Abstract

A digital micromirror device (DMD) based holographic beam steering technique is reported that multiplexes fine-steering binary amplitude gratings with a coarse-steering programmable blazed grating. The angular spatial light modulation (ASLM) technique encodes the spatial pattern of the binary amplitude grating at the same plane as the angular modulation set by a phase map of the DMD-based beam steering technique. The beam steering technique is demonstrated at 532 nm and implemented into a 905 nm lidar system. The results of the lidar system tests are presented, achieving a 44° field-of-view, 0.9°×0.4° (H×V) angular resolution, 1 m max distance, 1.5 kHz sampling, and 7.8 FPS video. Scalability techniques are proposed, including max distance increases to over 100 m.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. I. Artamonov, N. A. Gryaznov, V. I. Kuprenyuk, N. A. Romanov, and E. N. Sosnov, “Selection of scanners for use in lidar systems,” J. Opt. Technol. 83(9), 549–555 (2016).
    [Crossref]
  2. A. Kasturi, V. Milanovic, B. H. Atwood, and J. Yang, “UAV-Borne LiDAR with MEMS Mirror Based Scanning Capability,” Proc. SPIE 9832, 98320M (2016).
    [Crossref]
  3. J. Greivenkamp, Field Guide to Geometrical Optics (SPIE, 2004).
  4. P. McManamon, Field Guide to Lidar (SPIE, 2015).
  5. Mirrorcle Technologies, Inc., “Mirrorcle Technologies MEMS Mirrors – Technical Overview,” https://www.mirrorcletech.com/pdf/Mirrorcle%20Technologies%20MEMS%20Mirrors%20-%20Technical%20Overview.pdf
  6. M. Reicherter, T. Haist, E. Wagemann, and H. Tiziani, “Optical particle trapping with computer-generated holograms written on liquid-crystal display,” Opt. Lett. 24(9), 608–610 (1999).
    [Crossref]
  7. C. Schmitz, S. Joachim, and J. Curtis, “High-precision steering of multiple holographic optical traps,” Opt. Express 13(21), 8678–8685 (2005).
    [Crossref]
  8. E. Marom and N. Konforti, “Dynamic optical interconnects,” Opt. Lett. 12(7), 539–541 (1987).
    [Crossref]
  9. D. C. O’Brien, R. J. Mears, and W. A. Crossland, “Dynamic holographic interconnects that use ferroelectric liquid-crystal spatial light modulators,” Appl. Opt. 33(14), 2795–2803 (1994).
    [Crossref]
  10. E. Haellstig, J. Stigwall, M. Lindgren, and L. Sjoqvist, “Laser beam steering and tracking using a liquid crystal spatial light modulator,” Proc. SPIE 5087, 13–23 (2003).
    [Crossref]
  11. D. Engstrom, J. Bengtsson, E. Eriksson, and M. Goksor, “Improved beam steering accuracy of a single beam with a 1D phase-only spatial light modulator,” Opt. Express 16(22), 18275–18287 (2008).
    [Crossref]
  12. Y. Soskind, Field Guide to Diffractive Optics (SPIE, 2011), pp. 48.
  13. J. Kaakkunen, I. Vanttaja, and P. Laakso, “Fast Micromachining Using Spatial Light Modulator and Galvanometer Scanner with Infrared Pulsed Nanosecond Fiber Laser,” J. Laser Micro/Nanoeng. 9(1), 37–41 (2014).
    [Crossref]
  14. G. Thalhammer, R. Bowman, G. Love, M. Padgett, and M. Ritsch-Marte, “Speeding up liquid crystal SLMs using overdrive with phase change reduction,” Opt. Express 21(2), 1779–1797 (2013).
    [Crossref]
  15. P. Ross, “Luminar's Lidar Enters Mass Production,” IEEE Spectrum (2018). https://spectrum.ieee.org/cars-that-think/transportation/sensors/luminars-lidar-enters-mass-production
  16. B. Smith, B. Hellman, A. Gin, A. Espinoza, and Y. Takashima, “Single chip lidar with discrete beam steering by digital micromirror device,” Opt. Express 25(13), 14732–14745 (2017).
    [Crossref]
  17. B. Hellman and Y. Takashima, “Angular and spatial light modulation by single digital micromirror device for multi-image output and nearly-doubled etendue,” Opt. Express 27(15), 21477–21496 (2019).
    [Crossref]
  18. Y. Takekawa, Y. Takashima, and Y. Takaki, “Holographic display having a wide viewing zone using a MEMS SLM without pixel pitch reduction,” Opt. Express 28(5), 7392–7407 (2020).
