Abstract

An optical configuration for Fabry–Pérot cavity scanning using a geometric phase shifter, known as the “spectral drill,” is improved to acquire a spectrum in real-time. Previously, the resonance condition of the spectral drill is swept by the mechanical rotation of a phase plate comprising a geometric phase shifter, and the acquisition time is limited. In this work, using a q-plate and a camera instead of phase plate rotation and a photo detector, we remove all the spinning mechanics and increase the acquisition rate by a factor 720. This technique will be applied to locking laser frequency.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Chu, A. P. Mills, and J. L. Hall, “Measurement of the Positronium 13S1 - 23S1 Interval by Doppler-Free Two-Photon Spectroscopy,” Phys. Rev. Lett. 52(19), 1689–1692 (1984).
    [Crossref]
  2. T. Passerat de Silans, I. Maurin, A. Laliotis, P. Chaves de Souza Segundo, and D. Bloch, “Extra sub-Doppler lines in the vicinity of the third-resonance 6S-8P transition of atomic Cs attributed to optically induced Cs dimers,” Phys. Rev. A 83(4), 043402 (2011).
    [Crossref]
  3. S. Tojo, Y. Murakami, M. Hasuo, and T. Fujimoto, “Attenuated Total Reflection of the Rubidium D2 Line in Optically Dense Vapor,” J. Phys. Soc. Jpn. 72(5), 1069–1072 (2003).
    [Crossref]
  4. P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3(9), 529–533 (2009).
    [Crossref]
  5. B. E. A. Saleh and Malvin Carl Teich, Fundamentals of Photonics2nd edition, Wiley-Interscience (2007).
  6. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford University Press, 1997).
  7. J. V. Ramsay, “A Rapid-Scanning Fabry-Perot Interferometer with Automatic Parallelism Control,” Appl. Opt. 1(4), 411–413 (1962).
    [Crossref]
  8. C. Petridis, I. D. Lindsay, D. J. M. Stothard, and M. Ebrahimzadeh, “Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating,” Rev. Sci. Instrum. 72(10), 3811–3815 (2001).
    [Crossref]
  9. W. Demtroder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer Verlag, 2002).
  10. S. Pancharatnam, “Generalized theory of interference, and its applications:part i. coherent pencils,” Proc. - Indian Acad. Sci., Sect. A 44(5), 247–262 (1956).
    [Crossref]
  11. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings,” Opt. Lett. 27(13), 1141–1143 (2002).
    [Crossref]
  12. G. Biener, A. Niv, V. Kleiner, and E. Hasman, “Formation of helical beams by use of Pancharatnam–Berry phase optical elements,” Opt. Lett. 27(21), 1875–1877 (2002).
    [Crossref]
  13. L. Huang, X. Chen, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012). PMID: 23062196.
    [Crossref]
  14. S. Ohno, “Projection of phase singularities in moiré fringe onto a light field,” Appl. Phys. Lett. 108(25), 251104 (2016).
    [Crossref]
  15. Y.-L. Yang, Z.-H. Ding, K. Wang, L. Wu, and L. Wu, “Full-field optical coherence tomography by achromatic phase shifting with a rotating half-wave plat,” J. Opt. 12(3), 035301 (2010).
    [Crossref]
  16. Y. Kawada, T. Yasuda, and H. Takahashi, “Carrier envelope phase shifter for broadband terahertz pulses,” Opt. Lett. 41(5), 986–989 (2016).
    [Crossref]
  17. S. Ohno, “Spectral drill: a geometrical phase shifter within a fabry-pérot cavity,” OSA Continuum 1(1), 136–144 (2018).
    [Crossref]
  18. L. Marrucci, “The q-plate and its future,” J. Nanophotonics 7(1), 078598 (2013).
    [Crossref]
  19. M. M. Sanchez-Lopez, I. Abella, D. Puerto-Garcia, J. A. Davis, and I. Moreno, “Spectral performance of a zeroorder liquid-crystal polymer commercial q-plate for the generation of vector beams at different wavelengths,” Opt. Laser Technol. 106, 168–176 (2018).
    [Crossref]

2018 (2)

S. Ohno, “Spectral drill: a geometrical phase shifter within a fabry-pérot cavity,” OSA Continuum 1(1), 136–144 (2018).
[Crossref]

