Abstract

This paper presents a detailed-balance analysis required for the achievement of a high-efficiency spectral selective STPV system utilizing thermodynamic and optical modeling approaches. Key parameters affecting the design and optimization of spectrally selective surfaces that are essential for high-efficiency STPV applications are investigated. A complete GaSb-based planar STPV system utilizing a micro-textured absorber and a nanostructure multilayer metal-dielectric coated selective emitter was fabricated and evaluated. The micro-textured absorber features more than 90% absorbance at visible and near-infrared wavelengths. The selective emitter, consisting of two nanolayer coatings of silicon nitride (Si3N4) and a layer of W in between, exhibits high spectral emissivity at wavelengths matching the spectral response of the GaSb cells. The performance of the STPV system was evaluated using a high-power laser diode as a simulated source of concentrated incident radiation. When operated at 1670 K, an output power density of 1.75 W/cm2 and a system efficiency of 8.6% were recorded. This system efficiency is higher than those of previously reported experimental STPV systems. Optical and thermal losses that occurred at multiple stages of the energy transport process were modeled and quantified. Essential guidelines to mitigate these losses and further enhance the system performance are also provided.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
    [Crossref]
  2. E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17(17), 15145 (2009).
    [Crossref]
  3. A. Kohiyama, M. Shimizu, and H. Yugami, “Unidirectional radiative heat transfer with a spectrally selective planar absorber/emitter for high-efficiency solar thermophotovoltaic systems,” Appl. Phys. Express 9(11), 112302 (2016).
    [Crossref]
  4. A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
    [Crossref]
  5. Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar thermophotovoltaics: Reshaping the solar spectrum,” Nanophotonics 5(1), 1–21 (2016).
    [Crossref]
  6. D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
    [Crossref]
  7. A. Datas, “Development of solar thermophotovoltaic systems,” University Politecnica de Madrid (2011).
  8. A. De Vos, “Detailed balance limit of the efficiency of tandem solar cells,” J. Phys. D: Appl. Phys. 13(5), 839–846 (1980).
    [Crossref]
  9. A. Datas and C. Algora, “Development and experimental evaluation of a complete solar thermophotovoltaic system,” Prog. Photovolt: Res. Appl. 21, 1025–1039 (2013).
    [Crossref]
  10. N. P. Harder and P. Würfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18(5), S151–S157 (2003).
    [Crossref]
  11. Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
    [Crossref]
  12. P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3), A314 (2010).
    [Crossref]
  13. A. Lenert, Y. Nam, D. M. Bierman, and E. N. Wang, “Role of spectral non-idealities in the design of solar thermophotovoltaics,” Opt. Express 22(S6), A1604 (2014).
    [Crossref]
  14. R. Bhatt, I. Kravchenko, and M. Gupta, “High-efficiency solar thermophotovoltaic system using a nanostructure-based selective emitter,” Sol. Energy 197, 538–545 (2020).
    [Crossref]
  15. C. Ungaro, “Control of Optical Properties of Surfaces for Improved Solar Thermophotovoltaic Systems,” University of Virginia (2015).
  16. N. A. Pfiester and T. E. Vandervelde, “Selective emitters for thermophotovoltaic applications,” Phys. Status Solidi A 214(1), 1600410 (2017).
    [Crossref]
  17. M. Zenker and A. Heinzel, “Efficiency and power density potential of combustion-driven thermophotovoltaic systems using GaSb photovoltaic cells,” IEEE Trans. Electron Devices 48(2), 367–376 (2001).
    [Crossref]
  18. O. Vigil, C. M. Ruiz, D. Seuret, V. Bermúdez, and E. Diéguez, “Transparent conducting oxides as selective filters in thermophotovoltaic devices,” J. Phys.: Condens. Matter 17(41), 6377–6384 (2005).
    [Crossref]
  19. Z. G. Qian, W. Z. Shen, H. Ogawa, and Q. X. Guo, “Infrared reflection characteristics in InN thin films grown by magnetron sputtering for the application of plasma filters,” J. Appl. Phys. 92(7), 3683–3687 (2002).
    [Crossref]
  20. Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. U. S. A. 116(31), 15356–15361 (2019).
    [Crossref]
  21. A. Kohiyama, M. Shimizu, and H. Yugami, “Radiative heat transfer enhancement using geometric and spectral control for achieving high-efficiency solar-thermophotovoltaic systems,” Jpn. J. Appl. Phys. 57(4), 040312 (2018).
    [Crossref]
  22. A. Datas and C. Algora, “Global optimization of solar thermophotovoltaic systems,” Prog. Photovoltaics 21, 1040–1055 (2013).
    [Crossref]
  23. A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and V. M. Andreev, “TPV systems with solar powered tungsten emitters,” in AIP Conference Proceedings890, 327–334 (2007).
  24. H. Yugami, H. Sai, K. Nakamura, N. Nakagawa, and H. Ohtsubo, “Solar thermophotovoltaic using Al2O3/Er3Al5O12eutectic composite selective emitter,” in Conference Record of the IEEE Photovoltaic Specialists Conference (2000), Vol. 2000-Janua, pp. 1214–1217.
  25. C. Ungaro, S. K. Gray, and M. C. Gupta, “Solar thermophotovoltaic system using nanostructures,” Opt. Express 23(19), A1149 (2015).
    [Crossref]
  26. E. Blandre, M. Shimizu, A. Kohiyama, H. Yugami, P.-O. Chapuis, and R. Vaillon, “Spectrally shaping high-temperature radiators for thermophotovoltaics using Mo-HfO 2 trilayer-on-substrate structures,” Opt. Express 26(4), 4346 (2018).
    [Crossref]
  27. M. Suemitsu, T. Asano, T. Inoue, and S. Noda, “High-Efficiency Thermophotovoltaic System That Employs an Emitter Based on a Silicon Rod-Type Photonic Crystal,” ACS Photonics 7(1), 80–87 (2020).
    [Crossref]
  28. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271 (1998).
    [Crossref]
  29. K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si3N4 microresonator,” in Conference on Lasers and Electro-Optics Europe - Technical Digest (2015), Vol. 2015-Augus.
  30. L. M. Fraas, Low-Cost Solar Electric Power (2014), Vol. 9783319075.
  31. Z. Rotem and L. Claassen, “Natural convection above unconfined horizontal surfaces,” J. Fluid Mech. 39(1), 173–192 (1969).
    [Crossref]
  32. L. M. Fraas, “Economic potential for thermophotovoltaic electric power generation in the steel industry,” in 2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014 (2014), pp. 766–770.
  33. L. G. Ferguson and L. M. Fraas, “Theoretical study of GaSb PV cells efficiency as a function of temperature,” Sol. Energy Mater. Sol. Cells 39(1), 11–18 (1995).
    [Crossref]
  34. M. Minissale, C. Pardanaud, R. Bisson, and L. Gallais, “The temperature dependence of optical properties of tungsten in the visible and near-infrared domains: An experimental and theoretical study,” J. Phys. D: Appl. Phys. 50(45), 455601 (2017).
    [Crossref]
  35. B. T. Barnes, “Optical Constants of Incandescent Refractory Metals,” J. Opt. Soc. Am. 56(11), 1546 (1966).
    [Crossref]
  36. S. K. Das, S. Majhi, P. Mohanty, and K. K. Pant, “CO-hydrogenation of syngas to fuel using silica supported Fe-Cu-K catalysts: Effects of active components,” Fuel Process. Technol. 118, 82–89 (2014).
    [Crossref]
  37. H. Sai, “Thermophotovoltaic Generation with Microstructured Tungsten Selective Emitters,” in AIP Conference Proceedings: Sixth Conference on Thermophotovoltaic Generation of Electricity (TPV6) (2004), pp. 206–214.
  38. N. M. Ravindra, S. Abedrabbo, W. Chen, F. M. Tong, A. K. Nanda, and A. C. Speranza, “Temperature-dependent emissivity of silicon-related materials and structures,” IEEE Trans. Semicond. Manufact. 11(1), 30–39 (1998).
    [Crossref]
  39. R. Bhatt, I. Kravchenko, and M. Gupta, “Consideration of temperature-dependent absorptivity of selective emitters in thermophotovoltaic systems,” Appl. Opt. 59(18), 5457–5462 (2020).
    [Crossref]
  40. A. Mardiana-Idayu and S. B. Riffat, “Review on heat recovery technologies for building applications,” Renewable Sustainable Energy Rev. 16(2), 1241–1255 (2012).
    [Crossref]
  41. L. M. Fraas, “TPV Tube Generators for Apartment Building and Industrial Furnace Applications,” in (2003), pp. 38–48.
  42. L. M. Fraas, J. E. Avery, and H. X. Huang, “Thermophotovoltaic furnace-generator for the home using low bandgap GaSb cells,” Semicond. Sci. Technol. 18(5), S247–S253 (2003).
    [Crossref]
  43. Z. Utlu, U. Paralı, and Ç Gültekin, “Applicability of Thermophotovoltaic Technologies in the Iron and Steel Sectors,” Energy Technol. 6(6), 1039–1051 (2018).
    [Crossref]
  44. H. L. Talom and A. Beyene, “Heat recovery from automotive engine,” Appl. Therm. Eng. 29(2-3), 439–444 (2009).
    [Crossref]
  45. M. Mazzer, A. De Risi, D. Laforgia, K. Barnham, and C. Rohr, “High efficiency thermophotovoltaics for automotive applications,” in SAE Technical Papers (2000).
  46. F. A. Vicente, C. E. Kelly, and S. Loughin, “Thermophotovoltaic (TPV) applications to space power generation,” in Proceedings of the Intersociety Energy Conversion Engineering Conference (1996), Vol. 1, pp. 635–640.
  47. C. Zhang, Z. Liao, L. Tang, Z. Liu, R. Huo, Z. Wang, and K. Qiu, “A comparatively experimental study on the temperature-dependent performance of thermophotovoltaic cells,” Appl. Phys. Lett. 114(19), 193902 (2019).
    [Crossref]
  48. Z. Zhou, X. Sun, and P. Bermel, “Radiative cooling for thermophotovoltaic systems,” in Infrared Remote Sensing and Instrumentation XXIV (2016), Vol. 9973, p. 997308.
  49. E. Blandre, R. Vaillon, and J. Drévillon, “New insights into the thermal behavior and management of thermophotovoltaic systems,” Opt. Express 27(25), 36340 (2019).
    [Crossref]
  50. Z. Zhou, Z. Wang, and P. Bermel, “Radiative cooling for low-bandgap photovoltaics under concentrated sunlight,” Opt. Express 27(8), A404 (2019).
    [Crossref]
  51. S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
    [Crossref]
  52. X. Sun, Y. Sun, Z. Zhou, M. A. Alam, and P. Bermel, “Radiative sky cooling: Fundamental physics, materials, structures, and applications,” Nanophotonics 6(5), 997–1015 (2017).
    [Crossref]
  53. H. R. Seyf and A. Henry, “Thermophotovoltaics: A potential pathway to high efficiency concentrated solar power,” Energy Environ. Sci. 9(8), 2654–2665 (2016).
    [Crossref]
  54. W. T. Hidnert and P. Sweeney, “Thermal expansion of tungsten,” Bur. Stand. (U. S.), Sci. Pap. 20, 483 (1925).
    [Crossref]
  55. I. C. Slack and G. A. Huseby, “Thermal Grüneisen parameters of CdAl2O4, β–Si3N4, and other phenacite-type compounds,” J. Appl. Phys. 53(10), 6817–6822 (1982).
    [Crossref]
  56. C.-L. Tien and T.-W. Lin, “Thermal expansion coefficient and thermomechanical properties of SiN x thin films prepared by plasma-enhanced chemical vapor deposition,” Appl. Opt. 51(30), 7229 (2012).
    [Crossref]
  57. A. P. Miiller and A. Cezairliyan, “Thermal expansion of tungsten in the range 1500-3600 K by a transient interferometric technique,” Int. J. Thermophys. 11(4), 619–628 (1990).
    [Crossref]
  58. L. S. Dubrovinsky and S. K. Saxena, “Thermal expansion of periclase (MgO) and tungsten (W) to melting temperatures,” Phys. Chem. Miner. 24(8), 547–550 (1997).
    [Crossref]
  59. Y. Yang, Y. Liu, and J. M. Delf, “Effect of heat treatment on internal stresses in PECVD SiN xHy thin films,” in Conference on Optoelectronic and Microelectronic Materials and Devices, Proceedings, COMMAD (2008), pp. 181–184.
  60. Y. Liu, N. Jehanathan, and J. Dell, “Thermally induced damages of PECVD SiNx thin films,” J. Mater. Res. 26(19), 2552–2557 (2011).
    [Crossref]
  61. G. Abadias, E. Chason, J. Keckes, M. Sebastiani, G. B. Thompson, E. Barthel, G. L. Doll, C. E. Murray, C. H. Stoessel, and L. Martinu, “Review Article: Stress in thin films and coatings: Current status, challenges, and prospects,” J. Vac. Sci. Technol., A 36(2), 020801 (2018).
    [Crossref]
  62. C. Y. Ho and R. E. Taylor, Thermal Expansion of Solids (ASM International, ©1998., Materials Park, OH, 1998).
  63. C. M. Fang, G. A. De Wijs, H. T. Hintzen, and G. De With, “Phonon spectrum and thermal properties of cubic Si3N4 from first-principles calculations,” J. Appl. Phys. 93(9), 5175–5180 (2003).
    [Crossref]
  64. J. Díaz-Reyes, R. Castillo-Ojeda, M. Galván-Arellano, and O. Zaca-Moran, “Characterization of WO3 thin films grown on silicon by HFMOD,” Adv. Condens. Matter Phys. 2013, 591787 (2013).
    [Crossref]
  65. Y. Djaoued, S. Balaji, and R. Brüning, “Electrochromic devices based on porous tungsten oxide thin films,” J. Nanomater. 2012, 1–9 (2012).
    [Crossref]
  66. M. Köppen, “Comparative Study of the Reactivity of the Tungsten Oxides WO2 and WO3 with Beryllium at Temperatures up to 1273 K,” Condens. Matter 4(3), 82 (2019).
    [Crossref]
  67. L. B. Pankratz, “Thermodynamic Properties of Elements and Oxides,” Bull. Us. Bur. Mines (1982).
  68. M. Chirumamilla, G. V. Krishnamurthy, S. S. Rout, M. Ritter, M. Störmer, A. Y. Petrov, and M. Eich, “Thermal stability of tungsten based metamaterial emitter under medium vacuum and inert gas conditions,” Sci. Rep. 10(1), 3605 (2020).
    [Crossref]
  69. J. X. Crystals, “Specification sheet for GaSb cells,” http://jxcrystals.com/GaSb/4sale5.pdf .
  70. L. Liu, W. guo Liu, N. Cao, and C. long Cai, “Study on The Performance of PECVD Silicon Nitride Thin Films,” Def. Technol. 9(2), 121–126 (2013).
    [Crossref]
  71. H. Huang, K. J. Winchester, A. Suvorova, B. R. Lawn, Y. Liu, X. Z. Hu, J. M. Dell, and L. Faraone, “Effect of deposition conditions on mechanical properties of low-temperature PECVD silicon nitride films,” Mater. Sci. Eng., A 435-436, 453–459 (2006).
    [Crossref]
  72. K. Jhansirani, R. S. Dubey, M. A. More, and S. Singh, “Deposition of silicon nitride films using chemical vapor deposition for photovoltaic applications,” Results Phys. 6, 1059–1063 (2016).
    [Crossref]
  73. M. Shimizu, A. Kohiyama, and H. Yugami, “Evaluation of thermal stability in spectrally selective few-layer metallo-dielectric structures for solar thermophotovoltaics,” J. Quant. Spectrosc. Radiat. Transfer 212, 45–49 (2018).
    [Crossref]
  74. J. H. Kim, S. M. Jung, and M. W. Shin, “Thermal degradation of refractory layered metamaterial for thermophotovoltaic emitter under high vacuum condition,” Opt. Express 27(3), 3039 (2019).
    [Crossref]

