Abstract

Chip-integrated photonic devices have stimulated development in areas ranging from telecommunications to optomechanics. Racetrack resonators have gained popularity for optomechanical transduction due to their high sensitivity and cavity finesse. However, they lack sufficient dynamic range to read out large amplitude mechanical resonators, which are preferred for sensing applications. We present a robust photonic circuit based on a Mach-Zehnder interferometer (MZI) combined with a racetrack resonator that increases linear range without compromising high transduction sensitivity. Optical and mechanical properties of combined MZI-racetrack devices are compared to lone racetracks with the same physical dimensions in the undercoupled, overcoupled and critical coupled regimes. We demonstrate an overall improvement in dynamic range, transduction responsivity, and mass sensitivity of up to 4x, 3x and 2.8x, respectively. Our highly phase sensitive MZI circuit also enables applications such as on-chip optical homodyning.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. K. Roy, V. T. K. Sauer, J. N. Westwood-Bachman, A. Venkatasubramanian, and W. K. Hiebert, “Improving mechanical sensor performance through larger damping,” Science 360(6394), eaar5220 (2018).
    [Crossref]
  2. A. Venkatasubramanian, V. T. K. Sauer, S. K. Roy, M. Xia, D. S. Wishart, and W. K. Hiebert, “Nano-Optomechanical Systems for Gas Chromatography,” Nano Lett. 16(11), 6975–6981 (2016).
    [Crossref]
  3. T. P. Purdy, K. E. Grutter, K. Srinivasan, and J. M. Taylor, “Quantum correlations from a room-temperature optomechanical cavity,” Science 356(6344), 1265–1268 (2017).
    [Crossref]
  4. C. Yu, Y. Zhang, X. Zhang, K. Wang, C. Yao, P. Yuan, and Y. Guan, “Nested fiber ring resonator enhanced Mach-Zehnder interferometer for temperature sensing,” Appl. Opt. 51(36), 8873–8876 (2012).
    [Crossref]
  5. V. T. K. Sauer, Z. Diao, M. R. Freeman, and W. K. Hiebert, “Optical racetrack resonator transduction of nanomechanical cantilevers,” Nanotechnology 25(5), 055202 (2014).
    [Crossref]
  6. V. T. K. Sauer, Z. Diao, M. R. Freeman, and W. K. Hiebert, “Nanophotonic detection of side-coupled nanomechanical cantilevers,” Appl. Phys. Lett. 100(26), 261102 (2012).
    [Crossref]
  7. J. Bachman, “Improving the performance of nano-optomechanical systems for use as mass sensors,” Ph. D. Thesis, University of Alberta, (2019).
  8. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Compact silicon microring resonators with ultra-low propagation loss in the C band,” Opt. Express 15(22), 14467–14475 (2007).
    [Crossref]
  9. D. P. Cai, J. H. Lu, C. C. Chen, C. C. Lee, C. E. Lin, and T. J. Yen, “High Q-factor microring resonator wrapped by the curved waveguide,” Sci. Rep. 5(1), 10078 (2015).
    [Crossref]
  10. E. Gavartin, P. Verlot, and T. J. Kippenberg, “Stabilization of a linear nanomechanical oscillator to its thermodynamic limit,” Nat. Commun. 4(1), 2860 (2013).
    [Crossref]
  11. M. P. Maksymowych, J. N. Westwood-Bachman, A. Venkatasubramanian, and W. K. Hiebert, “Optomechanical spring enhanced mass sensing,” Appl. Phys. Lett. 115(10), 101103 (2019).
    [Crossref]
  12. M. Poot, K. Y. Fong, M. Bagheri, W. H. P. Pernice, and H. X. Tang, “Backaction limits on self-sustained optomechanical oscillations,” Phys. Rev. A: At., Mol., Opt. Phys. 86(5), 053826 (2012).
    [Crossref]
  13. H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Radiation-pressure-driven micro-mechanical oscillator,” Opt. Express 13(14), 5293–5301 (2005).
    [Crossref]
  14. J. Lee, Z. Wang, K. He, R. Yang, J. Shan, and P. X. L. Feng, “Electrically tunable single- and few-layer MoS2 nanoelectromechanical systems with broad dynamic range,” Sci. Adv. 4(3), eaao6653 (2018).
    [Crossref]
  15. N. Kacem, J. Arcamone, F. Perez-Murano, and S. Hentz, “Dynamic range enhancement of nonlinear nanomechanical resonant cantilevers for highly sensitive NEMS gas/mass sensor applications,” J. Micromech. Microeng. 20(4), 045023 (2010).
    [Crossref]
  16. L. G. Villanueva, E. Kenig, R. B. Karabalin, M. H. Matheny, R. Lifshitz, M. C. Cross, and M. L. Roukes, “Surpassing fundamental limits of oscillators using nonlinear resonators,” Phys. Rev. Lett. 110(17), 177208 (2013).
    [Crossref]
  17. J. Melcher, J. Stirling, F. G. Cervantes, J. R. Pratt, and G. A. Shaw, “A self-calibrating optomechanical force sensor with femtonewton resolution,” Appl. Phys. Lett. 105(23), 233109 (2014).
    [Crossref]
  18. Y. Lu, J. Yao, X. Li, and P. Wang, “Tunable asymmetrical Fano resonance bistability in a microcavity-resonator-coupled Mach Zehnder interferometer,” Opt. Lett. 30(22), 3069–3071 (2005).
    [Crossref]
  19. V. Van, W. N. Herman, and P. T. Ho, “Linearized microring-loaded Mach-Zehnder modulator with RF gain,” J. Lightwave Technol. 24(4), 1850–1854 (2006).
    [Crossref]
  20. S. Darmawan, Y. M. Landobasa, P. Dumon, R. Baets, and M. K. Chin, “Nested-Ring Mach – Zehnder Interferometer in Silicon-on-Insulator,” IEEE Photon. Technol. Lett. 20(1), 9–11 (2008).
    [Crossref]
  21. J. A. Cox, A. L. Lentine, D. C. Trotter, and A. L. Starbuck, “Control of integrated micro-resonator wavelength via balanced homodyne locking,” Opt. Express 22(9), 11279–11289 (2014).
    [Crossref]
  22. F. Raffaelli, G. Ferranti, D. H. Mahler, P. Sibson, J. E. Kennard, A. Santamato, G. Sinclair, D. Bonneau, M. G. Thompson, and J. C. F. Matthews, “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers,” Quantum Sci. Technol. 3(2), 025003 (2018).
    [Crossref]
  23. A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500(7461), 185–189 (2013).
    [Crossref]
  24. J. N. Westwood-Bachman, Z. Diao, V. T. K. Sauer, D. Bachman, and W. K. Hiebert, “Even nanomechanical modes transduced by integrated photonics,” Appl. Phys. Lett. 108(6), 061103 (2016).
    [Crossref]
  25. V. Van, Optical Microring Resonators: Theory, Techniques, and Applications (CRC, 2016).
  26. V. T. K. Sauer, Z. Diao, and M. R. Freeman, “Confocal Scanner for Highly Sensitive Photonic Transduction of Nanomechanical Resonators,” Appl. Phys. Express 6(6), 065202 (2013).
    [Crossref]
  27. M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol. 2(2), 114–120 (2007).
    [Crossref]
  28. M. Bagheri, M. Poot, M. Li, W. P. H. Pernice, and H. X. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol. 6(11), 726–732 (2011).
    [Crossref]
  29. A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4(5), 415–419 (2008).
    [Crossref]

