Abstract

Picosecond laser electronic-excitation tagging (PLEET) was demonstrated in a Mach-6 Ludwieg tube at a repetition rate of 100 kHz using a 1064 nm, 100 ps burst-mode laser. The system performance of high-speed velocimetry in unseeded air and nitrogen Mach-6 flows at a static pressure in the range of 5–20 torr were evaluated. Based on time-resolved freestream flow measurements and computational fluid dynamics (CFD) calculations, we concluded that the measurement uncertainty of 100 kHz PLEET measurement for Mach 6 freestream flow condition is ∼1%. The measured velocity profiles with a cone-model agreed well with the CFD computations upstream and downstream of the shockwave; downstream of the shockwave the discrepancy between the CFD and experimental measurement could be attributed to a slight nonzero angle of attack (AoA) or flow unsteadiness. Our results show the potential of utilizing 100 kHz PLEET velocimetry for understanding real-time dynamics of turbulent hypersonic flows and provide the capability of collecting sufficient data across fewer tests in large hypersonic ground test facilities.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. A. Leyva, “The relentless pursuit of hypersonic flight,” Phys. Today 70(11), 30–36 (2017).
    [Crossref]
  2. P. T. Harsha, L. C. Keel, A. Castrogiovanni, and R. T. Sherrill. “X-43A Vehicle Design and Manufacture,” AIAA 2005-3334. Retrieved: August (2011).
  3. D. S. Dolling, “Fluctuating Loads in Shock Wave/Turbulent Boundary Layer Interaction; Tutorial and Update,” AIAA-93-0284 (1993).
  4. M. A. Mustafa, N. J. Parziale, M. S. Smith, and E. C. Marineau, “Noninstrusive freestream velocity measurement in large-scale hypersonic wind tunnel,” AIAA J. 55(10), 3611–3616 (2017).
    [Crossref]
  5. J. S. Jewell and R. Kimmel, “Boundary layer stability analysis for Stetson’s Mach 6 blunt cone experiments,” J. Spacecr. Rockets 54(1), 258–265 (2017).
    [Crossref]
  6. R. J. Andrian, “Twenty years of particle image velocimetry,” Exp. Fluids 39(2), 159–169 (2005).
    [Crossref]
  7. P. S. Hsu, S. Roy, N. Jiang, and J. R. Gord, “Large-aperture, tapered fiber–coupled, 10-kHz particle-image velocimetry,” Opt. Express 21(3), 3617 (2013).
    [Crossref]
  8. T. Kirmse, J. Agocs, A. Schroder, J. M. Schramm, S. Kari, and K. Hannemann, “Application of particle image velocimetry and the background-oriented schlieren technique in the high enthalpy shock tunnel Gottingen,” Shock Waves 21(3), 233–241 (2011).
    [Crossref]
  9. B. F. Bathel, P. M. Danehy, J. A. Inman, and S. B. Jones, “Velocity profile measurements in hypersonic flow using sequentially imaged fluorescence-based molecular tagging,” AIAA J. 49(9), 1883–1896 (2011).
    [Crossref]
  10. R. L. McKenzie, “Measurement capabilities of planar Doppler velocimetry using pulsed lasers,” Appl. Opt. 35(6), 948–964 (1996).
    [Crossref]
  11. W. R. Lempert, N. Jiang, S. Sethuram, and M. Samimy, “Molecular tagging velocimetry measurements in supersonic microjets,” AIAA J. 40(6), 1065–1070 (2002).
    [Crossref]
  12. R. J. Balla, “Iodine Tagging velocimetry in a Mach 10 Wake,” AIAA J. 51(7), 1783–1786 (2013).
    [Crossref]
  13. J. B. Michael, M. R. Edwards, A. Dogariu, and R. B. Miles, “Femtosecond laser electronic excitation tagging for quantitative velocity imaging in air,” Appl. Opt. 50(26), 5158–5162 (2011).
    [Crossref]
  14. L. E. Dogariu, A. Dogariu, R. B. Miles, M. S. Smith, and E. C. Marineau, “Non-intrusive hypersonic freestream and turbulent boundary-layer velocity measurements in AEDC Tunnel 9 using PLEET,” AIAA 2018-1769, AIAA Aerospace Sciences Meeting 8-12 January (2018).
  15. P. D. Danehy, S. O. Byrne, F. P. Houwing, J. S. Fox, and D. R. Smith, “Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide,” AIAA J. 41(2), 263–271 (2003).
    [Crossref]
  16. J. N. Forkey, N. D. Finkelstein, W. R. Lempert, and R. B. Miles, “Demonstration and Characterization of Filtered Rayleigh Scattering for Planar Velocity Measurements,” AIAA J. 34(3), 442–448 (1996).
    [Crossref]
  17. N. Jiang, J. G. Mance, M. N. Slipchenko, J. J. Felver, H. U. Stauffer, T. Yi, P. M. Danehy, and S. Roy, “Seedless velocimetry at 100 kHz with picosecond-laser electronic-excitation tagging,” Opt. Lett. 42(2), 239–242 (2017).
    [Crossref]
  18. R. A. Burns, P. M. Danehy, N. Jiang, M. N. Splichenko, J. Felver, and S. Roy, “Unseeded velocimetry in nitrogen for high-pressure cryogenic wind tunnels: Part II. Picosecond-laser tagging,” Meas. Sci. Technol. 29(11), 115203 (2018).
    [Crossref]
  19. R. L. Kimmel, M. Borg, J. S. Jewell, K.-Y. Lam, R. Bowersox, and S. Fuchs, “AFRL Ludwieg Tube Initial Performance,” 55th AIAA Aerospace Sciences Meeting, AIAA 2017-1012 (2017).
  20. J. S. Jewell, Boundary-Layer Transition on a Slender Cone in Hypervelocity Flow with Real Gas Effects. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, 2014.
  21. J. S. Jewell and J. E. Shepherd, “T5 Conditions Report: Shots 2526–2823,” GALCIT Report FM2014.002, California Institute of Technology, Pasadena, CA, 2014.
  22. S. Roy, J. D. Miller, M. N. Slipchenko, P. S. Hsu, J. G. Mance, T. R. Meyer, and J. R. Gord, “100-ps-pulse-duration, 100-J burst-mode laser for kHz–MHz flow diagnostics,” Opt. Lett. 39(22), 6462–6465 (2014).
    [Crossref]
  23. N. Jiang, M. Nishihara, and W. R. Lempert, “Quantitative NO2 molecular tagging velocimetry at 500 kHz frame rate,” Appl. Phys. Lett. 97(22), 221103 (2010).
    [Crossref]
  24. M. J. Wright, G. V. Candler, and D. Bose, “Data-parallel line relaxation method for the Navier-Stokes equations,” AIAA J. 36(9), 1603–1609 (1998).
    [Crossref]
  25. J. S. Jewell, R. E. Kennedy, S.J . Laurence, and R. L. Kimmel, “Transition on a Variable Bluntness 7-Degree Cone at High Reynolds Number,” AIAA SciTech 2018, January 2018, Kissimmee, FL. AIAA 2018-1822.
  26. J. M. Fisher, M. E. Smyser, M. N. Slipchenko, S. Roy, and T. R. Meyer, “Burst-mode femtosecond laser electronic excitation ragging for kHz-MHz seedless velocimetry,” Opt. Lett. 45(2), 335–338 (2020).
    [Crossref]
  27. M. C. Ramsey and R. W. Pitz, “Template matching for improved accuracy in molecular tagging velocimetry,” Exp. Fluids 51(3), 811–819 (2011).
    [Crossref]