M. M. Sanchez-Lopez, I. Abella, D. Puerto-Garcia, J. A. Davis, and I. Moreno, “Spectral performance of a zeroorder liquid-crystal polymer commercial q-plate for the generation of vector beams at different wavelengths,” Opt. Laser Technol. 106, 168–176 (2018).
[Crossref]

2016 (2)

Y. Kawada, T. Yasuda, and H. Takahashi, “Carrier envelope phase shifter for broadband terahertz pulses,” Opt. Lett. 41(5), 986–989 (2016).
[Crossref]

S. Ohno, “Projection of phase singularities in moiré fringe onto a light field,” Appl. Phys. Lett. 108(25), 251104 (2016).
[Crossref]

2013 (1)

L. Marrucci, “The q-plate and its future,” J. Nanophotonics 7(1), 078598 (2013).
[Crossref]

2012 (1)

L. Huang, X. Chen, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012). PMID: 23062196.
[Crossref]

2011 (1)

T. Passerat de Silans, I. Maurin, A. Laliotis, P. Chaves de Souza Segundo, and D. Bloch, “Extra sub-Doppler lines in the vicinity of the third-resonance 6S-8P transition of atomic Cs attributed to optically induced Cs dimers,” Phys. Rev. A 83(4), 043402 (2011).
[Crossref]

2010 (1)

Y.-L. Yang, Z.-H. Ding, K. Wang, L. Wu, and L. Wu, “Full-field optical coherence tomography by achromatic phase shifting with a rotating half-wave plat,” J. Opt. 12(3), 035301 (2010).
[Crossref]

2009 (1)

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3(9), 529–533 (2009).
[Crossref]

2003 (1)

S. Tojo, Y. Murakami, M. Hasuo, and T. Fujimoto, “Attenuated Total Reflection of the Rubidium D2 Line in Optically Dense Vapor,” J. Phys. Soc. Jpn. 72(5), 1069–1072 (2003).
[Crossref]

2002 (2)

2001 (1)

C. Petridis, I. D. Lindsay, D. J. M. Stothard, and M. Ebrahimzadeh, “Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating,” Rev. Sci. Instrum. 72(10), 3811–3815 (2001).
[Crossref]

1984 (1)

S. Chu, A. P. Mills, and J. L. Hall, “Measurement of the Positronium 13S1 - 23S1 Interval by Doppler-Free Two-Photon Spectroscopy,” Phys. Rev. Lett. 52(19), 1689–1692 (1984).
[Crossref]

1962 (1)

1956 (1)

S. Pancharatnam, “Generalized theory of interference, and its applications:part i. coherent pencils,” Proc. - Indian Acad. Sci., Sect. A 44(5), 247–262 (1956).
[Crossref]

Abella, I.

M. M. Sanchez-Lopez, I. Abella, D. Puerto-Garcia, J. A. Davis, and I. Moreno, “Spectral performance of a zeroorder liquid-crystal polymer commercial q-plate for the generation of vector beams at different wavelengths,” Opt. Laser Technol. 106, 168–176 (2018).
[Crossref]

Arcizet, O.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3(9), 529–533 (2009).
[Crossref]

Bai, B.

L. Huang, X. Chen, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012). PMID: 23062196.
[Crossref]

Biener, G.

Bloch, D.

T. Passerat de Silans, I. Maurin, A. Laliotis, P. Chaves de Souza Segundo, and D. Bloch, “Extra sub-Doppler lines in the vicinity of the third-resonance 6S-8P transition of atomic Cs attributed to optically induced Cs dimers,” Phys. Rev. A 83(4), 043402 (2011).
[Crossref]

Bomzon, Z.

Chaves de Souza Segundo, P.

T. Passerat de Silans, I. Maurin, A. Laliotis, P. Chaves de Souza Segundo, and D. Bloch, “Extra sub-Doppler lines in the vicinity of the third-resonance 6S-8P transition of atomic Cs attributed to optically induced Cs dimers,” Phys. Rev. A 83(4), 043402 (2011).
[Crossref]

Chen, X.

L. Huang, X. Chen, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012). PMID: 23062196.
[Crossref]

Chu, S.

S. Chu, A. P. Mills, and J. L. Hall, “Measurement of the Positronium 13S1 - 23S1 Interval by Doppler-Free Two-Photon Spectroscopy,” Phys. Rev. Lett. 52(19), 1689–1692 (1984).
[Crossref]

Davis, J. A.

