Abstract

We present the implementation of Co2+:MgAl2O4 transparent ceramics as passive Q-switching elements in an Er:Glass laser at 1.534 µm. Linearly polarized pulsed output was obtained by Brewster angle inclination of the material Q-switching plate relative to the laser axis. Separate pulses were ∼105 ns long (FWHM), exhibiting ∼6.2 kW peak power at near TEM00 quality. Several fundamental sample properties important for laser intracavity operation were measured; thermo-optic coefficient dn/dT = ( − 3.8 ± 1) × 10−5°C−1, thermal lensing factor L−1d(nL)/dT = 2.59 × 10−5°C−1, linear expansion coefficient α = (3.9 ± 0.6) × 10−5°C−1, polarizability thermal coefficient ϕ = (7.2 ± 2.2) × 10−5°C−1, and damage threshold ∼6.5 J/cm2.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Goldstein, A. Krell, and Z. Burshtein, Transparent Ceramics: Materials, Engineering, and Applications (John Wiley & Sons, 2020).
  2. A. Ikesue, “Polycrystalline Nd:YAG ceramics lasers,” Opt. Mater. 19(1), 183–187 (2002).
    [Crossref]
  3. W. D. Callister and D. G. Rethwisch, Fundamentals of materials science and engineering: an integrated approach (John Wiley & Sons, 2012).
  4. A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
    [Crossref]
  5. R. Feldman, Y. Golan, Z. Burshtein, S. Jackel, I. Moshe, A. Meir, Y. Lumer, and Y. Shimony, “Strengthening of poly-crystalline (ceramic) Nd:YAG elements for high-power laser applications,” Opt. Mater. 33(5), 695–701 (2011).
    [Crossref]
  6. K. V. Yumashev, “Saturable absorber Co2+:MgAl2O4 crystal for Q switching of 1.34-µm Nd3+:YAlO3 and 1.54-µm Er3+:glass lasers,” Appl. Opt. 38(30), 6343–6346 (1999).
    [Crossref]
  7. A. Goldstein, P. Loiko, Z. Burshtein, N. Skoptsov, I. Glazunov, E. Galun, N. Kuleshov, and K. Yumashev, “Development of saturable absorbers for laser passive Q-switching near 1.5 µm based on transparent ceramic Co2+:MgAl2O4,” J. Am. Ceram. Soc. 99(4), 1324–1331 (2016).
    [Crossref]
  8. S. Perets, M. Tseitlin, R. Shneck, and Z. Burshtein, “Refractive index dispersion and anisotropy in NaGd(WO4)2 single crystal,” Opt. Mater. 30(8), 1251–1256 (2008).
    [Crossref]
  9. A. Yariv, Introduction to Optical Electronics, vol. 1 (Holt-Reinhart-Winston, 1971).
  10. A. Krell, K. Waetzig, and J. Klimke, “Effects and elimination of nanoporosity in transparent sintered spinel (MgAl2O4),” in Window and dome technologies and materials XII, vol. 8016 (International Society for Optics and Photonics, 2011), p. 801602.
  11. C. H. Lange and D. D. Duncan, “Temperature coefficient of refractive index for candidate optical windows,” in Window and Dome Technologies and Materials II, vol. 1326 (International Society for Optics and Photonics, 1990), pp. 71–78.
  12. D. C. Harris, L. F. Johnson, R. Seaver, T. Lewis, G. Turri, M. A. Bass, D. E. Zelmon, and N. Haynes, “Optical and thermal properties of spinel with revised (increased) absorption at 4 to 5 µm wavelengths and comparison with sapphire,” Opt. Eng. 52(8), 087113 (2013).
    [Crossref]
  13. K. Vedam, J. Kirk, and B. Achar, “Piezo-and thermo-optic behavior of spinel (MgAl2O4),” J. Solid State Chem. 12(3-4), 213–218 (1975).
    [Crossref]
  14. W. Koechner, Solid-state laser engineering, vol. 1 (Springer, 2006).
  15. S. Liu, F. Song, H. Cai, T. Li, B. Tian, Z. Wu, and J. Tian, “Effect of thermal lens on beam quality and mode matching in LD pumped Er–Yb-codoped phosphate glass microchip laser,” J. Phys. D: Appl. Phys. 41(3), 035104 (2008).
    [Crossref]
  16. P. A. Schulz and S. R. Henion, “Liquid-nitrogen-cooled Ti:Al2O3 laser,” IEEE J. Quantum Electron. 27(4), 1039–1047 (1991).
    [Crossref]
  17. M. Pokrass, Z. Burshtein, and R. Gvishi, “Thermo-optic coefficient in some hybrid organic/inorganic fast sol–gel glasses,” Opt. Mater. 32(9), 975–981 (2010).
    [Crossref]
  18. C. Jacinto, T. Catunda, D. Jaque, L. E. Bausá, and J. García-Solé, “Thermal lens and heat generation of nd:yag lasers operating at 1.064 and 1.34 µm,” Opt. Express 16(9), 6317–6323 (2008).
    [Crossref]
  19. I. Suzuki and M. Kumazawa, “Anomalous thermal expansion in spinel MgAl2O4,” Phys. Chem. Miner. 5, 279–284 (1980).
  20. I. Kaprálik, “Thermal expansion of spinels MgCr2O4, MgAl2O4 and MgFe2O4,” Chem. Pap. 23, 665–670 (1969).
  21. V. Vitkin, P. Loiko, O. Dymshits, A. Zhilin, I. Alekseeva, D. Sabitova, A. Polishchuk, A. Malyarevich, X. Mateos, and K. Yumashev, “Passive Q-switching of an Er, Yb:glass laser with Co:Mg(Al, Ga)2O4-based glass-ceramics,” Appl. Opt. 56(8), 2142–2149 (2017).
    [Crossref]
  22. L. Prod’homme, “A new approach to the thermal change in the refractive index of glasses,” Phys. Chem. Glasses 1, 119–122 (1960).
  23. T. Izumitani and H. Toratani, “Temperature coefficient of electronic polarizability in optical glasses,” J. Non-Cryst. Solids 40(1-3), 611–619 (1980).
    [Crossref]
  24. Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. Kokta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).
    [Crossref]
  25. L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34(8), 2346–2349 (1963).
    [Crossref]
  26. B. Lipavsky, Y. Kalisky, Z. Burshtein, Y. Shimony, and S. Rotman, “Some optical properties of Cr4+-doped crystals,” Opt. Mater. 13(1), 117–127 (1999).
    [Crossref]
  27. S. Kück, K. Petermann, and G. Huber, “Spectroscopic investigation of the Cr4+-center in YAG,” in Advanced Solid State Lasers, (Optical Society of America, 1991), p. C4L16.
  28. L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
    [Crossref]
  29. H. Manaa, Y. Guyot, and R. Moncorgé, “Spectroscopic and tunable laser properties of Co2+-doped single crystals,” Phys. Rev. B 48(6), 3633–3645 (1993).
    [Crossref]
  30. O. Dymshits, A. Shashkin, A. A. Zhilin, Y. Volk, A. Malyarevich, and K. Yumashev, “Formation and passive Q-switch performance of glass-ceramics containing Co2+-doped spinel nanocrystals,” Adv. Mater. Res. 39-40, 219–224 (2008).
  31. M. Chun and J. Bischoff, “Thermal transient effects in optically pumped repetitively pulsed lasers,” IEEE J. Quantum Electron. 7(5), 200–202 (1971).
    [Crossref]
  32. R. Hotz, “Thermal transient effects in repetitively pulsed flashlamp-pumped YAG:Nd and YAG:Nd, Lu laser material,” Appl. Opt. 12(8), 1834–1838 (1973).
    [Crossref]
  33. H. Powell and G. Wolga, “Repetitive passive Q switching of single-frequency lasers,” IEEE J. Quantum Electron. 7(6), 213–219 (1971).
    [Crossref]
  34. Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31(10), 1738–1741 (1995).
    [Crossref]
  35. A. E. Siegman, “Lasers,” Mill Val. CA 37, 169 (1986).
  36. R. D. Stultz, M. Birnbaum, M. B. Camargo, and M. Kokta, “Laser system using Co2+-doped crystal Q-switch,” (1997). US Patent 5,654,973.
  37. F. Bisson, Y. Feng, A. Shirakawa, H. Yoneda, J. Lu, H. Yagi, T. Yanagitani, and I. Ueda, “Laser damage threshold of ceramic YAG,” Jpn. J. Appl. Phys. 42(Part 2, No. 8B), L1025–L1027 (2003).
    [Crossref]
  38. H. C. van de Hulst, Light scattering by small particles (Dover Publications, 1981).