2020 (1)

2018 (1)

R. A. Burns, P. M. Danehy, N. Jiang, M. N. Splichenko, J. Felver, and S. Roy, “Unseeded velocimetry in nitrogen for high-pressure cryogenic wind tunnels: Part II. Picosecond-laser tagging,” Meas. Sci. Technol. 29(11), 115203 (2018).
[Crossref]

2017 (4)

I. A. Leyva, “The relentless pursuit of hypersonic flight,” Phys. Today 70(11), 30–36 (2017).
[Crossref]

M. A. Mustafa, N. J. Parziale, M. S. Smith, and E. C. Marineau, “Noninstrusive freestream velocity measurement in large-scale hypersonic wind tunnel,” AIAA J. 55(10), 3611–3616 (2017).
[Crossref]

J. S. Jewell and R. Kimmel, “Boundary layer stability analysis for Stetson’s Mach 6 blunt cone experiments,” J. Spacecr. Rockets 54(1), 258–265 (2017).
[Crossref]

N. Jiang, J. G. Mance, M. N. Slipchenko, J. J. Felver, H. U. Stauffer, T. Yi, P. M. Danehy, and S. Roy, “Seedless velocimetry at 100 kHz with picosecond-laser electronic-excitation tagging,” Opt. Lett. 42(2), 239–242 (2017).
[Crossref]

2014 (1)

2013 (2)

2011 (4)

T. Kirmse, J. Agocs, A. Schroder, J. M. Schramm, S. Kari, and K. Hannemann, “Application of particle image velocimetry and the background-oriented schlieren technique in the high enthalpy shock tunnel Gottingen,” Shock Waves 21(3), 233–241 (2011).
[Crossref]

B. F. Bathel, P. M. Danehy, J. A. Inman, and S. B. Jones, “Velocity profile measurements in hypersonic flow using sequentially imaged fluorescence-based molecular tagging,” AIAA J. 49(9), 1883–1896 (2011).
[Crossref]

J. B. Michael, M. R. Edwards, A. Dogariu, and R. B. Miles, “Femtosecond laser electronic excitation tagging for quantitative velocity imaging in air,” Appl. Opt. 50(26), 5158–5162 (2011).
[Crossref]