2020 (4)

R. Bhatt, I. Kravchenko, and M. Gupta, “High-efficiency solar thermophotovoltaic system using a nanostructure-based selective emitter,” Sol. Energy 197, 538–545 (2020).
[Crossref]

M. Suemitsu, T. Asano, T. Inoue, and S. Noda, “High-Efficiency Thermophotovoltaic System That Employs an Emitter Based on a Silicon Rod-Type Photonic Crystal,” ACS Photonics 7(1), 80–87 (2020).
[Crossref]

R. Bhatt, I. Kravchenko, and M. Gupta, “Consideration of temperature-dependent absorptivity of selective emitters in thermophotovoltaic systems,” Appl. Opt. 59(18), 5457–5462 (2020).
[Crossref]

M. Chirumamilla, G. V. Krishnamurthy, S. S. Rout, M. Ritter, M. Störmer, A. Y. Petrov, and M. Eich, “Thermal stability of tungsten based metamaterial emitter under medium vacuum and inert gas conditions,” Sci. Rep. 10(1), 3605 (2020).
[Crossref]

2019 (6)

M. Köppen, “Comparative Study of the Reactivity of the Tungsten Oxides WO2 and WO3 with Beryllium at Temperatures up to 1273 K,” Condens. Matter 4(3), 82 (2019).
[Crossref]

J. H. Kim, S. M. Jung, and M. W. Shin, “Thermal degradation of refractory layered metamaterial for thermophotovoltaic emitter under high vacuum condition,” Opt. Express 27(3), 3039 (2019).
[Crossref]

C. Zhang, Z. Liao, L. Tang, Z. Liu, R. Huo, Z. Wang, and K. Qiu, “A comparatively experimental study on the temperature-dependent performance of thermophotovoltaic cells,” Appl. Phys. Lett. 114(19), 193902 (2019).
[Crossref]

E. Blandre, R. Vaillon, and J. Drévillon, “New insights into the thermal behavior and management of thermophotovoltaic systems,” Opt. Express 27(25), 36340 (2019).
[Crossref]

Z. Zhou, Z. Wang, and P. Bermel, “Radiative cooling for low-bandgap photovoltaics under concentrated sunlight,” Opt. Express 27(8), A404 (2019).
[Crossref]

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. U. S. A. 116(31), 15356–15361 (2019).
[Crossref]

2018 (5)

A. Kohiyama, M. Shimizu, and H. Yugami, “Radiative heat transfer enhancement using geometric and spectral control for achieving high-efficiency solar-thermophotovoltaic systems,” Jpn. J. Appl. Phys. 57(4), 040312 (2018).
[Crossref]

E. Blandre, M. Shimizu, A. Kohiyama, H. Yugami, P.-O. Chapuis, and R. Vaillon, “Spectrally shaping high-temperature radiators for thermophotovoltaics using Mo-HfO 2 trilayer-on-substrate structures,” Opt. Express 26(4), 4346 (2018).
[Crossref]

M. Shimizu, A. Kohiyama, and H. Yugami, “Evaluation of thermal stability in spectrally selective few-layer metallo-dielectric structures for solar thermophotovoltaics,” J. Quant. Spectrosc. Radiat. Transfer 212, 45–49 (2018).
[Crossref]

G. Abadias, E. Chason, J. Keckes, M. Sebastiani, G. B. Thompson, E. Barthel, G. L. Doll, C. E. Murray, C. H. Stoessel, and L. Martinu, “Review Article: Stress in thin films and coatings: Current status, challenges, and prospects,” J. Vac. Sci. Technol., A 36(2), 020801 (2018).
[Crossref]

Z. Utlu, U. Paralı, and Ç Gültekin, “Applicability of Thermophotovoltaic Technologies in the Iron and Steel Sectors,” Energy Technol. 6(6), 1039–1051 (2018).
[Crossref]

2017 (3)

X. Sun, Y. Sun, Z. Zhou, M. A. Alam, and P. Bermel, “Radiative sky cooling: Fundamental physics, materials, structures, and applications,” Nanophotonics 6(5), 997–1015 (2017).
[Crossref]

M. Minissale, C. Pardanaud, R. Bisson, and L. Gallais, “The temperature dependence of optical properties of tungsten in the visible and near-infrared domains: An experimental and theoretical study,” J. Phys. D: Appl. Phys. 50(45), 455601 (2017).
[Crossref]

N. A. Pfiester and T. E. Vandervelde, “Selective emitters for thermophotovoltaic applications,” Phys. Status Solidi A 214(1), 1600410 (2017).
[Crossref]

2016 (5)

A. Kohiyama, M. Shimizu, and H. Yugami, “Unidirectional radiative heat transfer with a spectrally selective planar absorber/emitter for high-efficiency solar thermophotovoltaic systems,” Appl. Phys. Express 9(11), 112302 (2016).
[Crossref]

Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar thermophotovoltaics: Reshaping the solar spectrum,” Nanophotonics 5(1), 1–21 (2016).
[Crossref]

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

H. R. Seyf and A. Henry, “Thermophotovoltaics: A potential pathway to high efficiency concentrated solar power,” Energy Environ. Sci. 9(8), 2654–2665 (2016).
[Crossref]

K. Jhansirani, R. S. Dubey, M. A. More, and S. Singh, “Deposition of silicon nitride films using chemical vapor deposition for photovoltaic applications,” Results Phys. 6, 1059–1063 (2016).
[Crossref]

2015 (1)

2014 (4)

A. Lenert, Y. Nam, D. M. Bierman, and E. N. Wang, “Role of spectral non-idealities in the design of solar thermophotovoltaics,” Opt. Express 22(S6), A1604 (2014).
[Crossref]

S. K. Das, S. Majhi, P. Mohanty, and K. K. Pant, “CO-hydrogenation of syngas to fuel using silica supported Fe-Cu-K catalysts: Effects of active components,” Fuel Process. Technol. 118, 82–89 (2014).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref]

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

2013 (4)

A. Datas and C. Algora, “Global optimization of solar thermophotovoltaic systems,” Prog. Photovoltaics 21, 1040–1055 (2013).
[Crossref]

A. Datas and C. Algora, “Development and experimental evaluation of a complete solar thermophotovoltaic system,” Prog. Photovolt: Res. Appl. 21, 1025–1039 (2013).
[Crossref]

J. Díaz-Reyes, R. Castillo-Ojeda, M. Galván-Arellano, and O. Zaca-Moran, “Characterization of WO3 thin films grown on silicon by HFMOD,” Adv. Condens. Matter Phys. 2013, 591787 (2013).
[Crossref]

L. Liu, W. guo Liu, N. Cao, and C. long Cai, “Study on The Performance of PECVD Silicon Nitride Thin Films,” Def. Technol. 9(2), 121–126 (2013).
[Crossref]

2012 (3)

Y. Djaoued, S. Balaji, and R. Brüning, “Electrochromic devices based on porous tungsten oxide thin films,” J. Nanomater. 2012, 1–9 (2012).
[Crossref]

C.-L. Tien and T.-W. Lin, “Thermal expansion coefficient and thermomechanical properties of SiN x thin films prepared by plasma-enhanced chemical vapor deposition,” Appl. Opt. 51(30), 7229 (2012).
[Crossref]

A. Mardiana-Idayu and S. B. Riffat, “Review on heat recovery technologies for building applications,” Renewable Sustainable Energy Rev. 16(2), 1241–1255 (2012).
[Crossref]

2011 (1)

Y. Liu, N. Jehanathan, and J. Dell, “Thermally induced damages of PECVD SiNx thin films,” J. Mater. Res. 26(19), 2552–2557 (2011).
[Crossref]

2010 (1)

2009 (2)

2006 (1)

H. Huang, K. J. Winchester, A. Suvorova, B. R. Lawn, Y. Liu, X. Z. Hu, J. M. Dell, and L. Faraone, “Effect of deposition conditions on mechanical properties of low-temperature PECVD silicon nitride films,” Mater. Sci. Eng., A 435-436, 453–459 (2006).
[Crossref]

2005 (1)

O. Vigil, C. M. Ruiz, D. Seuret, V. Bermúdez, and E. Diéguez, “Transparent conducting oxides as selective filters in thermophotovoltaic devices,” J. Phys.: Condens. Matter 17(41), 6377–6384 (2005).
[Crossref]

2003 (3)

N. P. Harder and P. Würfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18(5), S151–S157 (2003).
[Crossref]

L. M. Fraas, J. E. Avery, and H. X. Huang, “Thermophotovoltaic furnace-generator for the home using low bandgap GaSb cells,” Semicond. Sci. Technol. 18(5), S247–S253 (2003).
[Crossref]

