Abstract

Electrically driven acousto-optic devices that provide beam deflection and optical frequency shifting have broad applications from pulse synthesis to heterodyne detection. Commercially available acousto-optic modulators are based on bulk materials and consume Watts of radio frequency power. Here, we demonstrate an integrated 3-GHz acousto-optic frequency shifter on thin-film lithium niobate, featuring a carrier suppression over 30 dB. Further, we demonstrate a gigahertz-spaced optical frequency comb featuring more than 200 lines over a 0.6-THz optical bandwidth by recirculating the light in an active frequency shifting loop. Our integrated acousto-optic platform leads to the development of on-chip optical routing, isolation, and microwave signal processing.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, and G. Bahl, “Brillouin integrated photonics,” Nat. Photonics 13(10), 664–677 (2019).
    [Crossref]
  2. Z. Y. Cheng and C. S. Tsai, “Baseband integrated acousto-optic frequency shifter,” Appl. Phys. Lett. 60(1), 12–14 (1992).
    [Crossref]
  3. C. Dong, V. Fiore, M. C. Kuzyk, L. Tian, and H. Wang, “Optical wavelength conversion via optomechanical coupling in a silica resonator,” Ann. Phys. 527(1-2), 100–106 (2015).
    [Crossref]
  4. H. Li, Q. Liu, and M. Li, “Electromechanical brillouin scattering in integrated planar photonics,” APL Photonics 4(8), 080802 (2019).
    [Crossref]
  5. Q. Liu, H. Li, and M. Li, “Electromechanical brillouin scattering in integrated optomechanical waveguides,” Optica 6(6), 778–785 (2019).
    [Crossref]
  6. K. C. Balram, M. I. Davanco, J. D. Song, and K. Srinivasan, “Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits,” Nat. Photonics 10(5), 346–352 (2016).
    [Crossref]
  7. L. Cai, A. Mahmoud, M. Khan, M. Mahmoud, T. Mukherjee, J. Bain, and G. Piazza, “Acousto-optical modulation of thin film lithium niobate waveguide devices,” Photonics Res. 7(9), 1003–1013 (2019).
    [Crossref]
  8. W. Jiang, R. N. Patel, F. M. Mayor, T. P. McKenna, P. Arrangoiz-Arriola, C. J. Sarabalis, J. D. Witmer, R. Van Laer, and A. H. Safavi-Naeini, “Lithium niobate piezo-optomechanical crystals,” Optica 6(7), 845–853 (2019).
    [Crossref]
  9. W. Jiang, C. J. Sarabalis, Y. D. Dahmani, R. N. Patel, F. M. Mayor, T. P. McKenna, R. Van Laer, and A. H. Safavi-Naeini, “Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency,” Nat. Commun. 11(1), 1166 (2020).
    [Crossref]
  10. H. Liang, R. Luo, Y. He, H. Jiang, and Q. Lin, “High-quality lithium niobate photonic crystal nanocavities,” Optica 4(10), 1251 (2017).
    [Crossref]
  11. L. Shao, M. Yu, S. Maity, N. Sinclair, L. Zheng, C. Chia, A. Shams-Ansari, C. Wang, M. Zhang, K. Lai, and M. Lončar, “Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators,” Optica 6(12), 1498–1505 (2019).
    [Crossref]
  12. D. Marpaung, B. Morrison, M. Pagani, R. Pant, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Low-power, chip-based stimulated brillouin scattering microwave photonic filter with ultrahigh selectivity,” Optica 2(2), 76–83 (2015).
    [Crossref]
  13. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Maleki, “Surface acoustic wave opto-mechanical oscillator and frequency comb generator,” Opt. Lett. 36(17), 3338–3340 (2011).
    [Crossref]
  14. L. Fan, C.-L. Zou, N. Zhu, and H. X. Tang, “Spectrotemporal shaping of itinerant photons via distributed nanomechanics,” Nat. Photonics 13(5), 323–327 (2019).
    [Crossref]
  15. S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
    [Crossref]
  16. N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon brillouin laser,” Science 360(6393), 1113–1116 (2018).
    [Crossref]
  17. K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk, and O. Painter, “Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering,” Nat. Phys. 13(5), 465–471 (2017).
    [Crossref]
  18. J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal brillouin scattering induced transparency,” Nat. Phys. 11(3), 275–280 (2015).
    [Crossref]
  19. E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, and P. T. Rakich, “Non-reciprocal interband brillouin modulation,” Nat. Photonics 12(10), 613–619 (2018).
    [Crossref]
  20. N. T. Otterstrom, E. A. Kittlaus, S. Gertler, R. O. Behunin, A. L. Lentine, and P. T. Rakich, “Resonantly enhanced nonreciprocal silicon brillouin amplifier,” Optica 6(9), 1117–1123 (2019).
    [Crossref]
  21. E. A. Kittlaus, W. M. Jones, P. T. Rakich, N. T. Otterstrom, R. E. Muller, and M. Rais-Zadeh, “Electrically-driven acousto-optics and broadband non-reciprocity in silicon photonics,” arXiv e-prints p. 2004.01270 (2020).
  22. D. B. Sohn and G. Bahl, “Direction reconfigurable nonreciprocal acousto-optic modulator on chip,” APL Photonics 4(12), 126103 (2019).
    [Crossref]
  23. D. B. Sohn, S. Kim, and G. Bahl, “Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits,” Nat. Photonics 12(2), 91–97 (2018).
    [Crossref]
  24. N. Savage, “Acousto-optic devices,” Nat. Photonics 4(10), 728–729 (2010).
    [Crossref]
  25. K. Higuma, S. Oikawa, Y. Hashimoto, H. Nagata, and M. Izutsu, “X-cut lithium niobate optical single-sideband modulator,” Electron. Lett. 37(8), 515–516 (2001).
    [Crossref]
  26. Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, “High extinction-ratio integrated Mach–Zehnder modulator with active y-branch for optical ssb signal generation,” IEEE Photonics Technol. Lett. 22(12), 941–943 (2010).
    [Crossref]
  27. R. Houtz, C. Chan, and H. Müller, “Wideband, efficient optical serrodyne frequency shifting with a phase modulator and a nonlinear transmission line,” Opt. Express 17(21), 19235–19240 (2009).
    [Crossref]
  28. D. M. S. Johnson, J. M. Hogan, S. w. Chiow, and M. A. Kasevich, “Broadband optical serrodyne frequency shifting,” Opt. Lett. 35(5), 745–747 (2010).
    [Crossref]
  29. T. Spuesens, Y. Li, P. Verheyen, G. Lepage, S. Balakrishnan, P. Absil, and R. Baets, “Integrated optical frequency shifter on a silicon platform,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2016), OSA Technical Digest (2016), p. SF2G.1.
  30. S. F. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nat. Photonics 1(5), 293–296 (2007).
    [Crossref]
  31. A. A. Savchenkov, W. Liang, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Maleki, “Tunable optical single-sideband modulator with complete sideband suppression,” Opt. Lett. 34(9), 1300–1302 (2009).
    [Crossref]
  32. B.-M. Yu, J.-M. Lee, C. Mai, S. Lischke, L. Zimmermann, and W.-Y. Choi, “Single-chip Si optical single-sideband modulator,” Photonics Res. 6(1), 6–11 (2018).
    [Crossref]
  33. A. S. Andrushchak, B. G. Mytsyk, H. P. Laba, O. V. Yurkevych, I. M. Solskii, A. V. Kityk, and B. Sahraoui, “Complete sets of elastic constants and photoelastic coefficients of pure and MgO-doped lithium niobate crystals at room temperature,” J. Appl. Phys. 106(7), 073510 (2009).
    [Crossref]
  34. L. He, M. Zhang, A. Shams-Ansari, R. Zhu, C. Wang, and M. Lončar, “Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits,” Opt. Lett. 44(9), 2314–2317 (2019).
    [Crossref]
  35. B. E. Saleh and M. C. Teich, Fundamentals of photonics (John Wiley & Sons, 1991). Chap. 20 Acousto-optics.
  36. H. Guillet de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “Theory of talbot lasers,” Phys. Rev. A 88(3), 033828 (2013).
    [Crossref]
  37. V. Durán, H. G. d. Chatellus, C. Schnébelin, K. Nithyanandan, L. Djevarhidjian, J. Clement, and C. R. Fernández-Pousa, “Optical frequency combs generated by acousto-optic frequency-shifting loops,” IEEE Photonics Technol. Lett. 31(23), 1878–1881 (2019).
    [Crossref]
  38. P. D. Hale and F. V. Kowalski, “Output characterization of a frequency shifted feedback laser: theory and experiment,” IEEE J. Quantum Electron. 26(10), 1845–1851 (1990).
    [Crossref]
  39. F. V. Kowalski, J. A. Squier, and J. T. Pinckney, “Pulse generation with an acousto-optic frequency shifter in a passive cavity,” Appl. Phys. Lett. 50(12), 711–713 (1987).
    [Crossref]
  40. H. Guillet de Chatellus, L. R. Cortés, and J. Azaña, “Optical real-time fourier transformation with kilohertz resolutions,” Optica 3(1), 1–8 (2016).
    [Crossref]
  41. W. Hao, Y. Dai, F. Yin, Y. Zhou, J. Li, and K. Xu, “Photonic microwave channelization based on frequency shifted feedback laser and delayed coherent detection,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2018), OSA Technical Digest (online), p. JW2A.73.
  42. K. Nakamura, T. Hara, M. Yoshida, T. Miyahara, and H. Ito, “Optical frequency domain ranging by a frequency-shifted feedback laser,” IEEE J. Quantum Electron. 36(3), 305–316 (2000).
    [Crossref]
  43. V. Durán, C. Schnébelin, and H. Guillet de Chatellus, “Coherent multi-heterodyne spectroscopy using acousto-optic frequency combs,” Opt. Express 26(11), 13800–13809 (2018).
    [Crossref]
  44. B. Desiatov, A. Shams-Ansari, M. Zhang, C. Wang, and M. Lončar, “Ultra-low-loss integrated visible photonics using thin-film lithium niobate,” Optica 6(3), 380–384 (2019).
    [Crossref]
  45. D. Fall, M. Duquennoy, M. Ouaftouh, N. Smagin, B. Piwakowski, and F. Jenot, “Generation of broadband surface acoustic waves using a dual temporal-spatial chirp method,” J. Acoust. Soc. Am. 142(1), EL108–EL112 (2017).
    [Crossref]
  46. S. Lehtonen, V. P. Plessky, C. S. Hartmann, and M. M. Salomaa, “Unidirectional SAW transducer for gigahertz frequencies,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 50(11), 1404–1406 (2003).
    [Crossref]
  47. L. Shao, S. Maity, L. Zheng, L. Wu, A. Shams-Ansari, Y.-I. Sohn, E. Puma, M. N. Gadalla, M. Zhang, C. Wang, E. Hu, K. Lai, and M. Lončar, “Phononic band structure engineering for high-Q gigahertz surface acoustic wave resonators on lithium niobate,” Phys. Rev. Appl. 12(1), 014022 (2019).
    [Crossref]
  48. G. Ren, T. G. Nguyen, and A. Mitchell, “Gaussian beams on a silicon-on-insulator chip using integrated optical lenses,” IEEE Photonics Technol. Lett. 26(14), 1438–1441 (2014).
    [Crossref]
  49. T. M. Turpin, “Spectrum analysis using optical processing,” Proc. IEEE 69(1), 79–92 (1981).
    [Crossref]
  50. S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4(7), 462–465 (2010).
    [Crossref]