M. C. Ramsey and R. W. Pitz, “Template matching for improved accuracy in molecular tagging velocimetry,” Exp. Fluids 51(3), 811–819 (2011).
[Crossref]

2010 (1)

N. Jiang, M. Nishihara, and W. R. Lempert, “Quantitative NO2 molecular tagging velocimetry at 500 kHz frame rate,” Appl. Phys. Lett. 97(22), 221103 (2010).
[Crossref]

2005 (1)

R. J. Andrian, “Twenty years of particle image velocimetry,” Exp. Fluids 39(2), 159–169 (2005).
[Crossref]

2003 (1)

P. D. Danehy, S. O. Byrne, F. P. Houwing, J. S. Fox, and D. R. Smith, “Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide,” AIAA J. 41(2), 263–271 (2003).
[Crossref]

2002 (1)

W. R. Lempert, N. Jiang, S. Sethuram, and M. Samimy, “Molecular tagging velocimetry measurements in supersonic microjets,” AIAA J. 40(6), 1065–1070 (2002).
[Crossref]

1998 (1)

M. J. Wright, G. V. Candler, and D. Bose, “Data-parallel line relaxation method for the Navier-Stokes equations,” AIAA J. 36(9), 1603–1609 (1998).
[Crossref]

1996 (2)

J. N. Forkey, N. D. Finkelstein, W. R. Lempert, and R. B. Miles, “Demonstration and Characterization of Filtered Rayleigh Scattering for Planar Velocity Measurements,” AIAA J. 34(3), 442–448 (1996).
[Crossref]

R. L. McKenzie, “Measurement capabilities of planar Doppler velocimetry using pulsed lasers,” Appl. Opt. 35(6), 948–964 (1996).
[Crossref]

Agocs, J.

T. Kirmse, J. Agocs, A. Schroder, J. M. Schramm, S. Kari, and K. Hannemann, “Application of particle image velocimetry and the background-oriented schlieren technique in the high enthalpy shock tunnel Gottingen,” Shock Waves 21(3), 233–241 (2011).
[Crossref]

Andrian, R. J.

R. J. Andrian, “Twenty years of particle image velocimetry,” Exp. Fluids 39(2), 159–169 (2005).
[Crossref]

Balla, R. J.

R. J. Balla, “Iodine Tagging velocimetry in a Mach 10 Wake,” AIAA J. 51(7), 1783–1786 (2013).
[Crossref]

Bathel, B. F.

B. F. Bathel, P. M. Danehy, J. A. Inman, and S. B. Jones, “Velocity profile measurements in hypersonic flow using sequentially imaged fluorescence-based molecular tagging,” AIAA J. 49(9), 1883–1896 (2011).
[Crossref]

Borg, M.

R. L. Kimmel, M. Borg, J. S. Jewell, K.-Y. Lam, R. Bowersox, and S. Fuchs, “AFRL Ludwieg Tube Initial Performance,” 55th AIAA Aerospace Sciences Meeting, AIAA 2017-1012 (2017).

Bose, D.

M. J. Wright, G. V. Candler, and D. Bose, “Data-parallel line relaxation method for the Navier-Stokes equations,” AIAA J. 36(9), 1603–1609 (1998).
[Crossref]

Bowersox, R.

R. L. Kimmel, M. Borg, J. S. Jewell, K.-Y. Lam, R. Bowersox, and S. Fuchs, “AFRL Ludwieg Tube Initial Performance,” 55th AIAA Aerospace Sciences Meeting, AIAA 2017-1012 (2017).

Burns, R. A.

R. A. Burns, P. M. Danehy, N. Jiang, M. N. Splichenko, J. Felver, and S. Roy, “Unseeded velocimetry in nitrogen for high-pressure cryogenic wind tunnels: Part II. Picosecond-laser tagging,” Meas. Sci. Technol. 29(11), 115203 (2018).
[Crossref]

Byrne, S. O.

P. D. Danehy, S. O. Byrne, F. P. Houwing, J. S. Fox, and D. R. Smith, “Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide,” AIAA J. 41(2), 263–271 (2003).
[Crossref]

Candler, G. V.

M. J. Wright, G. V. Candler, and D. Bose, “Data-parallel line relaxation method for the Navier-Stokes equations,” AIAA J. 36(9), 1603–1609 (1998).
[Crossref]

Castrogiovanni, A.

P. T. Harsha, L. C. Keel, A. Castrogiovanni, and R. T. Sherrill. “X-43A Vehicle Design and Manufacture,” AIAA 2005-3334. Retrieved: August (2011).

Danehy, P. D.

P. D. Danehy, S. O. Byrne, F. P. Houwing, J. S. Fox, and D. R. Smith, “Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide,” AIAA J. 41(2), 263–271 (2003).
[Crossref]

Danehy, P. M.