2017 (1)

2016 (1)

A. Goldstein, P. Loiko, Z. Burshtein, N. Skoptsov, I. Glazunov, E. Galun, N. Kuleshov, and K. Yumashev, “Development of saturable absorbers for laser passive Q-switching near 1.5 µm based on transparent ceramic Co2+:MgAl2O4,” J. Am. Ceram. Soc. 99(4), 1324–1331 (2016).
[Crossref]

2013 (1)

D. C. Harris, L. F. Johnson, R. Seaver, T. Lewis, G. Turri, M. A. Bass, D. E. Zelmon, and N. Haynes, “Optical and thermal properties of spinel with revised (increased) absorption at 4 to 5 µm wavelengths and comparison with sapphire,” Opt. Eng. 52(8), 087113 (2013).
[Crossref]

2011 (1)

R. Feldman, Y. Golan, Z. Burshtein, S. Jackel, I. Moshe, A. Meir, Y. Lumer, and Y. Shimony, “Strengthening of poly-crystalline (ceramic) Nd:YAG elements for high-power laser applications,” Opt. Mater. 33(5), 695–701 (2011).
[Crossref]

2010 (1)

M. Pokrass, Z. Burshtein, and R. Gvishi, “Thermo-optic coefficient in some hybrid organic/inorganic fast sol–gel glasses,” Opt. Mater. 32(9), 975–981 (2010).
[Crossref]

2008 (5)

C. Jacinto, T. Catunda, D. Jaque, L. E. Bausá, and J. García-Solé, “Thermal lens and heat generation of nd:yag lasers operating at 1.064 and 1.34 µm,” Opt. Express 16(9), 6317–6323 (2008).
[Crossref]

S. Liu, F. Song, H. Cai, T. Li, B. Tian, Z. Wu, and J. Tian, “Effect of thermal lens on beam quality and mode matching in LD pumped Er–Yb-codoped phosphate glass microchip laser,” J. Phys. D: Appl. Phys. 41(3), 035104 (2008).
[Crossref]

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[Crossref]

S. Perets, M. Tseitlin, R. Shneck, and Z. Burshtein, “Refractive index dispersion and anisotropy in NaGd(WO4)2 single crystal,” Opt. Mater. 30(8), 1251–1256 (2008).
[Crossref]

O. Dymshits, A. Shashkin, A. A. Zhilin, Y. Volk, A. Malyarevich, and K. Yumashev, “Formation and passive Q-switch performance of glass-ceramics containing Co2+-doped spinel nanocrystals,” Adv. Mater. Res. 39-40, 219–224 (2008).

2003 (1)

F. Bisson, Y. Feng, A. Shirakawa, H. Yoneda, J. Lu, H. Yagi, T. Yanagitani, and I. Ueda, “Laser damage threshold of ceramic YAG,” Jpn. J. Appl. Phys. 42(Part 2, No. 8B), L1025–L1027 (2003).
[Crossref]

2002 (1)

A. Ikesue, “Polycrystalline Nd:YAG ceramics lasers,” Opt. Mater. 19(1), 183–187 (2002).
[Crossref]

1999 (2)

K. V. Yumashev, “Saturable absorber Co2+:MgAl2O4 crystal for Q switching of 1.34-µm Nd3+:YAlO3 and 1.54-µm Er3+:glass lasers,” Appl. Opt. 38(30), 6343–6346 (1999).
[Crossref]

B. Lipavsky, Y. Kalisky, Z. Burshtein, Y. Shimony, and S. Rotman, “Some optical properties of Cr4+-doped crystals,” Opt. Mater. 13(1), 117–127 (1999).
[Crossref]

1998 (1)

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. Kokta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).
[Crossref]

1996 (1)

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

1995 (1)

Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31(10), 1738–1741 (1995).
[Crossref]

1993 (1)

H. Manaa, Y. Guyot, and R. Moncorgé, “Spectroscopic and tunable laser properties of Co2+-doped single crystals,” Phys. Rev. B 48(6), 3633–3645 (1993).
[Crossref]

1991 (1)

P. A. Schulz and S. R. Henion, “Liquid-nitrogen-cooled Ti:Al2O3 laser,” IEEE J. Quantum Electron. 27(4), 1039–1047 (1991).
[Crossref]

1986 (1)

A. E. Siegman, “Lasers,” Mill Val. CA 37, 169 (1986).

1980 (2)

T. Izumitani and H. Toratani, “Temperature coefficient of electronic polarizability in optical glasses,” J. Non-Cryst. Solids 40(1-3), 611–619 (1980).
[Crossref]

I. Suzuki and M. Kumazawa, “Anomalous thermal expansion in spinel MgAl2O4,” Phys. Chem. Miner. 5, 279–284 (1980).

1975 (1)

K. Vedam, J. Kirk, and B. Achar, “Piezo-and thermo-optic behavior of spinel (MgAl2O4),” J. Solid State Chem. 12(3-4), 213–218 (1975).
[Crossref]

1973 (1)

1971 (2)

H. Powell and G. Wolga, “Repetitive passive Q switching of single-frequency lasers,” IEEE J. Quantum Electron. 7(6), 213–219 (1971).
[Crossref]

M. Chun and J. Bischoff, “Thermal transient effects in optically pumped repetitively pulsed lasers,” IEEE J. Quantum Electron. 7(5), 200–202 (1971).
[Crossref]

1969 (1)

I. Kaprálik, “Thermal expansion of spinels MgCr2O4, MgAl2O4 and MgFe2O4,” Chem. Pap. 23, 665–670 (1969).

1963 (1)

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34(8), 2346–2349 (1963).
[Crossref]

1960 (1)

L. Prod’homme, “A new approach to the thermal change in the refractive index of glasses,” Phys. Chem. Glasses 1, 119–122 (1960).