2020 (1)

W. Jiang, C. J. Sarabalis, Y. D. Dahmani, R. N. Patel, F. M. Mayor, T. P. McKenna, R. Van Laer, and A. H. Safavi-Naeini, “Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency,” Nat. Commun. 11(1), 1166 (2020).
[Crossref]

2019 (14)

L. Cai, A. Mahmoud, M. Khan, M. Mahmoud, T. Mukherjee, J. Bain, and G. Piazza, “Acousto-optical modulation of thin film lithium niobate waveguide devices,” Photonics Res. 7(9), 1003–1013 (2019).
[Crossref]

W. Jiang, R. N. Patel, F. M. Mayor, T. P. McKenna, P. Arrangoiz-Arriola, C. J. Sarabalis, J. D. Witmer, R. Van Laer, and A. H. Safavi-Naeini, “Lithium niobate piezo-optomechanical crystals,” Optica 6(7), 845–853 (2019).
[Crossref]

B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, and G. Bahl, “Brillouin integrated photonics,” Nat. Photonics 13(10), 664–677 (2019).
[Crossref]

H. Li, Q. Liu, and M. Li, “Electromechanical brillouin scattering in integrated planar photonics,” APL Photonics 4(8), 080802 (2019).
[Crossref]

Q. Liu, H. Li, and M. Li, “Electromechanical brillouin scattering in integrated optomechanical waveguides,” Optica 6(6), 778–785 (2019).
[Crossref]

L. Fan, C.-L. Zou, N. Zhu, and H. X. Tang, “Spectrotemporal shaping of itinerant photons via distributed nanomechanics,” Nat. Photonics 13(5), 323–327 (2019).
[Crossref]

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

L. Shao, M. Yu, S. Maity, N. Sinclair, L. Zheng, C. Chia, A. Shams-Ansari, C. Wang, M. Zhang, K. Lai, and M. Lončar, “Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators,” Optica 6(12), 1498–1505 (2019).
[Crossref]

N. T. Otterstrom, E. A. Kittlaus, S. Gertler, R. O. Behunin, A. L. Lentine, and P. T. Rakich, “Resonantly enhanced nonreciprocal silicon brillouin amplifier,” Optica 6(9), 1117–1123 (2019).
[Crossref]

D. B. Sohn and G. Bahl, “Direction reconfigurable nonreciprocal acousto-optic modulator on chip,” APL Photonics 4(12), 126103 (2019).
[Crossref]

L. He, M. Zhang, A. Shams-Ansari, R. Zhu, C. Wang, and M. Lončar, “Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits,” Opt. Lett. 44(9), 2314–2317 (2019).
[Crossref]

V. Durán, H. G. d. Chatellus, C. Schnébelin, K. Nithyanandan, L. Djevarhidjian, J. Clement, and C. R. Fernández-Pousa, “Optical frequency combs generated by acousto-optic frequency-shifting loops,” IEEE Photonics Technol. Lett. 31(23), 1878–1881 (2019).
[Crossref]

B. Desiatov, A. Shams-Ansari, M. Zhang, C. Wang, and M. Lončar, “Ultra-low-loss integrated visible photonics using thin-film lithium niobate,” Optica 6(3), 380–384 (2019).
[Crossref]

L. Shao, S. Maity, L. Zheng, L. Wu, A. Shams-Ansari, Y.-I. Sohn, E. Puma, M. N. Gadalla, M. Zhang, C. Wang, E. Hu, K. Lai, and M. Lončar, “Phononic band structure engineering for high-Q gigahertz surface acoustic wave resonators on lithium niobate,” Phys. Rev. Appl. 12(1), 014022 (2019).
[Crossref]

2018 (5)

V. Durán, C. Schnébelin, and H. Guillet de Chatellus, “Coherent multi-heterodyne spectroscopy using acousto-optic frequency combs,” Opt. Express 26(11), 13800–13809 (2018).
[Crossref]

B.-M. Yu, J.-M. Lee, C. Mai, S. Lischke, L. Zimmermann, and W.-Y. Choi, “Single-chip Si optical single-sideband modulator,” Photonics Res. 6(1), 6–11 (2018).
[Crossref]

D. B. Sohn, S. Kim, and G. Bahl, “Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits,” Nat. Photonics 12(2), 91–97 (2018).
[Crossref]

E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, and P. T. Rakich, “Non-reciprocal interband brillouin modulation,” Nat. Photonics 12(10), 613–619 (2018).
[Crossref]

N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon brillouin laser,” Science 360(6393), 1113–1116 (2018).
[Crossref]

2017 (3)

K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk, and O. Painter, “Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering,” Nat. Phys. 13(5), 465–471 (2017).
[Crossref]

H. Liang, R. Luo, Y. He, H. Jiang, and Q. Lin, “High-quality lithium niobate photonic crystal nanocavities,” Optica 4(10), 1251 (2017).
[Crossref]

D. Fall, M. Duquennoy, M. Ouaftouh, N. Smagin, B. Piwakowski, and F. Jenot, “Generation of broadband surface acoustic waves using a dual temporal-spatial chirp method,” J. Acoust. Soc. Am. 142(1), EL108–EL112 (2017).
[Crossref]

2016 (2)

K. C. Balram, M. I. Davanco, J. D. Song, and K. Srinivasan, “Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits,” Nat. Photonics 10(5), 346–352 (2016).
[Crossref]

H. Guillet de Chatellus, L. R. Cortés, and J. Azaña, “Optical real-time fourier transformation with kilohertz resolutions,” Optica 3(1), 1–8 (2016).
[Crossref]

2015 (3)

J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal brillouin scattering induced transparency,” Nat. Phys. 11(3), 275–280 (2015).
[Crossref]

C. Dong, V. Fiore, M. C. Kuzyk, L. Tian, and H. Wang, “Optical wavelength conversion via optomechanical coupling in a silica resonator,” Ann. Phys. 527(1-2), 100–106 (2015).
[Crossref]

D. Marpaung, B. Morrison, M. Pagani, R. Pant, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Low-power, chip-based stimulated brillouin scattering microwave photonic filter with ultrahigh selectivity,” Optica 2(2), 76–83 (2015).
[Crossref]

2014 (1)

G. Ren, T. G. Nguyen, and A. Mitchell, “Gaussian beams on a silicon-on-insulator chip using integrated optical lenses,” IEEE Photonics Technol. Lett. 26(14), 1438–1441 (2014).
[Crossref]

2013 (1)

H. Guillet de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “Theory of talbot lasers,” Phys. Rev. A 88(3), 033828 (2013).
[Crossref]

2011 (1)

2010 (4)

N. Savage, “Acousto-optic devices,” Nat. Photonics 4(10), 728–729 (2010).
[Crossref]

Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, “High extinction-ratio integrated Mach–Zehnder modulator with active y-branch for optical ssb signal generation,” IEEE Photonics Technol. Lett. 22(12), 941–943 (2010).
[Crossref]

D. M. S. Johnson, J. M. Hogan, S. w. Chiow, and M. A. Kasevich, “Broadband optical serrodyne frequency shifting,” Opt. Lett. 35(5), 745–747 (2010).
[Crossref]

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4(7), 462–465 (2010).
[Crossref]

2009 (3)

2007 (1)

S. F. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nat. Photonics 1(5), 293–296 (2007).
[Crossref]

2003 (1)

S. Lehtonen, V. P. Plessky, C. S. Hartmann, and M. M. Salomaa, “Unidirectional SAW transducer for gigahertz frequencies,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 50(11), 1404–1406 (2003).
[Crossref]

2001 (1)

K. Higuma, S. Oikawa, Y. Hashimoto, H. Nagata, and M. Izutsu, “X-cut lithium niobate optical single-sideband modulator,” Electron. Lett. 37(8), 515–516 (2001).
[Crossref]

2000 (1)

K. Nakamura, T. Hara, M. Yoshida, T. Miyahara, and H. Ito, “Optical frequency domain ranging by a frequency-shifted feedback laser,” IEEE J. Quantum Electron. 36(3), 305–316 (2000).
[Crossref]

1992 (1)

Z. Y. Cheng and C. S. Tsai, “Baseband integrated acousto-optic frequency shifter,” Appl. Phys. Lett. 60(1), 12–14 (1992).
[Crossref]

1990 (1)

P. D. Hale and F. V. Kowalski, “Output characterization of a frequency shifted feedback laser: theory and experiment,” IEEE J. Quantum Electron. 26(10), 1845–1851 (1990).
[Crossref]

1987 (1)

F. V. Kowalski, J. A. Squier, and J. T. Pinckney, “Pulse generation with an acousto-optic frequency shifter in a passive cavity,” Appl. Phys. Lett. 50(12), 711–713 (1987).
[Crossref]

1981 (1)

T. M. Turpin, “Spectrum analysis using optical processing,” Proc. IEEE 69(1), 79–92 (1981).
[Crossref]

Absil, P.

