Abstract

We conducted comprehensive theoretical research on rotational stimulated Raman scattering (SRS) of hydrogen molecules in hollow-core fibers. A reliable model for describing the steady-state rotational SRS of hydrogen was established and the influences of various factors was investigated. To verify the theoretical model, a single-pass fiber gas Raman laser (FGRL) based on hydrogen-filled hollow-core photonic crystal fibers pumped by a 1.5 µm nanosecond-pulsed fiber amplifier was constructed. Experimental results were congruent with simulation results. As the output powers and pulse shapes can be well calculated, the model can offer guidance for FGRL investigation, particularly for achieving high-efficiency and high-power FGRLs.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-efficiency laser wavelength conversion in deuterium-filled hollow-core photonic crystal fiber by rotational stimulated Raman scattering

Yulong Cui, Wei Huang, Zhixian Li, Zhiyue Zhou, and Zefeng Wang
Opt. Express 27(21) 30396-30404 (2019)

Dominance of backward stimulated Raman scattering in gas-filled hollow-core photonic crystal fibers

Manoj K. Mridha, David Novoa, and Philip St.J. Russell
Optica 5(5) 570-576 (2018)

Intermodal stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber

M. Ziemienczuk, A. M. Walser, A. Abdolvand, and P. St. J. Russell
J. Opt. Soc. Am. B 29(7) 1563-1568 (2012)

References

  • View by:
  • |
  • |
  • |

  1. R. W. Minck, R. W. Terhune, and W. G. Rado, “Laser stimulated Raman effect and resonant four photon interactions in gases H2, D2, and CH4,” Appl. Phys. Lett. 3(10), 181–184 (1963).
    [Crossref]
  2. D. J. Brink, D. Proch, D. Basting, K. Hohla, and P. Lokai, “Efficient tunable ultraviolet source based on stimulated Raman scattering,” Laser Optoelektron 3, 4–45 (1982).
  3. T. R. Loree, C. D. Cantrell, and D. L. Barker, “Stimulated Raman emission at 9.2 µm from hydrogen gas,” Opt. Commun. 17(2), 160–162 (1976).
    [Crossref]
  4. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P.St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
    [Crossref]
  5. F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
    [Crossref]
  6. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 µm,” Opt. Express 19(2), 1441–1448 (2011).
    [Crossref]
  7. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 µm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
    [Crossref]
  8. F. Yu and J. C. Knight, “Negative Curvature Hollow-Core Optical Fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 146–155 (2016).
    [Crossref]
  9. S. Gao, Y. Wang, W. Ding, D. Liang, G. Shuai, and Z. Xin, “Hollow-core conjoined-tube negative-curvature fiber with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
    [Crossref]
  10. M. S. Habib, J. E. Antonio-Lopez, C. Markos, and A. Schulzgen, “Single-mode, low loss hollow-core anti-resonant fiber designs,” Opt. Express 27(4), 3824–3836 (2019).
    [Crossref]
  11. F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
    [Crossref]
  12. F. Benabid, G. Bouwmans, J. C. Knight, P. S. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
    [Crossref]
  13. F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold CW Raman fiber-gas laser based on H2-filled hollow core photonic crystal fiber,” Phys. Rev. Lett. 99(14), 143903 (2007).
    [Crossref]
  14. S. T. Bauerschmidt, D. Novoa, and P. S. J. Russell, “Dramatic Raman Gain Suppression in the Vicinity of the Zero Dispersion Point in a Gas-Filled Hollow-Core Photonic Crystal Fiber,” Phys. Rev. Lett. 115(24), 243901 (2015).
    [Crossref]
  15. Z. Wang, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient 1.9 µm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering,” Laser Phys. Lett. 11(10), 105807 (2014).
    [Crossref]
  16. Y. Chen, Z. Wang, B. Gu, F. Yu, and Q. Lu, “Achieving a 1.5 um fiber gas Raman laser source with about 400 kW of peak power and a 6.3 GHz linewidth,” Opt. Lett. 41(21), 5118–5121 (2016).
    [Crossref]
