Abstract

Manipulation of electromagnetic waves from radio to visible wavelengths could lead to technology to investigate unexplored wavebands. However, flexible control of terahertz waves is difficult, because few naturally occurring, appropriate materials and sophisticated optical components exist. We propose a 2.28-µm (0.02λ) ultra-thin terahertz metasurface collimator with a high directivity of 4.6 times (6.6 dB) consisting of 339 pairs of meta-atoms compared with a single terahertz continuous-wave source. The metasurface exhibits an extremely high refractive index of 15.0 and a low reflectance of 15.5% at 3.0 THz, and with Fresnel reflections for naturally occurring dielectric materials with high refractive indices avoided. This metasurface collimator should facilitate ground-breaking applications such as arbitrary phase converters, solid immersion lenses, and cloaking.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. G. Wade, N. Šibalić, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11(1), 40–43 (2017).
    [Crossref]
  2. T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
    [Crossref]
  3. R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y. Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, “Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor,” Science 345(6201), 1145–1149 (2014).
    [Crossref]
  4. S. Bordács, I. Kézsmárki, D. Szaller, L. Demkó, N. Kida, H. Murakawa, Y. Onose, R. Shimano, T. Rõõm, U. Nagel, S. Miyahara, N. Furukawa, and Y. Tokura, “Chirality of matter shows up via spin excitations,” Nat. Phys. 8(10), 734–738 (2012).
    [Crossref]
  5. H. Kanaya, T. Maekawa, S. Suzuki, and M. Asada, “Structure dependence of oscillation characteristics of resonant-tunneling-diode terahertz oscillators associated with intrinsic and extrinsic delay times,” Jpn. J. Appl. Phys. 54(9), 094103 (2015).
    [Crossref]
  6. T. Maekawa, H. Kanaya, S. Suzuki, and M. Asada, “Oscillation up to 1.92 THz in resonant tunneling diode by reduced conduction loss,” Appl. Phys. Express 9(2), 024101 (2016).
    [Crossref]
  7. K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4(1), 2021 (2013).
    [Crossref]
  8. M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23(7), 8462–8475 (2015).
    [Crossref]
  9. K. Fujita, M. Hitaka, A. Ito, T. Edamura, M. Yamanishi, S. Jung, and M. A. Belkin, “Terahertz generation in mid-infrared quantum cascade lasers with a dual-upper-state active region,” Appl. Phys. Lett. 106(25), 251104 (2015).
    [Crossref]
  10. K. Fujita, M. Hitaka, A. Ito, M. Yamanishi, T. Dougakiuchi, and T. Edamura, “Ultra-broadband room-temperature terahertz quantum cascade laser sources based on difference frequency generation,” Opt. Express 24(15), 16357–16365 (2016).
    [Crossref]
  11. K. Fujita, A. Ito, M. Hitaka, T. Dougakiuchi, and T. Edamura, “Low-threshold room-temperature continuous-wave operation of a terahertz difference-frequency quantum cascade laser source,” Appl. Phys. Express 10(8), 082102 (2017).
    [Crossref]
  12. N. Oda, S. Kurashina, M. Miyoshi, K. Doi, T. Ishi, T. Sudou, T. Morimoto, H. Goto, and T. Sasaki, “Microbolometer terahertz focal plane array and camera with improved sensitivity in the sub-terahertz region,” J. Infrared, Millimeter, Terahertz Waves 36(10), 947–960 (2015).
    [Crossref]
  13. D. Suzuki, S. Oda, and Y. Kawano, “A flexible and wearable terahertz scanner,” Nat. Photonics 10(12), 809–813 (2016).
    [Crossref]
  14. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  15. K. Okada, K. Kasagi, N. Oshima, S. Suzuki, and M. Asada, “Resonant-tunneling-diode terahertz oscillator using patch antenna integrated on slot resonator for power radiation,” IEEE Trans. Terahertz Sci. Technol. 5(4), 613–618 (2015).
    [Crossref]
  16. N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
    [Crossref]
  17. Y. Kawano and T. Okamoto, “Macroscopic channel-size effect of nonequilibrium electron distributions in quantum hall conductors,” Phys. Rev. Lett. 95(16), 166801 (2005).
    [Crossref]
  18. Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
    [Crossref]
  19. T. Tani, S. Hakuta, N. Kiyoto, and M. Naya, “Transparent near-infrared reflector metasurface with randomly dispersed silver nanodisks,” Opt. Express 22(8), 9262–9270 (2014).
    [Crossref]
  20. Y. Kishi, M. Nagai, J. C. Young, K. Takano, M. Hangyo, and T. Suzuki, “Terahertz laminated-structure polarizer with high extinction ratio and transmission power,” Appl. Phys. Express 8(3), 032201 (2015).
    [Crossref]
  21. T. Suzuki, M. Sekiya, T. Sato, and Y. Takebayashi, “Negative refractive index metamaterial with high transmission, low reflection, and low loss in the terahertz waveband,” Opt. Express 26(7), 8314–8324 (2018).
    [Crossref]
  22. K. Ishihara and T. Suzuki, “Metamaterial demonstrates both a high refractive index and extremely low reflection in the 0.3-THz band,” J. Infrared, Millimeter, Terahertz Waves 38(9), 1130–1139 (2017).
    [Crossref]
  23. T. Suzuki, R. Ohuchi, K. Ishihara, T. Togashi, and N. Koja, “Proposal and design of an ultrathin gradient lens consisting of metamaterials with high refractive indices and extremely low reflection in the 0.3-THz Band,” Rev. Laser Eng. 44, 116–120 (2016).
  24. R. Ohuchi, K. Ishihara, T. Sato, T. Togashi, and T. Suzuki, “Design of a gradient collimated lens on a thin film with high refractive indices and low reflection,” IEICE Trans. Commun. J100-B, 235–244 (2017).
  25. X. Chen, T. M. Grzegorczyk, B-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70(1), 016608 (2004).
    [Crossref]
  26. T. Koschny, P. Markoš, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68(6), 065602 (2003).
    [Crossref]
  27. C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed. (John Wiley & Sons, 2005).