T. Spuesens, Y. Li, P. Verheyen, G. Lepage, S. Balakrishnan, P. Absil, and R. Baets, “Integrated optical frequency shifter on a silicon platform,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2016), OSA Technical Digest (2016), p. SF2G.1.

Anderson, A.

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4(7), 462–465 (2010).
[Crossref]

Andrushchak, A. S.

A. S. Andrushchak, B. G. Mytsyk, H. P. Laba, O. V. Yurkevych, I. M. Solskii, A. V. Kityk, and B. Sahraoui, “Complete sets of elastic constants and photoelastic coefficients of pure and MgO-doped lithium niobate crystals at room temperature,” J. Appl. Phys. 106(7), 073510 (2009).
[Crossref]

Arrangoiz-Arriola, P.

Assion, A.

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4(7), 462–465 (2010).
[Crossref]

Azaña, J.

Baets, R.

T. Spuesens, Y. Li, P. Verheyen, G. Lepage, S. Balakrishnan, P. Absil, and R. Baets, “Integrated optical frequency shifter on a silicon platform,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2016), OSA Technical Digest (2016), p. SF2G.1.

Bahl, G.

B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, and G. Bahl, “Brillouin integrated photonics,” Nat. Photonics 13(10), 664–677 (2019).
[Crossref]

D. B. Sohn and G. Bahl, “Direction reconfigurable nonreciprocal acousto-optic modulator on chip,” APL Photonics 4(12), 126103 (2019).
[Crossref]

D. B. Sohn, S. Kim, and G. Bahl, “Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits,” Nat. Photonics 12(2), 91–97 (2018).
[Crossref]

J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal brillouin scattering induced transparency,” Nat. Phys. 11(3), 275–280 (2015).
[Crossref]

Bain, J.

L. Cai, A. Mahmoud, M. Khan, M. Mahmoud, T. Mukherjee, J. Bain, and G. Piazza, “Acousto-optical modulation of thin film lithium niobate waveguide devices,” Photonics Res. 7(9), 1003–1013 (2019).
[Crossref]

Balakrishnan, S.

T. Spuesens, Y. Li, P. Verheyen, G. Lepage, S. Balakrishnan, P. Absil, and R. Baets, “Integrated optical frequency shifter on a silicon platform,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2016), OSA Technical Digest (2016), p. SF2G.1.

Balram, K. C.

K. C. Balram, M. I. Davanco, J. D. Song, and K. Srinivasan, “Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits,” Nat. Photonics 10(5), 346–352 (2016).
[Crossref]

Behunin, R.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

Behunin, R. O.

N. T. Otterstrom, E. A. Kittlaus, S. Gertler, R. O. Behunin, A. L. Lentine, and P. T. Rakich, “Resonantly enhanced nonreciprocal silicon brillouin amplifier,” Optica 6(9), 1117–1123 (2019).
[Crossref]

N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon brillouin laser,” Science 360(6393), 1113–1116 (2018).
[Crossref]

Blumenthal, D. J.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

Bose, D.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

Brodnik, G. M.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

Cai, L.

L. Cai, A. Mahmoud, M. Khan, M. Mahmoud, T. Mukherjee, J. Bain, and G. Piazza, “Acousto-optical modulation of thin film lithium niobate waveguide devices,” Photonics Res. 7(9), 1003–1013 (2019).
[Crossref]

Chan, C.

Chauhan, N.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

Cheng, Z. Y.

Z. Y. Cheng and C. S. Tsai, “Baseband integrated acousto-optic frequency shifter,” Appl. Phys. Lett. 60(1), 12–14 (1992).
[Crossref]

Chia, C.

Choi, D.-Y.

Choi, W.-Y.

B.-M. Yu, J.-M. Lee, C. Mai, S. Lischke, L. Zimmermann, and W.-Y. Choi, “Single-chip Si optical single-sideband modulator,” Photonics Res. 6(1), 6–11 (2018).
[Crossref]

Clement, J.

V. Durán, H. G. d. Chatellus, C. Schnébelin, K. Nithyanandan, L. Djevarhidjian, J. Clement, and C. R. Fernández-Pousa, “Optical frequency combs generated by acousto-optic frequency-shifting loops,” IEEE Photonics Technol. Lett. 31(23), 1878–1881 (2019).
[Crossref]

Clerk, A. A.

K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk, and O. Painter, “Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering,” Nat. Phys. 13(5), 465–471 (2017).
[Crossref]

Cortés, L. R.

d. Chatellus, H. G.

V. Durán, H. G. d. Chatellus, C. Schnébelin, K. Nithyanandan, L. Djevarhidjian, J. Clement, and C. R. Fernández-Pousa, “Optical frequency combs generated by acousto-optic frequency-shifting loops,” IEEE Photonics Technol. Lett. 31(23), 1878–1881 (2019).
[Crossref]

Dahmani, Y. D.

W. Jiang, C. J. Sarabalis, Y. D. Dahmani, R. N. Patel, F. M. Mayor, T. P. McKenna, R. Van Laer, and A. H. Safavi-Naeini, “Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency,” Nat. Commun. 11(1), 1166 (2020).
[Crossref]

Dai, Y.

W. Hao, Y. Dai, F. Yin, Y. Zhou, J. Li, and K. Xu, “Photonic microwave channelization based on frequency shifted feedback laser and delayed coherent detection,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2018), OSA Technical Digest (online), p. JW2A.73.

Davanco, M. I.

K. C. Balram, M. I. Davanco, J. D. Song, and K. Srinivasan, “Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits,” Nat. Photonics 10(5), 346–352 (2016).
[Crossref]

Desiatov, B.

Djevarhidjian, L.

V. Durán, H. G. d. Chatellus, C. Schnébelin, K. Nithyanandan, L. Djevarhidjian, J. Clement, and C. R. Fernández-Pousa, “Optical frequency combs generated by acousto-optic frequency-shifting loops,” IEEE Photonics Technol. Lett. 31(23), 1878–1881 (2019).
[Crossref]

Dong, C.

C. Dong, V. Fiore, M. C. Kuzyk, L. Tian, and H. Wang, “Optical wavelength conversion via optomechanical coupling in a silica resonator,” Ann. Phys. 527(1-2), 100–106 (2015).
[Crossref]

Duquennoy, M.

D. Fall, M. Duquennoy, M. Ouaftouh, N. Smagin, B. Piwakowski, and F. Jenot, “Generation of broadband surface acoustic waves using a dual temporal-spatial chirp method,” J. Acoust. Soc. Am. 142(1), EL108–EL112 (2017).
[Crossref]

Durán, V.

V. Durán, H. G. d. Chatellus, C. Schnébelin, K. Nithyanandan, L. Djevarhidjian, J. Clement, and C. R. Fernández-Pousa, “Optical frequency combs generated by acousto-optic frequency-shifting loops,” IEEE Photonics Technol. Lett. 31(23), 1878–1881 (2019).
[Crossref]

V. Durán, C. Schnébelin, and H. Guillet de Chatellus, “Coherent multi-heterodyne spectroscopy using acousto-optic frequency combs,” Opt. Express 26(11), 13800–13809 (2018).
[Crossref]

Eggleton, B. J.

Fall, D.

D. Fall, M. Duquennoy, M. Ouaftouh, N. Smagin, B. Piwakowski, and F. Jenot, “Generation of broadband surface acoustic waves using a dual temporal-spatial chirp method,” J. Acoust. Soc. Am. 142(1), EL108–EL112 (2017).
[Crossref]

Fan, L.

L. Fan, C.-L. Zou, N. Zhu, and H. X. Tang, “Spectrotemporal shaping of itinerant photons via distributed nanomechanics,” Nat. Photonics 13(5), 323–327 (2019).
[Crossref]

Fang, K.

K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk, and O. Painter, “Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering,” Nat. Phys. 13(5), 465–471 (2017).
[Crossref]

Fernández-Pousa, C. R.

V. Durán, H. G. d. Chatellus, C. Schnébelin, K. Nithyanandan, L. Djevarhidjian, J. Clement, and C. R. Fernández-Pousa, “Optical frequency combs generated by acousto-optic frequency-shifting loops,” IEEE Photonics Technol. Lett. 31(23), 1878–1881 (2019).
[Crossref]

Fiore, V.

C. Dong, V. Fiore, M. C. Kuzyk, L. Tian, and H. Wang, “Optical wavelength conversion via optomechanical coupling in a silica resonator,” Ann. Phys. 527(1-2), 100–106 (2015).
[Crossref]

Frei, H.

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4(7), 462–465 (2010).
[Crossref]

Gadalla, M. N.

L. Shao, S. Maity, L. Zheng, L. Wu, A. Shams-Ansari, Y.-I. Sohn, E. Puma, M. N. Gadalla, M. Zhang, C. Wang, E. Hu, K. Lai, and M. Lončar, “Phononic band structure engineering for high-Q gigahertz surface acoustic wave resonators on lithium niobate,” Phys. Rev. Appl. 12(1), 014022 (2019).
[Crossref]

Gertler, S.

N. T. Otterstrom, E. A. Kittlaus, S. Gertler, R. O. Behunin, A. L. Lentine, and P. T. Rakich, “Resonantly enhanced nonreciprocal silicon brillouin amplifier,” Optica 6(9), 1117–1123 (2019).
[Crossref]

E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, and P. T. Rakich, “Non-reciprocal interband brillouin modulation,” Nat. Photonics 12(10), 613–619 (2018).
[Crossref]

Glastre, W.

H. Guillet de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “Theory of talbot lasers,” Phys. Rev. A 88(3), 033828 (2013).
[Crossref]

Grebing, C.

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4(7), 462–465 (2010).
[Crossref]

Guillet de Chatellus, H.

Gundavarapu, S.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

Hale, P. D.

P. D. Hale and F. V. Kowalski, “Output characterization of a frequency shifted feedback laser: theory and experiment,” IEEE J. Quantum Electron. 26(10), 1845–1851 (1990).
[Crossref]

Han, K.

J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal brillouin scattering induced transparency,” Nat. Phys. 11(3), 275–280 (2015).
[Crossref]

Hao, W.