Achar, B.

K. Vedam, J. Kirk, and B. Achar, “Piezo-and thermo-optic behavior of spinel (MgAl2O4),” J. Solid State Chem. 12(3-4), 213–218 (1975).
[Crossref]

Alekseeva, I.

Aung, Y. L.

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[Crossref]

Bass, M. A.

D. C. Harris, L. F. Johnson, R. Seaver, T. Lewis, G. Turri, M. A. Bass, D. E. Zelmon, and N. Haynes, “Optical and thermal properties of spinel with revised (increased) absorption at 4 to 5 µm wavelengths and comparison with sapphire,” Opt. Eng. 52(8), 087113 (2013).
[Crossref]

Bausá, L. E.

Birnbaum, M.

R. D. Stultz, M. Birnbaum, M. B. Camargo, and M. Kokta, “Laser system using Co2+-doped crystal Q-switch,” (1997). US Patent 5,654,973.

Bischoff, J.

M. Chun and J. Bischoff, “Thermal transient effects in optically pumped repetitively pulsed lasers,” IEEE J. Quantum Electron. 7(5), 200–202 (1971).
[Crossref]

Bisson, F.

F. Bisson, Y. Feng, A. Shirakawa, H. Yoneda, J. Lu, H. Yagi, T. Yanagitani, and I. Ueda, “Laser damage threshold of ceramic YAG,” Jpn. J. Appl. Phys. 42(Part 2, No. 8B), L1025–L1027 (2003).
[Crossref]

Blau, P.

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. Kokta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).
[Crossref]

Burshtein, Z.

A. Goldstein, P. Loiko, Z. Burshtein, N. Skoptsov, I. Glazunov, E. Galun, N. Kuleshov, and K. Yumashev, “Development of saturable absorbers for laser passive Q-switching near 1.5 µm based on transparent ceramic Co2+:MgAl2O4,” J. Am. Ceram. Soc. 99(4), 1324–1331 (2016).
[Crossref]

R. Feldman, Y. Golan, Z. Burshtein, S. Jackel, I. Moshe, A. Meir, Y. Lumer, and Y. Shimony, “Strengthening of poly-crystalline (ceramic) Nd:YAG elements for high-power laser applications,” Opt. Mater. 33(5), 695–701 (2011).
[Crossref]

M. Pokrass, Z. Burshtein, and R. Gvishi, “Thermo-optic coefficient in some hybrid organic/inorganic fast sol–gel glasses,” Opt. Mater. 32(9), 975–981 (2010).
[Crossref]

S. Perets, M. Tseitlin, R. Shneck, and Z. Burshtein, “Refractive index dispersion and anisotropy in NaGd(WO4)2 single crystal,” Opt. Mater. 30(8), 1251–1256 (2008).
[Crossref]

B. Lipavsky, Y. Kalisky, Z. Burshtein, Y. Shimony, and S. Rotman, “Some optical properties of Cr4+-doped crystals,” Opt. Mater. 13(1), 117–127 (1999).
[Crossref]

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. Kokta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).
[Crossref]

Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31(10), 1738–1741 (1995).
[Crossref]

A. Goldstein, A. Krell, and Z. Burshtein, Transparent Ceramics: Materials, Engineering, and Applications (John Wiley & Sons, 2020).

Cai, H.

S. Liu, F. Song, H. Cai, T. Li, B. Tian, Z. Wu, and J. Tian, “Effect of thermal lens on beam quality and mode matching in LD pumped Er–Yb-codoped phosphate glass microchip laser,” J. Phys. D: Appl. Phys. 41(3), 035104 (2008).
[Crossref]

Callister, W. D.

W. D. Callister and D. G. Rethwisch, Fundamentals of materials science and engineering: an integrated approach (John Wiley & Sons, 2012).

Camargo, M. B.

R. D. Stultz, M. Birnbaum, M. B. Camargo, and M. Kokta, “Laser system using Co2+-doped crystal Q-switch,” (1997). US Patent 5,654,973.

Catunda, T.

Chun, M.

M. Chun and J. Bischoff, “Thermal transient effects in optically pumped repetitively pulsed lasers,” IEEE J. Quantum Electron. 7(5), 200–202 (1971).
[Crossref]

DeLoach, L. D.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

Duncan, D. D.

C. H. Lange and D. D. Duncan, “Temperature coefficient of refractive index for candidate optical windows,” in Window and Dome Technologies and Materials II, vol. 1326 (International Society for Optics and Photonics, 1990), pp. 71–78.

Dymshits, O.

V. Vitkin, P. Loiko, O. Dymshits, A. Zhilin, I. Alekseeva, D. Sabitova, A. Polishchuk, A. Malyarevich, X. Mateos, and K. Yumashev, “Passive Q-switching of an Er, Yb:glass laser with Co:Mg(Al, Ga)2O4-based glass-ceramics,” Appl. Opt. 56(8), 2142–2149 (2017).
[Crossref]

O. Dymshits, A. Shashkin, A. A. Zhilin, Y. Volk, A. Malyarevich, and K. Yumashev, “Formation and passive Q-switch performance of glass-ceramics containing Co2+-doped spinel nanocrystals,” Adv. Mater. Res. 39-40, 219–224 (2008).

Feldman, R.

R. Feldman, Y. Golan, Z. Burshtein, S. Jackel, I. Moshe, A. Meir, Y. Lumer, and Y. Shimony, “Strengthening of poly-crystalline (ceramic) Nd:YAG elements for high-power laser applications,” Opt. Mater. 33(5), 695–701 (2011).
[Crossref]

Feng, Y.

F. Bisson, Y. Feng, A. Shirakawa, H. Yoneda, J. Lu, H. Yagi, T. Yanagitani, and I. Ueda, “Laser damage threshold of ceramic YAG,” Jpn. J. Appl. Phys. 42(Part 2, No. 8B), L1025–L1027 (2003).
[Crossref]

Frantz, L. M.

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34(8), 2346–2349 (1963).
[Crossref]

Galun, E.

A. Goldstein, P. Loiko, Z. Burshtein, N. Skoptsov, I. Glazunov, E. Galun, N. Kuleshov, and K. Yumashev, “Development of saturable absorbers for laser passive Q-switching near 1.5 µm based on transparent ceramic Co2+:MgAl2O4,” J. Am. Ceram. Soc. 99(4), 1324–1331 (2016).
[Crossref]

García-Solé, J.