  17. Y. Chen, Z. Wang, Z. Li, W. Huang, X. Xi, and Q. Lu, “Ultra-efficient Raman amplifier in methane-filled hollow-core fiber operating at 1.5 µm,” Opt. Express 25(17), 20944–20949 (2017).
    [Crossref]
  18. L. Cao, S. Gao, Z. Peng, X. Wang, Y. Wang, and P. Wang, “High peak power 2.8 µm Raman laser in a methane-filled negative-curvature fiber,” Opt. Express 26(5), 5609–5615 (2018).
    [Crossref]
  19. A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. Yatsenko, A. N. Kolyadin, and A. A. Krylov, “2.9, 3.3 and 3.5 µm Raman Lasers Based on Revolver Hollow-Core Silica Fiber Filled by H2/D2 Gas Mixture,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
    [Crossref]
  20. Z. Li, W. Huang, Y. Cui, Z. Wang, and W. Wu, “0.83 W, single-pass, 1.54 µm gas Raman source generated in a CH4-filled hollow-core fiber operating at atmospheric pressure,” Opt. Express 26(10), 12522–12529 (2018).
    [Crossref]
  21. Z. Li, W. Huang, Y. Cui, and Z. Wang, “Efficient mid-infrared cascade Raman sourcein methane-filled hollow-core fibers operating at 2.8 µm,” Opt. Lett. 43(19), 4671–4674 (2018).
    [Crossref]
  22. M. S. Astapovich, A. V. Gladyshev, M. M. Khudyakov, A. F. Kosolapov, M. E. Likhachev, and I. A. Bufetov, “Watt-Level Nanosecond 4.42 µm Raman Laser Based on Silica Fiber,” IEEE Photonics Technol. Lett. 31(1), 78–81 (2019).
    [Crossref]
  23. Y. Cui, W. Huang, Z. Li, Z. Zhou, and Z. Wang, “High-efficiency laser wavelength conversion in deuterium-filled hollow-core photonic crystal fiber by rotational stimulated Raman scattering,” Opt. Express 27(21), 30396–30404 (2019).
    [Crossref]
  24. W. Huang, Z. Li, Y. Cui, Z. Zhou, and Z. Wang, “Efficient, watt-level, tunable 1.7 µm fiber Raman laser in H2-filled hollow-core fibers,” Opt. Lett. 45(2), 475–478 (2020).
    [Crossref]
  25. Y. Wang, M. Dasa, A. Adamu, J. Antonio-Lopez, M. Habib, R. Amezcua-Correa, O. Bang, and C. Markos, “High pulse energy and quantum efficiency mid-infrared gas Raman fiber laser targeting CO2 absorption at 4.2 µm,” Opt. Lett. 45(7), 1938–1941 (2020).
    [Crossref]
  26. Y. W. Zhang, Q. Z. Lu, and Y. S. Liu, Molecular Spectroscopy (China University of Science and Technology University, 1988), Chap. 3.
  27. G. K. Teal and G. E. MacWood, “The Raman Spectra of the isotopic molecules H2, HD and D2,” J. Chem. Phys. 3(12), 760–764 (1935).
    [Crossref]
  28. G. C. Herring, M. J. Dyer, and W. K. Bischel, “Temperature and density dependence of the linewidths and line shifts of the rotational Raman lines in N2 and H2,” Phys. Rev. A 34(3), 1944–1951 (1986).
    [Crossref]
  29. W. K. Bischel and M. J. Dyer, “Wavelength dependence of the absolute Raman gain coefficient for the Q (1) transition in H2,” J. Opt. Soc. Am. B 3(5), 677–682 (1986).
    [Crossref]
  30. Q. Sun, F. H. Qin, E. M. Liu, Q. H. Mao, and H. Ming, “Study on high pressure all-fiber gas cells based on HC-PCFs,” Chin. J. Laser 35(7), 1029–1034 (2008).
    [Crossref]

2020 (2)

2019 (3)

2018 (5)

S. Gao, Y. Wang, W. Ding, D. Liang, G. Shuai, and Z. Xin, “Hollow-core conjoined-tube negative-curvature fiber with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

L. Cao, S. Gao, Z. Peng, X. Wang, Y. Wang, and P. Wang, “High peak power 2.8 µm Raman laser in a methane-filled negative-curvature fiber,” Opt. Express 26(5), 5609–5615 (2018).
[Crossref]

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. Yatsenko, A. N. Kolyadin, and A. A. Krylov, “2.9, 3.3 and 3.5 µm Raman Lasers Based on Revolver Hollow-Core Silica Fiber Filled by H2/D2 Gas Mixture,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

Z. Li, W. Huang, Y. Cui, Z. Wang, and W. Wu, “0.83 W, single-pass, 1.54 µm gas Raman source generated in a CH4-filled hollow-core fiber operating at atmospheric pressure,” Opt. Express 26(10), 12522–12529 (2018).
[Crossref]

Z. Li, W. Huang, Y. Cui, and Z. Wang, “Efficient mid-infrared cascade Raman sourcein methane-filled hollow-core fibers operating at 2.8 µm,” Opt. Lett. 43(19), 4671–4674 (2018).
[Crossref]

2017 (1)

2016 (2)