2019 (1)

M. P. Maksymowych, J. N. Westwood-Bachman, A. Venkatasubramanian, and W. K. Hiebert, “Optomechanical spring enhanced mass sensing,” Appl. Phys. Lett. 115(10), 101103 (2019).
[Crossref]

2018 (3)

J. Lee, Z. Wang, K. He, R. Yang, J. Shan, and P. X. L. Feng, “Electrically tunable single- and few-layer MoS2 nanoelectromechanical systems with broad dynamic range,” Sci. Adv. 4(3), eaao6653 (2018).
[Crossref]

S. K. Roy, V. T. K. Sauer, J. N. Westwood-Bachman, A. Venkatasubramanian, and W. K. Hiebert, “Improving mechanical sensor performance through larger damping,” Science 360(6394), eaar5220 (2018).
[Crossref]

F. Raffaelli, G. Ferranti, D. H. Mahler, P. Sibson, J. E. Kennard, A. Santamato, G. Sinclair, D. Bonneau, M. G. Thompson, and J. C. F. Matthews, “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers,” Quantum Sci. Technol. 3(2), 025003 (2018).
[Crossref]

2017 (1)

T. P. Purdy, K. E. Grutter, K. Srinivasan, and J. M. Taylor, “Quantum correlations from a room-temperature optomechanical cavity,” Science 356(6344), 1265–1268 (2017).
[Crossref]

2016 (2)

A. Venkatasubramanian, V. T. K. Sauer, S. K. Roy, M. Xia, D. S. Wishart, and W. K. Hiebert, “Nano-Optomechanical Systems for Gas Chromatography,” Nano Lett. 16(11), 6975–6981 (2016).
[Crossref]

J. N. Westwood-Bachman, Z. Diao, V. T. K. Sauer, D. Bachman, and W. K. Hiebert, “Even nanomechanical modes transduced by integrated photonics,” Appl. Phys. Lett. 108(6), 061103 (2016).
[Crossref]

2015 (1)

D. P. Cai, J. H. Lu, C. C. Chen, C. C. Lee, C. E. Lin, and T. J. Yen, “High Q-factor microring resonator wrapped by the curved waveguide,” Sci. Rep. 5(1), 10078 (2015).
[Crossref]

2014 (3)

V. T. K. Sauer, Z. Diao, M. R. Freeman, and W. K. Hiebert, “Optical racetrack resonator transduction of nanomechanical cantilevers,” Nanotechnology 25(5), 055202 (2014).
[Crossref]

J. Melcher, J. Stirling, F. G. Cervantes, J. R. Pratt, and G. A. Shaw, “A self-calibrating optomechanical force sensor with femtonewton resolution,” Appl. Phys. Lett. 105(23), 233109 (2014).
[Crossref]

J. A. Cox, A. L. Lentine, D. C. Trotter, and A. L. Starbuck, “Control of integrated micro-resonator wavelength via balanced homodyne locking,” Opt. Express 22(9), 11279–11289 (2014).
[Crossref]

2013 (4)

A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500(7461), 185–189 (2013).
[Crossref]

V. T. K. Sauer, Z. Diao, and M. R. Freeman, “Confocal Scanner for Highly Sensitive Photonic Transduction of Nanomechanical Resonators,” Appl. Phys. Express 6(6), 065202 (2013).
[Crossref]

L. G. Villanueva, E. Kenig, R. B. Karabalin, M. H. Matheny, R. Lifshitz, M. C. Cross, and M. L. Roukes, “Surpassing fundamental limits of oscillators using nonlinear resonators,” Phys. Rev. Lett. 110(17), 177208 (2013).
[Crossref]

E. Gavartin, P. Verlot, and T. J. Kippenberg, “Stabilization of a linear nanomechanical oscillator to its thermodynamic limit,” Nat. Commun. 4(1), 2860 (2013).
[Crossref]

2012 (3)

V. T. K. Sauer, Z. Diao, M. R. Freeman, and W. K. Hiebert, “Nanophotonic detection of side-coupled nanomechanical cantilevers,” Appl. Phys. Lett. 100(26), 261102 (2012).
[Crossref]

C. Yu, Y. Zhang, X. Zhang, K. Wang, C. Yao, P. Yuan, and Y. Guan, “Nested fiber ring resonator enhanced Mach-Zehnder interferometer for temperature sensing,” Appl. Opt. 51(36), 8873–8876 (2012).
[Crossref]

M. Poot, K. Y. Fong, M. Bagheri, W. H. P. Pernice, and H. X. Tang, “Backaction limits on self-sustained optomechanical oscillations,” Phys. Rev. A: At., Mol., Opt. Phys. 86(5), 053826 (2012).
[Crossref]

2011 (1)

M. Bagheri, M. Poot, M. Li, W. P. H. Pernice, and H. X. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol. 6(11), 726–732 (2011).
[Crossref]

2010 (1)