    [Crossref]
  19. Texas Instrument, Inc., “DLP3000 DLP® 0.3 WVGA Series 220 DMD,” https://media.digikey.com/pdf/Data%20Sheets/Texas%20Instruments%20PDFs/DLP3000.pdf .
  20. M.-C. Park, B.-R. Lee, J.-Y. Son, and O. Chernyshov, “Properties of DMDs for holographic displays,” J. Mod. Opt. 62(19), 1600–1607 (2015).
    [Crossref]
  21. O. Bryngdahl and A. Lohmann, “Single-sideband holography,” J. Opt. Soc. Am. 58(5), 620–624 (1968).
    [Crossref]
  22. T. Yu, “Accelerated aging of the digital micromirror device using full custom electrostatic control,” (Texas Tech University, 2004), https://ttu-ir.tdl.org/handle/2346/20631 .
  23. B. Hellman, A. Gin, B. Smith, Y.-S. Kim, G. Chen, P. Winkler, P. McCann, and Y. Takashima, “Wide-angle MEMS-based imaging lidar by decoupled scan axes,” Appl. Opt. 59(1), 28–37 (2020).
    [Crossref]
  24. M.-C. Amann, T. Bosch, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
    [Crossref]
  25. Laser Components, “Pulsed Laser Diode Module LS-Series,” https://www.lasercomponents.com/fileadmin/user_upload/home/Datasheets/lce/ls-series.pdf .
  26. Laser Components, “High Power Pulsed Laser Diodes 905D3J09-Series,” https://www.lasercomponents.com/fileadmin/user_upload/home/Datasheets/lc-pld/905d3j09.pdf .
  27. D. Leyva, B. Robertson, C. Henderson, T. Wilkinson, D. O’Brien, and G. Faulkner, “Cross-talk analysis in a telecentric adaptive free-space optical relay based on a spatial light modulator,” Appl. Opt. 45(1), 63–75 (2006).
    [Crossref]
  28. Z. Zhang, H. Yang, B. Robertson, M. Redmond, M. Pivnenko, N. Collings, W. Crossland, and D. Chu, “Diffraction based phase compensation method for phase-only liquid crystal on silicon devices in operation,” Appl. Opt. 51(17), 3837–3846 (2012).
    [Crossref]
  29. W. Duncan, T. Bartlett, B. Lee, D. Powell, P. Rancuret, and B. Sawyers, “Dynamic optical filtering in DWDM systems using the DMD,” Solid-State Electron. 46(10), 1583–1585 (2002).
    [Crossref]
  30. D. Benton, “Multiple beam steering using dynamic zone plates on a micromirror array,” Opt. Eng. 57(07), 1 (2018).
    [Crossref]
  31. J. Goodman, Introduction to Fourier Optics, Third Edition (McGraw-Hill, 2004), problems P4.13-15.
  32. Texas Instruments, “Wavelength Transmittance Considerations for DLP DMD Window,” http://www.ti.com/lit/an/dlpa031e/dlpa031e.pdf .
  33. A. D. Rakić, “Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum,” Appl. Opt. 34(22), 4755–4767 (1995).
    [Crossref]
  34. G. Chen, B. Hellman, J. Rodriguez, B. Smith, A. Gin, and Y. Takashima, “Light recycling beam steering on a DMD lidar,” Proc. SPIE 10757, 107570G (2018).
    [Crossref]
  35. M. Hoffmann, I. Papadopoulos, and B. Judkewitz, “Kilohertz binary phase modulator for pulsed laser sources using a digital micromirror device,” Opt. Lett. 43(1), 22–25 (2018).
    [Crossref]
  36. Texas Instruments, “DLP7000 DLP 0.7 XGA 2x LVDS Type A DMD,” http://www.ti.com/lit/ds/symlink/dlp7000.pdf .
  37. Mirrorcle Technologies, Inc., “Mirrorcle Technologies MEMS Mirrors – Technical Overview,” https://www.mirrorcletech.com/pdf/Mirrorcle%20Technologies%20MEMS%20Mirrors%20-%20Technical%20Overview.pdf .
  38. J. Rodriguez, B. Hellman, B. Smith, H. Choi, G. Chen, Y. Kim, D. Kim, and Y. Takashima, “Multi-order Laser Beam Steering with Digital Micro Mirror Device for High-speed LIDARs,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper AW3 K.7.
  39. J. Rodriguez, B. Smith, B. Hellman, and Y. Takashima, “Fast laser beam steering into multiple diffraction orders with a single digital micromirror device for time-of-flight lidar,” Appl. Opt. (to be published).
    [Crossref]
  40. J. Rodriguez, B. Smith, E. Kang, B. Hellman, G. Chen, A. Gin, A. Espinoza, and Y. Takashima, “Beam steering by digital micro-mirror device for multi-beam and single-chip lidar,” Proc. SPIE 10757, 107570F (2018).
    [Crossref]