C. M. Fang, G. A. De Wijs, H. T. Hintzen, and G. De With, “Phonon spectrum and thermal properties of cubic Si3N4 from first-principles calculations,” J. Appl. Phys. 93(9), 5175–5180 (2003).
[Crossref]

2002 (1)

Z. G. Qian, W. Z. Shen, H. Ogawa, and Q. X. Guo, “Infrared reflection characteristics in InN thin films grown by magnetron sputtering for the application of plasma filters,” J. Appl. Phys. 92(7), 3683–3687 (2002).
[Crossref]

2001 (1)

M. Zenker and A. Heinzel, “Efficiency and power density potential of combustion-driven thermophotovoltaic systems using GaSb photovoltaic cells,” IEEE Trans. Electron Devices 48(2), 367–376 (2001).
[Crossref]

1998 (2)

N. M. Ravindra, S. Abedrabbo, W. Chen, F. M. Tong, A. K. Nanda, and A. C. Speranza, “Temperature-dependent emissivity of silicon-related materials and structures,” IEEE Trans. Semicond. Manufact. 11(1), 30–39 (1998).
[Crossref]

A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271 (1998).
[Crossref]

1997 (1)

L. S. Dubrovinsky and S. K. Saxena, “Thermal expansion of periclase (MgO) and tungsten (W) to melting temperatures,” Phys. Chem. Miner. 24(8), 547–550 (1997).
[Crossref]

1995 (1)

L. G. Ferguson and L. M. Fraas, “Theoretical study of GaSb PV cells efficiency as a function of temperature,” Sol. Energy Mater. Sol. Cells 39(1), 11–18 (1995).
[Crossref]

1990 (1)

A. P. Miiller and A. Cezairliyan, “Thermal expansion of tungsten in the range 1500-3600 K by a transient interferometric technique,” Int. J. Thermophys. 11(4), 619–628 (1990).
[Crossref]

1982 (1)

I. C. Slack and G. A. Huseby, “Thermal Grüneisen parameters of CdAl2O4, β–Si3N4, and other phenacite-type compounds,” J. Appl. Phys. 53(10), 6817–6822 (1982).
[Crossref]

1980 (1)

A. De Vos, “Detailed balance limit of the efficiency of tandem solar cells,” J. Phys. D: Appl. Phys. 13(5), 839–846 (1980).
[Crossref]

1975 (1)

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

1969 (1)

Z. Rotem and L. Claassen, “Natural convection above unconfined horizontal surfaces,” J. Fluid Mech. 39(1), 173–192 (1969).
[Crossref]

1966 (1)

1961 (1)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

1925 (1)

W. T. Hidnert and P. Sweeney, “Thermal expansion of tungsten,” Bur. Stand. (U. S.), Sci. Pap. 20, 483 (1925).
[Crossref]

Abadias, G.

G. Abadias, E. Chason, J. Keckes, M. Sebastiani, G. B. Thompson, E. Barthel, G. L. Doll, C. E. Murray, C. H. Stoessel, and L. Martinu, “Review Article: Stress in thin films and coatings: Current status, challenges, and prospects,” J. Vac. Sci. Technol., A 36(2), 020801 (2018).
[Crossref]

Abedrabbo, S.

N. M. Ravindra, S. Abedrabbo, W. Chen, F. M. Tong, A. K. Nanda, and A. C. Speranza, “Temperature-dependent emissivity of silicon-related materials and structures,” IEEE Trans. Semicond. Manufact. 11(1), 30–39 (1998).
[Crossref]

Alam, M. A.

X. Sun, Y. Sun, Z. Zhou, M. A. Alam, and P. Bermel, “Radiative sky cooling: Fundamental physics, materials, structures, and applications,” Nanophotonics 6(5), 997–1015 (2017).
[Crossref]

Algora, C.

A. Datas and C. Algora, “Development and experimental evaluation of a complete solar thermophotovoltaic system,” Prog. Photovolt: Res. Appl. 21, 1025–1039 (2013).
[Crossref]

A. Datas and C. Algora, “Global optimization of solar thermophotovoltaic systems,” Prog. Photovoltaics 21, 1040–1055 (2013).
[Crossref]

Andreev, V. M.

A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and V. M. Andreev, “TPV systems with solar powered tungsten emitters,” in AIP Conference Proceedings890, 327–334 (2007).

Araghchini, M.

Asano, T.

M. Suemitsu, T. Asano, T. Inoue, and S. Noda, “High-Efficiency Thermophotovoltaic System That Employs an Emitter Based on a Silicon Rod-Type Photonic Crystal,” ACS Photonics 7(1), 80–87 (2020).
[Crossref]

Atwater, H.

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. U. S. A. 116(31), 15356–15361 (2019).
[Crossref]

Avery, J. E.

L. M. Fraas, J. E. Avery, and H. X. Huang, “Thermophotovoltaic furnace-generator for the home using low bandgap GaSb cells,” Semicond. Sci. Technol. 18(5), S247–S253 (2003).
[Crossref]

Balaji, S.

Y. Djaoued, S. Balaji, and R. Brüning, “Electrochromic devices based on porous tungsten oxide thin films,” J. Nanomater. 2012, 1–9 (2012).
[Crossref]

Barnes, B. T.

Barnham, K.

M. Mazzer, A. De Risi, D. Laforgia, K. Barnham, and C. Rohr, “High efficiency thermophotovoltaics for automotive applications,” in SAE Technical Papers (2000).

Barthel, E.

G. Abadias, E. Chason, J. Keckes, M. Sebastiani, G. B. Thompson, E. Barthel, G. L. Doll, C. E. Murray, C. H. Stoessel, and L. Martinu, “Review Article: Stress in thin films and coatings: Current status, challenges, and prospects,” J. Vac. Sci. Technol., A 36(2), 020801 (2018).
[Crossref]

Bermel, P.

Z. Zhou, Z. Wang, and P. Bermel, “Radiative cooling for low-bandgap photovoltaics under concentrated sunlight,” Opt. Express 27(8), A404 (2019).
[Crossref]

X. Sun, Y. Sun, Z. Zhou, M. A. Alam, and P. Bermel, “Radiative sky cooling: Fundamental physics, materials, structures, and applications,” Nanophotonics 6(5), 997–1015 (2017).
[Crossref]

Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar thermophotovoltaics: Reshaping the solar spectrum,” Nanophotonics 5(1), 1–21 (2016).
[Crossref]

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3), A314 (2010).
[Crossref]

Z. Zhou, X. Sun, and P. Bermel, “Radiative cooling for thermophotovoltaic systems,” in Infrared Remote Sensing and Instrumentation XXIV (2016), Vol. 9973, p. 997308.

Bermúdez, V.

O. Vigil, C. M. Ruiz, D. Seuret, V. Bermúdez, and E. Diéguez, “Transparent conducting oxides as selective filters in thermophotovoltaic devices,” J. Phys.: Condens. Matter 17(41), 6377–6384 (2005).
[Crossref]

Beyene, A.

H. L. Talom and A. Beyene, “Heat recovery from automotive engine,” Appl. Therm. Eng. 29(2-3), 439–444 (2009).
[Crossref]

Bhatia, B.

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

Bhatt, R.

R. Bhatt, I. Kravchenko, and M. Gupta, “High-efficiency solar thermophotovoltaic system using a nanostructure-based selective emitter,” Sol. Energy 197, 538–545 (2020).
[Crossref]

R. Bhatt, I. Kravchenko, and M. Gupta, “Consideration of temperature-dependent absorptivity of selective emitters in thermophotovoltaic systems,” Appl. Opt. 59(18), 5457–5462 (2020).
[Crossref]

Bierman, D. M.

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref]

A. Lenert, Y. Nam, D. M. Bierman, and E. N. Wang, “Role of spectral non-idealities in the design of solar thermophotovoltaics,” Opt. Express 22(S6), A1604 (2014).
[Crossref]

Bisson, R.

M. Minissale, C. Pardanaud, R. Bisson, and L. Gallais, “The temperature dependence of optical properties of tungsten in the visible and near-infrared domains: An experimental and theoretical study,” J. Phys. D: Appl. Phys. 50(45), 455601 (2017).
[Crossref]

Blandre, E.

Brüning, R.

Y. Djaoued, S. Balaji, and R. Brüning, “Electrochromic devices based on porous tungsten oxide thin films,” J. Nanomater. 2012, 1–9 (2012).
[Crossref]

Cao, N.

L. Liu, W. guo Liu, N. Cao, and C. long Cai, “Study on The Performance of PECVD Silicon Nitride Thin Films,” Def. Technol. 9(2), 121–126 (2013).
[Crossref]

Castillo-Ojeda, R.

J. Díaz-Reyes, R. Castillo-Ojeda, M. Galván-Arellano, and O. Zaca-Moran, “Characterization of WO3 thin films grown on silicon by HFMOD,” Adv. Condens. Matter Phys. 2013, 591787 (2013).
[Crossref]

Catalanotti, S.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Celanovic, I.

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref]

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3), A314 (2010).
[Crossref]

Cezairliyan, A.

A. P. Miiller and A. Cezairliyan, “Thermal expansion of tungsten in the range 1500-3600 K by a transient interferometric technique,” Int. J. Thermophys. 11(4), 619–628 (1990).
[Crossref]

Chan, W.

Chan, W. R.

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref]

Chapuis, P.-O.

Chason, E.

G. Abadias, E. Chason, J. Keckes, M. Sebastiani, G. B. Thompson, E. Barthel, G. L. Doll, C. E. Murray, C. H. Stoessel, and L. Martinu, “Review Article: Stress in thin films and coatings: Current status, challenges, and prospects,” J. Vac. Sci. Technol., A 36(2), 020801 (2018).
[Crossref]

Chen, W.

N. M. Ravindra, S. Abedrabbo, W. Chen, F. M. Tong, A. K. Nanda, and A. C. Speranza, “Temperature-dependent emissivity of silicon-related materials and structures,” IEEE Trans. Semicond. Manufact. 11(1), 30–39 (1998).
[Crossref]

Chirumamilla, M.

M. Chirumamilla, G. V. Krishnamurthy, S. S. Rout, M. Ritter, M. Störmer, A. Y. Petrov, and M. Eich, “Thermal stability of tungsten based metamaterial emitter under medium vacuum and inert gas conditions,” Sci. Rep. 10(1), 3605 (2020).
[Crossref]

Claassen, L.

Z. Rotem and L. Claassen, “Natural convection above unconfined horizontal surfaces,” J. Fluid Mech. 39(1), 173–192 (1969).
[Crossref]

Crystals, J. X.

J. X. Crystals, “Specification sheet for GaSb cells,” http://jxcrystals.com/GaSb/4sale5.pdf .

Cuomo, V.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Das, S. K.

S. K. Das, S. Majhi, P. Mohanty, and K. K. Pant, “CO-hydrogenation of syngas to fuel using silica supported Fe-Cu-K catalysts: Effects of active components,” Fuel Process. Technol. 118, 82–89 (2014).
[Crossref]

Datas, A.

A. Datas and C. Algora, “Global optimization of solar thermophotovoltaic systems,” Prog. Photovoltaics 21, 1040–1055 (2013).
[Crossref]

A. Datas and C. Algora, “Development and experimental evaluation of a complete solar thermophotovoltaic system,” Prog. Photovolt: Res. Appl. 21, 1025–1039 (2013).
[Crossref]

A. Datas, “Development of solar thermophotovoltaic systems,” University Politecnica de Madrid (2011).

De Risi, A.

M. Mazzer, A. De Risi, D. Laforgia, K. Barnham, and C. Rohr, “High efficiency thermophotovoltaics for automotive applications,” in SAE Technical Papers (2000).

De Vos, A.

A. De Vos, “Detailed balance limit of the efficiency of tandem solar cells,” J. Phys. D: Appl. Phys. 13(5), 839–846 (1980).
[Crossref]

De Wijs, G. A.

C. M. Fang, G. A. De Wijs, H. T. Hintzen, and G. De With, “Phonon spectrum and thermal properties of cubic Si3N4 from first-principles calculations,” J. Appl. Phys. 93(9), 5175–5180 (2003).
[Crossref]

De With, G.

C. M. Fang, G. A. De Wijs, H. T. Hintzen, and G. De With, “Phonon spectrum and thermal properties of cubic Si3N4 from first-principles calculations,” J. Appl. Phys. 93(9), 5175–5180 (2003).
[Crossref]

Delf, J. M.