Glazunov, I.

A. Goldstein, P. Loiko, Z. Burshtein, N. Skoptsov, I. Glazunov, E. Galun, N. Kuleshov, and K. Yumashev, “Development of saturable absorbers for laser passive Q-switching near 1.5 µm based on transparent ceramic Co2+:MgAl2O4,” J. Am. Ceram. Soc. 99(4), 1324–1331 (2016).
[Crossref]

Golan, Y.

R. Feldman, Y. Golan, Z. Burshtein, S. Jackel, I. Moshe, A. Meir, Y. Lumer, and Y. Shimony, “Strengthening of poly-crystalline (ceramic) Nd:YAG elements for high-power laser applications,” Opt. Mater. 33(5), 695–701 (2011).
[Crossref]

Goldstein, A.

A. Goldstein, P. Loiko, Z. Burshtein, N. Skoptsov, I. Glazunov, E. Galun, N. Kuleshov, and K. Yumashev, “Development of saturable absorbers for laser passive Q-switching near 1.5 µm based on transparent ceramic Co2+:MgAl2O4,” J. Am. Ceram. Soc. 99(4), 1324–1331 (2016).
[Crossref]

A. Goldstein, A. Krell, and Z. Burshtein, Transparent Ceramics: Materials, Engineering, and Applications (John Wiley & Sons, 2020).

Guyot, Y.

H. Manaa, Y. Guyot, and R. Moncorgé, “Spectroscopic and tunable laser properties of Co2+-doped single crystals,” Phys. Rev. B 48(6), 3633–3645 (1993).
[Crossref]

Gvishi, R.

M. Pokrass, Z. Burshtein, and R. Gvishi, “Thermo-optic coefficient in some hybrid organic/inorganic fast sol–gel glasses,” Opt. Mater. 32(9), 975–981 (2010).
[Crossref]

Harris, D. C.

D. C. Harris, L. F. Johnson, R. Seaver, T. Lewis, G. Turri, M. A. Bass, D. E. Zelmon, and N. Haynes, “Optical and thermal properties of spinel with revised (increased) absorption at 4 to 5 µm wavelengths and comparison with sapphire,” Opt. Eng. 52(8), 087113 (2013).
[Crossref]

Haynes, N.

D. C. Harris, L. F. Johnson, R. Seaver, T. Lewis, G. Turri, M. A. Bass, D. E. Zelmon, and N. Haynes, “Optical and thermal properties of spinel with revised (increased) absorption at 4 to 5 µm wavelengths and comparison with sapphire,” Opt. Eng. 52(8), 087113 (2013).
[Crossref]

Henion, S. R.

P. A. Schulz and S. R. Henion, “Liquid-nitrogen-cooled Ti:Al2O3 laser,” IEEE J. Quantum Electron. 27(4), 1039–1047 (1991).
[Crossref]

Hotz, R.

Huber, G.

S. Kück, K. Petermann, and G. Huber, “Spectroscopic investigation of the Cr4+-center in YAG,” in Advanced Solid State Lasers, (Optical Society of America, 1991), p. C4L16.

Ikesue, A.

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[Crossref]

A. Ikesue, “Polycrystalline Nd:YAG ceramics lasers,” Opt. Mater. 19(1), 183–187 (2002).
[Crossref]

Izumitani, T.

T. Izumitani and H. Toratani, “Temperature coefficient of electronic polarizability in optical glasses,” J. Non-Cryst. Solids 40(1-3), 611–619 (1980).
[Crossref]

Jacinto, C.

Jackel, S.

R. Feldman, Y. Golan, Z. Burshtein, S. Jackel, I. Moshe, A. Meir, Y. Lumer, and Y. Shimony, “Strengthening of poly-crystalline (ceramic) Nd:YAG elements for high-power laser applications,” Opt. Mater. 33(5), 695–701 (2011).
[Crossref]

Jaque, D.

Johnson, L. F.

D. C. Harris, L. F. Johnson, R. Seaver, T. Lewis, G. Turri, M. A. Bass, D. E. Zelmon, and N. Haynes, “Optical and thermal properties of spinel with revised (increased) absorption at 4 to 5 µm wavelengths and comparison with sapphire,” Opt. Eng. 52(8), 087113 (2013).
[Crossref]

Kalisky, Y.

B. Lipavsky, Y. Kalisky, Z. Burshtein, Y. Shimony, and S. Rotman, “Some optical properties of Cr4+-doped crystals,” Opt. Mater. 13(1), 117–127 (1999).
[Crossref]

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. Kokta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).
[Crossref]

Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31(10), 1738–1741 (1995).
[Crossref]

Kaprálik, I.

I. Kaprálik, “Thermal expansion of spinels MgCr2O4, MgAl2O4 and MgFe2O4,” Chem. Pap. 23, 665–670 (1969).

Kirk, J.

K. Vedam, J. Kirk, and B. Achar, “Piezo-and thermo-optic behavior of spinel (MgAl2O4),” J. Solid State Chem. 12(3-4), 213–218 (1975).
[Crossref]

Klimke, J.

A. Krell, K. Waetzig, and J. Klimke, “Effects and elimination of nanoporosity in transparent sintered spinel (MgAl2O4),” in Window and dome technologies and materials XII, vol. 8016 (International Society for Optics and Photonics, 2011), p. 801602.

Koechner, W.

W. Koechner, Solid-state laser engineering, vol. 1 (Springer, 2006).

Kokta, M.

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. Kokta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).
[Crossref]

R. D. Stultz, M. Birnbaum, M. B. Camargo, and M. Kokta, “Laser system using Co2+-doped crystal Q-switch,” (1997). US Patent 5,654,973.

Krell, A.

A. Krell, K. Waetzig, and J. Klimke, “Effects and elimination of nanoporosity in transparent sintered spinel (MgAl2O4),” in Window and dome technologies and materials XII, vol. 8016 (International Society for Optics and Photonics, 2011), p. 801602.

A. Goldstein, A. Krell, and Z. Burshtein, Transparent Ceramics: Materials, Engineering, and Applications (John Wiley & Sons, 2020).

Krupke, W. F.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

Kück, S.

S. Kück, K. Petermann, and G. Huber, “Spectroscopic investigation of the Cr4+-center in YAG,” in Advanced Solid State Lasers, (Optical Society of America, 1991), p. C4L16.

Kuleshov, N.

A. Goldstein, P. Loiko, Z. Burshtein, N. Skoptsov, I. Glazunov, E. Galun, N. Kuleshov, and K. Yumashev, “Development of saturable absorbers for laser passive Q-switching near 1.5 µm based on transparent ceramic Co2+:MgAl2O4,” J. Am. Ceram. Soc. 99(4), 1324–1331 (2016).
[Crossref]

Kumazawa, M.

I. Suzuki and M. Kumazawa, “Anomalous thermal expansion in spinel MgAl2O4,” Phys. Chem. Miner. 5, 279–284 (1980).

Lange, C. H.