W. Hao, Y. Dai, F. Yin, Y. Zhou, J. Li, and K. Xu, “Photonic microwave channelization based on frequency shifted feedback laser and delayed coherent detection,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2018), OSA Technical Digest (online), p. JW2A.73.

Hara, T.

K. Nakamura, T. Hara, M. Yoshida, T. Miyahara, and H. Ito, “Optical frequency domain ranging by a frequency-shifted feedback laser,” IEEE J. Quantum Electron. 36(3), 305–316 (2000).
[Crossref]

Hartmann, C. S.

S. Lehtonen, V. P. Plessky, C. S. Hartmann, and M. M. Salomaa, “Unidirectional SAW transducer for gigahertz frequencies,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 50(11), 1404–1406 (2003).
[Crossref]

Hashimoto, Y.

K. Higuma, S. Oikawa, Y. Hashimoto, H. Nagata, and M. Izutsu, “X-cut lithium niobate optical single-sideband modulator,” Electron. Lett. 37(8), 515–516 (2001).
[Crossref]

He, L.

He, Y.

Higuma, K.

K. Higuma, S. Oikawa, Y. Hashimoto, H. Nagata, and M. Izutsu, “X-cut lithium niobate optical single-sideband modulator,” Electron. Lett. 37(8), 515–516 (2001).
[Crossref]

Hogan, J. M.

Houtz, R.

Hu, E.

L. Shao, S. Maity, L. Zheng, L. Wu, A. Shams-Ansari, Y.-I. Sohn, E. Puma, M. N. Gadalla, M. Zhang, C. Wang, E. Hu, K. Lai, and M. Lončar, “Phononic band structure engineering for high-Q gigahertz surface acoustic wave resonators on lithium niobate,” Phys. Rev. Appl. 12(1), 014022 (2019).
[Crossref]

Huffman, T.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

Hugon, O.

H. Guillet de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “Theory of talbot lasers,” Phys. Rev. A 88(3), 033828 (2013).
[Crossref]

Ilchenko, V. S.

Ito, H.

K. Nakamura, T. Hara, M. Yoshida, T. Miyahara, and H. Ito, “Optical frequency domain ranging by a frequency-shifted feedback laser,” IEEE J. Quantum Electron. 36(3), 305–316 (2000).
[Crossref]

Izutsu, M.

K. Higuma, S. Oikawa, Y. Hashimoto, H. Nagata, and M. Izutsu, “X-cut lithium niobate optical single-sideband modulator,” Electron. Lett. 37(8), 515–516 (2001).
[Crossref]

Jacquin, O.

H. Guillet de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “Theory of talbot lasers,” Phys. Rev. A 88(3), 033828 (2013).
[Crossref]

Jenot, F.

D. Fall, M. Duquennoy, M. Ouaftouh, N. Smagin, B. Piwakowski, and F. Jenot, “Generation of broadband surface acoustic waves using a dual temporal-spatial chirp method,” J. Acoust. Soc. Am. 142(1), EL108–EL112 (2017).
[Crossref]

Jiang, H.

Jiang, W.

W. Jiang, C. J. Sarabalis, Y. D. Dahmani, R. N. Patel, F. M. Mayor, T. P. McKenna, R. Van Laer, and A. H. Safavi-Naeini, “Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency,” Nat. Commun. 11(1), 1166 (2020).
[Crossref]

W. Jiang, R. N. Patel, F. M. Mayor, T. P. McKenna, P. Arrangoiz-Arriola, C. J. Sarabalis, J. D. Witmer, R. Van Laer, and A. H. Safavi-Naeini, “Lithium niobate piezo-optomechanical crystals,” Optica 6(7), 845–853 (2019).
[Crossref]

Johnson, D. M. S.

Jones, W. M.

E. A. Kittlaus, W. M. Jones, P. T. Rakich, N. T. Otterstrom, R. E. Muller, and M. Rais-Zadeh, “Electrically-driven acousto-optics and broadband non-reciprocity in silicon photonics,” arXiv e-prints p. 2004.01270 (2020).

Kasevich, M. A.

Kawanishi, T.

Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, “High extinction-ratio integrated Mach–Zehnder modulator with active y-branch for optical ssb signal generation,” IEEE Photonics Technol. Lett. 22(12), 941–943 (2010).
[Crossref]

Khan, M.

L. Cai, A. Mahmoud, M. Khan, M. Mahmoud, T. Mukherjee, J. Bain, and G. Piazza, “Acousto-optical modulation of thin film lithium niobate waveguide devices,” Photonics Res. 7(9), 1003–1013 (2019).
[Crossref]

Kharel, P.

E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, and P. T. Rakich, “Non-reciprocal interband brillouin modulation,” Nat. Photonics 12(10), 613–619 (2018).
[Crossref]

Kim, J.

J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal brillouin scattering induced transparency,” Nat. Phys. 11(3), 275–280 (2015).
[Crossref]

Kim, S.

D. B. Sohn, S. Kim, and G. Bahl, “Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits,” Nat. Photonics 12(2), 91–97 (2018).
[Crossref]

Kittlaus, E. A.

N. T. Otterstrom, E. A. Kittlaus, S. Gertler, R. O. Behunin, A. L. Lentine, and P. T. Rakich, “Resonantly enhanced nonreciprocal silicon brillouin amplifier,” Optica 6(9), 1117–1123 (2019).
[Crossref]

E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, and P. T. Rakich, “Non-reciprocal interband brillouin modulation,” Nat. Photonics 12(10), 613–619 (2018).
[Crossref]

N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon brillouin laser,” Science 360(6393), 1113–1116 (2018).
[Crossref]

E. A. Kittlaus, W. M. Jones, P. T. Rakich, N. T. Otterstrom, R. E. Muller, and M. Rais-Zadeh, “Electrically-driven acousto-optics and broadband non-reciprocity in silicon photonics,” arXiv e-prints p. 2004.01270 (2020).

Kityk, A. V.

A. S. Andrushchak, B. G. Mytsyk, H. P. Laba, O. V. Yurkevych, I. M. Solskii, A. V. Kityk, and B. Sahraoui, “Complete sets of elastic constants and photoelastic coefficients of pure and MgO-doped lithium niobate crystals at room temperature,” J. Appl. Phys. 106(7), 073510 (2009).
[Crossref]

Koke, S.

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4(7), 462–465 (2010).
[Crossref]

Kowalski, F. V.

P. D. Hale and F. V. Kowalski, “Output characterization of a frequency shifted feedback laser: theory and experiment,” IEEE J. Quantum Electron. 26(10), 1845–1851 (1990).
[Crossref]

F. V. Kowalski, J. A. Squier, and J. T. Pinckney, “Pulse generation with an acousto-optic frequency shifter in a passive cavity,” Appl. Phys. Lett. 50(12), 711–713 (1987).
[Crossref]

Kuzyk, M. C.

J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal brillouin scattering induced transparency,” Nat. Phys. 11(3), 275–280 (2015).
[Crossref]

C. Dong, V. Fiore, M. C. Kuzyk, L. Tian, and H. Wang, “Optical wavelength conversion via optomechanical coupling in a silica resonator,” Ann. Phys. 527(1-2), 100–106 (2015).
[Crossref]

Laba, H. P.

A. S. Andrushchak, B. G. Mytsyk, H. P. Laba, O. V. Yurkevych, I. M. Solskii, A. V. Kityk, and B. Sahraoui, “Complete sets of elastic constants and photoelastic coefficients of pure and MgO-doped lithium niobate crystals at room temperature,” J. Appl. Phys. 106(7), 073510 (2009).
[Crossref]

Lacot, E.

H. Guillet de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “Theory of talbot lasers,” Phys. Rev. A 88(3), 033828 (2013).
[Crossref]

Lai, K.

L. Shao, S. Maity, L. Zheng, L. Wu, A. Shams-Ansari, Y.-I. Sohn, E. Puma, M. N. Gadalla, M. Zhang, C. Wang, E. Hu, K. Lai, and M. Lončar, “Phononic band structure engineering for high-Q gigahertz surface acoustic wave resonators on lithium niobate,” Phys. Rev. Appl. 12(1), 014022 (2019).
[Crossref]

L. Shao, M. Yu, S. Maity, N. Sinclair, L. Zheng, C. Chia, A. Shams-Ansari, C. Wang, M. Zhang, K. Lai, and M. Lončar, “Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators,” Optica 6(12), 1498–1505 (2019).
[Crossref]

Lee, J.-M.

B.-M. Yu, J.-M. Lee, C. Mai, S. Lischke, L. Zimmermann, and W.-Y. Choi, “Single-chip Si optical single-sideband modulator,” Photonics Res. 6(1), 6–11 (2018).
[Crossref]

Lehtonen, S.

S. Lehtonen, V. P. Plessky, C. S. Hartmann, and M. M. Salomaa, “Unidirectional SAW transducer for gigahertz frequencies,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 50(11), 1404–1406 (2003).
[Crossref]

Lentine, A. L.

Lepage, G.

T. Spuesens, Y. Li, P. Verheyen, G. Lepage, S. Balakrishnan, P. Absil, and R. Baets, “Integrated optical frequency shifter on a silicon platform,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2016), OSA Technical Digest (2016), p. SF2G.1.

Li, H.

H. Li, Q. Liu, and M. Li, “Electromechanical brillouin scattering in integrated planar photonics,” APL Photonics 4(8), 080802 (2019).
[Crossref]

Q. Liu, H. Li, and M. Li, “Electromechanical brillouin scattering in integrated optomechanical waveguides,” Optica 6(6), 778–785 (2019).
[Crossref]

Li, J.

W. Hao, Y. Dai, F. Yin, Y. Zhou, J. Li, and K. Xu, “Photonic microwave channelization based on frequency shifted feedback laser and delayed coherent detection,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2018), OSA Technical Digest (online), p. JW2A.73.

Li, M.

Q. Liu, H. Li, and M. Li, “Electromechanical brillouin scattering in integrated optomechanical waveguides,” Optica 6(6), 778–785 (2019).
[Crossref]

H. Li, Q. Liu, and M. Li, “Electromechanical brillouin scattering in integrated planar photonics,” APL Photonics 4(8), 080802 (2019).
[Crossref]

Li, Y.