2015 (1)

S. T. Bauerschmidt, D. Novoa, and P. S. J. Russell, “Dramatic Raman Gain Suppression in the Vicinity of the Zero Dispersion Point in a Gas-Filled Hollow-Core Photonic Crystal Fiber,” Phys. Rev. Lett. 115(24), 243901 (2015).
[Crossref]

2014 (1)

Z. Wang, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient 1.9 µm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering,” Laser Phys. Lett. 11(10), 105807 (2014).
[Crossref]

2012 (1)

2011 (1)

2008 (1)

Q. Sun, F. H. Qin, E. M. Liu, Q. H. Mao, and H. Ming, “Study on high pressure all-fiber gas cells based on HC-PCFs,” Chin. J. Laser 35(7), 1029–1034 (2008).
[Crossref]

2007 (1)

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold CW Raman fiber-gas laser based on H2-filled hollow core photonic crystal fiber,” Phys. Rev. Lett. 99(14), 143903 (2007).
[Crossref]

2006 (1)

2004 (1)

F. Benabid, G. Bouwmans, J. C. Knight, P. S. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref]

2002 (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref]

1999 (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P.St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref]

1986 (2)

G. C. Herring, M. J. Dyer, and W. K. Bischel, “Temperature and density dependence of the linewidths and line shifts of the rotational Raman lines in N2 and H2,” Phys. Rev. A 34(3), 1944–1951 (1986).
[Crossref]

W. K. Bischel and M. J. Dyer, “Wavelength dependence of the absolute Raman gain coefficient for the Q (1) transition in H2,” J. Opt. Soc. Am. B 3(5), 677–682 (1986).
[Crossref]

1982 (1)

D. J. Brink, D. Proch, D. Basting, K. Hohla, and P. Lokai, “Efficient tunable ultraviolet source based on stimulated Raman scattering,” Laser Optoelektron 3, 4–45 (1982).

1976 (1)

T. R. Loree, C. D. Cantrell, and D. L. Barker, “Stimulated Raman emission at 9.2 µm from hydrogen gas,” Opt. Commun. 17(2), 160–162 (1976).
[Crossref]

1963 (1)

R. W. Minck, R. W. Terhune, and W. G. Rado, “Laser stimulated Raman effect and resonant four photon interactions in gases H2, D2, and CH4,” Appl. Phys. Lett. 3(10), 181–184 (1963).
[Crossref]

1935 (1)

G. K. Teal and G. E. MacWood, “The Raman Spectra of the isotopic molecules H2, HD and D2,” J. Chem. Phys. 3(12), 760–764 (1935).
[Crossref]

Adamu, A.

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P.St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref]

Amezcua-Correa, R.

Antonio-Lopez, J.

Antonio-Lopez, J. E.

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref]

Astapovich, M. S.

M. S. Astapovich, A. V. Gladyshev, M. M. Khudyakov, A. F. Kosolapov, M. E. Likhachev, and I. A. Bufetov, “Watt-Level Nanosecond 4.42 µm Raman Laser Based on Silica Fiber,” IEEE Photonics Technol. Lett. 31(1), 78–81 (2019).
[Crossref]

Bang, O.

Barker, D. L.

T. R. Loree, C. D. Cantrell, and D. L. Barker, “Stimulated Raman emission at 9.2 µm from hydrogen gas,” Opt. Commun. 17(2), 160–162 (1976).
[Crossref]

Basting, D.

D. J. Brink, D. Proch, D. Basting, K. Hohla, and P. Lokai, “Efficient tunable ultraviolet source based on stimulated Raman scattering,” Laser Optoelektron 3, 4–45 (1982).

Bauerschmidt, S. T.

S. T. Bauerschmidt, D. Novoa, and P. S. J. Russell, “Dramatic Raman Gain Suppression in the Vicinity of the Zero Dispersion Point in a Gas-Filled Hollow-Core Photonic Crystal Fiber,” Phys. Rev. Lett. 115(24), 243901 (2015).
[Crossref]

Benabid, F.

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold CW Raman fiber-gas laser based on H2-filled hollow core photonic crystal fiber,” Phys. Rev. Lett. 99(14), 143903 (2007).
[Crossref]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
[Crossref]

F. Benabid, G. Bouwmans, J. C. Knight, P. S. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref]

Biriukov, A. S.

Birks, T. A.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P.St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref]

Bischel, W. K.