N. Kacem, J. Arcamone, F. Perez-Murano, and S. Hentz, “Dynamic range enhancement of nonlinear nanomechanical resonant cantilevers for highly sensitive NEMS gas/mass sensor applications,” J. Micromech. Microeng. 20(4), 045023 (2010).
[Crossref]

2008 (2)

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4(5), 415–419 (2008).
[Crossref]

S. Darmawan, Y. M. Landobasa, P. Dumon, R. Baets, and M. K. Chin, “Nested-Ring Mach – Zehnder Interferometer in Silicon-on-Insulator,” IEEE Photon. Technol. Lett. 20(1), 9–11 (2008).
[Crossref]

2007 (2)

M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol. 2(2), 114–120 (2007).
[Crossref]

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Compact silicon microring resonators with ultra-low propagation loss in the C band,” Opt. Express 15(22), 14467–14475 (2007).
[Crossref]

2006 (1)

2005 (2)

Anetsberger, G.

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4(5), 415–419 (2008).
[Crossref]

Arcamone, J.

N. Kacem, J. Arcamone, F. Perez-Murano, and S. Hentz, “Dynamic range enhancement of nonlinear nanomechanical resonant cantilevers for highly sensitive NEMS gas/mass sensor applications,” J. Micromech. Microeng. 20(4), 045023 (2010).
[Crossref]

Arcizet, O.

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4(5), 415–419 (2008).
[Crossref]

Aspelmeyer, M.

A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500(7461), 185–189 (2013).
[Crossref]

Bachman, D.

J. N. Westwood-Bachman, Z. Diao, V. T. K. Sauer, D. Bachman, and W. K. Hiebert, “Even nanomechanical modes transduced by integrated photonics,” Appl. Phys. Lett. 108(6), 061103 (2016).
[Crossref]

Bachman, J.

J. Bachman, “Improving the performance of nano-optomechanical systems for use as mass sensors,” Ph. D. Thesis, University of Alberta, (2019).

Baets, R.

S. Darmawan, Y. M. Landobasa, P. Dumon, R. Baets, and M. K. Chin, “Nested-Ring Mach – Zehnder Interferometer in Silicon-on-Insulator,” IEEE Photon. Technol. Lett. 20(1), 9–11 (2008).
[Crossref]

Bagheri, M.

M. Poot, K. Y. Fong, M. Bagheri, W. H. P. Pernice, and H. X. Tang, “Backaction limits on self-sustained optomechanical oscillations,” Phys. Rev. A: At., Mol., Opt. Phys. 86(5), 053826 (2012).
[Crossref]

M. Bagheri, M. Poot, M. Li, W. P. H. Pernice, and H. X. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol. 6(11), 726–732 (2011).
[Crossref]

Bonneau, D.

F. Raffaelli, G. Ferranti, D. H. Mahler, P. Sibson, J. E. Kennard, A. Santamato, G. Sinclair, D. Bonneau, M. G. Thompson, and J. C. F. Matthews, “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers,” Quantum Sci. Technol. 3(2), 025003 (2018).
[Crossref]

Cai, D. P.

D. P. Cai, J. H. Lu, C. C. Chen, C. C. Lee, C. E. Lin, and T. J. Yen, “High Q-factor microring resonator wrapped by the curved waveguide,” Sci. Rep. 5(1), 10078 (2015).
[Crossref]

Carmon, T.

Cervantes, F. G.

J. Melcher, J. Stirling, F. G. Cervantes, J. R. Pratt, and G. A. Shaw, “A self-calibrating optomechanical force sensor with femtonewton resolution,” Appl. Phys. Lett. 105(23), 233109 (2014).
[Crossref]

Chan, J.

A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500(7461), 185–189 (2013).
[Crossref]

Chen, C. C.

D. P. Cai, J. H. Lu, C. C. Chen, C. C. Lee, C. E. Lin, and T. J. Yen, “High Q-factor microring resonator wrapped by the curved waveguide,” Sci. Rep. 5(1), 10078 (2015).
[Crossref]

Chin, M. K.

S. Darmawan, Y. M. Landobasa, P. Dumon, R. Baets, and M. K. Chin, “Nested-Ring Mach – Zehnder Interferometer in Silicon-on-Insulator,” IEEE Photon. Technol. Lett. 20(1), 9–11 (2008).
[Crossref]

Cox, J. A.

Cross, M. C.

L. G. Villanueva, E. Kenig, R. B. Karabalin, M. H. Matheny, R. Lifshitz, M. C. Cross, and M. L. Roukes, “Surpassing fundamental limits of oscillators using nonlinear resonators,” Phys. Rev. Lett. 110(17), 177208 (2013).
[Crossref]

Darmawan, S.

S. Darmawan, Y. M. Landobasa, P. Dumon, R. Baets, and M. K. Chin, “Nested-Ring Mach – Zehnder Interferometer in Silicon-on-Insulator,” IEEE Photon. Technol. Lett. 20(1), 9–11 (2008).
[Crossref]

Diao, Z.

J. N. Westwood-Bachman, Z. Diao, V. T. K. Sauer, D. Bachman, and W. K. Hiebert, “Even nanomechanical modes transduced by integrated photonics,” Appl. Phys. Lett. 108(6), 061103 (2016).
[Crossref]

V. T. K. Sauer, Z. Diao, M. R. Freeman, and W. K. Hiebert, “Optical racetrack resonator transduction of nanomechanical cantilevers,” Nanotechnology 25(5), 055202 (2014).
[Crossref]

V. T. K. Sauer, Z. Diao, and M. R. Freeman, “Confocal Scanner for Highly Sensitive Photonic Transduction of Nanomechanical Resonators,” Appl. Phys. Express 6(6), 065202 (2013).
[Crossref]

V. T. K. Sauer, Z. Diao, M. R. Freeman, and W. K. Hiebert, “Nanophotonic detection of side-coupled nanomechanical cantilevers,” Appl. Phys. Lett. 100(26), 261102 (2012).
[Crossref]

Dumon, P.

S. Darmawan, Y. M. Landobasa, P. Dumon, R. Baets, and M. K. Chin, “Nested-Ring Mach – Zehnder Interferometer in Silicon-on-Insulator,” IEEE Photon. Technol. Lett. 20(1), 9–11 (2008).
[Crossref]

Feng, P. X. L.

