Abstract

Light detection and ranging (lidar) has long been used in various applications. Solid-state beam steering mechanisms are needed for robust lidar systems. Here we propose and demonstrate a lidar scheme called “Swept Source Lidar” that allows us to perform frequency-modulated continuous-wave (FMCW) ranging and nonmechanical beam steering simultaneously. Wavelength dispersive elements provide angular beam steering, while a laser frequency is continuously swept by a wideband swept source over its whole tuning bandwidth. Employing a tunable vertical-cavity surface-emitting laser and a 1-axis mechanical beam scanner, three-dimensional point cloud data has been obtained. Swept Source Lidar systems can be flexibly combined with various beam steering elements to realize full solid-state FMCW lidar systems.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. McManamon, LiDAR Technologies and Systems (SPIE, 2019).
  2. X. Sun, L. Zhang, Q. Zhang, and W. Zhang, “Si Photonics for Practical LiDAR Solutions,” Appl. Sci. 9(20), 4225 (2019).
    [Crossref]
  3. S. R. Davis, S. D. Rommel, D. Gann, B. Luey, J. D. Gamble, M. Ziemkiewicz, and M. Anderson, “A lightaweight, rugged, solid state laser radar system enabled by non-mechanical electro-optic beam steerers,” Proc. SPIE 9832, 98320K (2016).
    [Crossref]
  4. F. Koyama and X. Gu, “Beam Steering, Beam Shaping, and Intensity Modulation Based on VCSEL Photonics,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701510 (2013).
    [Crossref]
  5. H. Ito, Y. Kusunoki, J. Maeda, D. Akiyama, N. Kodama, H. Abe, R. Tetsuya, and T. Baba, “Wide beam steering by slow-light waveguide gratings and a prism lens,” Optica 7(1), 47–52 (2020).
    [Crossref]
  6. C. Bouyé, J. Cochard, T. Robin, and B. d’Humiereàs, “Tematys-LIDAR Technologies for the Automotive Industry,” OIDA Publications & Reports Center, R201801-014 (2018).
  7. M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
    [Crossref]
  8. A. Dieckmann and M.-C. Amann, “Phase-noise-limited accuracy of distance measurements in a frequency-modulated continuous-wave LIDAR with a tunable twin-guide laser diode,” Opt. Eng. 34(3), 896–903 (1995).
    [Crossref]
  9. “IEC 60825-1:2014: Safety of laser products - Part 1: Equipment classification and requirements,” International Standard, International Electrotechnical Commission, Geneva, CH (May 2014).
  10. G. Kim, J. Eom, S. Park, and Y. Park, “Occurrence and characteristics of mutual interference between LIDAR scanners,” Proc. SPIE 9504, 95040K (2015).
    [Crossref]
  11. A. L. Diehm, M. Hammer, M. Hebel, and M. Arens, “Mitigation of crosstalk effects in multi-LiDAR configurations,” Proc. SPIE 10796, 1079604 (2018).
    [Crossref]
  12. C. Chong, “Lidar sensing arrangements,” U.S. patent application 15/954,878 (Apr. 17, 2018) and 16/278,582 (Feb. 18, 2019).
  13. Swept Source Lidar is a trademark of Santec Corporation.
  14. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13(26), 10652–10664 (2005).
    [Crossref]
  15. F. Drexler and J. G. Fujimoto, Eds., Optical Coherence Tomography: Technology and Applications (Springer, 2015).
  16. M. Okano and C. Chong, “Swept-Source LiDAR based on nonmechanical beam steering and FMCW ranging using wideband tunable VCSEL,” in SPIE Photonics West, Smart Photonics and Optoelectronic Integrated Circuits XXII, 11284-70 (2020).
  17. M. S. Khan, C.-D. Keum, K. Isamoto, T. Sakai, T. Doi, M. Kawasugi, K. Totsuka, C. Chong, N. Nishiyama, and H. Toshiyoshi, “High reliability electrically pump MEMS based widely tunable VCSEL for SS-OCT,” in SPIE Photonics West, MOEMS and Miniaturized Systems XVIII, 10931-44 (2019).
  18. Z. Wang, B. Potsaid, L. Chen, C. Doerr, H.-C. Lee, T. Nielson, V. Jayaraman, A. E. Cable, E. Swanson, and J. G. Fujimoto, “Cubic meter volume optical coherence tomography,” Optica 3(12), 1496–1503 (2016).
    [Crossref]
  19. T. Hariyama, P. A. M. Sandborn, M. Watanabe, and M. C. Wu, “High-accuracy range-sensing system based on FMCW using low-cost VCSEL,” Opt. Express 26(7), 9285–9297 (2018).
    [Crossref]
  20. D. D. John, C. B. Burgner, B. Potsaid, M. E. Robertson, B. K. Lee, W. J. Choi, A. E. Cable, and J. G. Fujimoto, “Wideband electrically pumped 1050-nm MEMS-tunable VCSEL for ophthalmic imaging,” J. Lightwave Technol. 33(16), 3461–3468 (2015).
    [Crossref]
  21. Y. Zhai, Q. Liu, H. Li, D. Chen, and Z. He, “Non-mechanical beam-steer lidar system based on swept-laser source,” in Conference on Lasers and Electro-Optics, JTh2A.187 (2018).
  22. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
    [Crossref]
  23. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11(22), 2953–2963 (2003).
    [Crossref]
  24. W. Kester, Ed., The Data Conversion Handbook (Newnes, 2005).
  25. A. Morosawa and C. Chong, “Optical coherence tomography system and optical coherence tomography method,” U.S. patent 7,835,010 B2 (Nov. 16, 2010).
  26. C. Palmer, Diffraction Grating Handbook (MKS Instruments, 2020).
  27. J. C. Hulme, J. K. Doylend, M. J. R. Heck, J. D. Peters, M. L. Davenport, J. T. Bovington, L. A. Coldren, and J. E. Bowers, “Fully integrated hybrid silicon two dimensional beam scanner,” Opt. Express 23(5), 5861–5874 (2015).
    [Crossref]
  28. D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3(8), 887–890 (2016).
    [Crossref]
  29. C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett. 42(20), 4091–4094 (2017).
    [Crossref]
  30. C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-Range LiDAR and Free-Space Data Communication With High-Performance Optical Phased Arrays,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–8 (2019).
    [Crossref]
  31. M. Shirasaki, “Virtually imaged phased array,” Fujitsu Sci. Tech. J. 35, 113–125 (1999).
  32. T. Chan, E. Myslivets, and J. E. Ford, “2-Dimensional beamsteering using dispersive deflectors and wavelength tuning,” Opt. Express 16(19), 14617–14628 (2008).
    [Crossref]
  33. C. J. Karlsson and FÅA Olsson, “Linearization of the frequency sweep of a frequency-modulated continuous-wave semiconductor laser radar and the resulting ranging performance,” Appl. Opt. 38(15), 3376–3386 (1999).
    [Crossref]
  34. J. Wojtanowski, M. Zygmunt, M. Kaszczuk, Z. Mierczyk, and M. Muzal, “Comparison of 905 nm and 1550 nm semiconductor laser rangefinders’ performance deterioration due to adverse environmental conditions,” Opto-Electron. Rev. 22(3), 183–190 (2014).
    [Crossref]
  35. J. F. de Boer, R. Leitgeb, and M. Wojtkowski, “Twenty-five years of optical coherence tomography: the paradigm shift in sensitivity and speed provided by Fourier domain OCT,” Biomed. Opt. Express 8(7), 3248–3280 (2017).
    [Crossref]
  36. J. E. Harvey and C. L. Vernold, “Description of Diffraction Grating Behavior in Direction Cosine Space,” Appl. Opt. 37(34), 8158–8159 (1998).
    [Crossref]
  37. Precision Laser Scanning, “MIMTM - Motor In Mirror LIDAR scanner for Autonomous Vehicles,” https://precisionlaserscanning.com/wp-content/uploads/2018/08/MIM-MOTOR-IN-MIRROR-COMPACT-LIDAR-SCANNER.pdf .
  38. Opus Microsystems, “1D MEMS Scanning Mirrors,” http://www.opusmicro.com/mems_en.html .