R. A. Burns, P. M. Danehy, N. Jiang, M. N. Splichenko, J. Felver, and S. Roy, “Unseeded velocimetry in nitrogen for high-pressure cryogenic wind tunnels: Part II. Picosecond-laser tagging,” Meas. Sci. Technol. 29(11), 115203 (2018).
[Crossref]

N. Jiang, J. G. Mance, M. N. Slipchenko, J. J. Felver, H. U. Stauffer, T. Yi, P. M. Danehy, and S. Roy, “Seedless velocimetry at 100 kHz with picosecond-laser electronic-excitation tagging,” Opt. Lett. 42(2), 239–242 (2017).
[Crossref]

B. F. Bathel, P. M. Danehy, J. A. Inman, and S. B. Jones, “Velocity profile measurements in hypersonic flow using sequentially imaged fluorescence-based molecular tagging,” AIAA J. 49(9), 1883–1896 (2011).
[Crossref]

Dogariu, A.

J. B. Michael, M. R. Edwards, A. Dogariu, and R. B. Miles, “Femtosecond laser electronic excitation tagging for quantitative velocity imaging in air,” Appl. Opt. 50(26), 5158–5162 (2011).
[Crossref]

L. E. Dogariu, A. Dogariu, R. B. Miles, M. S. Smith, and E. C. Marineau, “Non-intrusive hypersonic freestream and turbulent boundary-layer velocity measurements in AEDC Tunnel 9 using PLEET,” AIAA 2018-1769, AIAA Aerospace Sciences Meeting 8-12 January (2018).

Dogariu, L. E.

L. E. Dogariu, A. Dogariu, R. B. Miles, M. S. Smith, and E. C. Marineau, “Non-intrusive hypersonic freestream and turbulent boundary-layer velocity measurements in AEDC Tunnel 9 using PLEET,” AIAA 2018-1769, AIAA Aerospace Sciences Meeting 8-12 January (2018).

Dolling, D. S.

D. S. Dolling, “Fluctuating Loads in Shock Wave/Turbulent Boundary Layer Interaction; Tutorial and Update,” AIAA-93-0284 (1993).

Edwards, M. R.

Felver, J.

R. A. Burns, P. M. Danehy, N. Jiang, M. N. Splichenko, J. Felver, and S. Roy, “Unseeded velocimetry in nitrogen for high-pressure cryogenic wind tunnels: Part II. Picosecond-laser tagging,” Meas. Sci. Technol. 29(11), 115203 (2018).
[Crossref]

Felver, J. J.

Finkelstein, N. D.

J. N. Forkey, N. D. Finkelstein, W. R. Lempert, and R. B. Miles, “Demonstration and Characterization of Filtered Rayleigh Scattering for Planar Velocity Measurements,” AIAA J. 34(3), 442–448 (1996).
[Crossref]

Fisher, J. M.

Forkey, J. N.

J. N. Forkey, N. D. Finkelstein, W. R. Lempert, and R. B. Miles, “Demonstration and Characterization of Filtered Rayleigh Scattering for Planar Velocity Measurements,” AIAA J. 34(3), 442–448 (1996).
[Crossref]

Fox, J. S.

P. D. Danehy, S. O. Byrne, F. P. Houwing, J. S. Fox, and D. R. Smith, “Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide,” AIAA J. 41(2), 263–271 (2003).
[Crossref]

Fuchs, S.

R. L. Kimmel, M. Borg, J. S. Jewell, K.-Y. Lam, R. Bowersox, and S. Fuchs, “AFRL Ludwieg Tube Initial Performance,” 55th AIAA Aerospace Sciences Meeting, AIAA 2017-1012 (2017).

Gord, J. R.

Hannemann, K.

T. Kirmse, J. Agocs, A. Schroder, J. M. Schramm, S. Kari, and K. Hannemann, “Application of particle image velocimetry and the background-oriented schlieren technique in the high enthalpy shock tunnel Gottingen,” Shock Waves 21(3), 233–241 (2011).
[Crossref]

Harsha, P. T.

P. T. Harsha, L. C. Keel, A. Castrogiovanni, and R. T. Sherrill. “X-43A Vehicle Design and Manufacture,” AIAA 2005-3334. Retrieved: August (2011).

Houwing, F. P.

P. D. Danehy, S. O. Byrne, F. P. Houwing, J. S. Fox, and D. R. Smith, “Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide,” AIAA J. 41(2), 263–271 (2003).
[Crossref]

Hsu, P. S.

Inman, J. A.

B. F. Bathel, P. M. Danehy, J. A. Inman, and S. B. Jones, “Velocity profile measurements in hypersonic flow using sequentially imaged fluorescence-based molecular tagging,” AIAA J. 49(9), 1883–1896 (2011).
[Crossref]

Jewell, J. S.