2020 (2)

2019 (1)

2018 (4)

D. Benton, “Multiple beam steering using dynamic zone plates on a micromirror array,” Opt. Eng. 57(07), 1 (2018).
[Crossref]

G. Chen, B. Hellman, J. Rodriguez, B. Smith, A. Gin, and Y. Takashima, “Light recycling beam steering on a DMD lidar,” Proc. SPIE 10757, 107570G (2018).
[Crossref]

M. Hoffmann, I. Papadopoulos, and B. Judkewitz, “Kilohertz binary phase modulator for pulsed laser sources using a digital micromirror device,” Opt. Lett. 43(1), 22–25 (2018).
[Crossref]

J. Rodriguez, B. Smith, E. Kang, B. Hellman, G. Chen, A. Gin, A. Espinoza, and Y. Takashima, “Beam steering by digital micro-mirror device for multi-beam and single-chip lidar,” Proc. SPIE 10757, 107570F (2018).
[Crossref]

2017 (1)

2016 (2)

S. I. Artamonov, N. A. Gryaznov, V. I. Kuprenyuk, N. A. Romanov, and E. N. Sosnov, “Selection of scanners for use in lidar systems,” J. Opt. Technol. 83(9), 549–555 (2016).
[Crossref]

A. Kasturi, V. Milanovic, B. H. Atwood, and J. Yang, “UAV-Borne LiDAR with MEMS Mirror Based Scanning Capability,” Proc. SPIE 9832, 98320M (2016).
[Crossref]

2015 (1)

M.-C. Park, B.-R. Lee, J.-Y. Son, and O. Chernyshov, “Properties of DMDs for holographic displays,” J. Mod. Opt. 62(19), 1600–1607 (2015).
[Crossref]

2014 (1)

J. Kaakkunen, I. Vanttaja, and P. Laakso, “Fast Micromachining Using Spatial Light Modulator and Galvanometer Scanner with Infrared Pulsed Nanosecond Fiber Laser,” J. Laser Micro/Nanoeng. 9(1), 37–41 (2014).
[Crossref]

2013 (1)

2012 (1)

2008 (1)

2006 (1)

2005 (1)

2003 (1)

E. Haellstig, J. Stigwall, M. Lindgren, and L. Sjoqvist, “Laser beam steering and tracking using a liquid crystal spatial light modulator,” Proc. SPIE 5087, 13–23 (2003).
[Crossref]

2002 (1)

W. Duncan, T. Bartlett, B. Lee, D. Powell, P. Rancuret, and B. Sawyers, “Dynamic optical filtering in DWDM systems using the DMD,” Solid-State Electron. 46(10), 1583–1585 (2002).
[Crossref]

2001 (1)

M.-C. Amann, T. Bosch, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

1999 (1)

1995 (1)

1994 (1)

1987 (1)

1968 (1)

Amann, M.-C.

M.-C. Amann, T. Bosch, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Artamonov, S. I.

Atwood, B. H.

A. Kasturi, V. Milanovic, B. H. Atwood, and J. Yang, “UAV-Borne LiDAR with MEMS Mirror Based Scanning Capability,” Proc. SPIE 9832, 98320M (2016).
[Crossref]

Bartlett, T.

W. Duncan, T. Bartlett, B. Lee, D. Powell, P. Rancuret, and B. Sawyers, “Dynamic optical filtering in DWDM systems using the DMD,” Solid-State Electron. 46(10), 1583–1585 (2002).
[Crossref]

Bengtsson, J.

Benton, D.

D. Benton, “Multiple beam steering using dynamic zone plates on a micromirror array,” Opt. Eng. 57(07), 1 (2018).
[Crossref]

Bosch, T.

M.-C. Amann, T. Bosch, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Bowman, R.

Bryngdahl, O.

Chen, G.

B. Hellman, A. Gin, B. Smith, Y.-S. Kim, G. Chen, P. Winkler, P. McCann, and Y. Takashima, “Wide-angle MEMS-based imaging lidar by decoupled scan axes,” Appl. Opt. 59(1), 28–37 (2020).
[Crossref]

G. Chen, B. Hellman, J. Rodriguez, B. Smith, A. Gin, and Y. Takashima, “Light recycling beam steering on a DMD lidar,” Proc. SPIE 10757, 107570G (2018).
[Crossref]

J. Rodriguez, B. Smith, E. Kang, B. Hellman, G. Chen, A. Gin, A. Espinoza, and Y. Takashima, “Beam steering by digital micro-mirror device for multi-beam and single-chip lidar,” Proc. SPIE 10757, 107570F (2018).
[Crossref]

J. Rodriguez, B. Hellman, B. Smith, H. Choi, G. Chen, Y. Kim, D. Kim, and Y. Takashima, “Multi-order Laser Beam Steering with Digital Micro Mirror Device for High-speed LIDARs,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper AW3 K.7.

Chernyshov, O.

M.-C. Park, B.-R. Lee, J.-Y. Son, and O. Chernyshov, “Properties of DMDs for holographic displays,” J. Mod. Opt. 62(19), 1600–1607 (2015).
[Crossref]

Choi, H.

J. Rodriguez, B. Hellman, B. Smith, H. Choi, G. Chen, Y. Kim, D. Kim, and Y. Takashima, “Multi-order Laser Beam Steering with Digital Micro Mirror Device for High-speed LIDARs,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper AW3 K.7.

Chu, D.

Collings, N.

Crossland, W.

Crossland, W. A.

Curtis, J.

Duncan, W.