G. C. Herring, M. J. Dyer, and W. K. Bischel, “Temperature and density dependence of the linewidths and line shifts of the rotational Raman lines in N2 and H2,” Phys. Rev. A 34(3), 1944–1951 (1986).
[Crossref]

W. K. Bischel and M. J. Dyer, “Wavelength dependence of the absolute Raman gain coefficient for the Q (1) transition in H2,” J. Opt. Soc. Am. B 3(5), 677–682 (1986).
[Crossref]

Bouwmans, G.

F. Benabid, G. Bouwmans, J. C. Knight, P. S. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref]

Brink, D. J.

D. J. Brink, D. Proch, D. Basting, K. Hohla, and P. Lokai, “Efficient tunable ultraviolet source based on stimulated Raman scattering,” Laser Optoelektron 3, 4–45 (1982).

Bufetov, I. A.

M. S. Astapovich, A. V. Gladyshev, M. M. Khudyakov, A. F. Kosolapov, M. E. Likhachev, and I. A. Bufetov, “Watt-Level Nanosecond 4.42 µm Raman Laser Based on Silica Fiber,” IEEE Photonics Technol. Lett. 31(1), 78–81 (2019).
[Crossref]

Cantrell, C. D.

T. R. Loree, C. D. Cantrell, and D. L. Barker, “Stimulated Raman emission at 9.2 µm from hydrogen gas,” Opt. Commun. 17(2), 160–162 (1976).
[Crossref]

Cao, L.

Chen, Y.

Couny, F.

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold CW Raman fiber-gas laser based on H2-filled hollow core photonic crystal fiber,” Phys. Rev. Lett. 99(14), 143903 (2007).
[Crossref]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
[Crossref]

F. Benabid, G. Bouwmans, J. C. Knight, P. S. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref]

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P.St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref]

Cui, Y.

Dasa, M.

Dianov, E. M.

Ding, W.

S. Gao, Y. Wang, W. Ding, D. Liang, G. Shuai, and Z. Xin, “Hollow-core conjoined-tube negative-curvature fiber with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

Dyer, M. J.

W. K. Bischel and M. J. Dyer, “Wavelength dependence of the absolute Raman gain coefficient for the Q (1) transition in H2,” J. Opt. Soc. Am. B 3(5), 677–682 (1986).
[Crossref]

G. C. Herring, M. J. Dyer, and W. K. Bischel, “Temperature and density dependence of the linewidths and line shifts of the rotational Raman lines in N2 and H2,” Phys. Rev. A 34(3), 1944–1951 (1986).
[Crossref]

Gao, S.

L. Cao, S. Gao, Z. Peng, X. Wang, Y. Wang, and P. Wang, “High peak power 2.8 µm Raman laser in a methane-filled negative-curvature fiber,” Opt. Express 26(5), 5609–5615 (2018).
[Crossref]

S. Gao, Y. Wang, W. Ding, D. Liang, G. Shuai, and Z. Xin, “Hollow-core conjoined-tube negative-curvature fiber with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

Gladyshev, A. V.

M. S. Astapovich, A. V. Gladyshev, M. M. Khudyakov, A. F. Kosolapov, M. E. Likhachev, and I. A. Bufetov, “Watt-Level Nanosecond 4.42 µm Raman Laser Based on Silica Fiber,” IEEE Photonics Technol. Lett. 31(1), 78–81 (2019).
[Crossref]

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. Yatsenko, A. N. Kolyadin, and A. A. Krylov, “2.9, 3.3 and 3.5 µm Raman Lasers Based on Revolver Hollow-Core Silica Fiber Filled by H2/D2 Gas Mixture,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

Gu, B.

Habib, M.

Habib, M. S.

Herring, G. C.

G. C. Herring, M. J. Dyer, and W. K. Bischel, “Temperature and density dependence of the linewidths and line shifts of the rotational Raman lines in N2 and H2,” Phys. Rev. A 34(3), 1944–1951 (1986).
[Crossref]

Hohla, K.

D. J. Brink, D. Proch, D. Basting, K. Hohla, and P. Lokai, “Efficient tunable ultraviolet source based on stimulated Raman scattering,” Laser Optoelektron 3, 4–45 (1982).

Huang, W.

Khudyakov, M. M.

M. S. Astapovich, A. V. Gladyshev, M. M. Khudyakov, A. F. Kosolapov, M. E. Likhachev, and I. A. Bufetov, “Watt-Level Nanosecond 4.42 µm Raman Laser Based on Silica Fiber,” IEEE Photonics Technol. Lett. 31(1), 78–81 (2019).
[Crossref]

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. Yatsenko, A. N. Kolyadin, and A. A. Krylov, “2.9, 3.3 and 3.5 µm Raman Lasers Based on Revolver Hollow-Core Silica Fiber Filled by H2/D2 Gas Mixture,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

Knight, J. C.