2018 (1)

2017 (5)

K. Ishihara and T. Suzuki, “Metamaterial demonstrates both a high refractive index and extremely low reflection in the 0.3-THz band,” J. Infrared, Millimeter, Terahertz Waves 38(9), 1130–1139 (2017).
[Crossref]

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

R. Ohuchi, K. Ishihara, T. Sato, T. Togashi, and T. Suzuki, “Design of a gradient collimated lens on a thin film with high refractive indices and low reflection,” IEICE Trans. Commun. J100-B, 235–244 (2017).

C. G. Wade, N. Šibalić, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11(1), 40–43 (2017).
[Crossref]

K. Fujita, A. Ito, M. Hitaka, T. Dougakiuchi, and T. Edamura, “Low-threshold room-temperature continuous-wave operation of a terahertz difference-frequency quantum cascade laser source,” Appl. Phys. Express 10(8), 082102 (2017).
[Crossref]

2016 (5)

K. Fujita, M. Hitaka, A. Ito, M. Yamanishi, T. Dougakiuchi, and T. Edamura, “Ultra-broadband room-temperature terahertz quantum cascade laser sources based on difference frequency generation,” Opt. Express 24(15), 16357–16365 (2016).
[Crossref]

D. Suzuki, S. Oda, and Y. Kawano, “A flexible and wearable terahertz scanner,” Nat. Photonics 10(12), 809–813 (2016).
[Crossref]

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

T. Maekawa, H. Kanaya, S. Suzuki, and M. Asada, “Oscillation up to 1.92 THz in resonant tunneling diode by reduced conduction loss,” Appl. Phys. Express 9(2), 024101 (2016).
[Crossref]

T. Suzuki, R. Ohuchi, K. Ishihara, T. Togashi, and N. Koja, “Proposal and design of an ultrathin gradient lens consisting of metamaterials with high refractive indices and extremely low reflection in the 0.3-THz Band,” Rev. Laser Eng. 44, 116–120 (2016).

2015 (6)

Y. Kishi, M. Nagai, J. C. Young, K. Takano, M. Hangyo, and T. Suzuki, “Terahertz laminated-structure polarizer with high extinction ratio and transmission power,” Appl. Phys. Express 8(3), 032201 (2015).
[Crossref]

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23(7), 8462–8475 (2015).
[Crossref]

K. Fujita, M. Hitaka, A. Ito, T. Edamura, M. Yamanishi, S. Jung, and M. A. Belkin, “Terahertz generation in mid-infrared quantum cascade lasers with a dual-upper-state active region,” Appl. Phys. Lett. 106(25), 251104 (2015).
[Crossref]

K. Okada, K. Kasagi, N. Oshima, S. Suzuki, and M. Asada, “Resonant-tunneling-diode terahertz oscillator using patch antenna integrated on slot resonator for power radiation,” IEEE Trans. Terahertz Sci. Technol. 5(4), 613–618 (2015).
[Crossref]

H. Kanaya, T. Maekawa, S. Suzuki, and M. Asada, “Structure dependence of oscillation characteristics of resonant-tunneling-diode terahertz oscillators associated with intrinsic and extrinsic delay times,” Jpn. J. Appl. Phys. 54(9), 094103 (2015).
[Crossref]

N. Oda, S. Kurashina, M. Miyoshi, K. Doi, T. Ishi, T. Sudou, T. Morimoto, H. Goto, and T. Sasaki, “Microbolometer terahertz focal plane array and camera with improved sensitivity in the sub-terahertz region,” J. Infrared, Millimeter, Terahertz Waves 36(10), 947–960 (2015).
[Crossref]

2014 (2)

R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y. Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, “Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor,” Science 345(6201), 1145–1149 (2014).
[Crossref]

T. Tani, S. Hakuta, N. Kiyoto, and M. Naya, “Transparent near-infrared reflector metasurface with randomly dispersed silver nanodisks,” Opt. Express 22(8), 9262–9270 (2014).
[Crossref]

2013 (1)

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4(1), 2021 (2013).
[Crossref]

2012 (1)

S. Bordács, I. Kézsmárki, D. Szaller, L. Demkó, N. Kida, H. Murakawa, Y. Onose, R. Shimano, T. Rõõm, U. Nagel, S. Miyahara, N. Furukawa, and Y. Tokura, “Chirality of matter shows up via spin excitations,” Nat. Phys. 8(10), 734–738 (2012).
[Crossref]

2010 (1)

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref]

2007 (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

2005 (1)

Y. Kawano and T. Okamoto, “Macroscopic channel-size effect of nonequilibrium electron distributions in quantum hall conductors,” Phys. Rev. Lett. 95(16), 166801 (2005).
[Crossref]

2004 (1)

X. Chen, T. M. Grzegorczyk, B-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70(1), 016608 (2004).
[Crossref]

2003 (1)

T. Koschny, P. Markoš, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68(6), 065602 (2003).
[Crossref]

Adams, C. S.

C. G. Wade, N. Šibalić, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11(1), 40–43 (2017).
[Crossref]

Amann, M. C.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4(1), 2021 (2013).
[Crossref]

Aoki, H.

R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y. Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, “Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor,” Science 345(6201), 1145–1149 (2014).
[Crossref]

Asada, M.

T. Maekawa, H. Kanaya, S. Suzuki, and M. Asada, “Oscillation up to 1.92 THz in resonant tunneling diode by reduced conduction loss,” Appl. Phys. Express 9(2), 024101 (2016).
[Crossref]

H. Kanaya, T. Maekawa, S. Suzuki, and M. Asada, “Structure dependence of oscillation characteristics of resonant-tunneling-diode terahertz oscillators associated with intrinsic and extrinsic delay times,” Jpn. J. Appl. Phys. 54(9), 094103 (2015).
[Crossref]

K. Okada, K. Kasagi, N. Oshima, S. Suzuki, and M. Asada, “Resonant-tunneling-diode terahertz oscillator using patch antenna integrated on slot resonator for power radiation,” IEEE Trans. Terahertz Sci. Technol. 5(4), 613–618 (2015).
[Crossref]

Bai, Y.

Balanis, C. A.

C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed. (John Wiley & Sons, 2005).