C. H. Lange and D. D. Duncan, “Temperature coefficient of refractive index for candidate optical windows,” in Window and Dome Technologies and Materials II, vol. 1326 (International Society for Optics and Photonics, 1990), pp. 71–78.

Lewis, T.

D. C. Harris, L. F. Johnson, R. Seaver, T. Lewis, G. Turri, M. A. Bass, D. E. Zelmon, and N. Haynes, “Optical and thermal properties of spinel with revised (increased) absorption at 4 to 5 µm wavelengths and comparison with sapphire,” Opt. Eng. 52(8), 087113 (2013).
[Crossref]

Li, T.

S. Liu, F. Song, H. Cai, T. Li, B. Tian, Z. Wu, and J. Tian, “Effect of thermal lens on beam quality and mode matching in LD pumped Er–Yb-codoped phosphate glass microchip laser,” J. Phys. D: Appl. Phys. 41(3), 035104 (2008).
[Crossref]

Lipavsky, B.

B. Lipavsky, Y. Kalisky, Z. Burshtein, Y. Shimony, and S. Rotman, “Some optical properties of Cr4+-doped crystals,” Opt. Mater. 13(1), 117–127 (1999).
[Crossref]

Liu, S.

S. Liu, F. Song, H. Cai, T. Li, B. Tian, Z. Wu, and J. Tian, “Effect of thermal lens on beam quality and mode matching in LD pumped Er–Yb-codoped phosphate glass microchip laser,” J. Phys. D: Appl. Phys. 41(3), 035104 (2008).
[Crossref]

Loiko, P.

V. Vitkin, P. Loiko, O. Dymshits, A. Zhilin, I. Alekseeva, D. Sabitova, A. Polishchuk, A. Malyarevich, X. Mateos, and K. Yumashev, “Passive Q-switching of an Er, Yb:glass laser with Co:Mg(Al, Ga)2O4-based glass-ceramics,” Appl. Opt. 56(8), 2142–2149 (2017).
[Crossref]

A. Goldstein, P. Loiko, Z. Burshtein, N. Skoptsov, I. Glazunov, E. Galun, N. Kuleshov, and K. Yumashev, “Development of saturable absorbers for laser passive Q-switching near 1.5 µm based on transparent ceramic Co2+:MgAl2O4,” J. Am. Ceram. Soc. 99(4), 1324–1331 (2016).
[Crossref]

Lu, J.

F. Bisson, Y. Feng, A. Shirakawa, H. Yoneda, J. Lu, H. Yagi, T. Yanagitani, and I. Ueda, “Laser damage threshold of ceramic YAG,” Jpn. J. Appl. Phys. 42(Part 2, No. 8B), L1025–L1027 (2003).
[Crossref]

Lumer, Y.

R. Feldman, Y. Golan, Z. Burshtein, S. Jackel, I. Moshe, A. Meir, Y. Lumer, and Y. Shimony, “Strengthening of poly-crystalline (ceramic) Nd:YAG elements for high-power laser applications,” Opt. Mater. 33(5), 695–701 (2011).
[Crossref]

Malyarevich, A.

V. Vitkin, P. Loiko, O. Dymshits, A. Zhilin, I. Alekseeva, D. Sabitova, A. Polishchuk, A. Malyarevich, X. Mateos, and K. Yumashev, “Passive Q-switching of an Er, Yb:glass laser with Co:Mg(Al, Ga)2O4-based glass-ceramics,” Appl. Opt. 56(8), 2142–2149 (2017).
[Crossref]

O. Dymshits, A. Shashkin, A. A. Zhilin, Y. Volk, A. Malyarevich, and K. Yumashev, “Formation and passive Q-switch performance of glass-ceramics containing Co2+-doped spinel nanocrystals,” Adv. Mater. Res. 39-40, 219–224 (2008).

Manaa, H.

H. Manaa, Y. Guyot, and R. Moncorgé, “Spectroscopic and tunable laser properties of Co2+-doped single crystals,” Phys. Rev. B 48(6), 3633–3645 (1993).
[Crossref]

Mateos, X.

Meir, A.

R. Feldman, Y. Golan, Z. Burshtein, S. Jackel, I. Moshe, A. Meir, Y. Lumer, and Y. Shimony, “Strengthening of poly-crystalline (ceramic) Nd:YAG elements for high-power laser applications,” Opt. Mater. 33(5), 695–701 (2011).
[Crossref]

Moncorgé, R.

H. Manaa, Y. Guyot, and R. Moncorgé, “Spectroscopic and tunable laser properties of Co2+-doped single crystals,” Phys. Rev. B 48(6), 3633–3645 (1993).
[Crossref]

Moshe, I.

R. Feldman, Y. Golan, Z. Burshtein, S. Jackel, I. Moshe, A. Meir, Y. Lumer, and Y. Shimony, “Strengthening of poly-crystalline (ceramic) Nd:YAG elements for high-power laser applications,” Opt. Mater. 33(5), 695–701 (2011).
[Crossref]

Nodvik, J. S.

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34(8), 2346–2349 (1963).
[Crossref]

Page, R. H.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

Payne, S. A.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

Perets, S.

S. Perets, M. Tseitlin, R. Shneck, and Z. Burshtein, “Refractive index dispersion and anisotropy in NaGd(WO4)2 single crystal,” Opt. Mater. 30(8), 1251–1256 (2008).
[Crossref]

Petermann, K.

S. Kück, K. Petermann, and G. Huber, “Spectroscopic investigation of the Cr4+-center in YAG,” in Advanced Solid State Lasers, (Optical Society of America, 1991), p. C4L16.

Pokrass, M.

M. Pokrass, Z. Burshtein, and R. Gvishi, “Thermo-optic coefficient in some hybrid organic/inorganic fast sol–gel glasses,” Opt. Mater. 32(9), 975–981 (2010).
[Crossref]

Polishchuk, A.

Powell, H.

H. Powell and G. Wolga, “Repetitive passive Q switching of single-frequency lasers,” IEEE J. Quantum Electron. 7(6), 213–219 (1971).
[Crossref]

Prod’homme, L.

L. Prod’homme, “A new approach to the thermal change in the refractive index of glasses,” Phys. Chem. Glasses 1, 119–122 (1960).

Rethwisch, D. G.

W. D. Callister and D. G. Rethwisch, Fundamentals of materials science and engineering: an integrated approach (John Wiley & Sons, 2012).

Rotman, S.

B. Lipavsky, Y. Kalisky, Z. Burshtein, Y. Shimony, and S. Rotman, “Some optical properties of Cr4+-doped crystals,” Opt. Mater. 13(1), 117–127 (1999).
[Crossref]

Sabitova, D.

Schulz, P. A.

P. A. Schulz and S. R. Henion, “Liquid-nitrogen-cooled Ti:Al2O3 laser,” IEEE J. Quantum Electron. 27(4), 1039–1047 (1991).
[Crossref]

Seaver, R.