T. Spuesens, Y. Li, P. Verheyen, G. Lepage, S. Balakrishnan, P. Absil, and R. Baets, “Integrated optical frequency shifter on a silicon platform,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2016), OSA Technical Digest (2016), p. SF2G.1.

Liang, H.

Liang, W.

Lin, Q.

Lipson, M.

S. F. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nat. Photonics 1(5), 293–296 (2007).
[Crossref]

Lischke, S.

B.-M. Yu, J.-M. Lee, C. Mai, S. Lischke, L. Zimmermann, and W.-Y. Choi, “Single-chip Si optical single-sideband modulator,” Photonics Res. 6(1), 6–11 (2018).
[Crossref]

Liu, Q.

Q. Liu, H. Li, and M. Li, “Electromechanical brillouin scattering in integrated optomechanical waveguides,” Optica 6(6), 778–785 (2019).
[Crossref]

H. Li, Q. Liu, and M. Li, “Electromechanical brillouin scattering in integrated planar photonics,” APL Photonics 4(8), 080802 (2019).
[Crossref]

Loncar, M.

Luo, J.

K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk, and O. Painter, “Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering,” Nat. Phys. 13(5), 465–471 (2017).
[Crossref]

Luo, R.

Luther-Davies, B.

Madden, S. J.

Mahmoud, A.

L. Cai, A. Mahmoud, M. Khan, M. Mahmoud, T. Mukherjee, J. Bain, and G. Piazza, “Acousto-optical modulation of thin film lithium niobate waveguide devices,” Photonics Res. 7(9), 1003–1013 (2019).
[Crossref]

Mahmoud, M.

L. Cai, A. Mahmoud, M. Khan, M. Mahmoud, T. Mukherjee, J. Bain, and G. Piazza, “Acousto-optical modulation of thin film lithium niobate waveguide devices,” Photonics Res. 7(9), 1003–1013 (2019).
[Crossref]

Mai, C.

B.-M. Yu, J.-M. Lee, C. Mai, S. Lischke, L. Zimmermann, and W.-Y. Choi, “Single-chip Si optical single-sideband modulator,” Photonics Res. 6(1), 6–11 (2018).
[Crossref]

Maity, S.

L. Shao, S. Maity, L. Zheng, L. Wu, A. Shams-Ansari, Y.-I. Sohn, E. Puma, M. N. Gadalla, M. Zhang, C. Wang, E. Hu, K. Lai, and M. Lončar, “Phononic band structure engineering for high-Q gigahertz surface acoustic wave resonators on lithium niobate,” Phys. Rev. Appl. 12(1), 014022 (2019).
[Crossref]

L. Shao, M. Yu, S. Maity, N. Sinclair, L. Zheng, C. Chia, A. Shams-Ansari, C. Wang, M. Zhang, K. Lai, and M. Lončar, “Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators,” Optica 6(12), 1498–1505 (2019).
[Crossref]

Maleki, L.

Marpaung, D.

Marquardt, F.

K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk, and O. Painter, “Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering,” Nat. Phys. 13(5), 465–471 (2017).
[Crossref]

Matheny, M. H.

K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk, and O. Painter, “Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering,” Nat. Phys. 13(5), 465–471 (2017).
[Crossref]

Matsko, A. B.

Mayor, F. M.

W. Jiang, C. J. Sarabalis, Y. D. Dahmani, R. N. Patel, F. M. Mayor, T. P. McKenna, R. Van Laer, and A. H. Safavi-Naeini, “Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency,” Nat. Commun. 11(1), 1166 (2020).
[Crossref]

W. Jiang, R. N. Patel, F. M. Mayor, T. P. McKenna, P. Arrangoiz-Arriola, C. J. Sarabalis, J. D. Witmer, R. Van Laer, and A. H. Safavi-Naeini, “Lithium niobate piezo-optomechanical crystals,” Optica 6(7), 845–853 (2019).
[Crossref]

McKenna, T. P.

W. Jiang, C. J. Sarabalis, Y. D. Dahmani, R. N. Patel, F. M. Mayor, T. P. McKenna, R. Van Laer, and A. H. Safavi-Naeini, “Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency,” Nat. Commun. 11(1), 1166 (2020).
[Crossref]

W. Jiang, R. N. Patel, F. M. Mayor, T. P. McKenna, P. Arrangoiz-Arriola, C. J. Sarabalis, J. D. Witmer, R. Van Laer, and A. H. Safavi-Naeini, “Lithium niobate piezo-optomechanical crystals,” Optica 6(7), 845–853 (2019).
[Crossref]

Metelmann, A.

K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk, and O. Painter, “Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering,” Nat. Phys. 13(5), 465–471 (2017).
[Crossref]

Mitchell, A.

G. Ren, T. G. Nguyen, and A. Mitchell, “Gaussian beams on a silicon-on-insulator chip using integrated optical lenses,” IEEE Photonics Technol. Lett. 26(14), 1438–1441 (2014).
[Crossref]

Miyahara, T.

K. Nakamura, T. Hara, M. Yoshida, T. Miyahara, and H. Ito, “Optical frequency domain ranging by a frequency-shifted feedback laser,” IEEE J. Quantum Electron. 36(3), 305–316 (2000).
[Crossref]

Morrison, B.

Mukherjee, T.

L. Cai, A. Mahmoud, M. Khan, M. Mahmoud, T. Mukherjee, J. Bain, and G. Piazza, “Acousto-optical modulation of thin film lithium niobate waveguide devices,” Photonics Res. 7(9), 1003–1013 (2019).
[Crossref]

Muller, R. E.

E. A. Kittlaus, W. M. Jones, P. T. Rakich, N. T. Otterstrom, R. E. Muller, and M. Rais-Zadeh, “Electrically-driven acousto-optics and broadband non-reciprocity in silicon photonics,” arXiv e-prints p. 2004.01270 (2020).

Müller, H.

Mytsyk, B. G.

A. S. Andrushchak, B. G. Mytsyk, H. P. Laba, O. V. Yurkevych, I. M. Solskii, A. V. Kityk, and B. Sahraoui, “Complete sets of elastic constants and photoelastic coefficients of pure and MgO-doped lithium niobate crystals at room temperature,” J. Appl. Phys. 106(7), 073510 (2009).
[Crossref]

Nagata, H.

K. Higuma, S. Oikawa, Y. Hashimoto, H. Nagata, and M. Izutsu, “X-cut lithium niobate optical single-sideband modulator,” Electron. Lett. 37(8), 515–516 (2001).
[Crossref]

Nakajima, H.

Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, “High extinction-ratio integrated Mach–Zehnder modulator with active y-branch for optical ssb signal generation,” IEEE Photonics Technol. Lett. 22(12), 941–943 (2010).
[Crossref]

Nakajima, S.

Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, “High extinction-ratio integrated Mach–Zehnder modulator with active y-branch for optical ssb signal generation,” IEEE Photonics Technol. Lett. 22(12), 941–943 (2010).
[Crossref]

Nakamura, K.

K. Nakamura, T. Hara, M. Yoshida, T. Miyahara, and H. Ito, “Optical frequency domain ranging by a frequency-shifted feedback laser,” IEEE J. Quantum Electron. 36(3), 305–316 (2000).
[Crossref]

Nelson, K. D.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

Nguyen, T. G.

G. Ren, T. G. Nguyen, and A. Mitchell, “Gaussian beams on a silicon-on-insulator chip using integrated optical lenses,” IEEE Photonics Technol. Lett. 26(14), 1438–1441 (2014).
[Crossref]

Nithyanandan, K.

V. Durán, H. G. d. Chatellus, C. Schnébelin, K. Nithyanandan, L. Djevarhidjian, J. Clement, and C. R. Fernández-Pousa, “Optical frequency combs generated by acousto-optic frequency-shifting loops,” IEEE Photonics Technol. Lett. 31(23), 1878–1881 (2019).
[Crossref]

Nohava, J.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

Ogiso, Y.

Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, “High extinction-ratio integrated Mach–Zehnder modulator with active y-branch for optical ssb signal generation,” IEEE Photonics Technol. Lett. 22(12), 941–943 (2010).
[Crossref]

Oikawa, S.

K. Higuma, S. Oikawa, Y. Hashimoto, H. Nagata, and M. Izutsu, “X-cut lithium niobate optical single-sideband modulator,” Electron. Lett. 37(8), 515–516 (2001).
[Crossref]

Otterstrom, N. T.

N. T. Otterstrom, E. A. Kittlaus, S. Gertler, R. O. Behunin, A. L. Lentine, and P. T. Rakich, “Resonantly enhanced nonreciprocal silicon brillouin amplifier,” Optica 6(9), 1117–1123 (2019).
[Crossref]

E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, and P. T. Rakich, “Non-reciprocal interband brillouin modulation,” Nat. Photonics 12(10), 613–619 (2018).
[Crossref]

N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon brillouin laser,” Science 360(6393), 1113–1116 (2018).
[Crossref]

E. A. Kittlaus, W. M. Jones, P. T. Rakich, N. T. Otterstrom, R. E. Muller, and M. Rais-Zadeh, “Electrically-driven acousto-optics and broadband non-reciprocity in silicon photonics,” arXiv e-prints p. 2004.01270 (2020).

Ouaftouh, M.

D. Fall, M. Duquennoy, M. Ouaftouh, N. Smagin, B. Piwakowski, and F. Jenot, “Generation of broadband surface acoustic waves using a dual temporal-spatial chirp method,” J. Acoust. Soc. Am. 142(1), EL108–EL112 (2017).
[Crossref]

Pagani, M.

Painter, O.

K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk, and O. Painter, “Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering,” Nat. Phys. 13(5), 465–471 (2017).
[Crossref]

Pant, R.

Patel, R. N.

W. Jiang, C. J. Sarabalis, Y. D. Dahmani, R. N. Patel, F. M. Mayor, T. P. McKenna, R. Van Laer, and A. H. Safavi-Naeini, “Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency,” Nat. Commun. 11(1), 1166 (2020).
[Crossref]

W. Jiang, R. N. Patel, F. M. Mayor, T. P. McKenna, P. Arrangoiz-Arriola, C. J. Sarabalis, J. D. Witmer, R. Van Laer, and A. H. Safavi-Naeini, “Lithium niobate piezo-optomechanical crystals,” Optica 6(7), 845–853 (2019).
[Crossref]

Piazza, G.