J. S. Jewell and R. Kimmel, “Boundary layer stability analysis for Stetson’s Mach 6 blunt cone experiments,” J. Spacecr. Rockets 54(1), 258–265 (2017).
[Crossref]

J. S. Jewell, Boundary-Layer Transition on a Slender Cone in Hypervelocity Flow with Real Gas Effects. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, 2014.

J. S. Jewell and J. E. Shepherd, “T5 Conditions Report: Shots 2526–2823,” GALCIT Report FM2014.002, California Institute of Technology, Pasadena, CA, 2014.

R. L. Kimmel, M. Borg, J. S. Jewell, K.-Y. Lam, R. Bowersox, and S. Fuchs, “AFRL Ludwieg Tube Initial Performance,” 55th AIAA Aerospace Sciences Meeting, AIAA 2017-1012 (2017).

J. S. Jewell, R. E. Kennedy, S.J . Laurence, and R. L. Kimmel, “Transition on a Variable Bluntness 7-Degree Cone at High Reynolds Number,” AIAA SciTech 2018, January 2018, Kissimmee, FL. AIAA 2018-1822.

Jiang, N.

R. A. Burns, P. M. Danehy, N. Jiang, M. N. Splichenko, J. Felver, and S. Roy, “Unseeded velocimetry in nitrogen for high-pressure cryogenic wind tunnels: Part II. Picosecond-laser tagging,” Meas. Sci. Technol. 29(11), 115203 (2018).
[Crossref]

N. Jiang, J. G. Mance, M. N. Slipchenko, J. J. Felver, H. U. Stauffer, T. Yi, P. M. Danehy, and S. Roy, “Seedless velocimetry at 100 kHz with picosecond-laser electronic-excitation tagging,” Opt. Lett. 42(2), 239–242 (2017).
[Crossref]

P. S. Hsu, S. Roy, N. Jiang, and J. R. Gord, “Large-aperture, tapered fiber–coupled, 10-kHz particle-image velocimetry,” Opt. Express 21(3), 3617 (2013).
[Crossref]

N. Jiang, M. Nishihara, and W. R. Lempert, “Quantitative NO2 molecular tagging velocimetry at 500 kHz frame rate,” Appl. Phys. Lett. 97(22), 221103 (2010).
[Crossref]

W. R. Lempert, N. Jiang, S. Sethuram, and M. Samimy, “Molecular tagging velocimetry measurements in supersonic microjets,” AIAA J. 40(6), 1065–1070 (2002).
[Crossref]

Jones, S. B.

B. F. Bathel, P. M. Danehy, J. A. Inman, and S. B. Jones, “Velocity profile measurements in hypersonic flow using sequentially imaged fluorescence-based molecular tagging,” AIAA J. 49(9), 1883–1896 (2011).
[Crossref]

Kari, S.

T. Kirmse, J. Agocs, A. Schroder, J. M. Schramm, S. Kari, and K. Hannemann, “Application of particle image velocimetry and the background-oriented schlieren technique in the high enthalpy shock tunnel Gottingen,” Shock Waves 21(3), 233–241 (2011).
[Crossref]

Keel, L. C.

P. T. Harsha, L. C. Keel, A. Castrogiovanni, and R. T. Sherrill. “X-43A Vehicle Design and Manufacture,” AIAA 2005-3334. Retrieved: August (2011).

Kennedy, R. E.

J. S. Jewell, R. E. Kennedy, S.J . Laurence, and R. L. Kimmel, “Transition on a Variable Bluntness 7-Degree Cone at High Reynolds Number,” AIAA SciTech 2018, January 2018, Kissimmee, FL. AIAA 2018-1822.

Kimmel, R.

J. S. Jewell and R. Kimmel, “Boundary layer stability analysis for Stetson’s Mach 6 blunt cone experiments,” J. Spacecr. Rockets 54(1), 258–265 (2017).
[Crossref]

Kimmel, R. L.

R. L. Kimmel, M. Borg, J. S. Jewell, K.-Y. Lam, R. Bowersox, and S. Fuchs, “AFRL Ludwieg Tube Initial Performance,” 55th AIAA Aerospace Sciences Meeting, AIAA 2017-1012 (2017).

J. S. Jewell, R. E. Kennedy, S.J . Laurence, and R. L. Kimmel, “Transition on a Variable Bluntness 7-Degree Cone at High Reynolds Number,” AIAA SciTech 2018, January 2018, Kissimmee, FL. AIAA 2018-1822.

Kirmse, T.

T. Kirmse, J. Agocs, A. Schroder, J. M. Schramm, S. Kari, and K. Hannemann, “Application of particle image velocimetry and the background-oriented schlieren technique in the high enthalpy shock tunnel Gottingen,” Shock Waves 21(3), 233–241 (2011).
[Crossref]

Lam, K.-Y.