2020 (1)

2019 (2)

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-Range LiDAR and Free-Space Data Communication With High-Performance Optical Phased Arrays,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–8 (2019).
[Crossref]

X. Sun, L. Zhang, Q. Zhang, and W. Zhang, “Si Photonics for Practical LiDAR Solutions,” Appl. Sci. 9(20), 4225 (2019).
[Crossref]

2018 (2)

T. Hariyama, P. A. M. Sandborn, M. Watanabe, and M. C. Wu, “High-accuracy range-sensing system based on FMCW using low-cost VCSEL,” Opt. Express 26(7), 9285–9297 (2018).
[Crossref]

A. L. Diehm, M. Hammer, M. Hebel, and M. Arens, “Mitigation of crosstalk effects in multi-LiDAR configurations,” Proc. SPIE 10796, 1079604 (2018).
[Crossref]

2017 (2)

2016 (3)

2015 (3)

2014 (1)

J. Wojtanowski, M. Zygmunt, M. Kaszczuk, Z. Mierczyk, and M. Muzal, “Comparison of 905 nm and 1550 nm semiconductor laser rangefinders’ performance deterioration due to adverse environmental conditions,” Opto-Electron. Rev. 22(3), 183–190 (2014).
[Crossref]

2013 (1)

F. Koyama and X. Gu, “Beam Steering, Beam Shaping, and Intensity Modulation Based on VCSEL Photonics,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701510 (2013).
[Crossref]

2008 (1)

2005 (1)

2003 (2)

2001 (1)

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

1999 (2)

1998 (1)

1995 (1)

A. Dieckmann and M.-C. Amann, “Phase-noise-limited accuracy of distance measurements in a frequency-modulated continuous-wave LIDAR with a tunable twin-guide laser diode,” Opt. Eng. 34(3), 896–903 (1995).
[Crossref]

Abe, H.