Y. Yang, Y. Liu, and J. M. Delf, “Effect of heat treatment on internal stresses in PECVD SiN xHy thin films,” in Conference on Optoelectronic and Microelectronic Materials and Devices, Proceedings, COMMAD (2008), pp. 181–184.

Dell, J.

Y. Liu, N. Jehanathan, and J. Dell, “Thermally induced damages of PECVD SiNx thin films,” J. Mater. Res. 26(19), 2552–2557 (2011).
[Crossref]

Dell, J. M.

H. Huang, K. J. Winchester, A. Suvorova, B. R. Lawn, Y. Liu, X. Z. Hu, J. M. Dell, and L. Faraone, “Effect of deposition conditions on mechanical properties of low-temperature PECVD silicon nitride films,” Mater. Sci. Eng., A 435-436, 453–459 (2006).
[Crossref]

Díaz-Reyes, J.

J. Díaz-Reyes, R. Castillo-Ojeda, M. Galván-Arellano, and O. Zaca-Moran, “Characterization of WO3 thin films grown on silicon by HFMOD,” Adv. Condens. Matter Phys. 2013, 591787 (2013).
[Crossref]

Diéguez, E.

O. Vigil, C. M. Ruiz, D. Seuret, V. Bermúdez, and E. Diéguez, “Transparent conducting oxides as selective filters in thermophotovoltaic devices,” J. Phys.: Condens. Matter 17(41), 6377–6384 (2005).
[Crossref]

Djaoued, Y.

Y. Djaoued, S. Balaji, and R. Brüning, “Electrochromic devices based on porous tungsten oxide thin films,” J. Nanomater. 2012, 1–9 (2012).
[Crossref]

Djurišic, A. B.

Doll, G. L.

G. Abadias, E. Chason, J. Keckes, M. Sebastiani, G. B. Thompson, E. Barthel, G. L. Doll, C. E. Murray, C. H. Stoessel, and L. Martinu, “Review Article: Stress in thin films and coatings: Current status, challenges, and prospects,” J. Vac. Sci. Technol., A 36(2), 020801 (2018).
[Crossref]

Drévillon, J.

Dubey, R. S.

K. Jhansirani, R. S. Dubey, M. A. More, and S. Singh, “Deposition of silicon nitride films using chemical vapor deposition for photovoltaic applications,” Results Phys. 6, 1059–1063 (2016).
[Crossref]

Dubrovinsky, L. S.

L. S. Dubrovinsky and S. K. Saxena, “Thermal expansion of periclase (MgO) and tungsten (W) to melting temperatures,” Phys. Chem. Miner. 24(8), 547–550 (1997).
[Crossref]

Eich, M.

M. Chirumamilla, G. V. Krishnamurthy, S. S. Rout, M. Ritter, M. Störmer, A. Y. Petrov, and M. Eich, “Thermal stability of tungsten based metamaterial emitter under medium vacuum and inert gas conditions,” Sci. Rep. 10(1), 3605 (2020).
[Crossref]

Elazar, J. M.

Fan, S.

Fang, C. M.

C. M. Fang, G. A. De Wijs, H. T. Hintzen, and G. De With, “Phonon spectrum and thermal properties of cubic Si3N4 from first-principles calculations,” J. Appl. Phys. 93(9), 5175–5180 (2003).
[Crossref]

Faraone, L.

H. Huang, K. J. Winchester, A. Suvorova, B. R. Lawn, Y. Liu, X. Z. Hu, J. M. Dell, and L. Faraone, “Effect of deposition conditions on mechanical properties of low-temperature PECVD silicon nitride films,” Mater. Sci. Eng., A 435-436, 453–459 (2006).
[Crossref]

Ferguson, L. G.

L. G. Ferguson and L. M. Fraas, “Theoretical study of GaSb PV cells efficiency as a function of temperature,” Sol. Energy Mater. Sol. Cells 39(1), 11–18 (1995).
[Crossref]

Fraas, L. M.

L. M. Fraas, J. E. Avery, and H. X. Huang, “Thermophotovoltaic furnace-generator for the home using low bandgap GaSb cells,” Semicond. Sci. Technol. 18(5), S247–S253 (2003).
[Crossref]

L. G. Ferguson and L. M. Fraas, “Theoretical study of GaSb PV cells efficiency as a function of temperature,” Sol. Energy Mater. Sol. Cells 39(1), 11–18 (1995).
[Crossref]

L. M. Fraas, “Economic potential for thermophotovoltaic electric power generation in the steel industry,” in 2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014 (2014), pp. 766–770.

L. M. Fraas, Low-Cost Solar Electric Power (2014), Vol. 9783319075.

L. M. Fraas, “TPV Tube Generators for Apartment Building and Industrial Furnace Applications,” in (2003), pp. 38–48.

Gaeta, A. L.

K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si3N4 microresonator,” in Conference on Lasers and Electro-Optics Europe - Technical Digest (2015), Vol. 2015-Augus.

Gallais, L.

M. Minissale, C. Pardanaud, R. Bisson, and L. Gallais, “The temperature dependence of optical properties of tungsten in the visible and near-infrared domains: An experimental and theoretical study,” J. Phys. D: Appl. Phys. 50(45), 455601 (2017).
[Crossref]

Galván-Arellano, M.

J. Díaz-Reyes, R. Castillo-Ojeda, M. Galván-Arellano, and O. Zaca-Moran, “Characterization of WO3 thin films grown on silicon by HFMOD,” Adv. Condens. Matter Phys. 2013, 591787 (2013).
[Crossref]

Ganapati, V.

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. U. S. A. 116(31), 15356–15361 (2019).
[Crossref]

Gazaryan, P. Y.

A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and V. M. Andreev, “TPV systems with solar powered tungsten emitters,” in AIP Conference Proceedings890, 327–334 (2007).

Ghebrebrhan, M.

Gray, S. K.

Gültekin, Ç

Z. Utlu, U. Paralı, and Ç Gültekin, “Applicability of Thermophotovoltaic Technologies in the Iron and Steel Sectors,” Energy Technol. 6(6), 1039–1051 (2018).
[Crossref]

Guo, Q. X.

Z. G. Qian, W. Z. Shen, H. Ogawa, and Q. X. Guo, “Infrared reflection characteristics in InN thin films grown by magnetron sputtering for the application of plasma filters,” J. Appl. Phys. 92(7), 3683–3687 (2002).
[Crossref]

guo Liu, W.

L. Liu, W. guo Liu, N. Cao, and C. long Cai, “Study on The Performance of PECVD Silicon Nitride Thin Films,” Def. Technol. 9(2), 121–126 (2013).
[Crossref]

Gupta, M.

R. Bhatt, I. Kravchenko, and M. Gupta, “Consideration of temperature-dependent absorptivity of selective emitters in thermophotovoltaic systems,” Appl. Opt. 59(18), 5457–5462 (2020).
[Crossref]

R. Bhatt, I. Kravchenko, and M. Gupta, “High-efficiency solar thermophotovoltaic system using a nanostructure-based selective emitter,” Sol. Energy 197, 538–545 (2020).
[Crossref]

Gupta, M. C.

Hamam, R.

Harder, N. P.

N. P. Harder and P. Würfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18(5), S151–S157 (2003).
[Crossref]

Heinzel, A.

M. Zenker and A. Heinzel, “Efficiency and power density potential of combustion-driven thermophotovoltaic systems using GaSb photovoltaic cells,” IEEE Trans. Electron Devices 48(2), 367–376 (2001).
[Crossref]

Henry, A.

H. R. Seyf and A. Henry, “Thermophotovoltaics: A potential pathway to high efficiency concentrated solar power,” Energy Environ. Sci. 9(8), 2654–2665 (2016).
[Crossref]

Hidnert, W. T.

W. T. Hidnert and P. Sweeney, “Thermal expansion of tungsten,” Bur. Stand. (U. S.), Sci. Pap. 20, 483 (1925).
[Crossref]

Hintzen, H. T.

C. M. Fang, G. A. De Wijs, H. T. Hintzen, and G. De With, “Phonon spectrum and thermal properties of cubic Si3N4 from first-principles calculations,” J. Appl. Phys. 93(9), 5175–5180 (2003).
[Crossref]

Ho, C. Y.

C. Y. Ho and R. E. Taylor, Thermal Expansion of Solids (ASM International, ©1998., Materials Park, OH, 1998).

Holzrichter, J.

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. U. S. A. 116(31), 15356–15361 (2019).
[Crossref]

Hu, X. Z.

H. Huang, K. J. Winchester, A. Suvorova, B. R. Lawn, Y. Liu, X. Z. Hu, J. M. Dell, and L. Faraone, “Effect of deposition conditions on mechanical properties of low-temperature PECVD silicon nitride films,” Mater. Sci. Eng., A 435-436, 453–459 (2006).
[Crossref]

Huang, H.

H. Huang, K. J. Winchester, A. Suvorova, B. R. Lawn, Y. Liu, X. Z. Hu, J. M. Dell, and L. Faraone, “Effect of deposition conditions on mechanical properties of low-temperature PECVD silicon nitride films,” Mater. Sci. Eng., A 435-436, 453–459 (2006).
[Crossref]

Huang, H. X.

L. M. Fraas, J. E. Avery, and H. X. Huang, “Thermophotovoltaic furnace-generator for the home using low bandgap GaSb cells,” Semicond. Sci. Technol. 18(5), S247–S253 (2003).
[Crossref]

Huo, R.

C. Zhang, Z. Liao, L. Tang, Z. Liu, R. Huo, Z. Wang, and K. Qiu, “A comparatively experimental study on the temperature-dependent performance of thermophotovoltaic cells,” Appl. Phys. Lett. 114(19), 193902 (2019).
[Crossref]

Huseby, G. A.

I. C. Slack and G. A. Huseby, “Thermal Grüneisen parameters of CdAl2O4, β–Si3N4, and other phenacite-type compounds,” J. Appl. Phys. 53(10), 6817–6822 (1982).
[Crossref]

Inoue, T.

M. Suemitsu, T. Asano, T. Inoue, and S. Noda, “High-Efficiency Thermophotovoltaic System That Employs an Emitter Based on a Silicon Rod-Type Photonic Crystal,” ACS Photonics 7(1), 80–87 (2020).
[Crossref]

Jehanathan, N.

Y. Liu, N. Jehanathan, and J. Dell, “Thermally induced damages of PECVD SiNx thin films,” J. Mater. Res. 26(19), 2552–2557 (2011).
[Crossref]

Jensen, K. F.

Jhansirani, K.

K. Jhansirani, R. S. Dubey, M. A. More, and S. Singh, “Deposition of silicon nitride films using chemical vapor deposition for photovoltaic applications,” Results Phys. 6, 1059–1063 (2016).
[Crossref]

Joannopoulos, J. D.

Johnson, S. G.

Jung, S. M.

Keckes, J.

G. Abadias, E. Chason, J. Keckes, M. Sebastiani, G. B. Thompson, E. Barthel, G. L. Doll, C. E. Murray, C. H. Stoessel, and L. Martinu, “Review Article: Stress in thin films and coatings: Current status, challenges, and prospects,” J. Vac. Sci. Technol., A 36(2), 020801 (2018).
[Crossref]

Kelly, C. E.

F. A. Vicente, C. E. Kelly, and S. Loughin, “Thermophotovoltaic (TPV) applications to space power generation,” in Proceedings of the Intersociety Energy Conversion Engineering Conference (1996), Vol. 1, pp. 635–640.

Khvostikov, V. P.

A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and V. M. Andreev, “TPV systems with solar powered tungsten emitters,” in AIP Conference Proceedings890, 327–334 (2007).

Khvostikova, O. A.

A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and V. M. Andreev, “TPV systems with solar powered tungsten emitters,” in AIP Conference Proceedings890, 327–334 (2007).

Kim, J. H.

Kohiyama, A.

E. Blandre, M. Shimizu, A. Kohiyama, H. Yugami, P.-O. Chapuis, and R. Vaillon, “Spectrally shaping high-temperature radiators for thermophotovoltaics using Mo-HfO 2 trilayer-on-substrate structures,” Opt. Express 26(4), 4346 (2018).
[Crossref]

M. Shimizu, A. Kohiyama, and H. Yugami, “Evaluation of thermal stability in spectrally selective few-layer metallo-dielectric structures for solar thermophotovoltaics,” J. Quant. Spectrosc. Radiat. Transfer 212, 45–49 (2018).
[Crossref]

A. Kohiyama, M. Shimizu, and H. Yugami, “Radiative heat transfer enhancement using geometric and spectral control for achieving high-efficiency solar-thermophotovoltaic systems,” Jpn. J. Appl. Phys. 57(4), 040312 (2018).
[Crossref]

A. Kohiyama, M. Shimizu, and H. Yugami, “Unidirectional radiative heat transfer with a spectrally selective planar absorber/emitter for high-efficiency solar thermophotovoltaic systems,” Appl. Phys. Express 9(11), 112302 (2016).
[Crossref]

Köppen, M.