Bandyopadhyay, N.

Belkin, M. A.

K. Fujita, M. Hitaka, A. Ito, T. Edamura, M. Yamanishi, S. Jung, and M. A. Belkin, “Terahertz generation in mid-infrared quantum cascade lasers with a dual-upper-state active region,” Appl. Phys. Lett. 106(25), 251104 (2015).
[Crossref]

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4(1), 2021 (2013).
[Crossref]

Boehm, G.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4(1), 2021 (2013).
[Crossref]

Bordács, S.

S. Bordács, I. Kézsmárki, D. Szaller, L. Demkó, N. Kida, H. Murakawa, Y. Onose, R. Shimano, T. Rõõm, U. Nagel, S. Miyahara, N. Furukawa, and Y. Tokura, “Chirality of matter shows up via spin excitations,” Nat. Phys. 8(10), 734–738 (2012).
[Crossref]

Capasso, F.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref]

Chen, X.

X. Chen, T. M. Grzegorczyk, B-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70(1), 016608 (2004).
[Crossref]

Choutagunta, K.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4(1), 2021 (2013).
[Crossref]

David, S. N.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Davies, A. G.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref]

de Melo, N. R.

C. G. Wade, N. Šibalić, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11(1), 40–43 (2017).
[Crossref]

Demkó, L.

S. Bordács, I. Kézsmárki, D. Szaller, L. Demkó, N. Kida, H. Murakawa, Y. Onose, R. Shimano, T. Rõõm, U. Nagel, S. Miyahara, N. Furukawa, and Y. Tokura, “Chirality of matter shows up via spin excitations,” Nat. Phys. 8(10), 734–738 (2012).
[Crossref]

Demmerle, F.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4(1), 2021 (2013).
[Crossref]

Doi, K.

N. Oda, S. Kurashina, M. Miyoshi, K. Doi, T. Ishi, T. Sudou, T. Morimoto, H. Goto, and T. Sasaki, “Microbolometer terahertz focal plane array and camera with improved sensitivity in the sub-terahertz region,” J. Infrared, Millimeter, Terahertz Waves 36(10), 947–960 (2015).
[Crossref]

Dougakiuchi, T.

K. Fujita, A. Ito, M. Hitaka, T. Dougakiuchi, and T. Edamura, “Low-threshold room-temperature continuous-wave operation of a terahertz difference-frequency quantum cascade laser source,” Appl. Phys. Express 10(8), 082102 (2017).
[Crossref]

K. Fujita, M. Hitaka, A. Ito, M. Yamanishi, T. Dougakiuchi, and T. Edamura, “Ultra-broadband room-temperature terahertz quantum cascade laser sources based on difference frequency generation,” Opt. Express 24(15), 16357–16365 (2016).
[Crossref]

Ducournau, G.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Edamura, T.

K. Fujita, A. Ito, M. Hitaka, T. Dougakiuchi, and T. Edamura, “Low-threshold room-temperature continuous-wave operation of a terahertz difference-frequency quantum cascade laser source,” Appl. Phys. Express 10(8), 082102 (2017).
[Crossref]

K. Fujita, M. Hitaka, A. Ito, M. Yamanishi, T. Dougakiuchi, and T. Edamura, “Ultra-broadband room-temperature terahertz quantum cascade laser sources based on difference frequency generation,” Opt. Express 24(15), 16357–16365 (2016).
[Crossref]

K. Fujita, M. Hitaka, A. Ito, T. Edamura, M. Yamanishi, S. Jung, and M. A. Belkin, “Terahertz generation in mid-infrared quantum cascade lasers with a dual-upper-state active region,” Appl. Phys. Lett. 106(25), 251104 (2015).
[Crossref]

Fan, J. A.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref]

Fujita, H.

R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y. Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, “Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor,” Science 345(6201), 1145–1149 (2014).
[Crossref]

Fujita, K.

K. Fujita, A. Ito, M. Hitaka, T. Dougakiuchi, and T. Edamura, “Low-threshold room-temperature continuous-wave operation of a terahertz difference-frequency quantum cascade laser source,” Appl. Phys. Express 10(8), 082102 (2017).
[Crossref]

K. Fujita, M. Hitaka, A. Ito, M. Yamanishi, T. Dougakiuchi, and T. Edamura, “Ultra-broadband room-temperature terahertz quantum cascade laser sources based on difference frequency generation,” Opt. Express 24(15), 16357–16365 (2016).
[Crossref]

K. Fujita, M. Hitaka, A. Ito, T. Edamura, M. Yamanishi, S. Jung, and M. A. Belkin, “Terahertz generation in mid-infrared quantum cascade lasers with a dual-upper-state active region,” Appl. Phys. Lett. 106(25), 251104 (2015).
[Crossref]

Furukawa, N.

S. Bordács, I. Kézsmárki, D. Szaller, L. Demkó, N. Kida, H. Murakawa, Y. Onose, R. Shimano, T. Rõõm, U. Nagel, S. Miyahara, N. Furukawa, and Y. Tokura, “Chirality of matter shows up via spin excitations,” Nat. Phys. 8(10), 734–738 (2012).
[Crossref]

Goto, H.

N. Oda, S. Kurashina, M. Miyoshi, K. Doi, T. Ishi, T. Sudou, T. Morimoto, H. Goto, and T. Sasaki, “Microbolometer terahertz focal plane array and camera with improved sensitivity in the sub-terahertz region,” J. Infrared, Millimeter, Terahertz Waves 36(10), 947–960 (2015).
[Crossref]

Grzegorczyk, T. M.

X. Chen, T. M. Grzegorczyk, B-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70(1), 016608 (2004).
[Crossref]

Hakuta, S.

Hangyo, M.

Y. Kishi, M. Nagai, J. C. Young, K. Takano, M. Hangyo, and T. Suzuki, “Terahertz laminated-structure polarizer with high extinction ratio and transmission power,” Appl. Phys. Express 8(3), 032201 (2015).
[Crossref]

Heydari, D.

Hitaka, M.