J. Lee, Z. Wang, K. He, R. Yang, J. Shan, and P. X. L. Feng, “Electrically tunable single- and few-layer MoS2 nanoelectromechanical systems with broad dynamic range,” Sci. Adv. 4(3), eaao6653 (2018).
[Crossref]

Ferranti, G.

F. Raffaelli, G. Ferranti, D. H. Mahler, P. Sibson, J. E. Kennard, A. Santamato, G. Sinclair, D. Bonneau, M. G. Thompson, and J. C. F. Matthews, “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers,” Quantum Sci. Technol. 3(2), 025003 (2018).
[Crossref]

Fong, K. Y.

M. Poot, K. Y. Fong, M. Bagheri, W. H. P. Pernice, and H. X. Tang, “Backaction limits on self-sustained optomechanical oscillations,” Phys. Rev. A: At., Mol., Opt. Phys. 86(5), 053826 (2012).
[Crossref]

Freeman, M. R.

V. T. K. Sauer, Z. Diao, M. R. Freeman, and W. K. Hiebert, “Optical racetrack resonator transduction of nanomechanical cantilevers,” Nanotechnology 25(5), 055202 (2014).
[Crossref]

V. T. K. Sauer, Z. Diao, and M. R. Freeman, “Confocal Scanner for Highly Sensitive Photonic Transduction of Nanomechanical Resonators,” Appl. Phys. Express 6(6), 065202 (2013).
[Crossref]

V. T. K. Sauer, Z. Diao, M. R. Freeman, and W. K. Hiebert, “Nanophotonic detection of side-coupled nanomechanical cantilevers,” Appl. Phys. Lett. 100(26), 261102 (2012).
[Crossref]

Gavartin, E.

E. Gavartin, P. Verlot, and T. J. Kippenberg, “Stabilization of a linear nanomechanical oscillator to its thermodynamic limit,” Nat. Commun. 4(1), 2860 (2013).
[Crossref]

Gröblacher, S.

A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500(7461), 185–189 (2013).
[Crossref]

Grutter, K. E.

T. P. Purdy, K. E. Grutter, K. Srinivasan, and J. M. Taylor, “Quantum correlations from a room-temperature optomechanical cavity,” Science 356(6344), 1265–1268 (2017).
[Crossref]

Guan, Y.

He, K.

J. Lee, Z. Wang, K. He, R. Yang, J. Shan, and P. X. L. Feng, “Electrically tunable single- and few-layer MoS2 nanoelectromechanical systems with broad dynamic range,” Sci. Adv. 4(3), eaao6653 (2018).
[Crossref]

Hentz, S.

N. Kacem, J. Arcamone, F. Perez-Murano, and S. Hentz, “Dynamic range enhancement of nonlinear nanomechanical resonant cantilevers for highly sensitive NEMS gas/mass sensor applications,” J. Micromech. Microeng. 20(4), 045023 (2010).
[Crossref]

Herman, W. N.

Hiebert, W. K.

M. P. Maksymowych, J. N. Westwood-Bachman, A. Venkatasubramanian, and W. K. Hiebert, “Optomechanical spring enhanced mass sensing,” Appl. Phys. Lett. 115(10), 101103 (2019).
[Crossref]

S. K. Roy, V. T. K. Sauer, J. N. Westwood-Bachman, A. Venkatasubramanian, and W. K. Hiebert, “Improving mechanical sensor performance through larger damping,” Science 360(6394), eaar5220 (2018).
[Crossref]

A. Venkatasubramanian, V. T. K. Sauer, S. K. Roy, M. Xia, D. S. Wishart, and W. K. Hiebert, “Nano-Optomechanical Systems for Gas Chromatography,” Nano Lett. 16(11), 6975–6981 (2016).
[Crossref]

J. N. Westwood-Bachman, Z. Diao, V. T. K. Sauer, D. Bachman, and W. K. Hiebert, “Even nanomechanical modes transduced by integrated photonics,” Appl. Phys. Lett. 108(6), 061103 (2016).
[Crossref]

V. T. K. Sauer, Z. Diao, M. R. Freeman, and W. K. Hiebert, “Optical racetrack resonator transduction of nanomechanical cantilevers,” Nanotechnology 25(5), 055202 (2014).
[Crossref]

V. T. K. Sauer, Z. Diao, M. R. Freeman, and W. K. Hiebert, “Nanophotonic detection of side-coupled nanomechanical cantilevers,” Appl. Phys. Lett. 100(26), 261102 (2012).
[Crossref]

Hill, J. T.

A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500(7461), 185–189 (2013).
[Crossref]

Ho, P. T.

Kacem, N.

N. Kacem, J. Arcamone, F. Perez-Murano, and S. Hentz, “Dynamic range enhancement of nonlinear nanomechanical resonant cantilevers for highly sensitive NEMS gas/mass sensor applications,” J. Micromech. Microeng. 20(4), 045023 (2010).
[Crossref]

Karabalin, R. B.

L. G. Villanueva, E. Kenig, R. B. Karabalin, M. H. Matheny, R. Lifshitz, M. C. Cross, and M. L. Roukes, “Surpassing fundamental limits of oscillators using nonlinear resonators,” Phys. Rev. Lett. 110(17), 177208 (2013).
[Crossref]

Kenig, E.

L. G. Villanueva, E. Kenig, R. B. Karabalin, M. H. Matheny, R. Lifshitz, M. C. Cross, and M. L. Roukes, “Surpassing fundamental limits of oscillators using nonlinear resonators,” Phys. Rev. Lett. 110(17), 177208 (2013).
[Crossref]

Kennard, J. E.

F. Raffaelli, G. Ferranti, D. H. Mahler, P. Sibson, J. E. Kennard, A. Santamato, G. Sinclair, D. Bonneau, M. G. Thompson, and J. C. F. Matthews, “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers,” Quantum Sci. Technol. 3(2), 025003 (2018).
[Crossref]

Khan, M. H.

Kippenberg, T. J.

