, C. Williams, P. Wang, A. V. Zayats, W. Cai, L. Dai, S. Hofmann, M. Overend, L. Tong, Q. Yang, Z. Sun, and T. Hasan, “Single-nanowire spectrometers,” Science 365(6457), 1017–1020 (2019).
[Crossref]

Sensors (1)

G. Micó, B. Gargallo, D. Pastor, and P. Muñoz, “Integrated optic sensing spectrometer: concept and design,” Sensors 19(5), 1018 (2019).
[Crossref]

Other (4)

R. S. Saltzman, “Ultraviolet/visible spectroscopy in process analyses,” in Encyclopedia of Analytical Chemistry (John Wiley and Sons, 2011).

T. Russin, M. Fralick, M. Kerber, A. Wang, and R. Waters, “Development of a MEMS-based Raman spectrometer,” IEEE Sensors Conf., pp. 56–60. (2010).

https://www.hamamatsu.com/resources/pdf/ssd/s11639-01_kmpd1163e.pdf

Lumerical Nanophotonic FDTD Simulation Software, https://www.lumerical.com/%20products/fdtd/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. (a) Schematic of the plenoptic spectrometer structure that consists of a transversely chirped grating collection region; a waveguide propagation region; and a detection region. For this proof-of-principle experiment the detector is a linear CMOS detector array on a separate chip; (b) a SEM of a small region of the transversely chirped grating etched into the upper SiO2 waveguide cladding (450 nm thick); (c) Waveguide structure and mode profiles. Note that the mode extends into the grating region providing coupling but is separated from the silicon substrate to avoid propagation losses; (d) Experiment and modeling for TE coupling length evaluated by measuring the decay of the power transmitted to the detector region vs. position for a 50 µm diameter Gaussian spot scanned away from the collection grating/ propagation region interface at 660 nm; waveguide parameters: top SiO2 cladding - 100 nm; SiO2 grating height - 350 nm.
Fig. 2.
Fig. 2. Measured grating period across the collection area compared with model calculation. The corresponding coupling wavelengths for TE polarization at an incident angle of θ = 31.8° are shown on the right axis.
Fig. 3.
Fig. 3. (a) Conceptual diagram of the plenoptic spectrometer operation. Light is incident at a fixed angle θ across the entire width of the chirped grating; the spatially varying grating pitch provides a filtering function that only couples the light into the waveguide where the phase matching condition is locally satisfied. (b) For a narrow band source such as a HeNe laser, the wavelength is fixed at 632.8 nm while the coupling resonance is continuously shifted as a result of the grating chirp. The spectrum is discretized by the pixels of the detector array. (c) Spectral result for a HeNe laser beam with ∼ 1 mm spot size. The data points correspond to individual pixels of the linear detector array. Results are compared for the plenoptic waveguide and a 1/4-m laboratory spectrometer. A resolution of 0.313 nm is achieved for the current grating chirp. The solid curves are least squares fits to Gaussian lineshapes. The inset shows the full 580- to 650-nm spectral scan. (d) Spectral result for a red LED incident across the entire width of the chirped grating with equivalent results from a laboratory spectrometer and the plenoptic array. Note the much wider spectral range as compared with the HeNe laser result.

Tables (1)

Tables Icon

Table 1. Comparison of demonstrated approaches to chip-based free space spectroscopy.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ k ( θ , λ , d , j ) = 2 π λ sin θ ± j 2 π d ( x ) 2 π λ n e f f T E , T M = 0 ;
λ = d ( x ) | n e f f T E , T M s i n θ | / j
δ ξ | Δ k ( ξ ) ξ | = 2 π L C ; δ θ = λ 2 π L C cos θ ; δ λ = λ d 2 π L C ( 1 d n e f f T E , T M λ ) = λ 2 2 π L C ( n e f f T e , T m sin θ d n e f f T E , T M λ ) ; δ d = d 2 2 π L C = λ 2 2 π L C ( n e f f T E , T M sin θ ) 2 ;

Metrics