R. L. Kimmel, M. Borg, J. S. Jewell, K.-Y. Lam, R. Bowersox, and S. Fuchs, “AFRL Ludwieg Tube Initial Performance,” 55th AIAA Aerospace Sciences Meeting, AIAA 2017-1012 (2017).

Laurence, S.J .

J. S. Jewell, R. E. Kennedy, S.J . Laurence, and R. L. Kimmel, “Transition on a Variable Bluntness 7-Degree Cone at High Reynolds Number,” AIAA SciTech 2018, January 2018, Kissimmee, FL. AIAA 2018-1822.

Lempert, W. R.

N. Jiang, M. Nishihara, and W. R. Lempert, “Quantitative NO2 molecular tagging velocimetry at 500 kHz frame rate,” Appl. Phys. Lett. 97(22), 221103 (2010).
[Crossref]

W. R. Lempert, N. Jiang, S. Sethuram, and M. Samimy, “Molecular tagging velocimetry measurements in supersonic microjets,” AIAA J. 40(6), 1065–1070 (2002).
[Crossref]

J. N. Forkey, N. D. Finkelstein, W. R. Lempert, and R. B. Miles, “Demonstration and Characterization of Filtered Rayleigh Scattering for Planar Velocity Measurements,” AIAA J. 34(3), 442–448 (1996).
[Crossref]

Leyva, I. A.

I. A. Leyva, “The relentless pursuit of hypersonic flight,” Phys. Today 70(11), 30–36 (2017).
[Crossref]

Mance, J. G.

Marineau, E. C.

M. A. Mustafa, N. J. Parziale, M. S. Smith, and E. C. Marineau, “Noninstrusive freestream velocity measurement in large-scale hypersonic wind tunnel,” AIAA J. 55(10), 3611–3616 (2017).
[Crossref]

L. E. Dogariu, A. Dogariu, R. B. Miles, M. S. Smith, and E. C. Marineau, “Non-intrusive hypersonic freestream and turbulent boundary-layer velocity measurements in AEDC Tunnel 9 using PLEET,” AIAA 2018-1769, AIAA Aerospace Sciences Meeting 8-12 January (2018).

McKenzie, R. L.

Meyer, T. R.

Michael, J. B.

Miles, R. B.

J. B. Michael, M. R. Edwards, A. Dogariu, and R. B. Miles, “Femtosecond laser electronic excitation tagging for quantitative velocity imaging in air,” Appl. Opt. 50(26), 5158–5162 (2011).
[Crossref]

J. N. Forkey, N. D. Finkelstein, W. R. Lempert, and R. B. Miles, “Demonstration and Characterization of Filtered Rayleigh Scattering for Planar Velocity Measurements,” AIAA J. 34(3), 442–448 (1996).
[Crossref]

L. E. Dogariu, A. Dogariu, R. B. Miles, M. S. Smith, and E. C. Marineau, “Non-intrusive hypersonic freestream and turbulent boundary-layer velocity measurements in AEDC Tunnel 9 using PLEET,” AIAA 2018-1769, AIAA Aerospace Sciences Meeting 8-12 January (2018).

Miller, J. D.

Mustafa, M. A.

M. A. Mustafa, N. J. Parziale, M. S. Smith, and E. C. Marineau, “Noninstrusive freestream velocity measurement in large-scale hypersonic wind tunnel,” AIAA J. 55(10), 3611–3616 (2017).
[Crossref]

Nishihara, M.

N. Jiang, M. Nishihara, and W. R. Lempert, “Quantitative NO2 molecular tagging velocimetry at 500 kHz frame rate,” Appl. Phys. Lett. 97(22), 221103 (2010).
[Crossref]

Parziale, N. J.

M. A. Mustafa, N. J. Parziale, M. S. Smith, and E. C. Marineau, “Noninstrusive freestream velocity measurement in large-scale hypersonic wind tunnel,” AIAA J. 55(10), 3611–3616 (2017).
[Crossref]

Pitz, R. W.

M. C. Ramsey and R. W. Pitz, “Template matching for improved accuracy in molecular tagging velocimetry,” Exp. Fluids 51(3), 811–819 (2011).
[Crossref]

Ramsey, M. C.

M. C. Ramsey and R. W. Pitz, “Template matching for improved accuracy in molecular tagging velocimetry,” Exp. Fluids 51(3), 811–819 (2011).
[Crossref]

Roy, S.

Samimy, M.

W. R. Lempert, N. Jiang, S. Sethuram, and M. Samimy, “Molecular tagging velocimetry measurements in supersonic microjets,” AIAA J. 40(6), 1065–1070 (2002).
[Crossref]

Schramm, J. M.

T. Kirmse, J. Agocs, A. Schroder, J. M. Schramm, S. Kari, and K. Hannemann, “Application of particle image velocimetry and the background-oriented schlieren technique in the high enthalpy shock tunnel Gottingen,” Shock Waves 21(3), 233–241 (2011).
[Crossref]

Schroder, A.