F. Yu and J. C. Knight, “Negative Curvature Hollow-Core Optical Fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 146–155 (2016).
[Crossref]

Z. Wang, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient 1.9 µm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering,” Laser Phys. Lett. 11(10), 105807 (2014).
[Crossref]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 µm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[Crossref]

F. Benabid, G. Bouwmans, J. C. Knight, P. S. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P.St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref]

Kolyadin, A. N.

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. Yatsenko, A. N. Kolyadin, and A. A. Krylov, “2.9, 3.3 and 3.5 µm Raman Lasers Based on Revolver Hollow-Core Silica Fiber Filled by H2/D2 Gas Mixture,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

Kosolapov, A. F.

M. S. Astapovich, A. V. Gladyshev, M. M. Khudyakov, A. F. Kosolapov, M. E. Likhachev, and I. A. Bufetov, “Watt-Level Nanosecond 4.42 µm Raman Laser Based on Silica Fiber,” IEEE Photonics Technol. Lett. 31(1), 78–81 (2019).
[Crossref]

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. Yatsenko, A. N. Kolyadin, and A. A. Krylov, “2.9, 3.3 and 3.5 µm Raman Lasers Based on Revolver Hollow-Core Silica Fiber Filled by H2/D2 Gas Mixture,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 µm,” Opt. Express 19(2), 1441–1448 (2011).
[Crossref]

Krylov, A. A.

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. Yatsenko, A. N. Kolyadin, and A. A. Krylov, “2.9, 3.3 and 3.5 µm Raman Lasers Based on Revolver Hollow-Core Silica Fiber Filled by H2/D2 Gas Mixture,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

Li, Z.

Liang, D.

S. Gao, Y. Wang, W. Ding, D. Liang, G. Shuai, and Z. Xin, “Hollow-core conjoined-tube negative-curvature fiber with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

Light, P. S.

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold CW Raman fiber-gas laser based on H2-filled hollow core photonic crystal fiber,” Phys. Rev. Lett. 99(14), 143903 (2007).
[Crossref]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
[Crossref]

Likhachev, M. E.

M. S. Astapovich, A. V. Gladyshev, M. M. Khudyakov, A. F. Kosolapov, M. E. Likhachev, and I. A. Bufetov, “Watt-Level Nanosecond 4.42 µm Raman Laser Based on Silica Fiber,” IEEE Photonics Technol. Lett. 31(1), 78–81 (2019).
[Crossref]

Liu, E. M.

Q. Sun, F. H. Qin, E. M. Liu, Q. H. Mao, and H. Ming, “Study on high pressure all-fiber gas cells based on HC-PCFs,” Chin. J. Laser 35(7), 1029–1034 (2008).
[Crossref]

Liu, Y. S.

Y. W. Zhang, Q. Z. Lu, and Y. S. Liu, Molecular Spectroscopy (China University of Science and Technology University, 1988), Chap. 3.

Lokai, P.

D. J. Brink, D. Proch, D. Basting, K. Hohla, and P. Lokai, “Efficient tunable ultraviolet source based on stimulated Raman scattering,” Laser Optoelektron 3, 4–45 (1982).

Loree, T. R.

T. R. Loree, C. D. Cantrell, and D. L. Barker, “Stimulated Raman emission at 9.2 µm from hydrogen gas,” Opt. Commun. 17(2), 160–162 (1976).
[Crossref]

Lu, Q.

Lu, Q. Z.

Y. W. Zhang, Q. Z. Lu, and Y. S. Liu, Molecular Spectroscopy (China University of Science and Technology University, 1988), Chap. 3.

MacWood, G. E.

G. K. Teal and G. E. MacWood, “The Raman Spectra of the isotopic molecules H2, HD and D2,” J. Chem. Phys. 3(12), 760–764 (1935).
[Crossref]

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P.St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref]

Mao, Q. H.

Q. Sun, F. H. Qin, E. M. Liu, Q. H. Mao, and H. Ming, “Study on high pressure all-fiber gas cells based on HC-PCFs,” Chin. J. Laser 35(7), 1029–1034 (2008).
[Crossref]

Markos, C.

Minck, R. W.

R. W. Minck, R. W. Terhune, and W. G. Rado, “Laser stimulated Raman effect and resonant four photon interactions in gases H2, D2, and CH4,” Appl. Phys. Lett. 3(10), 181–184 (1963).
[Crossref]

Ming, H.

Q. Sun, F. H. Qin, E. M. Liu, Q. H. Mao, and H. Ming, “Study on high pressure all-fiber gas cells based on HC-PCFs,” Chin. J. Laser 35(7), 1029–1034 (2008).
[Crossref]

Novoa, D.