W. Duncan, T. Bartlett, B. Lee, D. Powell, P. Rancuret, and B. Sawyers, “Dynamic optical filtering in DWDM systems using the DMD,” Solid-State Electron. 46(10), 1583–1585 (2002).
[Crossref]

Engstrom, D.

Eriksson, E.

Espinoza, A.

J. Rodriguez, B. Smith, E. Kang, B. Hellman, G. Chen, A. Gin, A. Espinoza, and Y. Takashima, “Beam steering by digital micro-mirror device for multi-beam and single-chip lidar,” Proc. SPIE 10757, 107570F (2018).
[Crossref]

B. Smith, B. Hellman, A. Gin, A. Espinoza, and Y. Takashima, “Single chip lidar with discrete beam steering by digital micromirror device,” Opt. Express 25(13), 14732–14745 (2017).
[Crossref]

Faulkner, G.

Gin, A.

B. Hellman, A. Gin, B. Smith, Y.-S. Kim, G. Chen, P. Winkler, P. McCann, and Y. Takashima, “Wide-angle MEMS-based imaging lidar by decoupled scan axes,” Appl. Opt. 59(1), 28–37 (2020).
[Crossref]

J. Rodriguez, B. Smith, E. Kang, B. Hellman, G. Chen, A. Gin, A. Espinoza, and Y. Takashima, “Beam steering by digital micro-mirror device for multi-beam and single-chip lidar,” Proc. SPIE 10757, 107570F (2018).
[Crossref]

G. Chen, B. Hellman, J. Rodriguez, B. Smith, A. Gin, and Y. Takashima, “Light recycling beam steering on a DMD lidar,” Proc. SPIE 10757, 107570G (2018).
[Crossref]

B. Smith, B. Hellman, A. Gin, A. Espinoza, and Y. Takashima, “Single chip lidar with discrete beam steering by digital micromirror device,” Opt. Express 25(13), 14732–14745 (2017).
[Crossref]

Goksor, M.

Goodman, J.

J. Goodman, Introduction to Fourier Optics, Third Edition (McGraw-Hill, 2004), problems P4.13-15.

Greivenkamp, J.

J. Greivenkamp, Field Guide to Geometrical Optics (SPIE, 2004).

Gryaznov, N. A.

Haellstig, E.

E. Haellstig, J. Stigwall, M. Lindgren, and L. Sjoqvist, “Laser beam steering and tracking using a liquid crystal spatial light modulator,” Proc. SPIE 5087, 13–23 (2003).
[Crossref]

Haist, T.

Hellman, B.

B. Hellman, A. Gin, B. Smith, Y.-S. Kim, G. Chen, P. Winkler, P. McCann, and Y. Takashima, “Wide-angle MEMS-based imaging lidar by decoupled scan axes,” Appl. Opt. 59(1), 28–37 (2020).
[Crossref]

B. Hellman and Y. Takashima, “Angular and spatial light modulation by single digital micromirror device for multi-image output and nearly-doubled etendue,” Opt. Express 27(15), 21477–21496 (2019).
[Crossref]

J. Rodriguez, B. Smith, E. Kang, B. Hellman, G. Chen, A. Gin, A. Espinoza, and Y. Takashima, “Beam steering by digital micro-mirror device for multi-beam and single-chip lidar,” Proc. SPIE 10757, 107570F (2018).
[Crossref]

G. Chen, B. Hellman, J. Rodriguez, B. Smith, A. Gin, and Y. Takashima, “Light recycling beam steering on a DMD lidar,” Proc. SPIE 10757, 107570G (2018).
[Crossref]

B. Smith, B. Hellman, A. Gin, A. Espinoza, and Y. Takashima, “Single chip lidar with discrete beam steering by digital micromirror device,” Opt. Express 25(13), 14732–14745 (2017).
[Crossref]

J. Rodriguez, B. Hellman, B. Smith, H. Choi, G. Chen, Y. Kim, D. Kim, and Y. Takashima, “Multi-order Laser Beam Steering with Digital Micro Mirror Device for High-speed LIDARs,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper AW3 K.7.

J. Rodriguez, B. Smith, B. Hellman, and Y. Takashima, “Fast laser beam steering into multiple diffraction orders with a single digital micromirror device for time-of-flight lidar,” Appl. Opt. (to be published).
[Crossref]

Henderson, C.

Hoffmann, M.

Joachim, S.

Judkewitz, B.

Kaakkunen, J.

J. Kaakkunen, I. Vanttaja, and P. Laakso, “Fast Micromachining Using Spatial Light Modulator and Galvanometer Scanner with Infrared Pulsed Nanosecond Fiber Laser,” J. Laser Micro/Nanoeng. 9(1), 37–41 (2014).
[Crossref]

Kang, E.

J. Rodriguez, B. Smith, E. Kang, B. Hellman, G. Chen, A. Gin, A. Espinoza, and Y. Takashima, “Beam steering by digital micro-mirror device for multi-beam and single-chip lidar,” Proc. SPIE 10757, 107570F (2018).
[Crossref]

Kasturi, A.