Akiba, M.

Akiyama, D.

Amann, M.-C.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

A. Dieckmann and M.-C. Amann, “Phase-noise-limited accuracy of distance measurements in a frequency-modulated continuous-wave LIDAR with a tunable twin-guide laser diode,” Opt. Eng. 34(3), 896–903 (1995).
[Crossref]

Anderson, M.

S. R. Davis, S. D. Rommel, D. Gann, B. Luey, J. D. Gamble, M. Ziemkiewicz, and M. Anderson, “A lightaweight, rugged, solid state laser radar system enabled by non-mechanical electro-optic beam steerers,” Proc. SPIE 9832, 98320K (2016).
[Crossref]

Arens, M.

A. L. Diehm, M. Hammer, M. Hebel, and M. Arens, “Mitigation of crosstalk effects in multi-LiDAR configurations,” Proc. SPIE 10796, 1079604 (2018).
[Crossref]

Baba, T.

Bosch, T.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Bouma, B. E.

Bouyé, C.

C. Bouyé, J. Cochard, T. Robin, and B. d’Humiereàs, “Tematys-LIDAR Technologies for the Automotive Industry,” OIDA Publications & Reports Center, R201801-014 (2018).

Bovington, J. T.

Bowers, J. E.

Burgner, C. B.

Byrd, M. J.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-Range LiDAR and Free-Space Data Communication With High-Performance Optical Phased Arrays,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–8 (2019).
[Crossref]

C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett. 42(20), 4091–4094 (2017).
[Crossref]

Cable, A. E.

Chan, K.-P.

Chan, T.

Chen, D.

Y. Zhai, Q. Liu, H. Li, D. Chen, and Z. He, “Non-mechanical beam-steer lidar system based on swept-laser source,” in Conference on Lasers and Electro-Optics, JTh2A.187 (2018).

Chen, L.

Choi, W. J.

Choma, M. A.

Chong, C.

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13(26), 10652–10664 (2005).
[Crossref]

C. Chong, “Lidar sensing arrangements,” U.S. patent application 15/954,878 (Apr. 17, 2018) and 16/278,582 (Feb. 18, 2019).

M. Okano and C. Chong, “Swept-Source LiDAR based on nonmechanical beam steering and FMCW ranging using wideband tunable VCSEL,” in SPIE Photonics West, Smart Photonics and Optoelectronic Integrated Circuits XXII, 11284-70 (2020).

M. S. Khan, C.-D. Keum, K. Isamoto, T. Sakai, T. Doi, M. Kawasugi, K. Totsuka, C. Chong, N. Nishiyama, and H. Toshiyoshi, “High reliability electrically pump MEMS based widely tunable VCSEL for SS-OCT,” in SPIE Photonics West, MOEMS and Miniaturized Systems XVIII, 10931-44 (2019).

A. Morosawa and C. Chong, “Optical coherence tomography system and optical coherence tomography method,” U.S. patent 7,835,010 B2 (Nov. 16, 2010).

Cochard, J.

C. Bouyé, J. Cochard, T. Robin, and B. d’Humiereàs, “Tematys-LIDAR Technologies for the Automotive Industry,” OIDA Publications & Reports Center, R201801-014 (2018).

Coldren, L. A.

Cole, D. B.

d’Humiereàs, B.

C. Bouyé, J. Cochard, T. Robin, and B. d’Humiereàs, “Tematys-LIDAR Technologies for the Automotive Industry,” OIDA Publications & Reports Center, R201801-014 (2018).

Davenport, M. L.

Davis, S. R.

S. R. Davis, S. D. Rommel, D. Gann, B. Luey, J. D. Gamble, M. Ziemkiewicz, and M. Anderson, “A lightaweight, rugged, solid state laser radar system enabled by non-mechanical electro-optic beam steerers,” Proc. SPIE 9832, 98320K (2016).
[Crossref]

de Boer, J. F.

Dieckmann, A.

A. Dieckmann and M.-C. Amann, “Phase-noise-limited accuracy of distance measurements in a frequency-modulated continuous-wave LIDAR with a tunable twin-guide laser diode,” Opt. Eng. 34(3), 896–903 (1995).
[Crossref]

Diehm, A. L.

A. L. Diehm, M. Hammer, M. Hebel, and M. Arens, “Mitigation of crosstalk effects in multi-LiDAR configurations,” Proc. SPIE 10796, 1079604 (2018).
[Crossref]

Doerr, C.

Doi, T.