E. Gavartin, P. Verlot, and T. J. Kippenberg, “Stabilization of a linear nanomechanical oscillator to its thermodynamic limit,” Nat. Commun. 4(1), 2860 (2013).
[Crossref]

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4(5), 415–419 (2008).
[Crossref]

H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Radiation-pressure-driven micro-mechanical oscillator,” Opt. Express 13(14), 5293–5301 (2005).
[Crossref]

Landobasa, Y. M.

S. Darmawan, Y. M. Landobasa, P. Dumon, R. Baets, and M. K. Chin, “Nested-Ring Mach – Zehnder Interferometer in Silicon-on-Insulator,” IEEE Photon. Technol. Lett. 20(1), 9–11 (2008).
[Crossref]

Lee, C. C.

D. P. Cai, J. H. Lu, C. C. Chen, C. C. Lee, C. E. Lin, and T. J. Yen, “High Q-factor microring resonator wrapped by the curved waveguide,” Sci. Rep. 5(1), 10078 (2015).
[Crossref]

Lee, J.

J. Lee, Z. Wang, K. He, R. Yang, J. Shan, and P. X. L. Feng, “Electrically tunable single- and few-layer MoS2 nanoelectromechanical systems with broad dynamic range,” Sci. Adv. 4(3), eaao6653 (2018).
[Crossref]

Lentine, A. L.

Li, M.

M. Bagheri, M. Poot, M. Li, W. P. H. Pernice, and H. X. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol. 6(11), 726–732 (2011).
[Crossref]

M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol. 2(2), 114–120 (2007).
[Crossref]

Li, X.

Lifshitz, R.

L. G. Villanueva, E. Kenig, R. B. Karabalin, M. H. Matheny, R. Lifshitz, M. C. Cross, and M. L. Roukes, “Surpassing fundamental limits of oscillators using nonlinear resonators,” Phys. Rev. Lett. 110(17), 177208 (2013).
[Crossref]

Lin, C. E.

D. P. Cai, J. H. Lu, C. C. Chen, C. C. Lee, C. E. Lin, and T. J. Yen, “High Q-factor microring resonator wrapped by the curved waveguide,” Sci. Rep. 5(1), 10078 (2015).
[Crossref]

Lu, J. H.

D. P. Cai, J. H. Lu, C. C. Chen, C. C. Lee, C. E. Lin, and T. J. Yen, “High Q-factor microring resonator wrapped by the curved waveguide,” Sci. Rep. 5(1), 10078 (2015).
[Crossref]

Lu, Y.

Mahler, D. H.

F. Raffaelli, G. Ferranti, D. H. Mahler, P. Sibson, J. E. Kennard, A. Santamato, G. Sinclair, D. Bonneau, M. G. Thompson, and J. C. F. Matthews, “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers,” Quantum Sci. Technol. 3(2), 025003 (2018).
[Crossref]

Maksymowych, M. P.

M. P. Maksymowych, J. N. Westwood-Bachman, A. Venkatasubramanian, and W. K. Hiebert, “Optomechanical spring enhanced mass sensing,” Appl. Phys. Lett. 115(10), 101103 (2019).
[Crossref]

Matheny, M. H.

L. G. Villanueva, E. Kenig, R. B. Karabalin, M. H. Matheny, R. Lifshitz, M. C. Cross, and M. L. Roukes, “Surpassing fundamental limits of oscillators using nonlinear resonators,” Phys. Rev. Lett. 110(17), 177208 (2013).
[Crossref]

Matthews, J. C. F.

F. Raffaelli, G. Ferranti, D. H. Mahler, P. Sibson, J. E. Kennard, A. Santamato, G. Sinclair, D. Bonneau, M. G. Thompson, and J. C. F. Matthews, “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers,” Quantum Sci. Technol. 3(2), 025003 (2018).
[Crossref]

Melcher, J.

J. Melcher, J. Stirling, F. G. Cervantes, J. R. Pratt, and G. A. Shaw, “A self-calibrating optomechanical force sensor with femtonewton resolution,” Appl. Phys. Lett. 105(23), 233109 (2014).
[Crossref]

Painter, O.

A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500(7461), 185–189 (2013).
[Crossref]

Perez-Murano, F.

N. Kacem, J. Arcamone, F. Perez-Murano, and S. Hentz, “Dynamic range enhancement of nonlinear nanomechanical resonant cantilevers for highly sensitive NEMS gas/mass sensor applications,” J. Micromech. Microeng. 20(4), 045023 (2010).
[Crossref]

Pernice, W. H. P.

M. Poot, K. Y. Fong, M. Bagheri, W. H. P. Pernice, and H. X. Tang, “Backaction limits on self-sustained optomechanical oscillations,” Phys. Rev. A: At., Mol., Opt. Phys. 86(5), 053826 (2012).
[Crossref]

Pernice, W. P. H.

M. Bagheri, M. Poot, M. Li, W. P. H. Pernice, and H. X. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol. 6(11), 726–732 (2011).
[Crossref]

Poot, M.

M. Poot, K. Y. Fong, M. Bagheri, W. H. P. Pernice, and H. X. Tang, “Backaction limits on self-sustained optomechanical oscillations,” Phys. Rev. A: At., Mol., Opt. Phys. 86(5), 053826 (2012).
[Crossref]

M. Bagheri, M. Poot, M. Li, W. P. H. Pernice, and H. X. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol. 6(11), 726–732 (2011).
[Crossref]

Pratt, J. R.

J. Melcher, J. Stirling, F. G. Cervantes, J. R. Pratt, and G. A. Shaw, “A self-calibrating optomechanical force sensor with femtonewton resolution,” Appl. Phys. Lett. 105(23), 233109 (2014).
[Crossref]

Purdy, T. P.

T. P. Purdy, K. E. Grutter, K. Srinivasan, and J. M. Taylor, “Quantum correlations from a room-temperature optomechanical cavity,” Science 356(6344), 1265–1268 (2017).
[Crossref]

Qi, M.

Raffaelli, F.

F. Raffaelli, G. Ferranti, D. H. Mahler, P. Sibson, J. E. Kennard, A. Santamato, G. Sinclair, D. Bonneau, M. G. Thompson, and J. C. F. Matthews, “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers,” Quantum Sci. Technol. 3(2), 025003 (2018).
[Crossref]

Rivière, R.