S. T. Bauerschmidt, D. Novoa, and P. S. J. Russell, “Dramatic Raman Gain Suppression in the Vicinity of the Zero Dispersion Point in a Gas-Filled Hollow-Core Photonic Crystal Fiber,” Phys. Rev. Lett. 115(24), 243901 (2015).
[Crossref]

Peng, Z.

Plotnichenko, V. G.

Proch, D.

D. J. Brink, D. Proch, D. Basting, K. Hohla, and P. Lokai, “Efficient tunable ultraviolet source based on stimulated Raman scattering,” Laser Optoelektron 3, 4–45 (1982).

Pryamikov, A. D.

Qin, F. H.

Q. Sun, F. H. Qin, E. M. Liu, Q. H. Mao, and H. Ming, “Study on high pressure all-fiber gas cells based on HC-PCFs,” Chin. J. Laser 35(7), 1029–1034 (2008).
[Crossref]

Rado, W. G.

R. W. Minck, R. W. Terhune, and W. G. Rado, “Laser stimulated Raman effect and resonant four photon interactions in gases H2, D2, and CH4,” Appl. Phys. Lett. 3(10), 181–184 (1963).
[Crossref]

Roberts, P. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P.St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref]

Russell, P. S. J.

S. T. Bauerschmidt, D. Novoa, and P. S. J. Russell, “Dramatic Raman Gain Suppression in the Vicinity of the Zero Dispersion Point in a Gas-Filled Hollow-Core Photonic Crystal Fiber,” Phys. Rev. Lett. 115(24), 243901 (2015).
[Crossref]

F. Benabid, G. Bouwmans, J. C. Knight, P. S. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref]

Russell, P.St. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P.St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref]

Schulzgen, A.

Semjonov, S. L.

Shuai, G.

S. Gao, Y. Wang, W. Ding, D. Liang, G. Shuai, and Z. Xin, “Hollow-core conjoined-tube negative-curvature fiber with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

Sun, Q.

Q. Sun, F. H. Qin, E. M. Liu, Q. H. Mao, and H. Ming, “Study on high pressure all-fiber gas cells based on HC-PCFs,” Chin. J. Laser 35(7), 1029–1034 (2008).
[Crossref]

Teal, G. K.

G. K. Teal and G. E. MacWood, “The Raman Spectra of the isotopic molecules H2, HD and D2,” J. Chem. Phys. 3(12), 760–764 (1935).
[Crossref]

Terhune, R. W.

R. W. Minck, R. W. Terhune, and W. G. Rado, “Laser stimulated Raman effect and resonant four photon interactions in gases H2, D2, and CH4,” Appl. Phys. Lett. 3(10), 181–184 (1963).
[Crossref]

Wadsworth, W. J.

Z. Wang, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient 1.9 µm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering,” Laser Phys. Lett. 11(10), 105807 (2014).
[Crossref]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 µm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[Crossref]

Wang, P.

Wang, X.

Wang, Y.

Wang, Z.

Wu, W.

Xi, X.

Xin, Z.

S. Gao, Y. Wang, W. Ding, D. Liang, G. Shuai, and Z. Xin, “Hollow-core conjoined-tube negative-curvature fiber with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

Yatsenko, Y.

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. Yatsenko, A. N. Kolyadin, and A. A. Krylov, “2.9, 3.3 and 3.5 µm Raman Lasers Based on Revolver Hollow-Core Silica Fiber Filled by H2/D2 Gas Mixture,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

Yu, F.

Y. Chen, Z. Wang, B. Gu, F. Yu, and Q. Lu, “Achieving a 1.5 um fiber gas Raman laser source with about 400 kW of peak power and a 6.3 GHz linewidth,” Opt. Lett. 41(21), 5118–5121 (2016).
[Crossref]

F. Yu and J. C. Knight, “Negative Curvature Hollow-Core Optical Fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 146–155 (2016).
[Crossref]

Z. Wang, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient 1.9 µm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering,” Laser Phys. Lett. 11(10), 105807 (2014).
[Crossref]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 µm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[Crossref]

Zhang, Y. W.

Y. W. Zhang, Q. Z. Lu, and Y. S. Liu, Molecular Spectroscopy (China University of Science and Technology University, 1988), Chap. 3.

Zhou, Z.