A. Kasturi, V. Milanovic, B. H. Atwood, and J. Yang, “UAV-Borne LiDAR with MEMS Mirror Based Scanning Capability,” Proc. SPIE 9832, 98320M (2016).
[Crossref]

Kim, D.

J. Rodriguez, B. Hellman, B. Smith, H. Choi, G. Chen, Y. Kim, D. Kim, and Y. Takashima, “Multi-order Laser Beam Steering with Digital Micro Mirror Device for High-speed LIDARs,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper AW3 K.7.

Kim, Y.

J. Rodriguez, B. Hellman, B. Smith, H. Choi, G. Chen, Y. Kim, D. Kim, and Y. Takashima, “Multi-order Laser Beam Steering with Digital Micro Mirror Device for High-speed LIDARs,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper AW3 K.7.

Kim, Y.-S.

Konforti, N.

Kuprenyuk, V. I.

Laakso, P.

J. Kaakkunen, I. Vanttaja, and P. Laakso, “Fast Micromachining Using Spatial Light Modulator and Galvanometer Scanner with Infrared Pulsed Nanosecond Fiber Laser,” J. Laser Micro/Nanoeng. 9(1), 37–41 (2014).
[Crossref]

Lee, B.

W. Duncan, T. Bartlett, B. Lee, D. Powell, P. Rancuret, and B. Sawyers, “Dynamic optical filtering in DWDM systems using the DMD,” Solid-State Electron. 46(10), 1583–1585 (2002).
[Crossref]

Lee, B.-R.

M.-C. Park, B.-R. Lee, J.-Y. Son, and O. Chernyshov, “Properties of DMDs for holographic displays,” J. Mod. Opt. 62(19), 1600–1607 (2015).
[Crossref]

Leyva, D.

Lindgren, M.

E. Haellstig, J. Stigwall, M. Lindgren, and L. Sjoqvist, “Laser beam steering and tracking using a liquid crystal spatial light modulator,” Proc. SPIE 5087, 13–23 (2003).
[Crossref]

Lohmann, A.

Love, G.

Marom, E.

McCann, P.

McManamon, P.

P. McManamon, Field Guide to Lidar (SPIE, 2015).

Mears, R. J.

Milanovic, V.

A. Kasturi, V. Milanovic, B. H. Atwood, and J. Yang, “UAV-Borne LiDAR with MEMS Mirror Based Scanning Capability,” Proc. SPIE 9832, 98320M (2016).
[Crossref]

Myllyla, R.

M.-C. Amann, T. Bosch, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

O’Brien, D.

O’Brien, D. C.

Padgett, M.

Papadopoulos, I.

Park, M.-C.

M.-C. Park, B.-R. Lee, J.-Y. Son, and O. Chernyshov, “Properties of DMDs for holographic displays,” J. Mod. Opt. 62(19), 1600–1607 (2015).
[Crossref]

Pivnenko, M.

Powell, D.

W. Duncan, T. Bartlett, B. Lee, D. Powell, P. Rancuret, and B. Sawyers, “Dynamic optical filtering in DWDM systems using the DMD,” Solid-State Electron. 46(10), 1583–1585 (2002).
[Crossref]

Rakic, A. D.

Rancuret, P.

W. Duncan, T. Bartlett, B. Lee, D. Powell, P. Rancuret, and B. Sawyers, “Dynamic optical filtering in DWDM systems using the DMD,” Solid-State Electron. 46(10), 1583–1585 (2002).
[Crossref]

Redmond, M.

Reicherter, M.

Rioux, M.

M.-C. Amann, T. Bosch, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Ritsch-Marte, M.

Robertson, B.

Rodriguez, J.

G. Chen, B. Hellman, J. Rodriguez, B. Smith, A. Gin, and Y. Takashima, “Light recycling beam steering on a DMD lidar,” Proc. SPIE 10757, 107570G (2018).
[Crossref]

J. Rodriguez, B. Smith, E. Kang, B. Hellman, G. Chen, A. Gin, A. Espinoza, and Y. Takashima, “Beam steering by digital micro-mirror device for multi-beam and single-chip lidar,” Proc. SPIE 10757, 107570F (2018).
[Crossref]

J. Rodriguez, B. Smith, B. Hellman, and Y. Takashima, “Fast laser beam steering into multiple diffraction orders with a single digital micromirror device for time-of-flight lidar,” Appl. Opt. (to be published).
[Crossref]

J. Rodriguez, B. Hellman, B. Smith, H. Choi, G. Chen, Y. Kim, D. Kim, and Y. Takashima, “Multi-order Laser Beam Steering with Digital Micro Mirror Device for High-speed LIDARs,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper AW3 K.7.

Romanov, N. A.

Ross, P.

P. Ross, “Luminar's Lidar Enters Mass Production,” IEEE Spectrum (2018). https://spectrum.ieee.org/cars-that-think/transportation/sensors/luminars-lidar-enters-mass-production

Sawyers, B.