D. C. Harris, L. F. Johnson, R. Seaver, T. Lewis, G. Turri, M. A. Bass, D. E. Zelmon, and N. Haynes, “Optical and thermal properties of spinel with revised (increased) absorption at 4 to 5 µm wavelengths and comparison with sapphire,” Opt. Eng. 52(8), 087113 (2013).
[Crossref]

Shashkin, A.

O. Dymshits, A. Shashkin, A. A. Zhilin, Y. Volk, A. Malyarevich, and K. Yumashev, “Formation and passive Q-switch performance of glass-ceramics containing Co2+-doped spinel nanocrystals,” Adv. Mater. Res. 39-40, 219–224 (2008).

Shimony, Y.

R. Feldman, Y. Golan, Z. Burshtein, S. Jackel, I. Moshe, A. Meir, Y. Lumer, and Y. Shimony, “Strengthening of poly-crystalline (ceramic) Nd:YAG elements for high-power laser applications,” Opt. Mater. 33(5), 695–701 (2011).
[Crossref]

B. Lipavsky, Y. Kalisky, Z. Burshtein, Y. Shimony, and S. Rotman, “Some optical properties of Cr4+-doped crystals,” Opt. Mater. 13(1), 117–127 (1999).
[Crossref]

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. Kokta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).
[Crossref]

Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31(10), 1738–1741 (1995).
[Crossref]

Shirakawa, A.

F. Bisson, Y. Feng, A. Shirakawa, H. Yoneda, J. Lu, H. Yagi, T. Yanagitani, and I. Ueda, “Laser damage threshold of ceramic YAG,” Jpn. J. Appl. Phys. 42(Part 2, No. 8B), L1025–L1027 (2003).
[Crossref]

Shneck, R.

S. Perets, M. Tseitlin, R. Shneck, and Z. Burshtein, “Refractive index dispersion and anisotropy in NaGd(WO4)2 single crystal,” Opt. Mater. 30(8), 1251–1256 (2008).
[Crossref]

Siegman, A. E.

A. E. Siegman, “Lasers,” Mill Val. CA 37, 169 (1986).

Skoptsov, N.

A. Goldstein, P. Loiko, Z. Burshtein, N. Skoptsov, I. Glazunov, E. Galun, N. Kuleshov, and K. Yumashev, “Development of saturable absorbers for laser passive Q-switching near 1.5 µm based on transparent ceramic Co2+:MgAl2O4,” J. Am. Ceram. Soc. 99(4), 1324–1331 (2016).
[Crossref]

Song, F.

S. Liu, F. Song, H. Cai, T. Li, B. Tian, Z. Wu, and J. Tian, “Effect of thermal lens on beam quality and mode matching in LD pumped Er–Yb-codoped phosphate glass microchip laser,” J. Phys. D: Appl. Phys. 41(3), 035104 (2008).
[Crossref]

Stultz, R. D.

R. D. Stultz, M. Birnbaum, M. B. Camargo, and M. Kokta, “Laser system using Co2+-doped crystal Q-switch,” (1997). US Patent 5,654,973.

Suzuki, I.

I. Suzuki and M. Kumazawa, “Anomalous thermal expansion in spinel MgAl2O4,” Phys. Chem. Miner. 5, 279–284 (1980).

Tian, B.

S. Liu, F. Song, H. Cai, T. Li, B. Tian, Z. Wu, and J. Tian, “Effect of thermal lens on beam quality and mode matching in LD pumped Er–Yb-codoped phosphate glass microchip laser,” J. Phys. D: Appl. Phys. 41(3), 035104 (2008).
[Crossref]

Tian, J.

S. Liu, F. Song, H. Cai, T. Li, B. Tian, Z. Wu, and J. Tian, “Effect of thermal lens on beam quality and mode matching in LD pumped Er–Yb-codoped phosphate glass microchip laser,” J. Phys. D: Appl. Phys. 41(3), 035104 (2008).
[Crossref]

Toratani, H.

T. Izumitani and H. Toratani, “Temperature coefficient of electronic polarizability in optical glasses,” J. Non-Cryst. Solids 40(1-3), 611–619 (1980).
[Crossref]

Tseitlin, M.

S. Perets, M. Tseitlin, R. Shneck, and Z. Burshtein, “Refractive index dispersion and anisotropy in NaGd(WO4)2 single crystal,” Opt. Mater. 30(8), 1251–1256 (2008).
[Crossref]

Turri, G.

D. C. Harris, L. F. Johnson, R. Seaver, T. Lewis, G. Turri, M. A. Bass, D. E. Zelmon, and N. Haynes, “Optical and thermal properties of spinel with revised (increased) absorption at 4 to 5 µm wavelengths and comparison with sapphire,” Opt. Eng. 52(8), 087113 (2013).
[Crossref]

Ueda, I.

F. Bisson, Y. Feng, A. Shirakawa, H. Yoneda, J. Lu, H. Yagi, T. Yanagitani, and I. Ueda, “Laser damage threshold of ceramic YAG,” Jpn. J. Appl. Phys. 42(Part 2, No. 8B), L1025–L1027 (2003).
[Crossref]

van de Hulst, H. C.

H. C. van de Hulst, Light scattering by small particles (Dover Publications, 1981).

Vedam, K.

K. Vedam, J. Kirk, and B. Achar, “Piezo-and thermo-optic behavior of spinel (MgAl2O4),” J. Solid State Chem. 12(3-4), 213–218 (1975).
[Crossref]

Vitkin, V.

Volk, Y.

O. Dymshits, A. Shashkin, A. A. Zhilin, Y. Volk, A. Malyarevich, and K. Yumashev, “Formation and passive Q-switch performance of glass-ceramics containing Co2+-doped spinel nanocrystals,” Adv. Mater. Res. 39-40, 219–224 (2008).

Waetzig, K.

A. Krell, K. Waetzig, and J. Klimke, “Effects and elimination of nanoporosity in transparent sintered spinel (MgAl2O4),” in Window and dome technologies and materials XII, vol. 8016 (International Society for Optics and Photonics, 2011), p. 801602.

Wilke, G. D.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

Wolga, G.

H. Powell and G. Wolga, “Repetitive passive Q switching of single-frequency lasers,” IEEE J. Quantum Electron. 7(6), 213–219 (1971).
[Crossref]

Wu, Z.

S. Liu, F. Song, H. Cai, T. Li, B. Tian, Z. Wu, and J. Tian, “Effect of thermal lens on beam quality and mode matching in LD pumped Er–Yb-codoped phosphate glass microchip laser,” J. Phys. D: Appl. Phys. 41(3), 035104 (2008).
[Crossref]

Yagi, H.

F. Bisson, Y. Feng, A. Shirakawa, H. Yoneda, J. Lu, H. Yagi, T. Yanagitani, and I. Ueda, “Laser damage threshold of ceramic YAG,” Jpn. J. Appl. Phys. 42(Part 2, No. 8B), L1025–L1027 (2003).
[Crossref]

Yanagitani, T.