L. Cai, A. Mahmoud, M. Khan, M. Mahmoud, T. Mukherjee, J. Bain, and G. Piazza, “Acousto-optical modulation of thin film lithium niobate waveguide devices,” Photonics Res. 7(9), 1003–1013 (2019).
[Crossref]

Pinckney, J. T.

F. V. Kowalski, J. A. Squier, and J. T. Pinckney, “Pulse generation with an acousto-optic frequency shifter in a passive cavity,” Appl. Phys. Lett. 50(12), 711–713 (1987).
[Crossref]

Pinho, C.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

Piwakowski, B.

D. Fall, M. Duquennoy, M. Ouaftouh, N. Smagin, B. Piwakowski, and F. Jenot, “Generation of broadband surface acoustic waves using a dual temporal-spatial chirp method,” J. Acoust. Soc. Am. 142(1), EL108–EL112 (2017).
[Crossref]

Plessky, V. P.

S. Lehtonen, V. P. Plessky, C. S. Hartmann, and M. M. Salomaa, “Unidirectional SAW transducer for gigahertz frequencies,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 50(11), 1404–1406 (2003).
[Crossref]

Poulton, C. G.

B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, and G. Bahl, “Brillouin integrated photonics,” Nat. Photonics 13(10), 664–677 (2019).
[Crossref]

Preble, S. F.

S. F. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nat. Photonics 1(5), 293–296 (2007).
[Crossref]

Puckett, M.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

Puma, E.

L. Shao, S. Maity, L. Zheng, L. Wu, A. Shams-Ansari, Y.-I. Sohn, E. Puma, M. N. Gadalla, M. Zhang, C. Wang, E. Hu, K. Lai, and M. Lončar, “Phononic band structure engineering for high-Q gigahertz surface acoustic wave resonators on lithium niobate,” Phys. Rev. Appl. 12(1), 014022 (2019).
[Crossref]

Qiu, T.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

Rais-Zadeh, M.

E. A. Kittlaus, W. M. Jones, P. T. Rakich, N. T. Otterstrom, R. E. Muller, and M. Rais-Zadeh, “Electrically-driven acousto-optics and broadband non-reciprocity in silicon photonics,” arXiv e-prints p. 2004.01270 (2020).

Rakich, P. T.

N. T. Otterstrom, E. A. Kittlaus, S. Gertler, R. O. Behunin, A. L. Lentine, and P. T. Rakich, “Resonantly enhanced nonreciprocal silicon brillouin amplifier,” Optica 6(9), 1117–1123 (2019).
[Crossref]

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, and G. Bahl, “Brillouin integrated photonics,” Nat. Photonics 13(10), 664–677 (2019).
[Crossref]

N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon brillouin laser,” Science 360(6393), 1113–1116 (2018).
[Crossref]

E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, and P. T. Rakich, “Non-reciprocal interband brillouin modulation,” Nat. Photonics 12(10), 613–619 (2018).
[Crossref]

E. A. Kittlaus, W. M. Jones, P. T. Rakich, N. T. Otterstrom, R. E. Muller, and M. Rais-Zadeh, “Electrically-driven acousto-optics and broadband non-reciprocity in silicon photonics,” arXiv e-prints p. 2004.01270 (2020).

Ren, G.

G. Ren, T. G. Nguyen, and A. Mitchell, “Gaussian beams on a silicon-on-insulator chip using integrated optical lenses,” IEEE Photonics Technol. Lett. 26(14), 1438–1441 (2014).
[Crossref]

Safavi-Naeini, A. H.

W. Jiang, C. J. Sarabalis, Y. D. Dahmani, R. N. Patel, F. M. Mayor, T. P. McKenna, R. Van Laer, and A. H. Safavi-Naeini, “Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency,” Nat. Commun. 11(1), 1166 (2020).
[Crossref]

W. Jiang, R. N. Patel, F. M. Mayor, T. P. McKenna, P. Arrangoiz-Arriola, C. J. Sarabalis, J. D. Witmer, R. Van Laer, and A. H. Safavi-Naeini, “Lithium niobate piezo-optomechanical crystals,” Optica 6(7), 845–853 (2019).
[Crossref]

Sahraoui, B.

A. S. Andrushchak, B. G. Mytsyk, H. P. Laba, O. V. Yurkevych, I. M. Solskii, A. V. Kityk, and B. Sahraoui, “Complete sets of elastic constants and photoelastic coefficients of pure and MgO-doped lithium niobate crystals at room temperature,” J. Appl. Phys. 106(7), 073510 (2009).
[Crossref]

Saleh, B. E.

B. E. Saleh and M. C. Teich, Fundamentals of photonics (John Wiley & Sons, 1991). Chap. 20 Acousto-optics.

Salit, M.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

Salomaa, M. M.

S. Lehtonen, V. P. Plessky, C. S. Hartmann, and M. M. Salomaa, “Unidirectional SAW transducer for gigahertz frequencies,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 50(11), 1404–1406 (2003).
[Crossref]

Sarabalis, C. J.

W. Jiang, C. J. Sarabalis, Y. D. Dahmani, R. N. Patel, F. M. Mayor, T. P. McKenna, R. Van Laer, and A. H. Safavi-Naeini, “Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency,” Nat. Commun. 11(1), 1166 (2020).
[Crossref]

W. Jiang, R. N. Patel, F. M. Mayor, T. P. McKenna, P. Arrangoiz-Arriola, C. J. Sarabalis, J. D. Witmer, R. Van Laer, and A. H. Safavi-Naeini, “Lithium niobate piezo-optomechanical crystals,” Optica 6(7), 845–853 (2019).
[Crossref]

Savage, N.

N. Savage, “Acousto-optic devices,” Nat. Photonics 4(10), 728–729 (2010).
[Crossref]

Savchenkov, A. A.

Schnébelin, C.

V. Durán, H. G. d. Chatellus, C. Schnébelin, K. Nithyanandan, L. Djevarhidjian, J. Clement, and C. R. Fernández-Pousa, “Optical frequency combs generated by acousto-optic frequency-shifting loops,” IEEE Photonics Technol. Lett. 31(23), 1878–1881 (2019).
[Crossref]

V. Durán, C. Schnébelin, and H. Guillet de Chatellus, “Coherent multi-heterodyne spectroscopy using acousto-optic frequency combs,” Opt. Express 26(11), 13800–13809 (2018).
[Crossref]

Seidel, D.

Shams-Ansari, A.

Shao, L.

L. Shao, M. Yu, S. Maity, N. Sinclair, L. Zheng, C. Chia, A. Shams-Ansari, C. Wang, M. Zhang, K. Lai, and M. Lončar, “Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators,” Optica 6(12), 1498–1505 (2019).
[Crossref]

L. Shao, S. Maity, L. Zheng, L. Wu, A. Shams-Ansari, Y.-I. Sohn, E. Puma, M. N. Gadalla, M. Zhang, C. Wang, E. Hu, K. Lai, and M. Lončar, “Phononic band structure engineering for high-Q gigahertz surface acoustic wave resonators on lithium niobate,” Phys. Rev. Appl. 12(1), 014022 (2019).
[Crossref]

Shinada, S.

Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, “High extinction-ratio integrated Mach–Zehnder modulator with active y-branch for optical ssb signal generation,” IEEE Photonics Technol. Lett. 22(12), 941–943 (2010).
[Crossref]

Sinclair, N.

Smagin, N.

D. Fall, M. Duquennoy, M. Ouaftouh, N. Smagin, B. Piwakowski, and F. Jenot, “Generation of broadband surface acoustic waves using a dual temporal-spatial chirp method,” J. Acoust. Soc. Am. 142(1), EL108–EL112 (2017).
[Crossref]

Sohn, D. B.

D. B. Sohn and G. Bahl, “Direction reconfigurable nonreciprocal acousto-optic modulator on chip,” APL Photonics 4(12), 126103 (2019).
[Crossref]

D. B. Sohn, S. Kim, and G. Bahl, “Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits,” Nat. Photonics 12(2), 91–97 (2018).
[Crossref]

Sohn, Y.-I.

L. Shao, S. Maity, L. Zheng, L. Wu, A. Shams-Ansari, Y.-I. Sohn, E. Puma, M. N. Gadalla, M. Zhang, C. Wang, E. Hu, K. Lai, and M. Lončar, “Phononic band structure engineering for high-Q gigahertz surface acoustic wave resonators on lithium niobate,” Phys. Rev. Appl. 12(1), 014022 (2019).
[Crossref]

Solskii, I. M.

A. S. Andrushchak, B. G. Mytsyk, H. P. Laba, O. V. Yurkevych, I. M. Solskii, A. V. Kityk, and B. Sahraoui, “Complete sets of elastic constants and photoelastic coefficients of pure and MgO-doped lithium niobate crystals at room temperature,” J. Appl. Phys. 106(7), 073510 (2009).
[Crossref]

Song, J. D.

K. C. Balram, M. I. Davanco, J. D. Song, and K. Srinivasan, “Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits,” Nat. Photonics 10(5), 346–352 (2016).
[Crossref]

Spuesens, T.

T. Spuesens, Y. Li, P. Verheyen, G. Lepage, S. Balakrishnan, P. Absil, and R. Baets, “Integrated optical frequency shifter on a silicon platform,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2016), OSA Technical Digest (2016), p. SF2G.1.

Squier, J. A.

F. V. Kowalski, J. A. Squier, and J. T. Pinckney, “Pulse generation with an acousto-optic frequency shifter in a passive cavity,” Appl. Phys. Lett. 50(12), 711–713 (1987).
[Crossref]

Srinivasan, K.

K. C. Balram, M. I. Davanco, J. D. Song, and K. Srinivasan, “Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits,” Nat. Photonics 10(5), 346–352 (2016).
[Crossref]

Steel, M. J.

B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, and G. Bahl, “Brillouin integrated photonics,” Nat. Photonics 13(10), 664–677 (2019).
[Crossref]

Steinmeyer, G.

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4(7), 462–465 (2010).
[Crossref]

Tang, H. X.