K. Fujita, A. Ito, M. Hitaka, T. Dougakiuchi, and T. Edamura, “Low-threshold room-temperature continuous-wave operation of a terahertz difference-frequency quantum cascade laser source,” Appl. Phys. Express 10(8), 082102 (2017).
[Crossref]

K. Fujita, M. Hitaka, A. Ito, M. Yamanishi, T. Dougakiuchi, and T. Edamura, “Ultra-broadband room-temperature terahertz quantum cascade laser sources based on difference frequency generation,” Opt. Express 24(15), 16357–16365 (2016).
[Crossref]

K. Fujita, M. Hitaka, A. Ito, T. Edamura, M. Yamanishi, S. Jung, and M. A. Belkin, “Terahertz generation in mid-infrared quantum cascade lasers with a dual-upper-state active region,” Appl. Phys. Lett. 106(25), 251104 (2015).
[Crossref]

Ishi, T.

N. Oda, S. Kurashina, M. Miyoshi, K. Doi, T. Ishi, T. Sudou, T. Morimoto, H. Goto, and T. Sasaki, “Microbolometer terahertz focal plane array and camera with improved sensitivity in the sub-terahertz region,” J. Infrared, Millimeter, Terahertz Waves 36(10), 947–960 (2015).
[Crossref]

Ishihara, K.

K. Ishihara and T. Suzuki, “Metamaterial demonstrates both a high refractive index and extremely low reflection in the 0.3-THz band,” J. Infrared, Millimeter, Terahertz Waves 38(9), 1130–1139 (2017).
[Crossref]

R. Ohuchi, K. Ishihara, T. Sato, T. Togashi, and T. Suzuki, “Design of a gradient collimated lens on a thin film with high refractive indices and low reflection,” IEICE Trans. Commun. J100-B, 235–244 (2017).

T. Suzuki, R. Ohuchi, K. Ishihara, T. Togashi, and N. Koja, “Proposal and design of an ultrathin gradient lens consisting of metamaterials with high refractive indices and extremely low reflection in the 0.3-THz Band,” Rev. Laser Eng. 44, 116–120 (2016).

Ito, A.

K. Fujita, A. Ito, M. Hitaka, T. Dougakiuchi, and T. Edamura, “Low-threshold room-temperature continuous-wave operation of a terahertz difference-frequency quantum cascade laser source,” Appl. Phys. Express 10(8), 082102 (2017).
[Crossref]

K. Fujita, M. Hitaka, A. Ito, M. Yamanishi, T. Dougakiuchi, and T. Edamura, “Ultra-broadband room-temperature terahertz quantum cascade laser sources based on difference frequency generation,” Opt. Express 24(15), 16357–16365 (2016).
[Crossref]

K. Fujita, M. Hitaka, A. Ito, T. Edamura, M. Yamanishi, S. Jung, and M. A. Belkin, “Terahertz generation in mid-infrared quantum cascade lasers with a dual-upper-state active region,” Appl. Phys. Lett. 106(25), 251104 (2015).
[Crossref]

Jang, M.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4(1), 2021 (2013).
[Crossref]

Jiang, A.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4(1), 2021 (2013).
[Crossref]

Jiang, Y.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4(1), 2021 (2013).
[Crossref]

Jung, S.

K. Fujita, M. Hitaka, A. Ito, T. Edamura, M. Yamanishi, S. Jung, and M. A. Belkin, “Terahertz generation in mid-infrared quantum cascade lasers with a dual-upper-state active region,” Appl. Phys. Lett. 106(25), 251104 (2015).
[Crossref]

Kanaya, H.

T. Maekawa, H. Kanaya, S. Suzuki, and M. Asada, “Oscillation up to 1.92 THz in resonant tunneling diode by reduced conduction loss,” Appl. Phys. Express 9(2), 024101 (2016).
[Crossref]

H. Kanaya, T. Maekawa, S. Suzuki, and M. Asada, “Structure dependence of oscillation characteristics of resonant-tunneling-diode terahertz oscillators associated with intrinsic and extrinsic delay times,” Jpn. J. Appl. Phys. 54(9), 094103 (2015).
[Crossref]

Kasagi, K.

K. Okada, K. Kasagi, N. Oshima, S. Suzuki, and M. Asada, “Resonant-tunneling-diode terahertz oscillator using patch antenna integrated on slot resonator for power radiation,” IEEE Trans. Terahertz Sci. Technol. 5(4), 613–618 (2015).
[Crossref]

Kats, M. A.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref]

Kawano, Y.

D. Suzuki, S. Oda, and Y. Kawano, “A flexible and wearable terahertz scanner,” Nat. Photonics 10(12), 809–813 (2016).
[Crossref]

Y. Kawano and T. Okamoto, “Macroscopic channel-size effect of nonequilibrium electron distributions in quantum hall conductors,” Phys. Rev. Lett. 95(16), 166801 (2005).
[Crossref]

Kézsmárki, I.

S. Bordács, I. Kézsmárki, D. Szaller, L. Demkó, N. Kida, H. Murakawa, Y. Onose, R. Shimano, T. Rõõm, U. Nagel, S. Miyahara, N. Furukawa, and Y. Tokura, “Chirality of matter shows up via spin excitations,” Nat. Phys. 8(10), 734–738 (2012).
[Crossref]

Khanna, S. P.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref]

Kida, N.

S. Bordács, I. Kézsmárki, D. Szaller, L. Demkó, N. Kida, H. Murakawa, Y. Onose, R. Shimano, T. Rõõm, U. Nagel, S. Miyahara, N. Furukawa, and Y. Tokura, “Chirality of matter shows up via spin excitations,” Nat. Phys. 8(10), 734–738 (2012).
[Crossref]

Kishi, Y.

Y. Kishi, M. Nagai, J. C. Young, K. Takano, M. Hangyo, and T. Suzuki, “Terahertz laminated-structure polarizer with high extinction ratio and transmission power,” Appl. Phys. Express 8(3), 032201 (2015).
[Crossref]

Kiyoto, N.

Koja, N.

T. Suzuki, R. Ohuchi, K. Ishihara, T. Togashi, and N. Koja, “Proposal and design of an ultrathin gradient lens consisting of metamaterials with high refractive indices and extremely low reflection in the 0.3-THz Band,” Rev. Laser Eng. 44, 116–120 (2016).