F. Bisson, Y. Feng, A. Shirakawa, H. Yoneda, J. Lu, H. Yagi, T. Yanagitani, and I. Ueda, “Laser damage threshold of ceramic YAG,” Jpn. J. Appl. Phys. 42(Part 2, No. 8B), L1025–L1027 (2003).
[Crossref]

Yariv, A.

A. Yariv, Introduction to Optical Electronics, vol. 1 (Holt-Reinhart-Winston, 1971).

Yoneda, H.

F. Bisson, Y. Feng, A. Shirakawa, H. Yoneda, J. Lu, H. Yagi, T. Yanagitani, and I. Ueda, “Laser damage threshold of ceramic YAG,” Jpn. J. Appl. Phys. 42(Part 2, No. 8B), L1025–L1027 (2003).
[Crossref]

Yumashev, K.

V. Vitkin, P. Loiko, O. Dymshits, A. Zhilin, I. Alekseeva, D. Sabitova, A. Polishchuk, A. Malyarevich, X. Mateos, and K. Yumashev, “Passive Q-switching of an Er, Yb:glass laser with Co:Mg(Al, Ga)2O4-based glass-ceramics,” Appl. Opt. 56(8), 2142–2149 (2017).
[Crossref]

A. Goldstein, P. Loiko, Z. Burshtein, N. Skoptsov, I. Glazunov, E. Galun, N. Kuleshov, and K. Yumashev, “Development of saturable absorbers for laser passive Q-switching near 1.5 µm based on transparent ceramic Co2+:MgAl2O4,” J. Am. Ceram. Soc. 99(4), 1324–1331 (2016).
[Crossref]

O. Dymshits, A. Shashkin, A. A. Zhilin, Y. Volk, A. Malyarevich, and K. Yumashev, “Formation and passive Q-switch performance of glass-ceramics containing Co2+-doped spinel nanocrystals,” Adv. Mater. Res. 39-40, 219–224 (2008).

Yumashev, K. V.

Zelmon, D. E.

D. C. Harris, L. F. Johnson, R. Seaver, T. Lewis, G. Turri, M. A. Bass, D. E. Zelmon, and N. Haynes, “Optical and thermal properties of spinel with revised (increased) absorption at 4 to 5 µm wavelengths and comparison with sapphire,” Opt. Eng. 52(8), 087113 (2013).
[Crossref]

Zhilin, A.

Zhilin, A. A.

O. Dymshits, A. Shashkin, A. A. Zhilin, Y. Volk, A. Malyarevich, and K. Yumashev, “Formation and passive Q-switch performance of glass-ceramics containing Co2+-doped spinel nanocrystals,” Adv. Mater. Res. 39-40, 219–224 (2008).

Adv. Mater. Res. (1)

O. Dymshits, A. Shashkin, A. A. Zhilin, Y. Volk, A. Malyarevich, and K. Yumashev, “Formation and passive Q-switch performance of glass-ceramics containing Co2+-doped spinel nanocrystals,” Adv. Mater. Res. 39-40, 219–224 (2008).

Appl. Opt. (3)

Chem. Pap. (1)

I. Kaprálik, “Thermal expansion of spinels MgCr2O4, MgAl2O4 and MgFe2O4,” Chem. Pap. 23, 665–670 (1969).

IEEE J. Quantum Electron. (6)

M. Chun and J. Bischoff, “Thermal transient effects in optically pumped repetitively pulsed lasers,” IEEE J. Quantum Electron. 7(5), 200–202 (1971).
[Crossref]

H. Powell and G. Wolga, “Repetitive passive Q switching of single-frequency lasers,” IEEE J. Quantum Electron. 7(6), 213–219 (1971).
[Crossref]

Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31(10), 1738–1741 (1995).
[Crossref]

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. Kokta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).
[Crossref]

P. A. Schulz and S. R. Henion, “Liquid-nitrogen-cooled Ti:Al2O3 laser,” IEEE J. Quantum Electron. 27(4), 1039–1047 (1991).
[Crossref]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

J. Am. Ceram. Soc. (1)

A. Goldstein, P. Loiko, Z. Burshtein, N. Skoptsov, I. Glazunov, E. Galun, N. Kuleshov, and K. Yumashev, “Development of saturable absorbers for laser passive Q-switching near 1.5 µm based on transparent ceramic Co2+:MgAl2O4,” J. Am. Ceram. Soc. 99(4), 1324–1331 (2016).
[Crossref]

J. Appl. Phys. (1)

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34(8), 2346–2349 (1963).
[Crossref]

J. Non-Cryst. Solids (1)

T. Izumitani and H. Toratani, “Temperature coefficient of electronic polarizability in optical glasses,” J. Non-Cryst. Solids 40(1-3), 611–619 (1980).
[Crossref]

J. Phys. D: Appl. Phys. (1)

S. Liu, F. Song, H. Cai, T. Li, B. Tian, Z. Wu, and J. Tian, “Effect of thermal lens on beam quality and mode matching in LD pumped Er–Yb-codoped phosphate glass microchip laser,” J. Phys. D: Appl. Phys. 41(3), 035104 (2008).
[Crossref]

J. Solid State Chem. (1)

K. Vedam, J. Kirk, and B. Achar, “Piezo-and thermo-optic behavior of spinel (MgAl2O4),” J. Solid State Chem. 12(3-4), 213–218 (1975).
[Crossref]

Jpn. J. Appl. Phys. (1)

F. Bisson, Y. Feng, A. Shirakawa, H. Yoneda, J. Lu, H. Yagi, T. Yanagitani, and I. Ueda, “Laser damage threshold of ceramic YAG,” Jpn. J. Appl. Phys. 42(Part 2, No. 8B), L1025–L1027 (2003).
[Crossref]

Mill Val. CA (1)

A. E. Siegman, “Lasers,” Mill Val. CA 37, 169 (1986).

Nat. Photonics (1)

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[Crossref]

Opt. Eng. (1)

D. C. Harris, L. F. Johnson, R. Seaver, T. Lewis, G. Turri, M. A. Bass, D. E. Zelmon, and N. Haynes, “Optical and thermal properties of spinel with revised (increased) absorption at 4 to 5 µm wavelengths and comparison with sapphire,” Opt. Eng. 52(8), 087113 (2013).
[Crossref]

Opt. Express (1)

Opt. Mater. (5)

R. Feldman, Y. Golan, Z. Burshtein, S. Jackel, I. Moshe, A. Meir, Y. Lumer, and Y. Shimony, “Strengthening of poly-crystalline (ceramic) Nd:YAG elements for high-power laser applications,” Opt. Mater. 33(5), 695–701 (2011).
[Crossref]

A. Ikesue, “Polycrystalline Nd:YAG ceramics lasers,” Opt. Mater. 19(1), 183–187 (2002).
[Crossref]

S. Perets, M. Tseitlin, R. Shneck, and Z. Burshtein, “Refractive index dispersion and anisotropy in NaGd(WO4)2 single crystal,” Opt. Mater. 30(8), 1251–1256 (2008).
[Crossref]

B. Lipavsky, Y. Kalisky, Z. Burshtein, Y. Shimony, and S. Rotman, “Some optical properties of Cr4+-doped crystals,” Opt. Mater. 13(1), 117–127 (1999).
[Crossref]

M. Pokrass, Z. Burshtein, and R. Gvishi, “Thermo-optic coefficient in some hybrid organic/inorganic fast sol–gel glasses,” Opt. Mater. 32(9), 975–981 (2010).
[Crossref]

Phys. Chem. Glasses (1)

L. Prod’homme, “A new approach to the thermal change in the refractive index of glasses,” Phys. Chem. Glasses 1, 119–122 (1960).