M. M. Sanchez-Lopez, I. Abella, D. Puerto-Garcia, J. A. Davis, and I. Moreno, “Spectral performance of a zeroorder liquid-crystal polymer commercial q-plate for the generation of vector beams at different wavelengths,” Opt. Laser Technol. 106, 168–176 (2018).
[Crossref]

Del’Haye, P.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3(9), 529–533 (2009).
[Crossref]

Demtroder, W.

W. Demtroder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer Verlag, 2002).

Ding, Z.-H.

Y.-L. Yang, Z.-H. Ding, K. Wang, L. Wu, and L. Wu, “Full-field optical coherence tomography by achromatic phase shifting with a rotating half-wave plat,” J. Opt. 12(3), 035301 (2010).
[Crossref]

Ebrahimzadeh, M.

C. Petridis, I. D. Lindsay, D. J. M. Stothard, and M. Ebrahimzadeh, “Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating,” Rev. Sci. Instrum. 72(10), 3811–3815 (2001).
[Crossref]

Fujimoto, T.

S. Tojo, Y. Murakami, M. Hasuo, and T. Fujimoto, “Attenuated Total Reflection of the Rubidium D2 Line in Optically Dense Vapor,” J. Phys. Soc. Jpn. 72(5), 1069–1072 (2003).
[Crossref]

Gorodetsky, M. L.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3(9), 529–533 (2009).
[Crossref]

Hall, J. L.

S. Chu, A. P. Mills, and J. L. Hall, “Measurement of the Positronium 13S1 - 23S1 Interval by Doppler-Free Two-Photon Spectroscopy,” Phys. Rev. Lett. 52(19), 1689–1692 (1984).
[Crossref]

Hasman, E.

Hasuo, M.

S. Tojo, Y. Murakami, M. Hasuo, and T. Fujimoto, “Attenuated Total Reflection of the Rubidium D2 Line in Optically Dense Vapor,” J. Phys. Soc. Jpn. 72(5), 1069–1072 (2003).
[Crossref]

Holzwarth, R.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3(9), 529–533 (2009).
[Crossref]

Huang, L.

L. Huang, X. Chen, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012). PMID: 23062196.
[Crossref]

Jin, G.

L. Huang, X. Chen, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012). PMID: 23062196.
[Crossref]

Kawada, Y.

Kippenberg, T. J.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3(9), 529–533 (2009).
[Crossref]

Kleiner, V.

Laliotis, A.

T. Passerat de Silans, I. Maurin, A. Laliotis, P. Chaves de Souza Segundo, and D. Bloch, “Extra sub-Doppler lines in the vicinity of the third-resonance 6S-8P transition of atomic Cs attributed to optically induced Cs dimers,” Phys. Rev. A 83(4), 043402 (2011).
[Crossref]

Li, G.

L. Huang, X. Chen, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012). PMID: 23062196.
[Crossref]

Lindsay, I. D.

C. Petridis, I. D. Lindsay, D. J. M. Stothard, and M. Ebrahimzadeh, “Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating,” Rev. Sci. Instrum. 72(10), 3811–3815 (2001).
[Crossref]

Marrucci, L.

L. Marrucci, “The q-plate and its future,” J. Nanophotonics 7(1), 078598 (2013).
[Crossref]

Maurin, I.

T. Passerat de Silans, I. Maurin, A. Laliotis, P. Chaves de Souza Segundo, and D. Bloch, “Extra sub-Doppler lines in the vicinity of the third-resonance 6S-8P transition of atomic Cs attributed to optically induced Cs dimers,” Phys. Rev. A 83(4), 043402 (2011).
[Crossref]

Mills, A. P.

S. Chu, A. P. Mills, and J. L. Hall, “Measurement of the Positronium 13S1 - 23S1 Interval by Doppler-Free Two-Photon Spectroscopy,” Phys. Rev. Lett. 52(19), 1689–1692 (1984).
[Crossref]

Moreno, I.

M. M. Sanchez-Lopez, I. Abella, D. Puerto-Garcia, J. A. Davis, and I. Moreno, “Spectral performance of a zeroorder liquid-crystal polymer commercial q-plate for the generation of vector beams at different wavelengths,” Opt. Laser Technol. 106, 168–176 (2018).
[Crossref]

Muhlenbernd, H.

L. Huang, X. Chen, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012). PMID: 23062196.
[Crossref]

Murakami, Y.