M. S. Khan, C.-D. Keum, K. Isamoto, T. Sakai, T. Doi, M. Kawasugi, K. Totsuka, C. Chong, N. Nishiyama, and H. Toshiyoshi, “High reliability electrically pump MEMS based widely tunable VCSEL for SS-OCT,” in SPIE Photonics West, MOEMS and Miniaturized Systems XVIII, 10931-44 (2019).

Doylend, J. K.

Drexler, F.

F. Drexler and J. G. Fujimoto, Eds., Optical Coherence Tomography: Technology and Applications (Springer, 2015).

Eom, J.

G. Kim, J. Eom, S. Park, and Y. Park, “Occurrence and characteristics of mutual interference between LIDAR scanners,” Proc. SPIE 9504, 95040K (2015).
[Crossref]

Feshali, A.

Ford, J. E.

Fujimoto, J. G.

Gamble, J. D.

S. R. Davis, S. D. Rommel, D. Gann, B. Luey, J. D. Gamble, M. Ziemkiewicz, and M. Anderson, “A lightaweight, rugged, solid state laser radar system enabled by non-mechanical electro-optic beam steerers,” Proc. SPIE 9832, 98320K (2016).
[Crossref]

Gann, D.

S. R. Davis, S. D. Rommel, D. Gann, B. Luey, J. D. Gamble, M. Ziemkiewicz, and M. Anderson, “A lightaweight, rugged, solid state laser radar system enabled by non-mechanical electro-optic beam steerers,” Proc. SPIE 9832, 98320K (2016).
[Crossref]

Gu, X.

F. Koyama and X. Gu, “Beam Steering, Beam Shaping, and Intensity Modulation Based on VCSEL Photonics,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701510 (2013).
[Crossref]

Hammer, M.

A. L. Diehm, M. Hammer, M. Hebel, and M. Arens, “Mitigation of crosstalk effects in multi-LiDAR configurations,” Proc. SPIE 10796, 1079604 (2018).
[Crossref]

Hariyama, T.

Harvey, J. E.

He, Z.

Y. Zhai, Q. Liu, H. Li, D. Chen, and Z. He, “Non-mechanical beam-steer lidar system based on swept-laser source,” in Conference on Lasers and Electro-Optics, JTh2A.187 (2018).

Hebel, M.

A. L. Diehm, M. Hammer, M. Hebel, and M. Arens, “Mitigation of crosstalk effects in multi-LiDAR configurations,” Proc. SPIE 10796, 1079604 (2018).
[Crossref]

Heck, J.

Heck, M. J. R.

Hulme, J. C.

Hutchison, D. N.

Iftimia, N.

Isamoto, K.

M. S. Khan, C.-D. Keum, K. Isamoto, T. Sakai, T. Doi, M. Kawasugi, K. Totsuka, C. Chong, N. Nishiyama, and H. Toshiyoshi, “High reliability electrically pump MEMS based widely tunable VCSEL for SS-OCT,” in SPIE Photonics West, MOEMS and Miniaturized Systems XVIII, 10931-44 (2019).

Ito, H.

Itoh, M.

Izatt, J. A.

Jayaraman, V.

John, D. D.

Karlsson, C. J.

Kaszczuk, M.

J. Wojtanowski, M. Zygmunt, M. Kaszczuk, Z. Mierczyk, and M. Muzal, “Comparison of 905 nm and 1550 nm semiconductor laser rangefinders’ performance deterioration due to adverse environmental conditions,” Opto-Electron. Rev. 22(3), 183–190 (2014).
[Crossref]

Kawasugi, M.

M. S. Khan, C.-D. Keum, K. Isamoto, T. Sakai, T. Doi, M. Kawasugi, K. Totsuka, C. Chong, N. Nishiyama, and H. Toshiyoshi, “High reliability electrically pump MEMS based widely tunable VCSEL for SS-OCT,” in SPIE Photonics West, MOEMS and Miniaturized Systems XVIII, 10931-44 (2019).

Kester, W.

W. Kester, Ed., The Data Conversion Handbook (Newnes, 2005).

Keum, C.-D.

M. S. Khan, C.-D. Keum, K. Isamoto, T. Sakai, T. Doi, M. Kawasugi, K. Totsuka, C. Chong, N. Nishiyama, and H. Toshiyoshi, “High reliability electrically pump MEMS based widely tunable VCSEL for SS-OCT,” in SPIE Photonics West, MOEMS and Miniaturized Systems XVIII, 10931-44 (2019).

Khan, M. S.

M. S. Khan, C.-D. Keum, K. Isamoto, T. Sakai, T. Doi, M. Kawasugi, K. Totsuka, C. Chong, N. Nishiyama, and H. Toshiyoshi, “High reliability electrically pump MEMS based widely tunable VCSEL for SS-OCT,” in SPIE Photonics West, MOEMS and Miniaturized Systems XVIII, 10931-44 (2019).