W. Duncan, T. Bartlett, B. Lee, D. Powell, P. Rancuret, and B. Sawyers, “Dynamic optical filtering in DWDM systems using the DMD,” Solid-State Electron. 46(10), 1583–1585 (2002).
[Crossref]

Schmitz, C.

Sjoqvist, L.

E. Haellstig, J. Stigwall, M. Lindgren, and L. Sjoqvist, “Laser beam steering and tracking using a liquid crystal spatial light modulator,” Proc. SPIE 5087, 13–23 (2003).
[Crossref]

Smith, B.

B. Hellman, A. Gin, B. Smith, Y.-S. Kim, G. Chen, P. Winkler, P. McCann, and Y. Takashima, “Wide-angle MEMS-based imaging lidar by decoupled scan axes,” Appl. Opt. 59(1), 28–37 (2020).
[Crossref]

G. Chen, B. Hellman, J. Rodriguez, B. Smith, A. Gin, and Y. Takashima, “Light recycling beam steering on a DMD lidar,” Proc. SPIE 10757, 107570G (2018).
[Crossref]

J. Rodriguez, B. Smith, E. Kang, B. Hellman, G. Chen, A. Gin, A. Espinoza, and Y. Takashima, “Beam steering by digital micro-mirror device for multi-beam and single-chip lidar,” Proc. SPIE 10757, 107570F (2018).
[Crossref]

B. Smith, B. Hellman, A. Gin, A. Espinoza, and Y. Takashima, “Single chip lidar with discrete beam steering by digital micromirror device,” Opt. Express 25(13), 14732–14745 (2017).
[Crossref]

J. Rodriguez, B. Smith, B. Hellman, and Y. Takashima, “Fast laser beam steering into multiple diffraction orders with a single digital micromirror device for time-of-flight lidar,” Appl. Opt. (to be published).
[Crossref]

J. Rodriguez, B. Hellman, B. Smith, H. Choi, G. Chen, Y. Kim, D. Kim, and Y. Takashima, “Multi-order Laser Beam Steering with Digital Micro Mirror Device for High-speed LIDARs,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper AW3 K.7.

Son, J.-Y.

M.-C. Park, B.-R. Lee, J.-Y. Son, and O. Chernyshov, “Properties of DMDs for holographic displays,” J. Mod. Opt. 62(19), 1600–1607 (2015).
[Crossref]

Soskind, Y.

Y. Soskind, Field Guide to Diffractive Optics (SPIE, 2011), pp. 48.

Sosnov, E. N.

Stigwall, J.

E. Haellstig, J. Stigwall, M. Lindgren, and L. Sjoqvist, “Laser beam steering and tracking using a liquid crystal spatial light modulator,” Proc. SPIE 5087, 13–23 (2003).
[Crossref]

Takaki, Y.

Takashima, Y.

Y. Takekawa, Y. Takashima, and Y. Takaki, “Holographic display having a wide viewing zone using a MEMS SLM without pixel pitch reduction,” Opt. Express 28(5), 7392–7407 (2020).
[Crossref]

B. Hellman, A. Gin, B. Smith, Y.-S. Kim, G. Chen, P. Winkler, P. McCann, and Y. Takashima, “Wide-angle MEMS-based imaging lidar by decoupled scan axes,” Appl. Opt. 59(1), 28–37 (2020).
[Crossref]

B. Hellman and Y. Takashima, “Angular and spatial light modulation by single digital micromirror device for multi-image output and nearly-doubled etendue,” Opt. Express 27(15), 21477–21496 (2019).
[Crossref]

G. Chen, B. Hellman, J. Rodriguez, B. Smith, A. Gin, and Y. Takashima, “Light recycling beam steering on a DMD lidar,” Proc. SPIE 10757, 107570G (2018).
[Crossref]

J. Rodriguez, B. Smith, E. Kang, B. Hellman, G. Chen, A. Gin, A. Espinoza, and Y. Takashima, “Beam steering by digital micro-mirror device for multi-beam and single-chip lidar,” Proc. SPIE 10757, 107570F (2018).
[Crossref]

B. Smith, B. Hellman, A. Gin, A. Espinoza, and Y. Takashima, “Single chip lidar with discrete beam steering by digital micromirror device,” Opt. Express 25(13), 14732–14745 (2017).
[Crossref]

J. Rodriguez, B. Smith, B. Hellman, and Y. Takashima, “Fast laser beam steering into multiple diffraction orders with a single digital micromirror device for time-of-flight lidar,” Appl. Opt. (to be published).
[Crossref]

J. Rodriguez, B. Hellman, B. Smith, H. Choi, G. Chen, Y. Kim, D. Kim, and Y. Takashima, “Multi-order Laser Beam Steering with Digital Micro Mirror Device for High-speed LIDARs,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper AW3 K.7.

Takekawa, Y.

Thalhammer, G.

Tiziani, H.

Vanttaja, I.