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4(5), 415–419 (2008).
[Crossref]

Rokhsari, H.

Roukes, M. L.

L. G. Villanueva, E. Kenig, R. B. Karabalin, M. H. Matheny, R. Lifshitz, M. C. Cross, and M. L. Roukes, “Surpassing fundamental limits of oscillators using nonlinear resonators,” Phys. Rev. Lett. 110(17), 177208 (2013).
[Crossref]

M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol. 2(2), 114–120 (2007).
[Crossref]

Roy, S. K.

S. K. Roy, V. T. K. Sauer, J. N. Westwood-Bachman, A. Venkatasubramanian, and W. K. Hiebert, “Improving mechanical sensor performance through larger damping,” Science 360(6394), eaar5220 (2018).
[Crossref]

A. Venkatasubramanian, V. T. K. Sauer, S. K. Roy, M. Xia, D. S. Wishart, and W. K. Hiebert, “Nano-Optomechanical Systems for Gas Chromatography,” Nano Lett. 16(11), 6975–6981 (2016).
[Crossref]

Safavi-Naeini, A. H.

A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500(7461), 185–189 (2013).
[Crossref]

Santamato, A.

F. Raffaelli, G. Ferranti, D. H. Mahler, P. Sibson, J. E. Kennard, A. Santamato, G. Sinclair, D. Bonneau, M. G. Thompson, and J. C. F. Matthews, “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers,” Quantum Sci. Technol. 3(2), 025003 (2018).
[Crossref]

Sauer, V. T. K.

S. K. Roy, V. T. K. Sauer, J. N. Westwood-Bachman, A. Venkatasubramanian, and W. K. Hiebert, “Improving mechanical sensor performance through larger damping,” Science 360(6394), eaar5220 (2018).
[Crossref]

A. Venkatasubramanian, V. T. K. Sauer, S. K. Roy, M. Xia, D. S. Wishart, and W. K. Hiebert, “Nano-Optomechanical Systems for Gas Chromatography,” Nano Lett. 16(11), 6975–6981 (2016).
[Crossref]

J. N. Westwood-Bachman, Z. Diao, V. T. K. Sauer, D. Bachman, and W. K. Hiebert, “Even nanomechanical modes transduced by integrated photonics,” Appl. Phys. Lett. 108(6), 061103 (2016).
[Crossref]

V. T. K. Sauer, Z. Diao, M. R. Freeman, and W. K. Hiebert, “Optical racetrack resonator transduction of nanomechanical cantilevers,” Nanotechnology 25(5), 055202 (2014).
[Crossref]

V. T. K. Sauer, Z. Diao, and M. R. Freeman, “Confocal Scanner for Highly Sensitive Photonic Transduction of Nanomechanical Resonators,” Appl. Phys. Express 6(6), 065202 (2013).
[Crossref]

V. T. K. Sauer, Z. Diao, M. R. Freeman, and W. K. Hiebert, “Nanophotonic detection of side-coupled nanomechanical cantilevers,” Appl. Phys. Lett. 100(26), 261102 (2012).
[Crossref]

Schliesser, A.

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4(5), 415–419 (2008).
[Crossref]

Shan, J.

J. Lee, Z. Wang, K. He, R. Yang, J. Shan, and P. X. L. Feng, “Electrically tunable single- and few-layer MoS2 nanoelectromechanical systems with broad dynamic range,” Sci. Adv. 4(3), eaao6653 (2018).
[Crossref]

Shaw, G. A.

J. Melcher, J. Stirling, F. G. Cervantes, J. R. Pratt, and G. A. Shaw, “A self-calibrating optomechanical force sensor with femtonewton resolution,” Appl. Phys. Lett. 105(23), 233109 (2014).
[Crossref]

Shen, H.

Sibson, P.

F. Raffaelli, G. Ferranti, D. H. Mahler, P. Sibson, J. E. Kennard, A. Santamato, G. Sinclair, D. Bonneau, M. G. Thompson, and J. C. F. Matthews, “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers,” Quantum Sci. Technol. 3(2), 025003 (2018).
[Crossref]

Sinclair, G.

F. Raffaelli, G. Ferranti, D. H. Mahler, P. Sibson, J. E. Kennard, A. Santamato, G. Sinclair, D. Bonneau, M. G. Thompson, and J. C. F. Matthews, “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers,” Quantum Sci. Technol. 3(2), 025003 (2018).
[Crossref]

Srinivasan, K.

T. P. Purdy, K. E. Grutter, K. Srinivasan, and J. M. Taylor, “Quantum correlations from a room-temperature optomechanical cavity,” Science 356(6344), 1265–1268 (2017).
[Crossref]

Starbuck, A. L.

Stirling, J.

J. Melcher, J. Stirling, F. G. Cervantes, J. R. Pratt, and G. A. Shaw, “A self-calibrating optomechanical force sensor with femtonewton resolution,” Appl. Phys. Lett. 105(23), 233109 (2014).
[Crossref]

Tang, H. X.

M. Poot, K. Y. Fong, M. Bagheri, W. H. P. Pernice, and H. X. Tang, “Backaction limits on self-sustained optomechanical oscillations,” Phys. Rev. A: At., Mol., Opt. Phys. 86(5), 053826 (2012).
[Crossref]

M. Bagheri, M. Poot, M. Li, W. P. H. Pernice, and H. X. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol. 6(11), 726–732 (2011).
[Crossref]

M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol. 2(2), 114–120 (2007).
[Crossref]

Taylor, J. M.

T. P. Purdy, K. E. Grutter, K. Srinivasan, and J. M. Taylor, “Quantum correlations from a room-temperature optomechanical cavity,” Science 356(6344), 1265–1268 (2017).
[Crossref]

Thompson, M. G.

F. Raffaelli, G. Ferranti, D. H. Mahler, P. Sibson, J. E. Kennard, A. Santamato, G. Sinclair, D. Bonneau, M. G. Thompson, and J. C. F. Matthews, “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers,” Quantum Sci. Technol. 3(2), 025003 (2018).
[Crossref]

Trotter, D. C.

Vahala, K. J.

Van, V.

Venkatasubramanian, A.