S. Tojo, Y. Murakami, M. Hasuo, and T. Fujimoto, “Attenuated Total Reflection of the Rubidium D2 Line in Optically Dense Vapor,” J. Phys. Soc. Jpn. 72(5), 1069–1072 (2003).
[Crossref]

Niv, A.

Ohno, S.

S. Ohno, “Spectral drill: a geometrical phase shifter within a fabry-pérot cavity,” OSA Continuum 1(1), 136–144 (2018).
[Crossref]

S. Ohno, “Projection of phase singularities in moiré fringe onto a light field,” Appl. Phys. Lett. 108(25), 251104 (2016).
[Crossref]

Pancharatnam, S.

S. Pancharatnam, “Generalized theory of interference, and its applications:part i. coherent pencils,” Proc. - Indian Acad. Sci., Sect. A 44(5), 247–262 (1956).
[Crossref]

Passerat de Silans, T.

T. Passerat de Silans, I. Maurin, A. Laliotis, P. Chaves de Souza Segundo, and D. Bloch, “Extra sub-Doppler lines in the vicinity of the third-resonance 6S-8P transition of atomic Cs attributed to optically induced Cs dimers,” Phys. Rev. A 83(4), 043402 (2011).
[Crossref]

Petridis, C.

C. Petridis, I. D. Lindsay, D. J. M. Stothard, and M. Ebrahimzadeh, “Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating,” Rev. Sci. Instrum. 72(10), 3811–3815 (2001).
[Crossref]

Puerto-Garcia, D.

M. M. Sanchez-Lopez, I. Abella, D. Puerto-Garcia, J. A. Davis, and I. Moreno, “Spectral performance of a zeroorder liquid-crystal polymer commercial q-plate for the generation of vector beams at different wavelengths,” Opt. Laser Technol. 106, 168–176 (2018).
[Crossref]

Ramsay, J. V.

Saleh, B. E. A.

B. E. A. Saleh and Malvin Carl Teich, Fundamentals of Photonics2nd edition, Wiley-Interscience (2007).

Sanchez-Lopez, M. M.

M. M. Sanchez-Lopez, I. Abella, D. Puerto-Garcia, J. A. Davis, and I. Moreno, “Spectral performance of a zeroorder liquid-crystal polymer commercial q-plate for the generation of vector beams at different wavelengths,” Opt. Laser Technol. 106, 168–176 (2018).
[Crossref]

Stothard, D. J. M.

C. Petridis, I. D. Lindsay, D. J. M. Stothard, and M. Ebrahimzadeh, “Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating,” Rev. Sci. Instrum. 72(10), 3811–3815 (2001).
[Crossref]

Takahashi, H.

Tan, Q.

L. Huang, X. Chen, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012). PMID: 23062196.
[Crossref]

Teich, Malvin Carl

B. E. A. Saleh and Malvin Carl Teich, Fundamentals of Photonics2nd edition, Wiley-Interscience (2007).

Tojo, S.

S. Tojo, Y. Murakami, M. Hasuo, and T. Fujimoto, “Attenuated Total Reflection of the Rubidium D2 Line in Optically Dense Vapor,” J. Phys. Soc. Jpn. 72(5), 1069–1072 (2003).
[Crossref]

Wang, K.

Y.-L. Yang, Z.-H. Ding, K. Wang, L. Wu, and L. Wu, “Full-field optical coherence tomography by achromatic phase shifting with a rotating half-wave plat,” J. Opt. 12(3), 035301 (2010).
[Crossref]

Wu, L.

Y.-L. Yang, Z.-H. Ding, K. Wang, L. Wu, and L. Wu, “Full-field optical coherence tomography by achromatic phase shifting with a rotating half-wave plat,” J. Opt. 12(3), 035301 (2010).
[Crossref]

Y.-L. Yang, Z.-H. Ding, K. Wang, L. Wu, and L. Wu, “Full-field optical coherence tomography by achromatic phase shifting with a rotating half-wave plat,” J. Opt. 12(3), 035301 (2010).
[Crossref]

Yang, Y.-L.

Y.-L. Yang, Z.-H. Ding, K. Wang, L. Wu, and L. Wu, “Full-field optical coherence tomography by achromatic phase shifting with a rotating half-wave plat,” J. Opt. 12(3), 035301 (2010).
[Crossref]

Yariv, A.