J. Kaakkunen, I. Vanttaja, and P. Laakso, “Fast Micromachining Using Spatial Light Modulator and Galvanometer Scanner with Infrared Pulsed Nanosecond Fiber Laser,” J. Laser Micro/Nanoeng. 9(1), 37–41 (2014).
[Crossref]

Wagemann, E.

Wilkinson, T.

Winkler, P.

Yang, H.

Yang, J.

A. Kasturi, V. Milanovic, B. H. Atwood, and J. Yang, “UAV-Borne LiDAR with MEMS Mirror Based Scanning Capability,” Proc. SPIE 9832, 98320M (2016).
[Crossref]

Yu, T.

T. Yu, “Accelerated aging of the digital micromirror device using full custom electrostatic control,” (Texas Tech University, 2004), https://ttu-ir.tdl.org/handle/2346/20631 .

Zhang, Z.

Appl. Opt. (5)

J. Laser Micro/Nanoeng. (1)

J. Kaakkunen, I. Vanttaja, and P. Laakso, “Fast Micromachining Using Spatial Light Modulator and Galvanometer Scanner with Infrared Pulsed Nanosecond Fiber Laser,” J. Laser Micro/Nanoeng. 9(1), 37–41 (2014).
[Crossref]

J. Mod. Opt. (1)

M.-C. Park, B.-R. Lee, J.-Y. Son, and O. Chernyshov, “Properties of DMDs for holographic displays,” J. Mod. Opt. 62(19), 1600–1607 (2015).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Technol. (1)

Opt. Eng. (2)

M.-C. Amann, T. Bosch, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

D. Benton, “Multiple beam steering using dynamic zone plates on a micromirror array,” Opt. Eng. 57(07), 1 (2018).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Proc. SPIE (4)

J. Rodriguez, B. Smith, E. Kang, B. Hellman, G. Chen, A. Gin, A. Espinoza, and Y. Takashima, “Beam steering by digital micro-mirror device for multi-beam and single-chip lidar,” Proc. SPIE 10757, 107570F (2018).
[Crossref]

G. Chen, B. Hellman, J. Rodriguez, B. Smith, A. Gin, and Y. Takashima, “Light recycling beam steering on a DMD lidar,” Proc. SPIE 10757, 107570G (2018).
[Crossref]

E. Haellstig, J. Stigwall, M. Lindgren, and L. Sjoqvist, “Laser beam steering and tracking using a liquid crystal spatial light modulator,” Proc. SPIE 5087, 13–23 (2003).
[Crossref]

A. Kasturi, V. Milanovic, B. H. Atwood, and J. Yang, “UAV-Borne LiDAR with MEMS Mirror Based Scanning Capability,” Proc. SPIE 9832, 98320M (2016).
[Crossref]

Solid-State Electron. (1)

W. Duncan, T. Bartlett, B. Lee, D. Powell, P. Rancuret, and B. Sawyers, “Dynamic optical filtering in DWDM systems using the DMD,” Solid-State Electron. 46(10), 1583–1585 (2002).
[Crossref]

Other (15)

Texas Instruments, “DLP7000 DLP 0.7 XGA 2x LVDS Type A DMD,” http://www.ti.com/lit/ds/symlink/dlp7000.pdf .

Mirrorcle Technologies, Inc., “Mirrorcle Technologies MEMS Mirrors – Technical Overview,” https://www.mirrorcletech.com/pdf/Mirrorcle%20Technologies%20MEMS%20Mirrors%20-%20Technical%20Overview.pdf .

J. Rodriguez, B. Hellman, B. Smith, H. Choi, G. Chen, Y. Kim, D. Kim, and Y. Takashima, “Multi-order Laser Beam Steering with Digital Micro Mirror Device for High-speed LIDARs,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper AW3 K.7.

J. Rodriguez, B. Smith, B. Hellman, and Y. Takashima, “Fast laser beam steering into multiple diffraction orders with a single digital micromirror device for time-of-flight lidar,” Appl. Opt. (to be published).
[Crossref]

J. Greivenkamp, Field Guide to Geometrical Optics (SPIE, 2004).

P. McManamon, Field Guide to Lidar (SPIE, 2015).

Mirrorcle Technologies, Inc., “Mirrorcle Technologies MEMS Mirrors – Technical Overview,” https://www.mirrorcletech.com/pdf/Mirrorcle%20Technologies%20MEMS%20Mirrors%20-%20Technical%20Overview.pdf

P. Ross, “Luminar's Lidar Enters Mass Production,” IEEE Spectrum (2018). https://spectrum.ieee.org/cars-that-think/transportation/sensors/luminars-lidar-enters-mass-production

Y. Soskind, Field Guide to Diffractive Optics (SPIE, 2011), pp. 48.

Texas Instrument, Inc., “DLP3000 DLP® 0.3 WVGA Series 220 DMD,” https://media.digikey.com/pdf/Data%20Sheets/Texas%20Instruments%20PDFs/DLP3000.pdf .