T. Kirmse, J. Agocs, A. Schroder, J. M. Schramm, S. Kari, and K. Hannemann, “Application of particle image velocimetry and the background-oriented schlieren technique in the high enthalpy shock tunnel Gottingen,” Shock Waves 21(3), 233–241 (2011).
[Crossref]

Sethuram, S.

W. R. Lempert, N. Jiang, S. Sethuram, and M. Samimy, “Molecular tagging velocimetry measurements in supersonic microjets,” AIAA J. 40(6), 1065–1070 (2002).
[Crossref]

Shepherd, J. E.

J. S. Jewell and J. E. Shepherd, “T5 Conditions Report: Shots 2526–2823,” GALCIT Report FM2014.002, California Institute of Technology, Pasadena, CA, 2014.

Sherrill, R. T.

P. T. Harsha, L. C. Keel, A. Castrogiovanni, and R. T. Sherrill. “X-43A Vehicle Design and Manufacture,” AIAA 2005-3334. Retrieved: August (2011).

Slipchenko, M. N.

Smith, D. R.

P. D. Danehy, S. O. Byrne, F. P. Houwing, J. S. Fox, and D. R. Smith, “Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide,” AIAA J. 41(2), 263–271 (2003).
[Crossref]

Smith, M. S.

M. A. Mustafa, N. J. Parziale, M. S. Smith, and E. C. Marineau, “Noninstrusive freestream velocity measurement in large-scale hypersonic wind tunnel,” AIAA J. 55(10), 3611–3616 (2017).
[Crossref]

L. E. Dogariu, A. Dogariu, R. B. Miles, M. S. Smith, and E. C. Marineau, “Non-intrusive hypersonic freestream and turbulent boundary-layer velocity measurements in AEDC Tunnel 9 using PLEET,” AIAA 2018-1769, AIAA Aerospace Sciences Meeting 8-12 January (2018).

Smyser, M. E.

Splichenko, M. N.

R. A. Burns, P. M. Danehy, N. Jiang, M. N. Splichenko, J. Felver, and S. Roy, “Unseeded velocimetry in nitrogen for high-pressure cryogenic wind tunnels: Part II. Picosecond-laser tagging,” Meas. Sci. Technol. 29(11), 115203 (2018).
[Crossref]

Stauffer, H. U.

Wright, M. J.

M. J. Wright, G. V. Candler, and D. Bose, “Data-parallel line relaxation method for the Navier-Stokes equations,” AIAA J. 36(9), 1603–1609 (1998).
[Crossref]

Yi, T.

AIAA J. (7)

M. A. Mustafa, N. J. Parziale, M. S. Smith, and E. C. Marineau, “Noninstrusive freestream velocity measurement in large-scale hypersonic wind tunnel,” AIAA J. 55(10), 3611–3616 (2017).
[Crossref]

B. F. Bathel, P. M. Danehy, J. A. Inman, and S. B. Jones, “Velocity profile measurements in hypersonic flow using sequentially imaged fluorescence-based molecular tagging,” AIAA J. 49(9), 1883–1896 (2011).
[Crossref]

W. R. Lempert, N. Jiang, S. Sethuram, and M. Samimy, “Molecular tagging velocimetry measurements in supersonic microjets,” AIAA J. 40(6), 1065–1070 (2002).
[Crossref]

R. J. Balla, “Iodine Tagging velocimetry in a Mach 10 Wake,” AIAA J. 51(7), 1783–1786 (2013).
[Crossref]

P. D. Danehy, S. O. Byrne, F. P. Houwing, J. S. Fox, and D. R. Smith, “Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide,” AIAA J. 41(2), 263–271 (2003).
[Crossref]

J. N. Forkey, N. D. Finkelstein, W. R. Lempert, and R. B. Miles, “Demonstration and Characterization of Filtered Rayleigh Scattering for Planar Velocity Measurements,” AIAA J. 34(3), 442–448 (1996).
[Crossref]

M. J. Wright, G. V. Candler, and D. Bose, “Data-parallel line relaxation method for the Navier-Stokes equations,” AIAA J. 36(9), 1603–1609 (1998).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

N. Jiang, M. Nishihara, and W. R. Lempert, “Quantitative NO2 molecular tagging velocimetry at 500 kHz frame rate,” Appl. Phys. Lett. 97(22), 221103 (2010).
[Crossref]

Exp. Fluids (2)

M. C. Ramsey and R. W. Pitz, “Template matching for improved accuracy in molecular tagging velocimetry,” Exp. Fluids 51(3), 811–819 (2011).
[Crossref]

R. J. Andrian, “Twenty years of particle image velocimetry,” Exp. Fluids 39(2), 159–169 (2005).
[Crossref]

J. Spacecr. Rockets (1)

J. S. Jewell and R. Kimmel, “Boundary layer stability analysis for Stetson’s Mach 6 blunt cone experiments,” J. Spacecr. Rockets 54(1), 258–265 (2017).
[Crossref]