M. Köppen, “Comparative Study of the Reactivity of the Tungsten Oxides WO2 and WO3 with Beryllium at Temperatures up to 1273 K,” Condens. Matter 4(3), 82 (2019).
[Crossref]

Kravchenko, I.

R. Bhatt, I. Kravchenko, and M. Gupta, “Consideration of temperature-dependent absorptivity of selective emitters in thermophotovoltaic systems,” Appl. Opt. 59(18), 5457–5462 (2020).
[Crossref]

R. Bhatt, I. Kravchenko, and M. Gupta, “High-efficiency solar thermophotovoltaic system using a nanostructure-based selective emitter,” Sol. Energy 197, 538–545 (2020).
[Crossref]

Krishnamurthy, G. V.

M. Chirumamilla, G. V. Krishnamurthy, S. S. Rout, M. Ritter, M. Störmer, A. Y. Petrov, and M. Eich, “Thermal stability of tungsten based metamaterial emitter under medium vacuum and inert gas conditions,” Sci. Rep. 10(1), 3605 (2020).
[Crossref]

Laforgia, D.

M. Mazzer, A. De Risi, D. Laforgia, K. Barnham, and C. Rohr, “High efficiency thermophotovoltaics for automotive applications,” in SAE Technical Papers (2000).

Lamont, M. R. E.

K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si3N4 microresonator,” in Conference on Lasers and Electro-Optics Europe - Technical Digest (2015), Vol. 2015-Augus.

Lawn, B. R.

H. Huang, K. J. Winchester, A. Suvorova, B. R. Lawn, Y. Liu, X. Z. Hu, J. M. Dell, and L. Faraone, “Effect of deposition conditions on mechanical properties of low-temperature PECVD silicon nitride films,” Mater. Sci. Eng., A 435-436, 453–459 (2006).
[Crossref]

Lenert, A.

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref]

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

A. Lenert, Y. Nam, D. M. Bierman, and E. N. Wang, “Role of spectral non-idealities in the design of solar thermophotovoltaics,” Opt. Express 22(S6), A1604 (2014).
[Crossref]

Liao, Z.

C. Zhang, Z. Liao, L. Tang, Z. Liu, R. Huo, Z. Wang, and K. Qiu, “A comparatively experimental study on the temperature-dependent performance of thermophotovoltaic cells,” Appl. Phys. Lett. 114(19), 193902 (2019).
[Crossref]

Lin, T.-W.

Lipson, M.

K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si3N4 microresonator,” in Conference on Lasers and Electro-Optics Europe - Technical Digest (2015), Vol. 2015-Augus.

Liu, L.

L. Liu, W. guo Liu, N. Cao, and C. long Cai, “Study on The Performance of PECVD Silicon Nitride Thin Films,” Def. Technol. 9(2), 121–126 (2013).
[Crossref]

Liu, Y.

Y. Liu, N. Jehanathan, and J. Dell, “Thermally induced damages of PECVD SiNx thin films,” J. Mater. Res. 26(19), 2552–2557 (2011).
[Crossref]

H. Huang, K. J. Winchester, A. Suvorova, B. R. Lawn, Y. Liu, X. Z. Hu, J. M. Dell, and L. Faraone, “Effect of deposition conditions on mechanical properties of low-temperature PECVD silicon nitride films,” Mater. Sci. Eng., A 435-436, 453–459 (2006).
[Crossref]

Y. Yang, Y. Liu, and J. M. Delf, “Effect of heat treatment on internal stresses in PECVD SiN xHy thin films,” in Conference on Optoelectronic and Microelectronic Materials and Devices, Proceedings, COMMAD (2008), pp. 181–184.

Liu, Z.

C. Zhang, Z. Liao, L. Tang, Z. Liu, R. Huo, Z. Wang, and K. Qiu, “A comparatively experimental study on the temperature-dependent performance of thermophotovoltaic cells,” Appl. Phys. Lett. 114(19), 193902 (2019).
[Crossref]

long Cai, C.

L. Liu, W. guo Liu, N. Cao, and C. long Cai, “Study on The Performance of PECVD Silicon Nitride Thin Films,” Def. Technol. 9(2), 121–126 (2013).
[Crossref]

Loughin, S.

F. A. Vicente, C. E. Kelly, and S. Loughin, “Thermophotovoltaic (TPV) applications to space power generation,” in Proceedings of the Intersociety Energy Conversion Engineering Conference (1996), Vol. 1, pp. 635–640.

Luke, K.

K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si3N4 microresonator,” in Conference on Lasers and Electro-Optics Europe - Technical Digest (2015), Vol. 2015-Augus.

Majewski, M. L.

Majhi, S.

S. K. Das, S. Majhi, P. Mohanty, and K. K. Pant, “CO-hydrogenation of syngas to fuel using silica supported Fe-Cu-K catalysts: Effects of active components,” Fuel Process. Technol. 118, 82–89 (2014).
[Crossref]

Mardiana-Idayu, A.

A. Mardiana-Idayu and S. B. Riffat, “Review on heat recovery technologies for building applications,” Renewable Sustainable Energy Rev. 16(2), 1241–1255 (2012).
[Crossref]

Martinu, L.

G. Abadias, E. Chason, J. Keckes, M. Sebastiani, G. B. Thompson, E. Barthel, G. L. Doll, C. E. Murray, C. H. Stoessel, and L. Martinu, “Review Article: Stress in thin films and coatings: Current status, challenges, and prospects,” J. Vac. Sci. Technol., A 36(2), 020801 (2018).
[Crossref]

Marton, C. H.

Mazzer, M.

M. Mazzer, A. De Risi, D. Laforgia, K. Barnham, and C. Rohr, “High efficiency thermophotovoltaics for automotive applications,” in SAE Technical Papers (2000).

Miiller, A. P.

A. P. Miiller and A. Cezairliyan, “Thermal expansion of tungsten in the range 1500-3600 K by a transient interferometric technique,” Int. J. Thermophys. 11(4), 619–628 (1990).
[Crossref]

Minissale, M.

M. Minissale, C. Pardanaud, R. Bisson, and L. Gallais, “The temperature dependence of optical properties of tungsten in the visible and near-infrared domains: An experimental and theoretical study,” J. Phys. D: Appl. Phys. 50(45), 455601 (2017).
[Crossref]

Mohanty, P.

S. K. Das, S. Majhi, P. Mohanty, and K. K. Pant, “CO-hydrogenation of syngas to fuel using silica supported Fe-Cu-K catalysts: Effects of active components,” Fuel Process. Technol. 118, 82–89 (2014).
[Crossref]

More, M. A.

K. Jhansirani, R. S. Dubey, M. A. More, and S. Singh, “Deposition of silicon nitride films using chemical vapor deposition for photovoltaic applications,” Results Phys. 6, 1059–1063 (2016).
[Crossref]

Murray, C. E.

G. Abadias, E. Chason, J. Keckes, M. Sebastiani, G. B. Thompson, E. Barthel, G. L. Doll, C. E. Murray, C. H. Stoessel, and L. Martinu, “Review Article: Stress in thin films and coatings: Current status, challenges, and prospects,” J. Vac. Sci. Technol., A 36(2), 020801 (2018).
[Crossref]

Nakagawa, N.

H. Yugami, H. Sai, K. Nakamura, N. Nakagawa, and H. Ohtsubo, “Solar thermophotovoltaic using Al2O3/Er3Al5O12eutectic composite selective emitter,” in Conference Record of the IEEE Photovoltaic Specialists Conference (2000), Vol. 2000-Janua, pp. 1214–1217.

Nakamura, K.

H. Yugami, H. Sai, K. Nakamura, N. Nakagawa, and H. Ohtsubo, “Solar thermophotovoltaic using Al2O3/Er3Al5O12eutectic composite selective emitter,” in Conference Record of the IEEE Photovoltaic Specialists Conference (2000), Vol. 2000-Janua, pp. 1214–1217.

Nam, Y.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref]

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

A. Lenert, Y. Nam, D. M. Bierman, and E. N. Wang, “Role of spectral non-idealities in the design of solar thermophotovoltaics,” Opt. Express 22(S6), A1604 (2014).
[Crossref]

Nanda, A. K.

N. M. Ravindra, S. Abedrabbo, W. Chen, F. M. Tong, A. K. Nanda, and A. C. Speranza, “Temperature-dependent emissivity of silicon-related materials and structures,” IEEE Trans. Semicond. Manufact. 11(1), 30–39 (1998).
[Crossref]

Noda, S.

M. Suemitsu, T. Asano, T. Inoue, and S. Noda, “High-Efficiency Thermophotovoltaic System That Employs an Emitter Based on a Silicon Rod-Type Photonic Crystal,” ACS Photonics 7(1), 80–87 (2020).
[Crossref]

Ogawa, H.

Z. G. Qian, W. Z. Shen, H. Ogawa, and Q. X. Guo, “Infrared reflection characteristics in InN thin films grown by magnetron sputtering for the application of plasma filters,” J. Appl. Phys. 92(7), 3683–3687 (2002).
[Crossref]

Ohtsubo, H.

H. Yugami, H. Sai, K. Nakamura, N. Nakagawa, and H. Ohtsubo, “Solar thermophotovoltaic using Al2O3/Er3Al5O12eutectic composite selective emitter,” in Conference Record of the IEEE Photovoltaic Specialists Conference (2000), Vol. 2000-Janua, pp. 1214–1217.

Okawachi, Y.

K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si3N4 microresonator,” in Conference on Lasers and Electro-Optics Europe - Technical Digest (2015), Vol. 2015-Augus.

Omair, Z.

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. U. S. A. 116(31), 15356–15361 (2019).
[Crossref]

Pankratz, L. B.

L. B. Pankratz, “Thermodynamic Properties of Elements and Oxides,” Bull. Us. Bur. Mines (1982).

Pant, K. K.

S. K. Das, S. Majhi, P. Mohanty, and K. K. Pant, “CO-hydrogenation of syngas to fuel using silica supported Fe-Cu-K catalysts: Effects of active components,” Fuel Process. Technol. 118, 82–89 (2014).
[Crossref]

Parali, U.

Z. Utlu, U. Paralı, and Ç Gültekin, “Applicability of Thermophotovoltaic Technologies in the Iron and Steel Sectors,” Energy Technol. 6(6), 1039–1051 (2018).
[Crossref]

Pardanaud, C.

M. Minissale, C. Pardanaud, R. Bisson, and L. Gallais, “The temperature dependence of optical properties of tungsten in the visible and near-infrared domains: An experimental and theoretical study,” J. Phys. D: Appl. Phys. 50(45), 455601 (2017).
[Crossref]

Pazos-Outón, L. M.

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. U. S. A. 116(31), 15356–15361 (2019).
[Crossref]

Peterson, P. F.

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. U. S. A. 116(31), 15356–15361 (2019).
[Crossref]

Petrov, A. Y.

M. Chirumamilla, G. V. Krishnamurthy, S. S. Rout, M. Ritter, M. Störmer, A. Y. Petrov, and M. Eich, “Thermal stability of tungsten based metamaterial emitter under medium vacuum and inert gas conditions,” Sci. Rep. 10(1), 3605 (2020).
[Crossref]

Pfiester, N. A.

N. A. Pfiester and T. E. Vandervelde, “Selective emitters for thermophotovoltaic applications,” Phys. Status Solidi A 214(1), 1600410 (2017).
[Crossref]

Piro, G.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Qian, Z. G.

Z. G. Qian, W. Z. Shen, H. Ogawa, and Q. X. Guo, “Infrared reflection characteristics in InN thin films grown by magnetron sputtering for the application of plasma filters,” J. Appl. Phys. 92(7), 3683–3687 (2002).
[Crossref]

Qiu, K.

C. Zhang, Z. Liao, L. Tang, Z. Liu, R. Huo, Z. Wang, and K. Qiu, “A comparatively experimental study on the temperature-dependent performance of thermophotovoltaic cells,” Appl. Phys. Lett. 114(19), 193902 (2019).
[Crossref]

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Rakic, A. D.