Khandaker, M.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-Range LiDAR and Free-Space Data Communication With High-Performance Optical Phased Arrays,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–8 (2019).
[Crossref]

Kim, G.

G. Kim, J. Eom, S. Park, and Y. Park, “Occurrence and characteristics of mutual interference between LIDAR scanners,” Proc. SPIE 9504, 95040K (2015).
[Crossref]

Kim, W.

Kodama, N.

Koyama, F.

F. Koyama and X. Gu, “Beam Steering, Beam Shaping, and Intensity Modulation Based on VCSEL Photonics,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701510 (2013).
[Crossref]

Kumar, R.

Kusunoki, Y.

Lee, B. K.

Lee, H.-C.

Leitgeb, R.

Lescure, M.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Li, H.

Y. Zhai, Q. Liu, H. Li, D. Chen, and Z. He, “Non-mechanical beam-steer lidar system based on swept-laser source,” in Conference on Lasers and Electro-Optics, JTh2A.187 (2018).

Liu, Q.

Y. Zhai, Q. Liu, H. Li, D. Chen, and Z. He, “Non-mechanical beam-steer lidar system based on swept-laser source,” in Conference on Lasers and Electro-Optics, JTh2A.187 (2018).

Luey, B.

S. R. Davis, S. D. Rommel, D. Gann, B. Luey, J. D. Gamble, M. Ziemkiewicz, and M. Anderson, “A lightaweight, rugged, solid state laser radar system enabled by non-mechanical electro-optic beam steerers,” Proc. SPIE 9832, 98320K (2016).
[Crossref]

Madjarova, V. D.

Maeda, J.

Makita, S.

McManamon, P.

P. McManamon, LiDAR Technologies and Systems (SPIE, 2019).

Mierczyk, Z.

J. Wojtanowski, M. Zygmunt, M. Kaszczuk, Z. Mierczyk, and M. Muzal, “Comparison of 905 nm and 1550 nm semiconductor laser rangefinders’ performance deterioration due to adverse environmental conditions,” Opto-Electron. Rev. 22(3), 183–190 (2014).
[Crossref]

Morosawa, A.

Muzal, M.

J. Wojtanowski, M. Zygmunt, M. Kaszczuk, Z. Mierczyk, and M. Muzal, “Comparison of 905 nm and 1550 nm semiconductor laser rangefinders’ performance deterioration due to adverse environmental conditions,” Opto-Electron. Rev. 22(3), 183–190 (2014).
[Crossref]

Myllylä, R.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Myslivets, E.

Nielson, T.

Nishiyama, N.

M. S. Khan, C.-D. Keum, K. Isamoto, T. Sakai, T. Doi, M. Kawasugi, K. Totsuka, C. Chong, N. Nishiyama, and H. Toshiyoshi, “High reliability electrically pump MEMS based widely tunable VCSEL for SS-OCT,” in SPIE Photonics West, MOEMS and Miniaturized Systems XVIII, 10931-44 (2019).

Okano, M.

M. Okano and C. Chong, “Swept-Source LiDAR based on nonmechanical beam steering and FMCW ranging using wideband tunable VCSEL,” in SPIE Photonics West, Smart Photonics and Optoelectronic Integrated Circuits XXII, 11284-70 (2020).

Olsson, FÅA

Palmer, C.

C. Palmer, Diffraction Grating Handbook (MKS Instruments, 2020).

Park, S.

G. Kim, J. Eom, S. Park, and Y. Park, “Occurrence and characteristics of mutual interference between LIDAR scanners,” Proc. SPIE 9504, 95040K (2015).
[Crossref]

Park, Y.

G. Kim, J. Eom, S. Park, and Y. Park, “Occurrence and characteristics of mutual interference between LIDAR scanners,” Proc. SPIE 9504, 95040K (2015).
[Crossref]

Peters, J. D.

Phare, C. T.

Potsaid, B.

Poulton, C. V.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-Range LiDAR and Free-Space Data Communication With High-Performance Optical Phased Arrays,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–8 (2019).
[Crossref]

C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett. 42(20), 4091–4094 (2017).
[Crossref]

Raval, M.

Rioux, M.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Robertson, M. E.

Robin, T.

C. Bouyé, J. Cochard, T. Robin, and B. d’Humiereàs, “Tematys-LIDAR Technologies for the Automotive Industry,” OIDA Publications & Reports Center, R201801-014 (2018).

Rommel, S. D.

S. R. Davis, S. D. Rommel, D. Gann, B. Luey, J. D. Gamble, M. Ziemkiewicz, and M. Anderson, “A lightaweight, rugged, solid state laser radar system enabled by non-mechanical electro-optic beam steerers,” Proc. SPIE 9832, 98320K (2016).
[Crossref]

Rong, H.

Russo, P.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-Range LiDAR and Free-Space Data Communication With High-Performance Optical Phased Arrays,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–8 (2019).
[Crossref]

Sakai, T.