Meas. Sci. Technol. (1)

R. A. Burns, P. M. Danehy, N. Jiang, M. N. Splichenko, J. Felver, and S. Roy, “Unseeded velocimetry in nitrogen for high-pressure cryogenic wind tunnels: Part II. Picosecond-laser tagging,” Meas. Sci. Technol. 29(11), 115203 (2018).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Phys. Today (1)

I. A. Leyva, “The relentless pursuit of hypersonic flight,” Phys. Today 70(11), 30–36 (2017).
[Crossref]

Shock Waves (1)

T. Kirmse, J. Agocs, A. Schroder, J. M. Schramm, S. Kari, and K. Hannemann, “Application of particle image velocimetry and the background-oriented schlieren technique in the high enthalpy shock tunnel Gottingen,” Shock Waves 21(3), 233–241 (2011).
[Crossref]

Other (7)

J. S. Jewell, R. E. Kennedy, S.J . Laurence, and R. L. Kimmel, “Transition on a Variable Bluntness 7-Degree Cone at High Reynolds Number,” AIAA SciTech 2018, January 2018, Kissimmee, FL. AIAA 2018-1822.

R. L. Kimmel, M. Borg, J. S. Jewell, K.-Y. Lam, R. Bowersox, and S. Fuchs, “AFRL Ludwieg Tube Initial Performance,” 55th AIAA Aerospace Sciences Meeting, AIAA 2017-1012 (2017).

J. S. Jewell, Boundary-Layer Transition on a Slender Cone in Hypervelocity Flow with Real Gas Effects. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, 2014.

J. S. Jewell and J. E. Shepherd, “T5 Conditions Report: Shots 2526–2823,” GALCIT Report FM2014.002, California Institute of Technology, Pasadena, CA, 2014.

P. T. Harsha, L. C. Keel, A. Castrogiovanni, and R. T. Sherrill. “X-43A Vehicle Design and Manufacture,” AIAA 2005-3334. Retrieved: August (2011).

D. S. Dolling, “Fluctuating Loads in Shock Wave/Turbulent Boundary Layer Interaction; Tutorial and Update,” AIAA-93-0284 (1993).

L. E. Dogariu, A. Dogariu, R. B. Miles, M. S. Smith, and E. C. Marineau, “Non-intrusive hypersonic freestream and turbulent boundary-layer velocity measurements in AEDC Tunnel 9 using PLEET,” AIAA 2018-1769, AIAA Aerospace Sciences Meeting 8-12 January (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) AFRL Mach-6 Ludwieg Tube Hypersonic Wind Tunnel. (b) A photograph of wind tunnel test section with three optical access ports in an environmental controlled room. (c) A photograph of the 7-degree half-angle circular cone model.
Fig. 2.
Fig. 2. A schematic diagram for the PLEET experimental setup in ARFL Mach-6 Ludwieg Tube.
Fig. 3.
Fig. 3. Time-resolved PLEET images with a 100 kHz laser repetition rate and 200 kHz camera imaging rate for Mach-6.14 freestream flow. (a) Airflow freestream case with static pressure of approximately 1.3 kPa (10 torr). (b) Nitrogen flow freestream case with static pressure of approximately 1 kPa (8 torr). The red, green, and orange dashed circles illustrate the PLEET signal movements in time. The brightness of each image was adjusted for easy visibility.
Fig. 4.
Fig. 4. Measured velocity variation for (a) freestream air flow and (b) freestream nitrogen flow at 100 kHz rate. Velocity at two different positions were measured for nitrogen flow case. The static pressure for air and nitrogen flow case were ∼1.3 kPa (10 torr) and ∼1 kPa (8 torr), respectively. The Mach number for both cases is 6.14.
Fig. 5.
Fig. 5. Time-resolved PLEET images with 100 kHz laser repetition rate and 200 kHz camera imaging rate for Mach-6.14 nitrogen flow with a 7-degree half-angle cylindrical cone model. The stagnation pressure is ∼1.7 MPa (250 psi). The brightness of each image was adjusted for easy visibility.
Fig. 6.
Fig. 6. Measured velocity variation for Mach-6.14 Nitrogen near a 7-degree half-angle blunt cone model. Velocities at three different positions as shown in (a) were measured. (b) Measured velocity fluctuations at 100 kHz rate. The Gaussian fit for determination of line center (along X axis) is illustrated for PLEET signal at Pos #1 and Pos #3.
Fig. 7.
Fig. 7. Comparison of experimental measured PLEET fluorescent line movement and CFD calculation. (a) Representative nitrogen PLEET line displacement for both experiment (single-shot) and theory; (b) experimentally measured velocity profile (single-shot) versus CFD simulation. Contour lines demarcate every 20 m/s in velocity.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

V b = ρ a ρ h ρ h g t ,