Appl. Phys. Lett. (1)

R. W. Minck, R. W. Terhune, and W. G. Rado, “Laser stimulated Raman effect and resonant four photon interactions in gases H2, D2, and CH4,” Appl. Phys. Lett. 3(10), 181–184 (1963).
[Crossref]

Chin. J. Laser (1)

Q. Sun, F. H. Qin, E. M. Liu, Q. H. Mao, and H. Ming, “Study on high pressure all-fiber gas cells based on HC-PCFs,” Chin. J. Laser 35(7), 1029–1034 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. Yatsenko, A. N. Kolyadin, and A. A. Krylov, “2.9, 3.3 and 3.5 µm Raman Lasers Based on Revolver Hollow-Core Silica Fiber Filled by H2/D2 Gas Mixture,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

F. Yu and J. C. Knight, “Negative Curvature Hollow-Core Optical Fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 146–155 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. S. Astapovich, A. V. Gladyshev, M. M. Khudyakov, A. F. Kosolapov, M. E. Likhachev, and I. A. Bufetov, “Watt-Level Nanosecond 4.42 µm Raman Laser Based on Silica Fiber,” IEEE Photonics Technol. Lett. 31(1), 78–81 (2019).
[Crossref]

J. Chem. Phys. (1)

G. K. Teal and G. E. MacWood, “The Raman Spectra of the isotopic molecules H2, HD and D2,” J. Chem. Phys. 3(12), 760–764 (1935).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Optoelektron (1)

D. J. Brink, D. Proch, D. Basting, K. Hohla, and P. Lokai, “Efficient tunable ultraviolet source based on stimulated Raman scattering,” Laser Optoelektron 3, 4–45 (1982).

Laser Phys. Lett. (1)

Z. Wang, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient 1.9 µm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering,” Laser Phys. Lett. 11(10), 105807 (2014).
[Crossref]

Nat. Commun. (1)

S. Gao, Y. Wang, W. Ding, D. Liang, G. Shuai, and Z. Xin, “Hollow-core conjoined-tube negative-curvature fiber with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

Opt. Commun. (1)

T. R. Loree, C. D. Cantrell, and D. L. Barker, “Stimulated Raman emission at 9.2 µm from hydrogen gas,” Opt. Commun. 17(2), 160–162 (1976).
[Crossref]

Opt. Express (7)

M. S. Habib, J. E. Antonio-Lopez, C. Markos, and A. Schulzgen, “Single-mode, low loss hollow-core anti-resonant fiber designs,” Opt. Express 27(4), 3824–3836 (2019).
[Crossref]

Y. Chen, Z. Wang, Z. Li, W. Huang, X. Xi, and Q. Lu, “Ultra-efficient Raman amplifier in methane-filled hollow-core fiber operating at 1.5 µm,” Opt. Express 25(17), 20944–20949 (2017).
[Crossref]

L. Cao, S. Gao, Z. Peng, X. Wang, Y. Wang, and P. Wang, “High peak power 2.8 µm Raman laser in a methane-filled negative-curvature fiber,” Opt. Express 26(5), 5609–5615 (2018).
[Crossref]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 µm,” Opt. Express 19(2), 1441–1448 (2011).
[Crossref]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 µm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[Crossref]

Z. Li, W. Huang, Y. Cui, Z. Wang, and W. Wu, “0.83 W, single-pass, 1.54 µm gas Raman source generated in a CH4-filled hollow-core fiber operating at atmospheric pressure,” Opt. Express 26(10), 12522–12529 (2018).
[Crossref]

Y. Cui, W. Huang, Z. Li, Z. Zhou, and Z. Wang, “High-efficiency laser wavelength conversion in deuterium-filled hollow-core photonic crystal fiber by rotational stimulated Raman scattering,” Opt. Express 27(21), 30396–30404 (2019).
[Crossref]

Opt. Lett. (5)

Phys. Rev. A (1)

G. C. Herring, M. J. Dyer, and W. K. Bischel, “Temperature and density dependence of the linewidths and line shifts of the rotational Raman lines in N2 and H2,” Phys. Rev. A 34(3), 1944–1951 (1986).
[Crossref]

Phys. Rev. Lett. (3)

F. Benabid, G. Bouwmans, J. C. Knight, P. S. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref]

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold CW Raman fiber-gas laser based on H2-filled hollow core photonic crystal fiber,” Phys. Rev. Lett. 99(14), 143903 (2007).
[Crossref]

S. T. Bauerschmidt, D. Novoa, and P. S. J. Russell, “Dramatic Raman Gain Suppression in the Vicinity of the Zero Dispersion Point in a Gas-Filled Hollow-Core Photonic Crystal Fiber,” Phys. Rev. Lett. 115(24), 243901 (2015).
[Crossref]

Science (2)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P.St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref]

Other (1)