Ravindra, N. M.

N. M. Ravindra, S. Abedrabbo, W. Chen, F. M. Tong, A. K. Nanda, and A. C. Speranza, “Temperature-dependent emissivity of silicon-related materials and structures,” IEEE Trans. Semicond. Manufact. 11(1), 30–39 (1998).
[Crossref]

Rephaeli, E.

Riffat, S. B.

A. Mardiana-Idayu and S. B. Riffat, “Review on heat recovery technologies for building applications,” Renewable Sustainable Energy Rev. 16(2), 1241–1255 (2012).
[Crossref]

Ritter, M.

M. Chirumamilla, G. V. Krishnamurthy, S. S. Rout, M. Ritter, M. Störmer, A. Y. Petrov, and M. Eich, “Thermal stability of tungsten based metamaterial emitter under medium vacuum and inert gas conditions,” Sci. Rep. 10(1), 3605 (2020).
[Crossref]

Rohr, C.

M. Mazzer, A. De Risi, D. Laforgia, K. Barnham, and C. Rohr, “High efficiency thermophotovoltaics for automotive applications,” in SAE Technical Papers (2000).

Rotem, Z.

Z. Rotem and L. Claassen, “Natural convection above unconfined horizontal surfaces,” J. Fluid Mech. 39(1), 173–192 (1969).
[Crossref]

Rout, S. S.

M. Chirumamilla, G. V. Krishnamurthy, S. S. Rout, M. Ritter, M. Störmer, A. Y. Petrov, and M. Eich, “Thermal stability of tungsten based metamaterial emitter under medium vacuum and inert gas conditions,” Sci. Rep. 10(1), 3605 (2020).
[Crossref]

Ruggi, D.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Ruiz, C. M.

O. Vigil, C. M. Ruiz, D. Seuret, V. Bermúdez, and E. Diéguez, “Transparent conducting oxides as selective filters in thermophotovoltaic devices,” J. Phys.: Condens. Matter 17(41), 6377–6384 (2005).
[Crossref]

Sai, H.

H. Yugami, H. Sai, K. Nakamura, N. Nakagawa, and H. Ohtsubo, “Solar thermophotovoltaic using Al2O3/Er3Al5O12eutectic composite selective emitter,” in Conference Record of the IEEE Photovoltaic Specialists Conference (2000), Vol. 2000-Janua, pp. 1214–1217.

H. Sai, “Thermophotovoltaic Generation with Microstructured Tungsten Selective Emitters,” in AIP Conference Proceedings: Sixth Conference on Thermophotovoltaic Generation of Electricity (TPV6) (2004), pp. 206–214.

Sakr, E.

Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar thermophotovoltaics: Reshaping the solar spectrum,” Nanophotonics 5(1), 1–21 (2016).
[Crossref]

Saxena, S. K.

L. S. Dubrovinsky and S. K. Saxena, “Thermal expansion of periclase (MgO) and tungsten (W) to melting temperatures,” Phys. Chem. Miner. 24(8), 547–550 (1997).
[Crossref]

Scranton, G.

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. U. S. A. 116(31), 15356–15361 (2019).
[Crossref]

Sebastiani, M.

G. Abadias, E. Chason, J. Keckes, M. Sebastiani, G. B. Thompson, E. Barthel, G. L. Doll, C. E. Murray, C. H. Stoessel, and L. Martinu, “Review Article: Stress in thin films and coatings: Current status, challenges, and prospects,” J. Vac. Sci. Technol., A 36(2), 020801 (2018).
[Crossref]

Seuret, D.

O. Vigil, C. M. Ruiz, D. Seuret, V. Bermúdez, and E. Diéguez, “Transparent conducting oxides as selective filters in thermophotovoltaic devices,” J. Phys.: Condens. Matter 17(41), 6377–6384 (2005).
[Crossref]

Seyf, H. R.

H. R. Seyf and A. Henry, “Thermophotovoltaics: A potential pathway to high efficiency concentrated solar power,” Energy Environ. Sci. 9(8), 2654–2665 (2016).
[Crossref]

Shen, W. Z.

Z. G. Qian, W. Z. Shen, H. Ogawa, and Q. X. Guo, “Infrared reflection characteristics in InN thin films grown by magnetron sputtering for the application of plasma filters,” J. Appl. Phys. 92(7), 3683–3687 (2002).
[Crossref]

Shimizu, M.

A. Kohiyama, M. Shimizu, and H. Yugami, “Radiative heat transfer enhancement using geometric and spectral control for achieving high-efficiency solar-thermophotovoltaic systems,” Jpn. J. Appl. Phys. 57(4), 040312 (2018).
[Crossref]

M. Shimizu, A. Kohiyama, and H. Yugami, “Evaluation of thermal stability in spectrally selective few-layer metallo-dielectric structures for solar thermophotovoltaics,” J. Quant. Spectrosc. Radiat. Transfer 212, 45–49 (2018).
[Crossref]

E. Blandre, M. Shimizu, A. Kohiyama, H. Yugami, P.-O. Chapuis, and R. Vaillon, “Spectrally shaping high-temperature radiators for thermophotovoltaics using Mo-HfO 2 trilayer-on-substrate structures,” Opt. Express 26(4), 4346 (2018).
[Crossref]

A. Kohiyama, M. Shimizu, and H. Yugami, “Unidirectional radiative heat transfer with a spectrally selective planar absorber/emitter for high-efficiency solar thermophotovoltaic systems,” Appl. Phys. Express 9(11), 112302 (2016).
[Crossref]

Shin, M. W.

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Silvestrini, V.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Singh, S.

K. Jhansirani, R. S. Dubey, M. A. More, and S. Singh, “Deposition of silicon nitride films using chemical vapor deposition for photovoltaic applications,” Results Phys. 6, 1059–1063 (2016).
[Crossref]

Slack, I. C.

I. C. Slack and G. A. Huseby, “Thermal Grüneisen parameters of CdAl2O4, β–Si3N4, and other phenacite-type compounds,” J. Appl. Phys. 53(10), 6817–6822 (1982).
[Crossref]

Soljacic, M.

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref]

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3), A314 (2010).
[Crossref]

Sorokina, S. V.

A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and V. M. Andreev, “TPV systems with solar powered tungsten emitters,” in AIP Conference Proceedings890, 327–334 (2007).

Speranza, A. C.

N. M. Ravindra, S. Abedrabbo, W. Chen, F. M. Tong, A. K. Nanda, and A. C. Speranza, “Temperature-dependent emissivity of silicon-related materials and structures,” IEEE Trans. Semicond. Manufact. 11(1), 30–39 (1998).
[Crossref]

Steiner, M. A.

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. U. S. A. 116(31), 15356–15361 (2019).
[Crossref]

Stoessel, C. H.

G. Abadias, E. Chason, J. Keckes, M. Sebastiani, G. B. Thompson, E. Barthel, G. L. Doll, C. E. Murray, C. H. Stoessel, and L. Martinu, “Review Article: Stress in thin films and coatings: Current status, challenges, and prospects,” J. Vac. Sci. Technol., A 36(2), 020801 (2018).
[Crossref]

Störmer, M.

M. Chirumamilla, G. V. Krishnamurthy, S. S. Rout, M. Ritter, M. Störmer, A. Y. Petrov, and M. Eich, “Thermal stability of tungsten based metamaterial emitter under medium vacuum and inert gas conditions,” Sci. Rep. 10(1), 3605 (2020).
[Crossref]

Suemitsu, M.

M. Suemitsu, T. Asano, T. Inoue, and S. Noda, “High-Efficiency Thermophotovoltaic System That Employs an Emitter Based on a Silicon Rod-Type Photonic Crystal,” ACS Photonics 7(1), 80–87 (2020).
[Crossref]

Sun, X.

X. Sun, Y. Sun, Z. Zhou, M. A. Alam, and P. Bermel, “Radiative sky cooling: Fundamental physics, materials, structures, and applications,” Nanophotonics 6(5), 997–1015 (2017).
[Crossref]

Z. Zhou, X. Sun, and P. Bermel, “Radiative cooling for thermophotovoltaic systems,” in Infrared Remote Sensing and Instrumentation XXIV (2016), Vol. 9973, p. 997308.

Sun, Y.

X. Sun, Y. Sun, Z. Zhou, M. A. Alam, and P. Bermel, “Radiative sky cooling: Fundamental physics, materials, structures, and applications,” Nanophotonics 6(5), 997–1015 (2017).
[Crossref]

Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar thermophotovoltaics: Reshaping the solar spectrum,” Nanophotonics 5(1), 1–21 (2016).
[Crossref]

Suvorova, A.

H. Huang, K. J. Winchester, A. Suvorova, B. R. Lawn, Y. Liu, X. Z. Hu, J. M. Dell, and L. Faraone, “Effect of deposition conditions on mechanical properties of low-temperature PECVD silicon nitride films,” Mater. Sci. Eng., A 435-436, 453–459 (2006).
[Crossref]

Sweeney, P.

W. T. Hidnert and P. Sweeney, “Thermal expansion of tungsten,” Bur. Stand. (U. S.), Sci. Pap. 20, 483 (1925).
[Crossref]

Talom, H. L.

H. L. Talom and A. Beyene, “Heat recovery from automotive engine,” Appl. Therm. Eng. 29(2-3), 439–444 (2009).
[Crossref]

Tang, L.

C. Zhang, Z. Liao, L. Tang, Z. Liu, R. Huo, Z. Wang, and K. Qiu, “A comparatively experimental study on the temperature-dependent performance of thermophotovoltaic cells,” Appl. Phys. Lett. 114(19), 193902 (2019).
[Crossref]

Taylor, R. E.

C. Y. Ho and R. E. Taylor, Thermal Expansion of Solids (ASM International, ©1998., Materials Park, OH, 1998).

Thompson, G. B.

G. Abadias, E. Chason, J. Keckes, M. Sebastiani, G. B. Thompson, E. Barthel, G. L. Doll, C. E. Murray, C. H. Stoessel, and L. Martinu, “Review Article: Stress in thin films and coatings: Current status, challenges, and prospects,” J. Vac. Sci. Technol., A 36(2), 020801 (2018).
[Crossref]

Tien, C.-L.

Tong, F. M.

N. M. Ravindra, S. Abedrabbo, W. Chen, F. M. Tong, A. K. Nanda, and A. C. Speranza, “Temperature-dependent emissivity of silicon-related materials and structures,” IEEE Trans. Semicond. Manufact. 11(1), 30–39 (1998).
[Crossref]

Troise, G.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Ungaro, C.

C. Ungaro, S. K. Gray, and M. C. Gupta, “Solar thermophotovoltaic system using nanostructures,” Opt. Express 23(19), A1149 (2015).
[Crossref]

C. Ungaro, “Control of Optical Properties of Surfaces for Improved Solar Thermophotovoltaic Systems,” University of Virginia (2015).

Utlu, Z.

Z. Utlu, U. Paralı, and Ç Gültekin, “Applicability of Thermophotovoltaic Technologies in the Iron and Steel Sectors,” Energy Technol. 6(6), 1039–1051 (2018).
[Crossref]

Vaillon, R.

Vandervelde, T. E.

N. A. Pfiester and T. E. Vandervelde, “Selective emitters for thermophotovoltaic applications,” Phys. Status Solidi A 214(1), 1600410 (2017).
[Crossref]

Vicente, F. A.

F. A. Vicente, C. E. Kelly, and S. Loughin, “Thermophotovoltaic (TPV) applications to space power generation,” in Proceedings of the Intersociety Energy Conversion Engineering Conference (1996), Vol. 1, pp. 635–640.

Vigil, O.

O. Vigil, C. M. Ruiz, D. Seuret, V. Bermúdez, and E. Diéguez, “Transparent conducting oxides as selective filters in thermophotovoltaic devices,” J. Phys.: Condens. Matter 17(41), 6377–6384 (2005).
[Crossref]

Vlasov, A. S.

A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and V. M. Andreev, “TPV systems with solar powered tungsten emitters,” in AIP Conference Proceedings890, 327–334 (2007).

Wang, E. N.

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref]

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

A. Lenert, Y. Nam, D. M. Bierman, and E. N. Wang, “Role of spectral non-idealities in the design of solar thermophotovoltaics,” Opt. Express 22(S6), A1604 (2014).
[Crossref]

Wang, Z.