L. Fan, C.-L. Zou, N. Zhu, and H. X. Tang, “Spectrotemporal shaping of itinerant photons via distributed nanomechanics,” Nat. Photonics 13(5), 323–327 (2019).
[Crossref]

Teich, M. C.

B. E. Saleh and M. C. Teich, Fundamentals of photonics (John Wiley & Sons, 1991). Chap. 20 Acousto-optics.

Tian, L.

C. Dong, V. Fiore, M. C. Kuzyk, L. Tian, and H. Wang, “Optical wavelength conversion via optomechanical coupling in a silica resonator,” Ann. Phys. 527(1-2), 100–106 (2015).
[Crossref]

Tsai, C. S.

Z. Y. Cheng and C. S. Tsai, “Baseband integrated acousto-optic frequency shifter,” Appl. Phys. Lett. 60(1), 12–14 (1992).
[Crossref]

Tsuchiya, Y.

Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, “High extinction-ratio integrated Mach–Zehnder modulator with active y-branch for optical ssb signal generation,” IEEE Photonics Technol. Lett. 22(12), 941–943 (2010).
[Crossref]

Turpin, T. M.

T. M. Turpin, “Spectrum analysis using optical processing,” Proc. IEEE 69(1), 79–92 (1981).
[Crossref]

Van Laer, R.

W. Jiang, C. J. Sarabalis, Y. D. Dahmani, R. N. Patel, F. M. Mayor, T. P. McKenna, R. Van Laer, and A. H. Safavi-Naeini, “Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency,” Nat. Commun. 11(1), 1166 (2020).
[Crossref]

W. Jiang, R. N. Patel, F. M. Mayor, T. P. McKenna, P. Arrangoiz-Arriola, C. J. Sarabalis, J. D. Witmer, R. Van Laer, and A. H. Safavi-Naeini, “Lithium niobate piezo-optomechanical crystals,” Optica 6(7), 845–853 (2019).
[Crossref]

Verheyen, P.

T. Spuesens, Y. Li, P. Verheyen, G. Lepage, S. Balakrishnan, P. Absil, and R. Baets, “Integrated optical frequency shifter on a silicon platform,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2016), OSA Technical Digest (2016), p. SF2G.1.

w. Chiow, S.

Wang, C.

Wang, H.

C. Dong, V. Fiore, M. C. Kuzyk, L. Tian, and H. Wang, “Optical wavelength conversion via optomechanical coupling in a silica resonator,” Ann. Phys. 527(1-2), 100–106 (2015).
[Crossref]

J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal brillouin scattering induced transparency,” Nat. Phys. 11(3), 275–280 (2015).
[Crossref]

Wang, Z.

N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon brillouin laser,” Science 360(6393), 1113–1116 (2018).
[Crossref]

Witmer, J. D.

Wu, J.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

Wu, L.

L. Shao, S. Maity, L. Zheng, L. Wu, A. Shams-Ansari, Y.-I. Sohn, E. Puma, M. N. Gadalla, M. Zhang, C. Wang, E. Hu, K. Lai, and M. Lončar, “Phononic band structure engineering for high-Q gigahertz surface acoustic wave resonators on lithium niobate,” Phys. Rev. Appl. 12(1), 014022 (2019).
[Crossref]

Xu, K.

W. Hao, Y. Dai, F. Yin, Y. Zhou, J. Li, and K. Xu, “Photonic microwave channelization based on frequency shifted feedback laser and delayed coherent detection,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2018), OSA Technical Digest (online), p. JW2A.73.

Xu, Q.

S. F. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nat. Photonics 1(5), 293–296 (2007).
[Crossref]

Yin, F.

W. Hao, Y. Dai, F. Yin, Y. Zhou, J. Li, and K. Xu, “Photonic microwave channelization based on frequency shifted feedback laser and delayed coherent detection,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2018), OSA Technical Digest (online), p. JW2A.73.

Yoshida, M.

K. Nakamura, T. Hara, M. Yoshida, T. Miyahara, and H. Ito, “Optical frequency domain ranging by a frequency-shifted feedback laser,” IEEE J. Quantum Electron. 36(3), 305–316 (2000).
[Crossref]

Yu, B.-M.

B.-M. Yu, J.-M. Lee, C. Mai, S. Lischke, L. Zimmermann, and W.-Y. Choi, “Single-chip Si optical single-sideband modulator,” Photonics Res. 6(1), 6–11 (2018).
[Crossref]

Yu, M.

Yurkevych, O. V.

A. S. Andrushchak, B. G. Mytsyk, H. P. Laba, O. V. Yurkevych, I. M. Solskii, A. V. Kityk, and B. Sahraoui, “Complete sets of elastic constants and photoelastic coefficients of pure and MgO-doped lithium niobate crystals at room temperature,” J. Appl. Phys. 106(7), 073510 (2009).
[Crossref]

Zhang, M.

Zheng, L.

L. Shao, M. Yu, S. Maity, N. Sinclair, L. Zheng, C. Chia, A. Shams-Ansari, C. Wang, M. Zhang, K. Lai, and M. Lončar, “Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators,” Optica 6(12), 1498–1505 (2019).
[Crossref]

L. Shao, S. Maity, L. Zheng, L. Wu, A. Shams-Ansari, Y.-I. Sohn, E. Puma, M. N. Gadalla, M. Zhang, C. Wang, E. Hu, K. Lai, and M. Lončar, “Phononic band structure engineering for high-Q gigahertz surface acoustic wave resonators on lithium niobate,” Phys. Rev. Appl. 12(1), 014022 (2019).
[Crossref]

Zhou, Y.

W. Hao, Y. Dai, F. Yin, Y. Zhou, J. Li, and K. Xu, “Photonic microwave channelization based on frequency shifted feedback laser and delayed coherent detection,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2018), OSA Technical Digest (online), p. JW2A.73.

Zhu, N.

L. Fan, C.-L. Zou, N. Zhu, and H. X. Tang, “Spectrotemporal shaping of itinerant photons via distributed nanomechanics,” Nat. Photonics 13(5), 323–327 (2019).
[Crossref]

Zhu, R.

Zimmermann, L.

B.-M. Yu, J.-M. Lee, C. Mai, S. Lischke, L. Zimmermann, and W.-Y. Choi, “Single-chip Si optical single-sideband modulator,” Photonics Res. 6(1), 6–11 (2018).
[Crossref]

Zou, C.-L.

L. Fan, C.-L. Zou, N. Zhu, and H. X. Tang, “Spectrotemporal shaping of itinerant photons via distributed nanomechanics,” Nat. Photonics 13(5), 323–327 (2019).
[Crossref]

Ann. Phys. (1)

C. Dong, V. Fiore, M. C. Kuzyk, L. Tian, and H. Wang, “Optical wavelength conversion via optomechanical coupling in a silica resonator,” Ann. Phys. 527(1-2), 100–106 (2015).
[Crossref]

APL Photonics (2)

H. Li, Q. Liu, and M. Li, “Electromechanical brillouin scattering in integrated planar photonics,” APL Photonics 4(8), 080802 (2019).
[Crossref]

D. B. Sohn and G. Bahl, “Direction reconfigurable nonreciprocal acousto-optic modulator on chip,” APL Photonics 4(12), 126103 (2019).
[Crossref]

Appl. Phys. Lett. (2)

F. V. Kowalski, J. A. Squier, and J. T. Pinckney, “Pulse generation with an acousto-optic frequency shifter in a passive cavity,” Appl. Phys. Lett. 50(12), 711–713 (1987).
[Crossref]

Z. Y. Cheng and C. S. Tsai, “Baseband integrated acousto-optic frequency shifter,” Appl. Phys. Lett. 60(1), 12–14 (1992).
[Crossref]

Electron. Lett. (1)

K. Higuma, S. Oikawa, Y. Hashimoto, H. Nagata, and M. Izutsu, “X-cut lithium niobate optical single-sideband modulator,” Electron. Lett. 37(8), 515–516 (2001).
[Crossref]

IEEE J. Quantum Electron. (2)

K. Nakamura, T. Hara, M. Yoshida, T. Miyahara, and H. Ito, “Optical frequency domain ranging by a frequency-shifted feedback laser,” IEEE J. Quantum Electron. 36(3), 305–316 (2000).
[Crossref]

P. D. Hale and F. V. Kowalski, “Output characterization of a frequency shifted feedback laser: theory and experiment,” IEEE J. Quantum Electron. 26(10), 1845–1851 (1990).
[Crossref]

IEEE Photonics Technol. Lett. (3)

G. Ren, T. G. Nguyen, and A. Mitchell, “Gaussian beams on a silicon-on-insulator chip using integrated optical lenses,” IEEE Photonics Technol. Lett. 26(14), 1438–1441 (2014).
[Crossref]

Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, “High extinction-ratio integrated Mach–Zehnder modulator with active y-branch for optical ssb signal generation,” IEEE Photonics Technol. Lett. 22(12), 941–943 (2010).
[Crossref]

V. Durán, H. G. d. Chatellus, C. Schnébelin, K. Nithyanandan, L. Djevarhidjian, J. Clement, and C. R. Fernández-Pousa, “Optical frequency combs generated by acousto-optic frequency-shifting loops,” IEEE Photonics Technol. Lett. 31(23), 1878–1881 (2019).
[Crossref]

IEEE Trans. Ultrason., Ferroelect., Freq. Contr. (1)

S. Lehtonen, V. P. Plessky, C. S. Hartmann, and M. M. Salomaa, “Unidirectional SAW transducer for gigahertz frequencies,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 50(11), 1404–1406 (2003).
[Crossref]

J. Acoust. Soc. Am. (1)

D. Fall, M. Duquennoy, M. Ouaftouh, N. Smagin, B. Piwakowski, and F. Jenot, “Generation of broadband surface acoustic waves using a dual temporal-spatial chirp method,” J. Acoust. Soc. Am. 142(1), EL108–EL112 (2017).
[Crossref]

J. Appl. Phys. (1)

A. S. Andrushchak, B. G. Mytsyk, H. P. Laba, O. V. Yurkevych, I. M. Solskii, A. V. Kityk, and B. Sahraoui, “Complete sets of elastic constants and photoelastic coefficients of pure and MgO-doped lithium niobate crystals at room temperature,” J. Appl. Phys. 106(7), 073510 (2009).
[Crossref]