Kondo, J. M.

C. G. Wade, N. Šibalić, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11(1), 40–43 (2017).
[Crossref]

Kong, J. A.

X. Chen, T. M. Grzegorczyk, B-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70(1), 016608 (2004).
[Crossref]

Koschny, T.

T. Koschny, P. Markoš, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68(6), 065602 (2003).
[Crossref]

Kurashina, S.

N. Oda, S. Kurashina, M. Miyoshi, K. Doi, T. Ishi, T. Sudou, T. Morimoto, H. Goto, and T. Sasaki, “Microbolometer terahertz focal plane array and camera with improved sensitivity in the sub-terahertz region,” J. Infrared, Millimeter, Terahertz Waves 36(10), 947–960 (2015).
[Crossref]

Li, L.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref]

Linfield, E. H.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref]

Lou, R.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Lu, Q. Y.

Ma, Y.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Maekawa, T.

T. Maekawa, H. Kanaya, S. Suzuki, and M. Asada, “Oscillation up to 1.92 THz in resonant tunneling diode by reduced conduction loss,” Appl. Phys. Express 9(2), 024101 (2016).
[Crossref]

H. Kanaya, T. Maekawa, S. Suzuki, and M. Asada, “Structure dependence of oscillation characteristics of resonant-tunneling-diode terahertz oscillators associated with intrinsic and extrinsic delay times,” Jpn. J. Appl. Phys. 54(9), 094103 (2015).
[Crossref]

Makise, K.

R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y. Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, “Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor,” Science 345(6201), 1145–1149 (2014).
[Crossref]

Markoš, P.

T. Koschny, P. Markoš, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68(6), 065602 (2003).
[Crossref]

Matsunaga, R.

R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y. Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, “Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor,” Science 345(6201), 1145–1149 (2014).
[Crossref]

Miyahara, S.

S. Bordács, I. Kézsmárki, D. Szaller, L. Demkó, N. Kida, H. Murakawa, Y. Onose, R. Shimano, T. Rõõm, U. Nagel, S. Miyahara, N. Furukawa, and Y. Tokura, “Chirality of matter shows up via spin excitations,” Nat. Phys. 8(10), 734–738 (2012).
[Crossref]

Miyoshi, M.

N. Oda, S. Kurashina, M. Miyoshi, K. Doi, T. Ishi, T. Sudou, T. Morimoto, H. Goto, and T. Sasaki, “Microbolometer terahertz focal plane array and camera with improved sensitivity in the sub-terahertz region,” J. Infrared, Millimeter, Terahertz Waves 36(10), 947–960 (2015).
[Crossref]

Morimoto, T.

N. Oda, S. Kurashina, M. Miyoshi, K. Doi, T. Ishi, T. Sudou, T. Morimoto, H. Goto, and T. Sasaki, “Microbolometer terahertz focal plane array and camera with improved sensitivity in the sub-terahertz region,” J. Infrared, Millimeter, Terahertz Waves 36(10), 947–960 (2015).
[Crossref]

Murakawa, H.

S. Bordács, I. Kézsmárki, D. Szaller, L. Demkó, N. Kida, H. Murakawa, Y. Onose, R. Shimano, T. Rõõm, U. Nagel, S. Miyahara, N. Furukawa, and Y. Tokura, “Chirality of matter shows up via spin excitations,” Nat. Phys. 8(10), 734–738 (2012).
[Crossref]

Nagai, M.

Y. Kishi, M. Nagai, J. C. Young, K. Takano, M. Hangyo, and T. Suzuki, “Terahertz laminated-structure polarizer with high extinction ratio and transmission power,” Appl. Phys. Express 8(3), 032201 (2015).
[Crossref]

Nagatsuma, T.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Nagel, U.

S. Bordács, I. Kézsmárki, D. Szaller, L. Demkó, N. Kida, H. Murakawa, Y. Onose, R. Shimano, T. Rõõm, U. Nagel, S. Miyahara, N. Furukawa, and Y. Tokura, “Chirality of matter shows up via spin excitations,” Nat. Phys. 8(10), 734–738 (2012).
[Crossref]

Naya, M.

Oda, N.

N. Oda, S. Kurashina, M. Miyoshi, K. Doi, T. Ishi, T. Sudou, T. Morimoto, H. Goto, and T. Sasaki, “Microbolometer terahertz focal plane array and camera with improved sensitivity in the sub-terahertz region,” J. Infrared, Millimeter, Terahertz Waves 36(10), 947–960 (2015).
[Crossref]

Oda, S.

D. Suzuki, S. Oda, and Y. Kawano, “A flexible and wearable terahertz scanner,” Nat. Photonics 10(12), 809–813 (2016).
[Crossref]

Ohuchi, R.

R. Ohuchi, K. Ishihara, T. Sato, T. Togashi, and T. Suzuki, “Design of a gradient collimated lens on a thin film with high refractive indices and low reflection,” IEICE Trans. Commun. J100-B, 235–244 (2017).

T. Suzuki, R. Ohuchi, K. Ishihara, T. Togashi, and N. Koja, “Proposal and design of an ultrathin gradient lens consisting of metamaterials with high refractive indices and extremely low reflection in the 0.3-THz Band,” Rev. Laser Eng. 44, 116–120 (2016).

Okada, K.

K. Okada, K. Kasagi, N. Oshima, S. Suzuki, and M. Asada, “Resonant-tunneling-diode terahertz oscillator using patch antenna integrated on slot resonator for power radiation,” IEEE Trans. Terahertz Sci. Technol. 5(4), 613–618 (2015).
[Crossref]

Okamoto, T.

Y. Kawano and T. Okamoto, “Macroscopic channel-size effect of nonequilibrium electron distributions in quantum hall conductors,” Phys. Rev. Lett. 95(16), 166801 (2005).
[Crossref]

Onose, Y.

S. Bordács, I. Kézsmárki, D. Szaller, L. Demkó, N. Kida, H. Murakawa, Y. Onose, R. Shimano, T. Rõõm, U. Nagel, S. Miyahara, N. Furukawa, and Y. Tokura, “Chirality of matter shows up via spin excitations,” Nat. Phys. 8(10), 734–738 (2012).
[Crossref]

Oshima, N.