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford University Press, 1997).

Yasuda, T.

Zentgraf, T.

L. Huang, X. Chen, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012). PMID: 23062196.
[Crossref]

Zhang, S.

L. Huang, X. Chen, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012). PMID: 23062196.
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. Ohno, “Projection of phase singularities in moiré fringe onto a light field,” Appl. Phys. Lett. 108(25), 251104 (2016).
[Crossref]

J. Nanophotonics (1)

L. Marrucci, “The q-plate and its future,” J. Nanophotonics 7(1), 078598 (2013).
[Crossref]

J. Opt. (1)

Y.-L. Yang, Z.-H. Ding, K. Wang, L. Wu, and L. Wu, “Full-field optical coherence tomography by achromatic phase shifting with a rotating half-wave plat,” J. Opt. 12(3), 035301 (2010).
[Crossref]

J. Phys. Soc. Jpn. (1)

S. Tojo, Y. Murakami, M. Hasuo, and T. Fujimoto, “Attenuated Total Reflection of the Rubidium D2 Line in Optically Dense Vapor,” J. Phys. Soc. Jpn. 72(5), 1069–1072 (2003).
[Crossref]

Nano Lett. (1)

L. Huang, X. Chen, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012). PMID: 23062196.
[Crossref]

Nat. Photonics (1)

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3(9), 529–533 (2009).
[Crossref]

Opt. Laser Technol. (1)

M. M. Sanchez-Lopez, I. Abella, D. Puerto-Garcia, J. A. Davis, and I. Moreno, “Spectral performance of a zeroorder liquid-crystal polymer commercial q-plate for the generation of vector beams at different wavelengths,” Opt. Laser Technol. 106, 168–176 (2018).
[Crossref]

Opt. Lett. (3)

OSA Continuum (1)

Phys. Rev. A (1)

T. Passerat de Silans, I. Maurin, A. Laliotis, P. Chaves de Souza Segundo, and D. Bloch, “Extra sub-Doppler lines in the vicinity of the third-resonance 6S-8P transition of atomic Cs attributed to optically induced Cs dimers,” Phys. Rev. A 83(4), 043402 (2011).
[Crossref]

Phys. Rev. Lett. (1)

S. Chu, A. P. Mills, and J. L. Hall, “Measurement of the Positronium 13S1 - 23S1 Interval by Doppler-Free Two-Photon Spectroscopy,” Phys. Rev. Lett. 52(19), 1689–1692 (1984).
[Crossref]

Proc. - Indian Acad. Sci., Sect. A (1)

S. Pancharatnam, “Generalized theory of interference, and its applications:part i. coherent pencils,” Proc. - Indian Acad. Sci., Sect. A 44(5), 247–262 (1956).
[Crossref]

Rev. Sci. Instrum. (1)

C. Petridis, I. D. Lindsay, D. J. M. Stothard, and M. Ebrahimzadeh, “Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating,” Rev. Sci. Instrum. 72(10), 3811–3815 (2001).
[Crossref]

Other (3)

W. Demtroder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer Verlag, 2002).

B. E. A. Saleh and Malvin Carl Teich, Fundamentals of Photonics2nd edition, Wiley-Interscience (2007).

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford University Press, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Concept of a zero-spindle spectral drill—the rotational stage for the half-wave plate and photo detector are respectively replaced with a q-plate and imaging camera [17]; the orientation of the fast axis around the center of the q-plate (m = 1) is depicted in the inset. The fast axis is tilting by α at the position (r, θ).
Fig. 2.
Fig. 2. Experimental setup of a zero-spindle spectral drill—ECDL: external-cavity-diode laser; QWP: quarter-wave plate; M: high-reflectivity mirror.
Fig. 3.
Fig. 3. (a) Acquired image under zero-bias induced to the fine-tunning port of the ECDL, (b–g) Images acquired when the laser frequency was gradually detuned from (a).
Fig. 4.
Fig. 4. Region of interest (ROI) for image analysis.
Fig. 5.
Fig. 5. Frequency dependence of the bright area in the ROI shown in Fig. 4.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I I 0 = [ 1 + 4 R ( 1 R ) 2 sin 2 ( k d + 2 α ) ] 1 ,
I ( r , θ ) = G ( r ) [ 1 + 4 R ( 1 R ) 2 sin 2 ( k d + 2 α ( θ ) ) ] 1 ,

Metrics