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13(26), 10652–10664 (2005).
[Crossref]

M. S. Khan, C.-D. Keum, K. Isamoto, T. Sakai, T. Doi, M. Kawasugi, K. Totsuka, C. Chong, N. Nishiyama, and H. Toshiyoshi, “High reliability electrically pump MEMS based widely tunable VCSEL for SS-OCT,” in SPIE Photonics West, MOEMS and Miniaturized Systems XVIII, 10931-44 (2019).

Sandborn, P. A. M.

Sarunic, M. V.

Shirasaki, M.

M. Shirasaki, “Virtually imaged phased array,” Fujitsu Sci. Tech. J. 35, 113–125 (1999).

Sun, J.

Sun, X.

X. Sun, L. Zhang, Q. Zhang, and W. Zhang, “Si Photonics for Practical LiDAR Solutions,” Appl. Sci. 9(20), 4225 (2019).
[Crossref]

Swanson, E.

Tearney, G. J.

Tetsuya, R.

Timurdogan, E.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-Range LiDAR and Free-Space Data Communication With High-Performance Optical Phased Arrays,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–8 (2019).
[Crossref]

Toshiyoshi, H.

M. S. Khan, C.-D. Keum, K. Isamoto, T. Sakai, T. Doi, M. Kawasugi, K. Totsuka, C. Chong, N. Nishiyama, and H. Toshiyoshi, “High reliability electrically pump MEMS based widely tunable VCSEL for SS-OCT,” in SPIE Photonics West, MOEMS and Miniaturized Systems XVIII, 10931-44 (2019).

Totsuka, K.

M. S. Khan, C.-D. Keum, K. Isamoto, T. Sakai, T. Doi, M. Kawasugi, K. Totsuka, C. Chong, N. Nishiyama, and H. Toshiyoshi, “High reliability electrically pump MEMS based widely tunable VCSEL for SS-OCT,” in SPIE Photonics West, MOEMS and Miniaturized Systems XVIII, 10931-44 (2019).

Vermeulen, D.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-Range LiDAR and Free-Space Data Communication With High-Performance Optical Phased Arrays,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–8 (2019).
[Crossref]

C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett. 42(20), 4091–4094 (2017).
[Crossref]

Vernold, C. L.

Wang, Z.

Watanabe, M.

Watts, M. R.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-Range LiDAR and Free-Space Data Communication With High-Performance Optical Phased Arrays,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–8 (2019).
[Crossref]

C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett. 42(20), 4091–4094 (2017).
[Crossref]

Wojtanowski, J.

J. Wojtanowski, M. Zygmunt, M. Kaszczuk, Z. Mierczyk, and M. Muzal, “Comparison of 905 nm and 1550 nm semiconductor laser rangefinders’ performance deterioration due to adverse environmental conditions,” Opto-Electron. Rev. 22(3), 183–190 (2014).
[Crossref]

Wojtkowski, M.

Wu, M. C.

Yaacobi, A.

Yang, C.

Yasuno, Y.

Yatagai, T.

Yun, S. H.

Zhai, Y.

Y. Zhai, Q. Liu, H. Li, D. Chen, and Z. He, “Non-mechanical beam-steer lidar system based on swept-laser source,” in Conference on Lasers and Electro-Optics, JTh2A.187 (2018).

Zhang, L.

X. Sun, L. Zhang, Q. Zhang, and W. Zhang, “Si Photonics for Practical LiDAR Solutions,” Appl. Sci. 9(20), 4225 (2019).
[Crossref]

Zhang, Q.

X. Sun, L. Zhang, Q. Zhang, and W. Zhang, “Si Photonics for Practical LiDAR Solutions,” Appl. Sci. 9(20), 4225 (2019).
[Crossref]

Zhang, W.

X. Sun, L. Zhang, Q. Zhang, and W. Zhang, “Si Photonics for Practical LiDAR Solutions,” Appl. Sci. 9(20), 4225 (2019).
[Crossref]

Ziemkiewicz, M.

S. R. Davis, S. D. Rommel, D. Gann, B. Luey, J. D. Gamble, M. Ziemkiewicz, and M. Anderson, “A lightaweight, rugged, solid state laser radar system enabled by non-mechanical electro-optic beam steerers,” Proc. SPIE 9832, 98320K (2016).
[Crossref]

Zygmunt, M.