J. Goodman, Introduction to Fourier Optics, Third Edition (McGraw-Hill, 2004), problems P4.13-15.

Texas Instruments, “Wavelength Transmittance Considerations for DLP DMD Window,” http://www.ti.com/lit/an/dlpa031e/dlpa031e.pdf .

T. Yu, “Accelerated aging of the digital micromirror device using full custom electrostatic control,” (Texas Tech University, 2004), https://ttu-ir.tdl.org/handle/2346/20631 .

Laser Components, “Pulsed Laser Diode Module LS-Series,” https://www.lasercomponents.com/fileadmin/user_upload/home/Datasheets/lce/ls-series.pdf .

Laser Components, “High Power Pulsed Laser Diodes 905D3J09-Series,” https://www.lasercomponents.com/fileadmin/user_upload/home/Datasheets/lc-pld/905d3j09.pdf .

Supplementary Material (2)

NameDescription
» Visualization 1       Lidar capture of a pendulum swinging in a line.
» Visualization 2       Lidar capture of a pendulum swinging in a circle.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. Phase (top) and OPL (bottom) maps of DMD micromirrors through the ASLM process. (a) Fully black pattern of mirrors at -12°. (b) “X” pattern of micromirrors actuated and, after time delay t1, illuminated during the transition at a mirror angle of -3° to project an “X” pattern in a diffraction order direction. (c) Transitioning micromirrors complete their transition to +12°. (d) All mirrors reset to -12°. (e) Square pattern of micromirrors actuated and, after time delay t2, illuminated during the transition at a mirror angle of +6° to project a square pattern into a different diffraction order. (e) Transitioning micromirrors complete their transition to +12°.
Fig. 2.
Fig. 2. (a) Micromirror geometry on the DLP3000 DMD including micromirror axes of rotation and pixel coordinate addressing to compensate for the diamond pixel orientation. (b) Wavelength-normalized frequency domain of ASLM holographic beam steering output, including higher-order diffraction outputs and the single-sideband filter (gray with throughput boxes in white).
Fig. 3.
Fig. 3. (a) 7×7 pixels in the 45° single-pixel-pitch grating hologram with micromirror addressing corresponding to Fig. 2(a). (b) A microscope capture of a 7×7 micromirror region on the DMD displaying the same static binary hologram. Side illumination was used for accurate state viewing per pixel. Gold-highlighted pixels correspond between (a) and (b).
Fig. 4.
Fig. 4. A beam (colored green, not depicting wavelength) in incident onto a DMD, coarse-steered across 5 diffraction orders (colored red), and fine-steered by binary grating on DMD (not shown). The single positive cylindrical lens, filter array, and 3-element positive cylindrical lens array comprise the single-sideband filter. The final 5-element negative cylindrical array compensates for the FOV fill-factor.
Fig. 5.
Fig. 5. A long-exposure capture of an 8×6 array of points, finely-steered by binary gratings, iterated across nine course-steered diffraction orders for a total of 432 points. Diffraction orders +3 and +4 contain off-state light for each pulse illuminated into diffraction orders -4 to +2, so they cannot be employed for beam steering for lidar. 336 independent beam steering points are demonstrated across diffraction orders -4 to +2. The wide-angle capture portrays degraded resolution in diffraction order -4, but close inspection reveals similar performance as diffraction order -2. The attenuation in diffraction order +2 is caused by edge-clipping in the vertical-power cylindrical lens array of Fig. 4.
Fig. 6.
Fig. 6. Custom constant fraction discriminator design including: (a) delay op-amp, (b) summing op-amp, (c) comparator, (d) and (e) power rails, and (f) tunable threshold for comparator.
Fig. 7.
Fig. 7. (a) Summing op-amp output. (b) Comparator output with ∼0.2 ns amplitude-dependent signal walk.
Fig. 8.
Fig. 8. (a) Mirrors redirecting the upper and lower portions of the APD acceptance pupil to the far left and right sides of the FOV. The acceptance pupil of the APD is shown (b) before mirror redirection, and (c) after.
Fig. 9.
Fig. 9. (a) Distance accuracy for diffraction order -1 and a center-most grating pattern on the DMD. (b) Horizontal, (c) vertical angular resolution testing by lidar capture of a single-pixel-wide target.
Fig. 10.
Fig. 10. The first frame of Visualization 1, video capture of a swinging target, including synchronized (a) RGB video and (b) lidar video.
Fig. 11.
Fig. 11. (a) Uncompensated far-field fill-factor. (b) Telescope array with diffraction-order-specific decenters. (c) Compensated far-field without gaps in FOV scanning
Fig. 12.
Fig. 12. Quad-block-dependent diffraction efficiency due to phased reset. Reprinted from [17].
Fig. 13.
Fig. 13. Light reflection off a 1D retroreflector array from (a) a global perspective, and (b) a single-element perspective. Reprinted from [31].

Tables (2)

Tables Icon

Table 1. Overall Efficiency (%) Across Diffraction Orders and Y-axis Range

Tables Icon

Table 2. Efficiency Components and Anticipated Overall Efficiency

Metrics