K. Okada, K. Kasagi, N. Oshima, S. Suzuki, and M. Asada, “Resonant-tunneling-diode terahertz oscillator using patch antenna integrated on slot resonator for power radiation,” IEEE Trans. Terahertz Sci. Technol. 5(4), 613–618 (2015).
[Crossref]

Pacheco, J.

X. Chen, T. M. Grzegorczyk, B-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70(1), 016608 (2004).
[Crossref]

Razeghi, M.

Renaud, C. C.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Rõõm, T.

S. Bordács, I. Kézsmárki, D. Szaller, L. Demkó, N. Kida, H. Murakawa, Y. Onose, R. Shimano, T. Rõõm, U. Nagel, S. Miyahara, N. Furukawa, and Y. Tokura, “Chirality of matter shows up via spin excitations,” Nat. Phys. 8(10), 734–738 (2012).
[Crossref]

Sasaki, T.

N. Oda, S. Kurashina, M. Miyoshi, K. Doi, T. Ishi, T. Sudou, T. Morimoto, H. Goto, and T. Sasaki, “Microbolometer terahertz focal plane array and camera with improved sensitivity in the sub-terahertz region,” J. Infrared, Millimeter, Terahertz Waves 36(10), 947–960 (2015).
[Crossref]

Sato, T.

T. Suzuki, M. Sekiya, T. Sato, and Y. Takebayashi, “Negative refractive index metamaterial with high transmission, low reflection, and low loss in the terahertz waveband,” Opt. Express 26(7), 8314–8324 (2018).
[Crossref]

R. Ohuchi, K. Ishihara, T. Sato, T. Togashi, and T. Suzuki, “Design of a gradient collimated lens on a thin film with high refractive indices and low reflection,” IEICE Trans. Commun. J100-B, 235–244 (2017).

Sekiya, M.

Shimano, R.

R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y. Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, “Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor,” Science 345(6201), 1145–1149 (2014).
[Crossref]

S. Bordács, I. Kézsmárki, D. Szaller, L. Demkó, N. Kida, H. Murakawa, Y. Onose, R. Shimano, T. Rõõm, U. Nagel, S. Miyahara, N. Furukawa, and Y. Tokura, “Chirality of matter shows up via spin excitations,” Nat. Phys. 8(10), 734–738 (2012).
[Crossref]

Šibalic, N.

C. G. Wade, N. Šibalić, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11(1), 40–43 (2017).
[Crossref]

Slivken, S.

Smith, D. R.

T. Koschny, P. Markoš, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68(6), 065602 (2003).
[Crossref]

Soukoulis, C. M.

T. Koschny, P. Markoš, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68(6), 065602 (2003).
[Crossref]

Sudou, T.

N. Oda, S. Kurashina, M. Miyoshi, K. Doi, T. Ishi, T. Sudou, T. Morimoto, H. Goto, and T. Sasaki, “Microbolometer terahertz focal plane array and camera with improved sensitivity in the sub-terahertz region,” J. Infrared, Millimeter, Terahertz Waves 36(10), 947–960 (2015).
[Crossref]

Sugioka, A.

R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y. Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, “Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor,” Science 345(6201), 1145–1149 (2014).
[Crossref]

Suzuki, D.

D. Suzuki, S. Oda, and Y. Kawano, “A flexible and wearable terahertz scanner,” Nat. Photonics 10(12), 809–813 (2016).
[Crossref]

Suzuki, S.

T. Maekawa, H. Kanaya, S. Suzuki, and M. Asada, “Oscillation up to 1.92 THz in resonant tunneling diode by reduced conduction loss,” Appl. Phys. Express 9(2), 024101 (2016).
[Crossref]

K. Okada, K. Kasagi, N. Oshima, S. Suzuki, and M. Asada, “Resonant-tunneling-diode terahertz oscillator using patch antenna integrated on slot resonator for power radiation,” IEEE Trans. Terahertz Sci. Technol. 5(4), 613–618 (2015).
[Crossref]

H. Kanaya, T. Maekawa, S. Suzuki, and M. Asada, “Structure dependence of oscillation characteristics of resonant-tunneling-diode terahertz oscillators associated with intrinsic and extrinsic delay times,” Jpn. J. Appl. Phys. 54(9), 094103 (2015).
[Crossref]

Suzuki, T.

T. Suzuki, M. Sekiya, T. Sato, and Y. Takebayashi, “Negative refractive index metamaterial with high transmission, low reflection, and low loss in the terahertz waveband,” Opt. Express 26(7), 8314–8324 (2018).
[Crossref]

R. Ohuchi, K. Ishihara, T. Sato, T. Togashi, and T. Suzuki, “Design of a gradient collimated lens on a thin film with high refractive indices and low reflection,” IEICE Trans. Commun. J100-B, 235–244 (2017).

K. Ishihara and T. Suzuki, “Metamaterial demonstrates both a high refractive index and extremely low reflection in the 0.3-THz band,” J. Infrared, Millimeter, Terahertz Waves 38(9), 1130–1139 (2017).
[Crossref]

T. Suzuki, R. Ohuchi, K. Ishihara, T. Togashi, and N. Koja, “Proposal and design of an ultrathin gradient lens consisting of metamaterials with high refractive indices and extremely low reflection in the 0.3-THz Band,” Rev. Laser Eng. 44, 116–120 (2016).

Y. Kishi, M. Nagai, J. C. Young, K. Takano, M. Hangyo, and T. Suzuki, “Terahertz laminated-structure polarizer with high extinction ratio and transmission power,” Appl. Phys. Express 8(3), 032201 (2015).
[Crossref]

Szaller, D.

S. Bordács, I. Kézsmárki, D. Szaller, L. Demkó, N. Kida, H. Murakawa, Y. Onose, R. Shimano, T. Rõõm, U. Nagel, S. Miyahara, N. Furukawa, and Y. Tokura, “Chirality of matter shows up via spin excitations,” Nat. Phys. 8(10), 734–738 (2012).
[Crossref]

Takano, K.