J. Wojtanowski, M. Zygmunt, M. Kaszczuk, Z. Mierczyk, and M. Muzal, “Comparison of 905 nm and 1550 nm semiconductor laser rangefinders’ performance deterioration due to adverse environmental conditions,” Opto-Electron. Rev. 22(3), 183–190 (2014).
[Crossref]

Appl. Opt. (2)

Appl. Sci. (1)

X. Sun, L. Zhang, Q. Zhang, and W. Zhang, “Si Photonics for Practical LiDAR Solutions,” Appl. Sci. 9(20), 4225 (2019).
[Crossref]

Biomed. Opt. Express (1)

Fujitsu Sci. Tech. J. (1)

M. Shirasaki, “Virtually imaged phased array,” Fujitsu Sci. Tech. J. 35, 113–125 (1999).

IEEE J. Sel. Top. Quantum Electron. (2)

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-Range LiDAR and Free-Space Data Communication With High-Performance Optical Phased Arrays,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–8 (2019).
[Crossref]

F. Koyama and X. Gu, “Beam Steering, Beam Shaping, and Intensity Modulation Based on VCSEL Photonics,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701510 (2013).
[Crossref]

J. Lightwave Technol. (1)

Opt. Eng. (2)

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

A. Dieckmann and M.-C. Amann, “Phase-noise-limited accuracy of distance measurements in a frequency-modulated continuous-wave LIDAR with a tunable twin-guide laser diode,” Opt. Eng. 34(3), 896–903 (1995).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Optica (3)

Opto-Electron. Rev. (1)

J. Wojtanowski, M. Zygmunt, M. Kaszczuk, Z. Mierczyk, and M. Muzal, “Comparison of 905 nm and 1550 nm semiconductor laser rangefinders’ performance deterioration due to adverse environmental conditions,” Opto-Electron. Rev. 22(3), 183–190 (2014).
[Crossref]

Proc. SPIE (3)

S. R. Davis, S. D. Rommel, D. Gann, B. Luey, J. D. Gamble, M. Ziemkiewicz, and M. Anderson, “A lightaweight, rugged, solid state laser radar system enabled by non-mechanical electro-optic beam steerers,” Proc. SPIE 9832, 98320K (2016).
[Crossref]

G. Kim, J. Eom, S. Park, and Y. Park, “Occurrence and characteristics of mutual interference between LIDAR scanners,” Proc. SPIE 9504, 95040K (2015).
[Crossref]

A. L. Diehm, M. Hammer, M. Hebel, and M. Arens, “Mitigation of crosstalk effects in multi-LiDAR configurations,” Proc. SPIE 10796, 1079604 (2018).
[Crossref]

Other (14)

C. Chong, “Lidar sensing arrangements,” U.S. patent application 15/954,878 (Apr. 17, 2018) and 16/278,582 (Feb. 18, 2019).

Swept Source Lidar is a trademark of Santec Corporation.

C. Bouyé, J. Cochard, T. Robin, and B. d’Humiereàs, “Tematys-LIDAR Technologies for the Automotive Industry,” OIDA Publications & Reports Center, R201801-014 (2018).

P. McManamon, LiDAR Technologies and Systems (SPIE, 2019).

“IEC 60825-1:2014: Safety of laser products - Part 1: Equipment classification and requirements,” International Standard, International Electrotechnical Commission, Geneva, CH (May 2014).

F. Drexler and J. G. Fujimoto, Eds., Optical Coherence Tomography: Technology and Applications (Springer, 2015).

M. Okano and C. Chong, “Swept-Source LiDAR based on nonmechanical beam steering and FMCW ranging using wideband tunable VCSEL,” in SPIE Photonics West, Smart Photonics and Optoelectronic Integrated Circuits XXII, 11284-70 (2020).

M. S. Khan, C.-D. Keum, K. Isamoto, T. Sakai, T. Doi, M. Kawasugi, K. Totsuka, C. Chong, N. Nishiyama, and H. Toshiyoshi, “High reliability electrically pump MEMS based widely tunable VCSEL for SS-OCT,” in SPIE Photonics West, MOEMS and Miniaturized Systems XVIII, 10931-44 (2019).

Y. Zhai, Q. Liu, H. Li, D. Chen, and Z. He, “Non-mechanical beam-steer lidar system based on swept-laser source,” in Conference on Lasers and Electro-Optics, JTh2A.187 (2018).

W. Kester, Ed., The Data Conversion Handbook (Newnes, 2005).

A. Morosawa and C. Chong, “Optical coherence tomography system and optical coherence tomography method,” U.S. patent 7,835,010 B2 (Nov. 16, 2010).

C. Palmer, Diffraction Grating Handbook (MKS Instruments, 2020).

Precision Laser Scanning, “MIMTM - Motor In Mirror LIDAR scanner for Autonomous Vehicles,” https://precisionlaserscanning.com/wp-content/uploads/2018/08/MIM-MOTOR-IN-MIRROR-COMPACT-LIDAR-SCANNER.pdf .