Y. W. Zhang, Q. Z. Lu, and Y. S. Liu, Molecular Spectroscopy (China University of Science and Technology University, 1988), Chap. 3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1. Schematic of energy level transitions in hydrogen molecule SRS process.
Fig. 2.
Fig. 2. (a) Calculation curves of output power with HCF length; (b) calculation curves of the output power with pump power after considering pulse shape; (c) coupling efficiency; and (d) CW component proportion of pump light based on steady-state SRS model in HCFs.
Fig. 3.
Fig. 3. Simulation curves of output Raman power with coupled pump power at different (a) first-order Raman gain coefficients and (b) Raman linewidths.
Fig. 4.
Fig. 4. Simulation curves of output Raman power with coupled pump power at different (a) pump pulse repetition frequencies and (b) pulse widths.
Fig. 5.
Fig. 5. Simulation curves of output Raman power with coupled pump power at different (a) pump light losses, (b) first-order Stokes light losses, (c) second-order Stokes light losses, and (d) fiber lengths.
Fig. 6.
Fig. 6. Shape changes of (a) rectangular pulse and (b) Gaussian pulse when only first-order Raman conversion occurs; (c) shape change of Gaussian pulse when second-order Raman conversion occurs.
Fig. 7.
Fig. 7. (a) Experimental setup: W: coated output windows, L: convex-plane lens, FM: silver mirror on flip mounts, LPF: long-pass filter, PM: power meter, OSA: optical spectrum analyzer; (b) measured transmission spectrum of used HC–PCF. Inset: schematic cross-section of HC–PCF from product manual.
Fig. 8.
Fig. 8. (a) Output spectrum of different pump wavelengths; (b) to (g) corresponding fine spectra with OSA resolution of 0.02 nm when pump power is 1.8 W and HC–PCF length is 20 m.
Fig. 9.
Fig. 9. Evolution of output Raman power and residual pump power with coupled pump power at different (a) pump wavelengths, (c) gas pressures, and (e) pump pulse repetition frequencies; and corresponding simulation results in (b), (d), and (f), respectively, when HC–PCF length is 20 m and pump power is relatively low.
Fig. 10.
Fig. 10. (a), (b), and (c) Pulse shapes of first-order Stokes light and residual pump light at different pump powers; and (d), (e), and (f) corresponding simulation pulse shapes, respectively, when pump wavelength is 1540 nm, gas pressure is 16 bar, and repetition frequency is 500 kHz.
Fig. 11.
Fig. 11. (a) Output spectrum of different pump wavelengths; (b) to (g) corresponding fine spectra with OSA resolution of 0.02 nm when pump power is 7.5 W and HC–PCF length is 20 m.
Fig. 12.
Fig. 12. Evolution of output Raman power and residual pump power with coupled pump power at different (a) pump wavelengths, (c) gas pressures, and (e) pump pulse repetition frequencies; and (b), (d), and (f) corresponding simulation results, respectively, when HC–PCF length is 20 m and pump power is relatively high.
Fig. 13.
Fig. 13. (a) and (d) Output spectrum at maximum pump power; (b) and (e) pulse shapes of pump light: first-order Stokes light and residual pump light; and (c) and (f) corresponding simulation pulse shapes when repetition frequency is 2 and 1 MHz, respectively.
Fig. 14.
Fig. 14. Evolution of (a) output Raman power and (b) residual pump power with coupled pump power at different HC–PCF lengths; (c) simulation curves of output power with coupled pump power in 10 m-long HC–PCF; and (d) simulation curves of maximum output Raman power with HC–PCF length at maximum pump power when pump is at 1540 nm, gas pressure is 16 bar, and repetition frequency is 2 MHz.
Fig. 15.
Fig. 15. (a) Evolution of first-order Raman threshold with HC–PCF length when gas pressure is 16 bar; and (b) evolution of first-order Raman threshold with gas pressure when HC–PCF length is 20 m.

Tables (1)

Tables Icon

Table 1. Main simulation parameters

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E v , J = U ( r 0 ) + ( V + 1 2 ) h ν e + J ( J + 1 ) h B .
υ S = υ P c Δ ω ,
{ d I S 2 d z = g S 2 I S 2 I S 1 α S 2 I S 2 d I S 1 d z = g S 1 I S 1 I p α S 1 I S 1 υ S 1 υ S 2 g S 2 I S 2 I S 1 d I P d z = υ P υ S 1 g S 1 I S 1 I P α P I P ,
{ I P ( z = 0 ) = I 0 I S 1 ( z = 0 ) = h υ S 1 π Δ υ R A e f f ,
I o (t) = I o e t 2 2 σ 2 ,
g S 1 = 2 c 2 h υ S 1 3 Δ N π Δ v σ Ω ,

Metrics