Y. Kishi, M. Nagai, J. C. Young, K. Takano, M. Hangyo, and T. Suzuki, “Terahertz laminated-structure polarizer with high extinction ratio and transmission power,” Appl. Phys. Express 8(3), 032201 (2015).
[Crossref]

Takebayashi, Y.

Tan, G.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Tani, T.

Terai, H.

R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y. Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, “Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor,” Science 345(6201), 1145–1149 (2014).
[Crossref]

Togashi, T.

R. Ohuchi, K. Ishihara, T. Sato, T. Togashi, and T. Suzuki, “Design of a gradient collimated lens on a thin film with high refractive indices and low reflection,” IEICE Trans. Commun. J100-B, 235–244 (2017).

T. Suzuki, R. Ohuchi, K. Ishihara, T. Togashi, and N. Koja, “Proposal and design of an ultrathin gradient lens consisting of metamaterials with high refractive indices and extremely low reflection in the 0.3-THz Band,” Rev. Laser Eng. 44, 116–120 (2016).

Tokura, Y.

S. Bordács, I. Kézsmárki, D. Szaller, L. Demkó, N. Kida, H. Murakawa, Y. Onose, R. Shimano, T. Rõõm, U. Nagel, S. Miyahara, N. Furukawa, and Y. Tokura, “Chirality of matter shows up via spin excitations,” Nat. Phys. 8(10), 734–738 (2012).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Tsuji, N.

R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y. Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, “Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor,” Science 345(6201), 1145–1149 (2014).
[Crossref]

Uzawa, Y.

R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y. Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, “Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor,” Science 345(6201), 1145–1149 (2014).
[Crossref]

Vijayraghavan, K.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4(1), 2021 (2013).
[Crossref]

Vizbaras, A.

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4(1), 2021 (2013).
[Crossref]

Wade, C. G.

C. G. Wade, N. Šibalić, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11(1), 40–43 (2017).
[Crossref]

Wang, Q. J.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref]

Wang, Z.

R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y. Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, “Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor,” Science 345(6201), 1145–1149 (2014).
[Crossref]

Weatherill, K. J.

C. G. Wade, N. Šibalić, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11(1), 40–43 (2017).
[Crossref]

Wu, B-I.

X. Chen, T. M. Grzegorczyk, B-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70(1), 016608 (2004).
[Crossref]

Yamanishi, M.

K. Fujita, M. Hitaka, A. Ito, M. Yamanishi, T. Dougakiuchi, and T. Edamura, “Ultra-broadband room-temperature terahertz quantum cascade laser sources based on difference frequency generation,” Opt. Express 24(15), 16357–16365 (2016).
[Crossref]

K. Fujita, M. Hitaka, A. Ito, T. Edamura, M. Yamanishi, S. Jung, and M. A. Belkin, “Terahertz generation in mid-infrared quantum cascade lasers with a dual-upper-state active region,” Appl. Phys. Lett. 106(25), 251104 (2015).
[Crossref]

Yang, R.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Yin, X.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Young, J. C.

Y. Kishi, M. Nagai, J. C. Young, K. Takano, M. Hangyo, and T. Suzuki, “Terahertz laminated-structure polarizer with high extinction ratio and transmission power,” Appl. Phys. Express 8(3), 032201 (2015).
[Crossref]

Yu, N.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref]

Zhai, Y.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Zhao, D.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Zhou, W.

Appl. Phys. Express (3)

K. Fujita, A. Ito, M. Hitaka, T. Dougakiuchi, and T. Edamura, “Low-threshold room-temperature continuous-wave operation of a terahertz difference-frequency quantum cascade laser source,” Appl. Phys. Express 10(8), 082102 (2017).
[Crossref]

T. Maekawa, H. Kanaya, S. Suzuki, and M. Asada, “Oscillation up to 1.92 THz in resonant tunneling diode by reduced conduction loss,” Appl. Phys. Express 9(2), 024101 (2016).
[Crossref]

Y. Kishi, M. Nagai, J. C. Young, K. Takano, M. Hangyo, and T. Suzuki, “Terahertz laminated-structure polarizer with high extinction ratio and transmission power,” Appl. Phys. Express 8(3), 032201 (2015).
[Crossref]

Appl. Phys. Lett. (1)

K. Fujita, M. Hitaka, A. Ito, T. Edamura, M. Yamanishi, S. Jung, and M. A. Belkin, “Terahertz generation in mid-infrared quantum cascade lasers with a dual-upper-state active region,” Appl. Phys. Lett. 106(25), 251104 (2015).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

K. Okada, K. Kasagi, N. Oshima, S. Suzuki, and M. Asada, “Resonant-tunneling-diode terahertz oscillator using patch antenna integrated on slot resonator for power radiation,” IEEE Trans. Terahertz Sci. Technol. 5(4), 613–618 (2015).
[Crossref]

IEICE Trans. Commun. (1)

R. Ohuchi, K. Ishihara, T. Sato, T. Togashi, and T. Suzuki, “Design of a gradient collimated lens on a thin film with high refractive indices and low reflection,” IEICE Trans. Commun. J100-B, 235–244 (2017).

J. Infrared, Millimeter, Terahertz Waves (2)

K. Ishihara and T. Suzuki, “Metamaterial demonstrates both a high refractive index and extremely low reflection in the 0.3-THz band,” J. Infrared, Millimeter, Terahertz Waves 38(9), 1130–1139 (2017).
[Crossref]

N. Oda, S. Kurashina, M. Miyoshi, K. Doi, T. Ishi, T. Sudou, T. Morimoto, H. Goto, and T. Sasaki, “Microbolometer terahertz focal plane array and camera with improved sensitivity in the sub-terahertz region,” J. Infrared, Millimeter, Terahertz Waves 36(10), 947–960 (2015).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. Kanaya, T. Maekawa, S. Suzuki, and M. Asada, “Structure dependence of oscillation characteristics of resonant-tunneling-diode terahertz oscillators associated with intrinsic and extrinsic delay times,” Jpn. J. Appl. Phys. 54(9), 094103 (2015).
[Crossref]

Nat. Commun. (1)