Phys. Chem. Miner. (1)

I. Suzuki and M. Kumazawa, “Anomalous thermal expansion in spinel MgAl2O4,” Phys. Chem. Miner. 5, 279–284 (1980).

Phys. Rev. B (1)

H. Manaa, Y. Guyot, and R. Moncorgé, “Spectroscopic and tunable laser properties of Co2+-doped single crystals,” Phys. Rev. B 48(6), 3633–3645 (1993).
[Crossref]

Other (9)

S. Kück, K. Petermann, and G. Huber, “Spectroscopic investigation of the Cr4+-center in YAG,” in Advanced Solid State Lasers, (Optical Society of America, 1991), p. C4L16.

A. Yariv, Introduction to Optical Electronics, vol. 1 (Holt-Reinhart-Winston, 1971).

A. Krell, K. Waetzig, and J. Klimke, “Effects and elimination of nanoporosity in transparent sintered spinel (MgAl2O4),” in Window and dome technologies and materials XII, vol. 8016 (International Society for Optics and Photonics, 2011), p. 801602.

C. H. Lange and D. D. Duncan, “Temperature coefficient of refractive index for candidate optical windows,” in Window and Dome Technologies and Materials II, vol. 1326 (International Society for Optics and Photonics, 1990), pp. 71–78.

W. Koechner, Solid-state laser engineering, vol. 1 (Springer, 2006).

H. C. van de Hulst, Light scattering by small particles (Dover Publications, 1981).

W. D. Callister and D. G. Rethwisch, Fundamentals of materials science and engineering: an integrated approach (John Wiley & Sons, 2012).

A. Goldstein, A. Krell, and Z. Burshtein, Transparent Ceramics: Materials, Engineering, and Applications (John Wiley & Sons, 2020).

R. D. Stultz, M. Birnbaum, M. B. Camargo, and M. Kokta, “Laser system using Co2+-doped crystal Q-switch,” (1997). US Patent 5,654,973.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Schematic illustration of the experimental setup used for measuring the temperature dependence of the undoped ceramic $\mathrm {MgAl_2O_4}$ sample front surface optical reflectance.
Fig. 2.
Fig. 2. Schematic illustration of the experimental setup used for measuring the thermal lensing factor $(TL)=L^{-1}d(nL)/dT$ .
Fig. 3.
Fig. 3. Schematic layout of the Er:Glass laser resonator with a $\mathrm {Co}^{2+}$ :spinel disk inclined at Brewster angle relative to the laser axis, acting as a passive Q-switch. HR = high reflectance mirror at $1.534\,\mu \mathrm {m}$ ; OC = output coupler.
Fig. 4.
Fig. 4. Absorption coefficient versus wavelength spectra of ceramic $\mathrm {MgAl_2O_4}$ plates: (a) $5.0\,\mathrm {mm}$ thick, pure; (b) $1.65\,\mathrm {mm}$ thick, $0.03\,\mathrm {at}.\%$ $\mathrm {Co}^{2+}$ -doped. Inset: simplified $\mathrm {Co}^{2+}$ energy level diagram; not detailed are the spin-orbit states’ splitting.
Fig. 5.
Fig. 5. Ratio between front surface reflectance of undoped $\mathrm {MgAl_2O_4}$ ceramic at temperature $T$ and at $30^{\circ }\mathrm {C}$ as a function of $T$ .
Fig. 6.
Fig. 6. (a) Measured normalized intensity of a beam passing through an on-axis screen pinhole as a function of temperature $T$ , according to a scheme presented in Fig. 2. (b) Peak ordinal numbers as function of temperature according to measured data in Fig. 6(a).
Fig. 7.
Fig. 7. Optical transmission corrected for Fresnel reflections of $10\,\mathrm {ns}$ long, $\sim 1.5\,\mu \mathrm {m}$ laser pulses through a 1.65 mm thick $\mathrm {Co}^{2+}$ : $\mathrm {MgAl_2O_4}$ ceramic disc containing $0.03\,\mathrm {at.}\%\,\mathrm {Co}^{2+}$ as a function of the pulse peak fluence. Full symbols - experimental results; dashed line - fit to Eq. (5).
Fig. 8.
Fig. 8. (a) Output pulse shape for the Er:Glass free-running laser operating at $17\,\mathrm {J}$ pump energy. (b) Q-switched laser output at $20.2\,\mathrm {J}$ pump energy. Three discrete pulses appear (difference in pulse heights is mostly an artifact of the oscilloscope digitization resolution at the used time scale). Inset - a single Q-switched pulse time shape at an expanded time scale.
Fig. 9.
Fig. 9. Output pulse energy for the Er:Glass laser; under free running conditions (Short Dots - linear fit) and passively Q-switched using an inclined $\mathrm {Co}^{2+}$ : $\mathrm {MgAl_2O_4}$ ceramic as per Fig. 3 (Dashed Dot Dot and Dashed lines - linear fits).
Fig. 10.
Fig. 10. (a) Output pulse intensity vs. wavelength spectrum of a passively Q-switched Er:Glass laser. (b) Beam radius as function of position along the propagation axis.
Fig. 11.
Fig. 11. Optical microscopic image of the damaged front surface area at the $\mathrm {Co}^{2+}$ : $\mathrm {MgAl_2O_4}$ ceramic Q-switch. In gross terms, darker regions express greater scattering of light by the various damaged regions.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

d n d T | T 0 = n 2 ( T 0 ) 1 4 d d T ( R ( T ) R ( T 0 ) ) ,
j ( T ) = Δ ( n L ) λ 0 / 2 .
( T L ) = 1 L d ( n L ) d T = d n d T + α n ,
d n d T = ( n 2 1 ) ( n 2 + 2 ) 6 n ( ϕ β ) .
T ( L ) T 0 + T F N ( L ) T 0 1 T 0 ( T m a x T 0 )
T F N ( L ) = h ν σ g s Φ ( 0 ) ln ( 1 + T 0 [ exp ( σ g s Φ ( 0 ) h ν ) 1 ] ) ,
w ( z ) = w 0 1 + ( M 2 z λ π w 0 2 ) 2 ,