Opus Microsystems, “1D MEMS Scanning Mirrors,” http://www.opusmicro.com/mems_en.html .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. (a) Schematic of a conventional FMCW lidar system, consisting of a swept source and a beam steering device. (b) The range for targets at each beam emission angle can be determined from the beat frequency or the FFT signal obtained from the interference between the outgoing and reflected beams.
Fig. 2.
Fig. 2. Schematic of “Swept Source Lidar” system, consisting of a swept source and a wavelength dispersive element. Because of the dispersive effect, the laser beam from the source is nonmechanically steered while the laser frequency is continuously swept as “swept source scan”. The range for targets at each beam emission angle can be determined from the beat frequency or the peak position in the FFT signal at each segment.
Fig. 3.
Fig. 3. Experimental setup for Swept Source Lidar demonstration. VCSEL: Vertical-cavity surface-emitting laser, PC: Polarization controller, VOA: Variable optical attenuator, BPD: Balanced photodetector, and DAQ: Data acquisition system. Picture of the target is shown on the bottom right corner of the figure.
Fig. 4.
Fig. 4. Data processing in Swept Source Lidar system. The interference signal taken during a single frequency sweep is resampled with a constant interval in the frequency domain using the corresponding k-clock signal. The frequency sweep curve is shown on the top right corner of the figure. Next, the resampled signal is divided into segments. The range at each segment can be obtained from the FFT of the resampled interference signal. A 2D density plot is obtained from FFT signals over all segments. A 2D peak plot is provided by peak detection. Picture of the object with a beam steered in the horizontal axis is on the bottom left corner of the figure.
Fig. 5.
Fig. 5. (a) Schematic of 2D raster scanning with the swept source scan along the horizontal axis and the galvo scan along the vertical axis. (b) Picture of a target placed at 0.5 m from the grating with a laser beam 2D raster-scanned. (c) Depth map of the 3D point cloud for the target.
Fig. 6.
Fig. 6. (a) Picture of targets (two sheets of white paper) placed at 5 m from the grating. The beam was 2D raster-scanned by the swept source scan along the vertical fast axis and the galvo scan along the horizontal slow axis. (b) Depth map of a 3D point cloud with 45 segments in the swept source scan and 200 pixels in the galvo scan. (c) Height map of the 3D point cloud of the targets.
Fig. 7.
Fig. 7. Schematic overview of FMCW lidar systems. (a) Conventional FMCW lidar system with a beam steering device. (b) Beam steering system using dispersive elements and performing FMCW ranging at each beam steering angle discretely. (c) Swept Source Lidar system performing FMCW ranging and nonmechanical beam steering continuously and simultaneously using a wavelength dispersive element.
Fig. 8.
Fig. 8. (a) FFT signals with the target placed at several distances L from the collimator (colored lines) and without the target (black line). The inset on the top right corner shows the FFT signals for L = 4.5 m. (b) Relative SNRs of the FFT signals with the distances L (red dots) and a power function fit curve (blue line). (c) Relative SNRs with various N (red dots) and a linear fit curve (blue line). (d) Relative SNRs with various NR (red dots) and a linear fit curve (blue line).
Fig. 9.
Fig. 9. (a) Schematic of the diffraction of an incident beam with a transmission grating. (b) Calculation of diffraction angles at various wavelengths as a function of the incident angle. The blue, green, and red lines show diffraction angles for the wavelengths of 1006, 1050, and 1094 nm, respectively. (c) Calculation of the whole beam steering range with various incident angles.
Fig. 10.
Fig. 10. (a) Schematic of 2D beam steering in Swept Source Lidar system with the swept source scan in the slow and vertical axis, combined with a 1-axis beam scanner. (b) Schematic diagram of data processing. The FFT signal for the jth segment of the ith section of the interference signal provides the range $R_{i,j}^{ss}$ at the beam steering angle $\theta _{i,j}^{ss}$.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

f ( t ) = F T t + f 0 ,
R i = c T 2 F Δ f i ,
Δ R = c 2 F .
Δ R o c t = 2 ln 2 π λ c 2 Δ λ 0.44 c Δ ν ,
R max = B c T 4 F .
i = 1 N [ t i 1 , t i ] ,
R i s s = c T 2 F Δ f i s s ,
Δ R i s s = c 2 F i ,
m λ = d ( sin θ i n + sin θ o u t ) ,
θ s s ( t ) = sin 1 ( m c f ( t ) d sin θ i n ) .
θ s s ( t ) θ s s ( 0 ) t + θ s s ( 0 ) = m c f 0 2 d 1 ( m c f 0 d sin θ i n ) 2 F T t + θ 0 s s ,
i = 1 N [ f i 1 , f i ] ,
Z F F T s s = c N R 4 F i = c N R N 4 F .
P r ( L ) = η t A r ρ T π L 2 P 0 ,
S N R S S L P r ( L ) T d E ν = P r ( L ) T E ν N ,
S N R S S = N S 2 S N R T D ,
S N R S S L [ d B ] = 10 log ( η S S L P r ( L ) T E ν N ) = 10 log ( η S S L η t A r ρ T P 0 T π L 2 E ν N ) ,
S e n s i t i v i t y S S L [ d B ] = 10 log ( η S S L P 0 T E ν N ) .

Metrics