Z. Zhou, Z. Wang, and P. Bermel, “Radiative cooling for low-bandgap photovoltaics under concentrated sunlight,” Opt. Express 27(8), A404 (2019).
[Crossref]

C. Zhang, Z. Liao, L. Tang, Z. Liu, R. Huo, Z. Wang, and K. Qiu, “A comparatively experimental study on the temperature-dependent performance of thermophotovoltaic cells,” Appl. Phys. Lett. 114(19), 193902 (2019).
[Crossref]

Winchester, K. J.

H. Huang, K. J. Winchester, A. Suvorova, B. R. Lawn, Y. Liu, X. Z. Hu, J. M. Dell, and L. Faraone, “Effect of deposition conditions on mechanical properties of low-temperature PECVD silicon nitride films,” Mater. Sci. Eng., A 435-436, 453–459 (2006).
[Crossref]

Würfel, P.

N. P. Harder and P. Würfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18(5), S151–S157 (2003).
[Crossref]

Xiao, T. P.

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. U. S. A. 116(31), 15356–15361 (2019).
[Crossref]

Yablonovitch, E.

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. U. S. A. 116(31), 15356–15361 (2019).
[Crossref]

Yang, Y.

Y. Yang, Y. Liu, and J. M. Delf, “Effect of heat treatment on internal stresses in PECVD SiN xHy thin films,” in Conference on Optoelectronic and Microelectronic Materials and Devices, Proceedings, COMMAD (2008), pp. 181–184.

Yeng, Y. X.

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3), A314 (2010).
[Crossref]

Yugami, H.

E. Blandre, M. Shimizu, A. Kohiyama, H. Yugami, P.-O. Chapuis, and R. Vaillon, “Spectrally shaping high-temperature radiators for thermophotovoltaics using Mo-HfO 2 trilayer-on-substrate structures,” Opt. Express 26(4), 4346 (2018).
[Crossref]

M. Shimizu, A. Kohiyama, and H. Yugami, “Evaluation of thermal stability in spectrally selective few-layer metallo-dielectric structures for solar thermophotovoltaics,” J. Quant. Spectrosc. Radiat. Transfer 212, 45–49 (2018).
[Crossref]

A. Kohiyama, M. Shimizu, and H. Yugami, “Radiative heat transfer enhancement using geometric and spectral control for achieving high-efficiency solar-thermophotovoltaic systems,” Jpn. J. Appl. Phys. 57(4), 040312 (2018).
[Crossref]

A. Kohiyama, M. Shimizu, and H. Yugami, “Unidirectional radiative heat transfer with a spectrally selective planar absorber/emitter for high-efficiency solar thermophotovoltaic systems,” Appl. Phys. Express 9(11), 112302 (2016).
[Crossref]

H. Yugami, H. Sai, K. Nakamura, N. Nakagawa, and H. Ohtsubo, “Solar thermophotovoltaic using Al2O3/Er3Al5O12eutectic composite selective emitter,” in Conference Record of the IEEE Photovoltaic Specialists Conference (2000), Vol. 2000-Janua, pp. 1214–1217.

Zaca-Moran, O.

J. Díaz-Reyes, R. Castillo-Ojeda, M. Galván-Arellano, and O. Zaca-Moran, “Characterization of WO3 thin films grown on silicon by HFMOD,” Adv. Condens. Matter Phys. 2013, 591787 (2013).
[Crossref]

Zenker, M.

M. Zenker and A. Heinzel, “Efficiency and power density potential of combustion-driven thermophotovoltaic systems using GaSb photovoltaic cells,” IEEE Trans. Electron Devices 48(2), 367–376 (2001).
[Crossref]

Zhang, C.

C. Zhang, Z. Liao, L. Tang, Z. Liu, R. Huo, Z. Wang, and K. Qiu, “A comparatively experimental study on the temperature-dependent performance of thermophotovoltaic cells,” Appl. Phys. Lett. 114(19), 193902 (2019).
[Crossref]

Zhou, Z.

Z. Zhou, Z. Wang, and P. Bermel, “Radiative cooling for low-bandgap photovoltaics under concentrated sunlight,” Opt. Express 27(8), A404 (2019).
[Crossref]

X. Sun, Y. Sun, Z. Zhou, M. A. Alam, and P. Bermel, “Radiative sky cooling: Fundamental physics, materials, structures, and applications,” Nanophotonics 6(5), 997–1015 (2017).
[Crossref]

Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar thermophotovoltaics: Reshaping the solar spectrum,” Nanophotonics 5(1), 1–21 (2016).
[Crossref]

Z. Zhou, X. Sun, and P. Bermel, “Radiative cooling for thermophotovoltaic systems,” in Infrared Remote Sensing and Instrumentation XXIV (2016), Vol. 9973, p. 997308.

ACS Photonics (1)

M. Suemitsu, T. Asano, T. Inoue, and S. Noda, “High-Efficiency Thermophotovoltaic System That Employs an Emitter Based on a Silicon Rod-Type Photonic Crystal,” ACS Photonics 7(1), 80–87 (2020).
[Crossref]

Adv. Condens. Matter Phys. (1)

J. Díaz-Reyes, R. Castillo-Ojeda, M. Galván-Arellano, and O. Zaca-Moran, “Characterization of WO3 thin films grown on silicon by HFMOD,” Adv. Condens. Matter Phys. 2013, 591787 (2013).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Express (1)

A. Kohiyama, M. Shimizu, and H. Yugami, “Unidirectional radiative heat transfer with a spectrally selective planar absorber/emitter for high-efficiency solar thermophotovoltaic systems,” Appl. Phys. Express 9(11), 112302 (2016).
[Crossref]

Appl. Phys. Lett. (1)

C. Zhang, Z. Liao, L. Tang, Z. Liu, R. Huo, Z. Wang, and K. Qiu, “A comparatively experimental study on the temperature-dependent performance of thermophotovoltaic cells,” Appl. Phys. Lett. 114(19), 193902 (2019).
[Crossref]

Appl. Therm. Eng. (1)

H. L. Talom and A. Beyene, “Heat recovery from automotive engine,” Appl. Therm. Eng. 29(2-3), 439–444 (2009).
[Crossref]

Bur. Stand. (U. S.), Sci. Pap. (1)

W. T. Hidnert and P. Sweeney, “Thermal expansion of tungsten,” Bur. Stand. (U. S.), Sci. Pap. 20, 483 (1925).
[Crossref]

Condens. Matter (1)

M. Köppen, “Comparative Study of the Reactivity of the Tungsten Oxides WO2 and WO3 with Beryllium at Temperatures up to 1273 K,” Condens. Matter 4(3), 82 (2019).
[Crossref]

Def. Technol. (1)

L. Liu, W. guo Liu, N. Cao, and C. long Cai, “Study on The Performance of PECVD Silicon Nitride Thin Films,” Def. Technol. 9(2), 121–126 (2013).
[Crossref]

Energy Environ. Sci. (1)

H. R. Seyf and A. Henry, “Thermophotovoltaics: A potential pathway to high efficiency concentrated solar power,” Energy Environ. Sci. 9(8), 2654–2665 (2016).
[Crossref]

Energy Technol. (1)

Z. Utlu, U. Paralı, and Ç Gültekin, “Applicability of Thermophotovoltaic Technologies in the Iron and Steel Sectors,” Energy Technol. 6(6), 1039–1051 (2018).
[Crossref]

Fuel Process. Technol. (1)

S. K. Das, S. Majhi, P. Mohanty, and K. K. Pant, “CO-hydrogenation of syngas to fuel using silica supported Fe-Cu-K catalysts: Effects of active components,” Fuel Process. Technol. 118, 82–89 (2014).
[Crossref]

IEEE Trans. Electron Devices (1)

M. Zenker and A. Heinzel, “Efficiency and power density potential of combustion-driven thermophotovoltaic systems using GaSb photovoltaic cells,” IEEE Trans. Electron Devices 48(2), 367–376 (2001).
[Crossref]

IEEE Trans. Semicond. Manufact. (1)

N. M. Ravindra, S. Abedrabbo, W. Chen, F. M. Tong, A. K. Nanda, and A. C. Speranza, “Temperature-dependent emissivity of silicon-related materials and structures,” IEEE Trans. Semicond. Manufact. 11(1), 30–39 (1998).
[Crossref]

Int. J. Thermophys. (1)

A. P. Miiller and A. Cezairliyan, “Thermal expansion of tungsten in the range 1500-3600 K by a transient interferometric technique,” Int. J. Thermophys. 11(4), 619–628 (1990).
[Crossref]

J. Appl. Phys. (4)

I. C. Slack and G. A. Huseby, “Thermal Grüneisen parameters of CdAl2O4, β–Si3N4, and other phenacite-type compounds,” J. Appl. Phys. 53(10), 6817–6822 (1982).
[Crossref]

C. M. Fang, G. A. De Wijs, H. T. Hintzen, and G. De With, “Phonon spectrum and thermal properties of cubic Si3N4 from first-principles calculations,” J. Appl. Phys. 93(9), 5175–5180 (2003).
[Crossref]

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Z. G. Qian, W. Z. Shen, H. Ogawa, and Q. X. Guo, “Infrared reflection characteristics in InN thin films grown by magnetron sputtering for the application of plasma filters,” J. Appl. Phys. 92(7), 3683–3687 (2002).
[Crossref]

J. Fluid Mech. (1)

Z. Rotem and L. Claassen, “Natural convection above unconfined horizontal surfaces,” J. Fluid Mech. 39(1), 173–192 (1969).
[Crossref]

J. Mater. Res. (1)

Y. Liu, N. Jehanathan, and J. Dell, “Thermally induced damages of PECVD SiNx thin films,” J. Mater. Res. 26(19), 2552–2557 (2011).
[Crossref]

J. Nanomater. (1)

Y. Djaoued, S. Balaji, and R. Brüning, “Electrochromic devices based on porous tungsten oxide thin films,” J. Nanomater. 2012, 1–9 (2012).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. D: Appl. Phys. (2)

M. Minissale, C. Pardanaud, R. Bisson, and L. Gallais, “The temperature dependence of optical properties of tungsten in the visible and near-infrared domains: An experimental and theoretical study,” J. Phys. D: Appl. Phys. 50(45), 455601 (2017).
[Crossref]

A. De Vos, “Detailed balance limit of the efficiency of tandem solar cells,” J. Phys. D: Appl. Phys. 13(5), 839–846 (1980).
[Crossref]

J. Phys.: Condens. Matter (1)

O. Vigil, C. M. Ruiz, D. Seuret, V. Bermúdez, and E. Diéguez, “Transparent conducting oxides as selective filters in thermophotovoltaic devices,” J. Phys.: Condens. Matter 17(41), 6377–6384 (2005).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

M. Shimizu, A. Kohiyama, and H. Yugami, “Evaluation of thermal stability in spectrally selective few-layer metallo-dielectric structures for solar thermophotovoltaics,” J. Quant. Spectrosc. Radiat. Transfer 212, 45–49 (2018).
[Crossref]

J. Vac. Sci. Technol., A (1)

G. Abadias, E. Chason, J. Keckes, M. Sebastiani, G. B. Thompson, E. Barthel, G. L. Doll, C. E. Murray, C. H. Stoessel, and L. Martinu, “Review Article: Stress in thin films and coatings: Current status, challenges, and prospects,” J. Vac. Sci. Technol., A 36(2), 020801 (2018).
[Crossref]

Jpn. J. Appl. Phys. (1)

A. Kohiyama, M. Shimizu, and H. Yugami, “Radiative heat transfer enhancement using geometric and spectral control for achieving high-efficiency solar-thermophotovoltaic systems,” Jpn. J. Appl. Phys. 57(4), 040312 (2018).
[Crossref]

Mater. Sci. Eng., A (1)

H. Huang, K. J. Winchester, A. Suvorova, B. R. Lawn, Y. Liu, X. Z. Hu, J. M. Dell, and L. Faraone, “Effect of deposition conditions on mechanical properties of low-temperature PECVD silicon nitride films,” Mater. Sci. Eng., A 435-436, 453–459 (2006).
[Crossref]

Nanophotonics (2)

Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar thermophotovoltaics: Reshaping the solar spectrum,” Nanophotonics 5(1), 1–21 (2016).
[Crossref]