K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, “Broadly tunable terahertz generation in mid-infrared quantum cascade lasers,” Nat. Commun. 4(1), 2021 (2013).
[Crossref]

Nat. Mater. (1)

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[Crossref]

Nat. Photonics (4)

C. G. Wade, N. Šibalić, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11(1), 40–43 (2017).
[Crossref]

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

D. Suzuki, S. Oda, and Y. Kawano, “A flexible and wearable terahertz scanner,” Nat. Photonics 10(12), 809–813 (2016).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Nat. Phys. (1)

S. Bordács, I. Kézsmárki, D. Szaller, L. Demkó, N. Kida, H. Murakawa, Y. Onose, R. Shimano, T. Rõõm, U. Nagel, S. Miyahara, N. Furukawa, and Y. Tokura, “Chirality of matter shows up via spin excitations,” Nat. Phys. 8(10), 734–738 (2012).
[Crossref]

Opt. Express (4)

Phys. Rev. E (2)

X. Chen, T. M. Grzegorczyk, B-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70(1), 016608 (2004).
[Crossref]

T. Koschny, P. Markoš, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68(6), 065602 (2003).
[Crossref]

Phys. Rev. Lett. (1)

Y. Kawano and T. Okamoto, “Macroscopic channel-size effect of nonequilibrium electron distributions in quantum hall conductors,” Phys. Rev. Lett. 95(16), 166801 (2005).
[Crossref]

Rev. Laser Eng. (1)

T. Suzuki, R. Ohuchi, K. Ishihara, T. Togashi, and N. Koja, “Proposal and design of an ultrathin gradient lens consisting of metamaterials with high refractive indices and extremely low reflection in the 0.3-THz Band,” Rev. Laser Eng. 44, 116–120 (2016).

Science (2)

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y. Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, “Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor,” Science 345(6201), 1145–1149 (2014).
[Crossref]

Other (1)

C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed. (John Wiley & Sons, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1. (a) Terahertz metasurface ultra-thin collimator for power enhancement and (b) the design model of a single meta-atom extracted from the full structure assuming periodicity.
Fig. 2.
Fig. 2. Real and imaginary parts of complex conductivity for silver with the Drude model.
Fig. 3.
Fig. 3. Contour maps at 3.0 THz for the (a) real and (b) imaginary parts of the refractive indices, (c) reflectance, (d) transmission, and (e) the real part of the normalized wave impedance of a single meta-atom in Fig. 1(b).
Fig. 4.
Fig. 4. Frequency characteristics of the (a) real and imaginary parts of the refractive index, (b) reflectance and transmission, real and imaginary parts of the (c) permittivity, (d) permeability, and (e) the real and imaginary parts of the normalized wave impedance of a single meta-atom in Fig. 1(b).
Fig. 5.
Fig. 5. Contour maps at 3.0 THz for the (a) real and (b) imaginary parts of the refractive indices, (c) reflectance, (d) transmission, and (e) the real part of the normalized wave impedance of an imperfect structure excluding the cut wire on the back from Fig. 1(b).
Fig. 6.
Fig. 6. Frequency characteristics of the (a) real and imaginary parts of the refractive index, (b) reflectance and transmission, real and imaginary parts of the (c) permittivity, (d) permeability, and (e) the real and imaginary parts of the normalized wave impedance of imperfect structure excluding the cut wire on the back from Fig. 1(b).
Fig. 7.
Fig. 7. Contour maps at 3.0 THz for the (a) real and (b) imaginary parts of the refractive indices, (c) reflectance, and (d) transmission with varying misalignments along the x- and y-axes for the 31-µm length cut metal wires with a 2-µm gap.
Fig. 8.
Fig. 8. (a) Terahertz meta-surface ultra-thin collimator performing with an extremely high refractive index and low reflectance for power enhancement in the 3.0-THz band. Distribution maps of (b) refractive indices, (c) reflectance, (d) transmission, and (e) power loss in the collimator arising from the designed meta-atoms.
Fig. 9.
Fig. 9. (a) Three-dimensional phase distribution of an incident terahertz wave in the xy-plane at 3.0 THz. (b) Three-dimensional phase distribution of a terahertz wave propagating through an imperfect collimator excluding cut wires on the back side from the collimator in the xy-plane at 3.0 THz. (c) Three-dimensional phase distribution of a terahertz wave propagating through the collimator consisting of the symmetrically aligned paired cut metal wires on the front and back sides in the xy-plane at 3.0 THz.
Fig. 10.
Fig. 10. (a) One-dimensional distribution of phases at 100 µm from the imperfect collimator with and without the imperfect collimator in the yz- and xz-planes at 3.0 THz. (b) One-dimensional distribution of phases at 100 µm from the collimator with and without the collimator in the yz- and xz-planes at 3.0 THz.
Fig. 11.
Fig. 11. (a) Directivity of the imperfect collimator at 3.0 THz. (b) Directivity of the terahertz meta-surface ultra-thin collimator with extremely high refractive indices and low reflectance for power enhancement at 3.0 THz.
Fig. 12.
Fig. 12. Frequency characteristics of the directivity for the terahertz meta-surface ultra-thin collimator.
Fig. 13.
Fig. 13. Directivity robustness of the terahertz meta-surface ultra-thin collimator with a position on the z-axis.
Fig. 14.
Fig. 14. Directivity robustness with the tilting angles α and β of the terahertz meta-surface ultra-thin collimator in the xy- and xz-planes.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n e f f = Im ( ln { exp [ j n k 0 ( d + 2 t ) ] } ) + 2 m π j Re ( ln { exp [ j n k 0 ( d + 2 t ) ] } ) k 0 ( d + 2 t ) ,
exp{  j n k 0 ( d + 2 t )} =  S 21 1 -  S 11 Z r 1 Z r + 1 ,
Z r = ± [ (1 +  S 11 ) 2 S 2 21 (1 -  S 11 ) 2 S 2 21 ] 1 2 ,
n 1 ( d + 2 t ) +  f = n i ( d + 2 t ) +  f 2 + r 2 ,
n i = n 1 1 d + 2 t ( r 2 + f 2 f ) .

Metrics