M. P. Maksymowych, J. N. Westwood-Bachman, A. Venkatasubramanian, and W. K. Hiebert, “Optomechanical spring enhanced mass sensing,” Appl. Phys. Lett. 115(10), 101103 (2019).
[Crossref]

S. K. Roy, V. T. K. Sauer, J. N. Westwood-Bachman, A. Venkatasubramanian, and W. K. Hiebert, “Improving mechanical sensor performance through larger damping,” Science 360(6394), eaar5220 (2018).
[Crossref]

A. Venkatasubramanian, V. T. K. Sauer, S. K. Roy, M. Xia, D. S. Wishart, and W. K. Hiebert, “Nano-Optomechanical Systems for Gas Chromatography,” Nano Lett. 16(11), 6975–6981 (2016).
[Crossref]

Verlot, P.

E. Gavartin, P. Verlot, and T. J. Kippenberg, “Stabilization of a linear nanomechanical oscillator to its thermodynamic limit,” Nat. Commun. 4(1), 2860 (2013).
[Crossref]

Villanueva, L. G.

L. G. Villanueva, E. Kenig, R. B. Karabalin, M. H. Matheny, R. Lifshitz, M. C. Cross, and M. L. Roukes, “Surpassing fundamental limits of oscillators using nonlinear resonators,” Phys. Rev. Lett. 110(17), 177208 (2013).
[Crossref]

Wang, K.

Wang, P.

Wang, Z.

J. Lee, Z. Wang, K. He, R. Yang, J. Shan, and P. X. L. Feng, “Electrically tunable single- and few-layer MoS2 nanoelectromechanical systems with broad dynamic range,” Sci. Adv. 4(3), eaao6653 (2018).
[Crossref]

Westwood-Bachman, J. N.

M. P. Maksymowych, J. N. Westwood-Bachman, A. Venkatasubramanian, and W. K. Hiebert, “Optomechanical spring enhanced mass sensing,” Appl. Phys. Lett. 115(10), 101103 (2019).
[Crossref]

S. K. Roy, V. T. K. Sauer, J. N. Westwood-Bachman, A. Venkatasubramanian, and W. K. Hiebert, “Improving mechanical sensor performance through larger damping,” Science 360(6394), eaar5220 (2018).
[Crossref]

J. N. Westwood-Bachman, Z. Diao, V. T. K. Sauer, D. Bachman, and W. K. Hiebert, “Even nanomechanical modes transduced by integrated photonics,” Appl. Phys. Lett. 108(6), 061103 (2016).
[Crossref]

Wishart, D. S.

A. Venkatasubramanian, V. T. K. Sauer, S. K. Roy, M. Xia, D. S. Wishart, and W. K. Hiebert, “Nano-Optomechanical Systems for Gas Chromatography,” Nano Lett. 16(11), 6975–6981 (2016).
[Crossref]

Xia, M.

A. Venkatasubramanian, V. T. K. Sauer, S. K. Roy, M. Xia, D. S. Wishart, and W. K. Hiebert, “Nano-Optomechanical Systems for Gas Chromatography,” Nano Lett. 16(11), 6975–6981 (2016).
[Crossref]

Xiao, S.

Yang, R.

J. Lee, Z. Wang, K. He, R. Yang, J. Shan, and P. X. L. Feng, “Electrically tunable single- and few-layer MoS2 nanoelectromechanical systems with broad dynamic range,” Sci. Adv. 4(3), eaao6653 (2018).
[Crossref]

Yao, C.

Yao, J.

Yen, T. J.

D. P. Cai, J. H. Lu, C. C. Chen, C. C. Lee, C. E. Lin, and T. J. Yen, “High Q-factor microring resonator wrapped by the curved waveguide,” Sci. Rep. 5(1), 10078 (2015).
[Crossref]

Yu, C.

Yuan, P.

Zhang, X.

Zhang, Y.

Appl. Opt. (1)

Appl. Phys. Express (1)

V. T. K. Sauer, Z. Diao, and M. R. Freeman, “Confocal Scanner for Highly Sensitive Photonic Transduction of Nanomechanical Resonators,” Appl. Phys. Express 6(6), 065202 (2013).
[Crossref]

Appl. Phys. Lett. (4)

V. T. K. Sauer, Z. Diao, M. R. Freeman, and W. K. Hiebert, “Nanophotonic detection of side-coupled nanomechanical cantilevers,” Appl. Phys. Lett. 100(26), 261102 (2012).
[Crossref]

M. P. Maksymowych, J. N. Westwood-Bachman, A. Venkatasubramanian, and W. K. Hiebert, “Optomechanical spring enhanced mass sensing,” Appl. Phys. Lett. 115(10), 101103 (2019).
[Crossref]

J. Melcher, J. Stirling, F. G. Cervantes, J. R. Pratt, and G. A. Shaw, “A self-calibrating optomechanical force sensor with femtonewton resolution,” Appl. Phys. Lett. 105(23), 233109 (2014).
[Crossref]

J. N. Westwood-Bachman, Z. Diao, V. T. K. Sauer, D. Bachman, and W. K. Hiebert, “Even nanomechanical modes transduced by integrated photonics,” Appl. Phys. Lett. 108(6), 061103 (2016).
[Crossref]

IEEE Photon. Technol. Lett. (1)

S. Darmawan, Y. M. Landobasa, P. Dumon, R. Baets, and M. K. Chin, “Nested-Ring Mach – Zehnder Interferometer in Silicon-on-Insulator,” IEEE Photon. Technol. Lett. 20(1), 9–11 (2008).
[Crossref]

J. Lightwave Technol. (1)

J. Micromech. Microeng. (1)

N. Kacem, J. Arcamone, F. Perez-Murano, and S. Hentz, “Dynamic range enhancement of nonlinear nanomechanical resonant cantilevers for highly sensitive NEMS gas/mass sensor applications,” J. Micromech. Microeng. 20(4), 045023 (2010).
[Crossref]

Nano Lett. (1)

A. Venkatasubramanian, V. T. K. Sauer, S. K. Roy, M. Xia, D. S. Wishart, and W. K. Hiebert, “Nano-Optomechanical Systems for Gas Chromatography,” Nano Lett. 16(11), 6975–6981 (2016).
[Crossref]