X. Sun, Y. Sun, Z. Zhou, M. A. Alam, and P. Bermel, “Radiative sky cooling: Fundamental physics, materials, structures, and applications,” Nanophotonics 6(5), 997–1015 (2017).
[Crossref]

Nat. Energy (1)

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

Nat. Nanotechnol. (1)

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref]

Opt. Express (8)

E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17(17), 15145 (2009).
[Crossref]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3), A314 (2010).
[Crossref]

A. Lenert, Y. Nam, D. M. Bierman, and E. N. Wang, “Role of spectral non-idealities in the design of solar thermophotovoltaics,” Opt. Express 22(S6), A1604 (2014).
[Crossref]

C. Ungaro, S. K. Gray, and M. C. Gupta, “Solar thermophotovoltaic system using nanostructures,” Opt. Express 23(19), A1149 (2015).
[Crossref]

E. Blandre, M. Shimizu, A. Kohiyama, H. Yugami, P.-O. Chapuis, and R. Vaillon, “Spectrally shaping high-temperature radiators for thermophotovoltaics using Mo-HfO 2 trilayer-on-substrate structures,” Opt. Express 26(4), 4346 (2018).
[Crossref]

E. Blandre, R. Vaillon, and J. Drévillon, “New insights into the thermal behavior and management of thermophotovoltaic systems,” Opt. Express 27(25), 36340 (2019).
[Crossref]

Z. Zhou, Z. Wang, and P. Bermel, “Radiative cooling for low-bandgap photovoltaics under concentrated sunlight,” Opt. Express 27(8), A404 (2019).
[Crossref]

J. H. Kim, S. M. Jung, and M. W. Shin, “Thermal degradation of refractory layered metamaterial for thermophotovoltaic emitter under high vacuum condition,” Opt. Express 27(3), 3039 (2019).
[Crossref]

Phys. Chem. Miner. (1)

L. S. Dubrovinsky and S. K. Saxena, “Thermal expansion of periclase (MgO) and tungsten (W) to melting temperatures,” Phys. Chem. Miner. 24(8), 547–550 (1997).
[Crossref]

Phys. Status Solidi A (1)

N. A. Pfiester and T. E. Vandervelde, “Selective emitters for thermophotovoltaic applications,” Phys. Status Solidi A 214(1), 1600410 (2017).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. U. S. A. 116(31), 15356–15361 (2019).
[Crossref]

Prog. Photovolt: Res. Appl. (1)

A. Datas and C. Algora, “Development and experimental evaluation of a complete solar thermophotovoltaic system,” Prog. Photovolt: Res. Appl. 21, 1025–1039 (2013).
[Crossref]

Prog. Photovoltaics (1)

A. Datas and C. Algora, “Global optimization of solar thermophotovoltaic systems,” Prog. Photovoltaics 21, 1040–1055 (2013).
[Crossref]

Renewable Sustainable Energy Rev. (1)

A. Mardiana-Idayu and S. B. Riffat, “Review on heat recovery technologies for building applications,” Renewable Sustainable Energy Rev. 16(2), 1241–1255 (2012).
[Crossref]

Results Phys. (1)

K. Jhansirani, R. S. Dubey, M. A. More, and S. Singh, “Deposition of silicon nitride films using chemical vapor deposition for photovoltaic applications,” Results Phys. 6, 1059–1063 (2016).
[Crossref]

Sci. Rep. (1)

M. Chirumamilla, G. V. Krishnamurthy, S. S. Rout, M. Ritter, M. Störmer, A. Y. Petrov, and M. Eich, “Thermal stability of tungsten based metamaterial emitter under medium vacuum and inert gas conditions,” Sci. Rep. 10(1), 3605 (2020).
[Crossref]

Semicond. Sci. Technol. (2)

L. M. Fraas, J. E. Avery, and H. X. Huang, “Thermophotovoltaic furnace-generator for the home using low bandgap GaSb cells,” Semicond. Sci. Technol. 18(5), S247–S253 (2003).
[Crossref]

N. P. Harder and P. Würfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18(5), S151–S157 (2003).
[Crossref]

Sol. Energy (2)

R. Bhatt, I. Kravchenko, and M. Gupta, “High-efficiency solar thermophotovoltaic system using a nanostructure-based selective emitter,” Sol. Energy 197, 538–545 (2020).
[Crossref]

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Sol. Energy Mater. Sol. Cells (2)

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

L. G. Ferguson and L. M. Fraas, “Theoretical study of GaSb PV cells efficiency as a function of temperature,” Sol. Energy Mater. Sol. Cells 39(1), 11–18 (1995).
[Crossref]

Other (16)

L. M. Fraas, “Economic potential for thermophotovoltaic electric power generation in the steel industry,” in 2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014 (2014), pp. 766–770.

K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si3N4 microresonator,” in Conference on Lasers and Electro-Optics Europe - Technical Digest (2015), Vol. 2015-Augus.

L. M. Fraas, Low-Cost Solar Electric Power (2014), Vol. 9783319075.

A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and V. M. Andreev, “TPV systems with solar powered tungsten emitters,” in AIP Conference Proceedings890, 327–334 (2007).

H. Yugami, H. Sai, K. Nakamura, N. Nakagawa, and H. Ohtsubo, “Solar thermophotovoltaic using Al2O3/Er3Al5O12eutectic composite selective emitter,” in Conference Record of the IEEE Photovoltaic Specialists Conference (2000), Vol. 2000-Janua, pp. 1214–1217.

C. Ungaro, “Control of Optical Properties of Surfaces for Improved Solar Thermophotovoltaic Systems,” University of Virginia (2015).

A. Datas, “Development of solar thermophotovoltaic systems,” University Politecnica de Madrid (2011).

M. Mazzer, A. De Risi, D. Laforgia, K. Barnham, and C. Rohr, “High efficiency thermophotovoltaics for automotive applications,” in SAE Technical Papers (2000).

F. A. Vicente, C. E. Kelly, and S. Loughin, “Thermophotovoltaic (TPV) applications to space power generation,” in Proceedings of the Intersociety Energy Conversion Engineering Conference (1996), Vol. 1, pp. 635–640.

Z. Zhou, X. Sun, and P. Bermel, “Radiative cooling for thermophotovoltaic systems,” in Infrared Remote Sensing and Instrumentation XXIV (2016), Vol. 9973, p. 997308.

L. M. Fraas, “TPV Tube Generators for Apartment Building and Industrial Furnace Applications,” in (2003), pp. 38–48.

H. Sai, “Thermophotovoltaic Generation with Microstructured Tungsten Selective Emitters,” in AIP Conference Proceedings: Sixth Conference on Thermophotovoltaic Generation of Electricity (TPV6) (2004), pp. 206–214.

J. X. Crystals, “Specification sheet for GaSb cells,” http://jxcrystals.com/GaSb/4sale5.pdf .

L. B. Pankratz, “Thermodynamic Properties of Elements and Oxides,” Bull. Us. Bur. Mines (1982).

Y. Yang, Y. Liu, and J. M. Delf, “Effect of heat treatment on internal stresses in PECVD SiN xHy thin films,” in Conference on Optoelectronic and Microelectronic Materials and Devices, Proceedings, COMMAD (2008), pp. 181–184.

C. Y. Ho and R. E. Taylor, Thermal Expansion of Solids (ASM International, ©1998., Materials Park, OH, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. (a) Schematic of a typical planar STPV system. (b) Maximum ηsol-th, ηth-elec, and ηSTPV as a function of the absorber/emitter temperature under fully concentrated sunlight and a blackbody absorber.
Fig. 2.
Fig. 2. (a) Normalized values of AM1.5 solar spectra (black), blackbody radiation curve at 1700K (magenta), and the absorptivity of an ideal absorber (blue step function). (b) Net radiation flux collected by the absorber as a function of cut-off wavelength (λabs-cut) for the equilibrium temperatures of 1400 K (solid blue curve) and 1700K (solid red curve), while ${C_x}$ is assumed to be 100. The optimal values of λabs-cut, where $\emptyset $ is maximum, are shown by vertical dashed lines. (c) Same as (b) but for a constant equilibrium temperature of 1700K at ${C_x}$ =100 (red) and ${C_x}$ =300 (blue).
Fig. 3.
Fig. 3. (a) Optimal STPV operating temperatures (red line) for different bandgap TPV cells. The vertical dashed lines show the bandgap values at 300 K. (b) EQE plot for GaSb TPV cells purchased from JX Crystals along with a varying bandwidth step function. (c) Thermalization loss and ηTPV as a function of emitter bandwidth computed at 1700K emitter temperature. The bandwidth corresponding to the peak ηTPV is shown by a dashed vertical line.
Fig. 4.
Fig. 4. (a) Effective absorptivity (green) of a W-Au arrangement is significantly lower than that of plain W (black) at shorter wavelengths due to the high infrared reflectivity of Au (red curve). The benefit of using the Au heat shield is larger at higher temperatures due to the blackbody radiation curve (blue for 1000 K and magenta for 1700K) shifting towards shorter wavelengths where the emissivity of W is greater. (b) GaSb cell reflectance (blue) measured using the Varian Cary 5E Spectrophotometer. The reflectance of only the active cell area is shown in green. The dashed vertical line represents the λBG for GaSb.
Fig. 5.
Fig. 5. (a) Effect of Emitter-to-absorber area ratio on thermal extraction for a blackbody absorber and emitter (red), selective absorber (blue), and blackbody absorber with a gold heat shield. (b) Cavity loss as a function of the separation distance between two equal-area square parallel plates.
Fig. 6.
Fig. 6. Simulated absorptivity of multiple Si3N4/W/Si3N4 thin-film stacks aimed for achieving a high spectral selectivity emitter for GaSb TPV cells.
Fig. 7.
Fig. 7. (a) Picture showing the emitter side of the W substrate. (b) Picture showing the textured absorber area (dark stripe) of the W substrate mounted on silica rods and a thermocouple bonded to it. (c) Experimental setup of the STPV system built for this study. The inset shows the heated absorber/emitter substrate viewed from the top glass window. The absorber-side heat shield was removed in this picture.
Fig. 8.
Fig. 8. (a) Spectral irradiance of the thermal radiation emitted from a blackbody (dashed magenta curve), the Si3N4/W/Si3N4 selective emitter (based on modeled absorptivity is in red and that using the measured absorptivity is in blue), and a W emitter at 1700K. The EQE of the GaSb cell and the measured absorptivity of the micro-textured absorber are also shown.
Fig. 9.
Fig. 9. (a) Experimental (red crosses) and simulated (black curve for blackbody emitter and blue curve for our selective emitter) TPV cell output power at various absorber/emitter temperatures. (b) Modeled (black curve is for no photon recycling and blue curve is with photon recycling) and experimental (red crosses) STPV system efficiency obtained at various operating temperatures.
Fig. 10.
Fig. 10. Power flow diagram showing losses at different stages of the STPV system operating at T=1670 K.
Fig. 11.
Fig. 11. (a) SEM image of the Si3N4/W/Si3N4 selective emitter after annealing at 1670 K for ∼15 minutes. (b) Zygo NewView 7300 surface profile depth measurements of two consecutive craters (shown in the inset) of the Si3N4 film after annealing. The penetration depth profile (right) showed that the crack penetrated through the entire thicknesses of the top Si3N4 film and delaminated from the W film. (c) Measured (black) and fitted (red) Raman spectra of the emitter sample annealed at 1670 K for ∼1 hour.

Tables (2)

Tables Icon

Table 1. ηsel and εin-band computed for different emitting surfaces.

Tables Icon

Table 2. Performance evaluation parameters for the different emitter types radiating at a steady-state temperature of 1700K.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

= C x × 0 λ a b s c u t L ( λ ) d λ 0 λ a b s c u t B ( λ , T ) d λ
η s e l = 0 λ B G ε ( λ ) B ( λ , T ) d λ 0 ε ( λ ) B ( λ , T ) d λ
ε i n b a n d = 0 λ B G ε ( λ ) B ( λ , T ) d λ 0 λ B G B ( λ , T ) d λ
ε E f f = ( 1 ε W + 1 1 ε A u ) 1
P i n P r e f P r a d , a b s ( T ) P r a d , s i d e ( T ) P c o n v ( T ) P c o n d ( T ) P r a d , e m i t ( T ) = 0
P h e a t l o a d = 0.7 × P i n b a n d + P s u b b a n d
J S C = q × 0 λ B G B ( λ , T ) E Q E ( λ ) d λ h c / λ

Metrics