Nat. Commun. (1)

W. Jiang, C. J. Sarabalis, Y. D. Dahmani, R. N. Patel, F. M. Mayor, T. P. McKenna, R. Van Laer, and A. H. Safavi-Naeini, “Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency,” Nat. Commun. 11(1), 1166 (2020).
[Crossref]

Nat. Photonics (9)

B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, and G. Bahl, “Brillouin integrated photonics,” Nat. Photonics 13(10), 664–677 (2019).
[Crossref]

K. C. Balram, M. I. Davanco, J. D. Song, and K. Srinivasan, “Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits,” Nat. Photonics 10(5), 346–352 (2016).
[Crossref]

L. Fan, C.-L. Zou, N. Zhu, and H. X. Tang, “Spectrotemporal shaping of itinerant photons via distributed nanomechanics,” Nat. Photonics 13(5), 323–327 (2019).
[Crossref]

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated brillouin laser,” Nat. Photonics 13(1), 60–67 (2019).
[Crossref]

S. F. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nat. Photonics 1(5), 293–296 (2007).
[Crossref]

D. B. Sohn, S. Kim, and G. Bahl, “Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits,” Nat. Photonics 12(2), 91–97 (2018).
[Crossref]

N. Savage, “Acousto-optic devices,” Nat. Photonics 4(10), 728–729 (2010).
[Crossref]

E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, and P. T. Rakich, “Non-reciprocal interband brillouin modulation,” Nat. Photonics 12(10), 613–619 (2018).
[Crossref]

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4(7), 462–465 (2010).
[Crossref]

Nat. Phys. (2)

K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk, and O. Painter, “Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering,” Nat. Phys. 13(5), 465–471 (2017).
[Crossref]

J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal brillouin scattering induced transparency,” Nat. Phys. 11(3), 275–280 (2015).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Optica (8)

W. Jiang, R. N. Patel, F. M. Mayor, T. P. McKenna, P. Arrangoiz-Arriola, C. J. Sarabalis, J. D. Witmer, R. Van Laer, and A. H. Safavi-Naeini, “Lithium niobate piezo-optomechanical crystals,” Optica 6(7), 845–853 (2019).
[Crossref]

Q. Liu, H. Li, and M. Li, “Electromechanical brillouin scattering in integrated optomechanical waveguides,” Optica 6(6), 778–785 (2019).
[Crossref]

H. Liang, R. Luo, Y. He, H. Jiang, and Q. Lin, “High-quality lithium niobate photonic crystal nanocavities,” Optica 4(10), 1251 (2017).
[Crossref]

L. Shao, M. Yu, S. Maity, N. Sinclair, L. Zheng, C. Chia, A. Shams-Ansari, C. Wang, M. Zhang, K. Lai, and M. Lončar, “Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators,” Optica 6(12), 1498–1505 (2019).
[Crossref]

D. Marpaung, B. Morrison, M. Pagani, R. Pant, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Low-power, chip-based stimulated brillouin scattering microwave photonic filter with ultrahigh selectivity,” Optica 2(2), 76–83 (2015).
[Crossref]

H. Guillet de Chatellus, L. R. Cortés, and J. Azaña, “Optical real-time fourier transformation with kilohertz resolutions,” Optica 3(1), 1–8 (2016).
[Crossref]

N. T. Otterstrom, E. A. Kittlaus, S. Gertler, R. O. Behunin, A. L. Lentine, and P. T. Rakich, “Resonantly enhanced nonreciprocal silicon brillouin amplifier,” Optica 6(9), 1117–1123 (2019).
[Crossref]

B. Desiatov, A. Shams-Ansari, M. Zhang, C. Wang, and M. Lončar, “Ultra-low-loss integrated visible photonics using thin-film lithium niobate,” Optica 6(3), 380–384 (2019).
[Crossref]

Photonics Res. (2)

B.-M. Yu, J.-M. Lee, C. Mai, S. Lischke, L. Zimmermann, and W.-Y. Choi, “Single-chip Si optical single-sideband modulator,” Photonics Res. 6(1), 6–11 (2018).
[Crossref]

L. Cai, A. Mahmoud, M. Khan, M. Mahmoud, T. Mukherjee, J. Bain, and G. Piazza, “Acousto-optical modulation of thin film lithium niobate waveguide devices,” Photonics Res. 7(9), 1003–1013 (2019).
[Crossref]

Phys. Rev. A (1)

H. Guillet de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “Theory of talbot lasers,” Phys. Rev. A 88(3), 033828 (2013).
[Crossref]

Phys. Rev. Appl. (1)

L. Shao, S. Maity, L. Zheng, L. Wu, A. Shams-Ansari, Y.-I. Sohn, E. Puma, M. N. Gadalla, M. Zhang, C. Wang, E. Hu, K. Lai, and M. Lončar, “Phononic band structure engineering for high-Q gigahertz surface acoustic wave resonators on lithium niobate,” Phys. Rev. Appl. 12(1), 014022 (2019).
[Crossref]

Proc. IEEE (1)

T. M. Turpin, “Spectrum analysis using optical processing,” Proc. IEEE 69(1), 79–92 (1981).
[Crossref]

Science (1)

N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon brillouin laser,” Science 360(6393), 1113–1116 (2018).
[Crossref]

Other (4)

W. Hao, Y. Dai, F. Yin, Y. Zhou, J. Li, and K. Xu, “Photonic microwave channelization based on frequency shifted feedback laser and delayed coherent detection,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2018), OSA Technical Digest (online), p. JW2A.73.

B. E. Saleh and M. C. Teich, Fundamentals of photonics (John Wiley & Sons, 1991). Chap. 20 Acousto-optics.

E. A. Kittlaus, W. M. Jones, P. T. Rakich, N. T. Otterstrom, R. E. Muller, and M. Rais-Zadeh, “Electrically-driven acousto-optics and broadband non-reciprocity in silicon photonics,” arXiv e-prints p. 2004.01270 (2020).

T. Spuesens, Y. Li, P. Verheyen, G. Lepage, S. Balakrishnan, P. Absil, and R. Baets, “Integrated optical frequency shifter on a silicon platform,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2016), OSA Technical Digest (2016), p. SF2G.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Thin-film lithium niobate (LN) acousto-optic frequency shifter (AOFS). (a) Schematic of the AOFS. The device is on a LN thin film on a silicon dioxide layer. Input light interacts with the traveling acoustic wave generated by the interdigital transducer (IDT), is partially deflected by the Bragg angle, and is frequency shifted by the acoustic frequency. The LN thin film is X cut, the coordinates for the crystal and device are shown. The input light, the deflected light, and the acoustic wave satisfy energy and momentum matching conditions (Inset). (b) Microscopic image of the fabricated device. Optical waveguides are coupled using lensed fibers and broaden to the acousto-optic region, as indicated by the red dashed lines. A pair of IDTs featuring the same specifications are added for characterizing the microwave-to-acoustic transduction. This image is stitched from two microscopic fields of view. (c) False-colored scanning electron microscopic image of the IDT. The aluminum region is in blue.
Fig. 2.
Fig. 2. Measurements of microwave-to-acoustic transduction and simulations of acousto-optic interactions. (a) Measured reflection $S_{11}$ and transmission $S_{21}$ spectra of an IDT pair. Four acoustic modes (I-IV) are identified in the transmission $S_{21}$ spectrum. (b) Simulated displacement profiles of acoustic modes corresponding to the peaks in the transmission $S_{21}$ spectrum. (c) Calculated refractive index variations of the LN thin film induced by the strain fields of acoustic Mode I. The refractive index variations in all directions are normalized using the same scale. (d)(e) Optical electric field profiles from 3D FDTD simulations of the device (d) without and (e) with the acoustic wave. These profiles show the magnitude of optical electric fields at the center of the LN thin film, which is 400 nm from the top surface. All coordinates used here are the device coordinate.
Fig. 3.
Fig. 3. Measurements of the acousto-optic frequency shifting. (a) Configuration for Stokes frequency shifting and (b) heterodyne measurement of frequency shifted light at Port C. (c) Configuration for anti-Stokes frequency shifting and (d) heterodyne measurement of frequency shifted light at Port D.
Fig. 4.
Fig. 4. Characterization of the LN AOFS. (a) Efficiency of the AOFS for varying microwave driving power. (b) Deflected optical power for different wavelengths of the input light. For measuremnents in (a) and (b), the acoustic frequency is 2.89 GHz. (c) Relative optical power of the frequency-shifted light for varying microwave frequency using the homodyne detection. For measurements in (a) and (c), the input optical wavelength is 1597 nm. Data in Figs. 3 and 4 are measured from the same device.
Fig. 5.
Fig. 5. Optical frequency comb generation using an active frequency shifting loop. The wavelength of the seed laser is 1541 nm. Inset: schematic of the setup for acousto-optic comb generation and magnification of the optical spectrum. The optical spectrum analyzer features a resolution bandwidth of 0.02 nm (2.5 GHz at 1540 nm).
Fig. 6.
Fig. 6. Configuration of the FDTD simulation. The 0.8 $\mu$m lithium niobate layer is on silicon dioxide. The acoustic grating is simulated by a refractive index profile, which is derived from the strain profile of the acoustic wave. The input waveguide is excited by a fundamental TM mode.
Fig. 7.
Fig. 7. Simulated far-field pattern of the light after the acoustic grating. The deflected light propagates at the Bragg angle of $\sin {\theta _B} = 0.3$.
Fig. 8.
Fig. 8. The schematic diagrams of the heterodyne detection. The deflected output light from the device beats with a red-detuned Laser 2 on the photoreceiver and generates microwave signals corresponding to the carrier, the Stoke, and the anti-Stokes light.
Fig. 9.
Fig. 9. The schematic diagrams of the homodyne detection. The deflected output light from the device beats with the input laser on the photoreceiver and generates microwave signals corresponding fundamental and higher order harmonic lights of the AOFS. The signal generator and the real-time spectrum analyzer are used for characterizing nonlinearity, and the network analyzer is used for characterizing the microwave bandwidth of the device.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

sin θ B = K 2   k = λ 2   Λ   n e f f .
w d 2 W sin θ B + w i n ,

Metrics