Nanotechnology (1)

V. T. K. Sauer, Z. Diao, M. R. Freeman, and W. K. Hiebert, “Optical racetrack resonator transduction of nanomechanical cantilevers,” Nanotechnology 25(5), 055202 (2014).
[Crossref]

Nat. Commun. (1)

E. Gavartin, P. Verlot, and T. J. Kippenberg, “Stabilization of a linear nanomechanical oscillator to its thermodynamic limit,” Nat. Commun. 4(1), 2860 (2013).
[Crossref]

Nat. Nanotechnol. (2)

M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol. 2(2), 114–120 (2007).
[Crossref]

M. Bagheri, M. Poot, M. Li, W. P. H. Pernice, and H. X. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol. 6(11), 726–732 (2011).
[Crossref]

Nat. Phys. (1)

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4(5), 415–419 (2008).
[Crossref]

Nature (1)

A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500(7461), 185–189 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. A: At., Mol., Opt. Phys. (1)

M. Poot, K. Y. Fong, M. Bagheri, W. H. P. Pernice, and H. X. Tang, “Backaction limits on self-sustained optomechanical oscillations,” Phys. Rev. A: At., Mol., Opt. Phys. 86(5), 053826 (2012).
[Crossref]

Phys. Rev. Lett. (1)

L. G. Villanueva, E. Kenig, R. B. Karabalin, M. H. Matheny, R. Lifshitz, M. C. Cross, and M. L. Roukes, “Surpassing fundamental limits of oscillators using nonlinear resonators,” Phys. Rev. Lett. 110(17), 177208 (2013).
[Crossref]

Quantum Sci. Technol. (1)

F. Raffaelli, G. Ferranti, D. H. Mahler, P. Sibson, J. E. Kennard, A. Santamato, G. Sinclair, D. Bonneau, M. G. Thompson, and J. C. F. Matthews, “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers,” Quantum Sci. Technol. 3(2), 025003 (2018).
[Crossref]

Sci. Adv. (1)

J. Lee, Z. Wang, K. He, R. Yang, J. Shan, and P. X. L. Feng, “Electrically tunable single- and few-layer MoS2 nanoelectromechanical systems with broad dynamic range,” Sci. Adv. 4(3), eaao6653 (2018).
[Crossref]

Sci. Rep. (1)

D. P. Cai, J. H. Lu, C. C. Chen, C. C. Lee, C. E. Lin, and T. J. Yen, “High Q-factor microring resonator wrapped by the curved waveguide,” Sci. Rep. 5(1), 10078 (2015).
[Crossref]

Science (2)

S. K. Roy, V. T. K. Sauer, J. N. Westwood-Bachman, A. Venkatasubramanian, and W. K. Hiebert, “Improving mechanical sensor performance through larger damping,” Science 360(6394), eaar5220 (2018).
[Crossref]

T. P. Purdy, K. E. Grutter, K. Srinivasan, and J. M. Taylor, “Quantum correlations from a room-temperature optomechanical cavity,” Science 356(6344), 1265–1268 (2017).
[Crossref]

Other (2)

J. Bachman, “Improving the performance of nano-optomechanical systems for use as mass sensors,” Ph. D. Thesis, University of Alberta, (2019).

V. Van, Optical Microring Resonators: Theory, Techniques, and Applications (CRC, 2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Optical microscope images of (a) a racetrack-loaded MZI and (b) a bare racetrack resonator both with 5 µm radii, 10 µm straight sections, and 5 µm long side-coupled cantilevers. The transfer functions HREF and HRT are depicted on-plot together with the transmission coefficient, τ, coupling coefficient, κ, and the phase shift, θ, of the 33 µm reference arm (Larm) to illustrate the phase tracking process. The input light field si is split 50:50 to each arm and is recombined at a second 50:50 combiner to produce the output signal sf. The dark square visible next to the racetrack in both images was an etch window used to release the narrow clamped cantilever that is adjacent and parallel to the racetrack. Only the cantilever support anchor is resolved as a light square. (c) is a scanning electron microscope image of a focused ion beam cut cross-section showing a 210 nm wide nanomechanical cantilever coupled to a 500 nm wide racetrack waveguide with a resolved 160 nm gap spacing and a 220 nm device layer thickness. An in-plane schematic of the racetrack-cantilever optomechanical system is shown in (d).
Fig. 2.
Fig. 2. Racetrack and MZI racetrack transmission spectra T (mV) are depicted vs. wavelength λ (nm) as black and blue circles in (a) and (b), respectively. The spectra are theoretically fit via Eqs. (2) and (3) (shown in orange) to yield transmission coefficients of 0.974 and 0.976, respectively. First order point derivatives of both spectra dT/dλ (mV/nm) are plotted in red to illustrate optical linear ranges of 0.06 nm and 0.13 nm for the racetrack and the MZI resonances, respectively, by our definition (marked with vertical dashed lines on-plot). The grating coupler envelope is subtracted from the baseline transmission in (a) and (b).
Fig. 3.
Fig. 3. The logscale (a) linear range (nm) and (b) slope (1/nm) are shown for racetrack resonators (red stars) and racetrack-loaded Mach-Zehnder interferometers (blue circles) as a function of the average fitted transmission coefficient τ (0.923, 0.975, 0.986, and 0.994). The average linear range (a) and slope (b) for each coupling condition and circuit architecture is depicted as box plots with standard deviation bars.
Fig. 4.
Fig. 4. The 2f harmonic signal (µV) is plotted vs. the fundamental (1f) mechanical amplitude (nm) for the racetrack resonators (red stars) and the MZI racetracks (blue circles). Results are depicted for devices that are (a) critically coupled, τ = 0.986, and (b) undercoupled, τ = 0.994.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( x ) = 2 π ( λ λ r e s ( x ) ) F = 2 π F ( λ 2 π c λ r e s 2 π c + G x λ r e s )
T R T M Z I ( ϕ , θ ) = | s f s i | 2 = | 1 2 ( H R T ( ϕ ) + b e i θ ) | 2
T R T ( ϕ ) = | H R T ( ϕ ) | 2 = | τ a r t e i ϕ 1 τ a r t e i ϕ | 2

Metrics