B. Abbey, K. A. Nugent, G. J. Williams, J. N. Clark, A. G. Peele, M. A. Pfeifer, M. De Jonge, and I. McNulty, “Keyhole coherent diffractive imaging,” Nat. Phys. 4(5), 394–398 (2008).

[Crossref]

A. Goy, G. Rughoobur, S. Li, K. Arthur, A. I. Akinwande, and G. Barbastathis, “High-resolution limited-angle phase tomography of dense layered objects using deep neural networks,” Proc. Natl. Acad. Sci. U. S. A. 116(40), 19848–19856 (2019).

[Crossref]

J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style transfer and super-resolution,” in European Conference on Computer Vision (ECCV), (Springer, 2016), pp. 694–711.

P. P. Laissue, R. A. Alghamdi, P. Tomancak, E. G. Reynaud, and H. Shroff, “Assessing phototoxicity in live fluorescence imaging,” Nat. Methods 14(7), 657–661 (2017).

[Crossref]

J. Lim, A. B. Ayoub, E. E. Antoine, and D. Psaltis, “High-fidelity optical diffraction tomography of multiple scattering samples,” Light: Sci. Appl. 8(1), 1–12 (2019).

[Crossref]

M. Deng, A. Goy, S. Li, K. Arthur, and G. Barbastathis, “Probing shallower: perceptual loss trained phase extraction neural network (plt-phenn) for artifact-free reconstruction at low photon budget,” Opt. Express 28(2), 2511–2535 (2020).

[Crossref]

A. Goy, G. Rughoobur, S. Li, K. Arthur, A. I. Akinwande, and G. Barbastathis, “High-resolution limited-angle phase tomography of dense layered objects using deep neural networks,” Proc. Natl. Acad. Sci. U. S. A. 116(40), 19848–19856 (2019).

[Crossref]

A. Goy, K. Arthur, S. Li, and G. Barbastathis, “Low photon count phase retrieval using deep learning,” Phys. Rev. Lett. 121(24), 243902 (2018).

[Crossref]

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6(1), 5913 (2015).

[Crossref]

T.-A. Pham, E. Soubies, A. Ayoub, J. Lim, D. Psaltis, and M. Unser, “Three-dimensional optical diffraction tomography with lippmann-schwinger model,” IEEE Trans. Comput. Imaging 6, 727–738 (2020).

[Crossref]

J. Lim, A. B. Ayoub, E. E. Antoine, and D. Psaltis, “High-fidelity optical diffraction tomography of multiple scattering samples,” Light: Sci. Appl. 8(1), 1–12 (2019).

[Crossref]

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980 (2014).

M. Deng, A. Goy, S. Li, K. Arthur, and G. Barbastathis, “Probing shallower: perceptual loss trained phase extraction neural network (plt-phenn) for artifact-free reconstruction at low photon budget,” Opt. Express 28(2), 2511–2535 (2020).

[Crossref]

M. Deng, S. Li, A. Goy, I. Kang, and G. Barbastathis, “Learning to synthesize: Robust phase retrieval at low photon counts,” Light: Sci. Appl. 9(1), 36 (2020).

[Crossref]

J. Wu, H. Zhang, W. Zhang, G. Jin, L. Cao, and G. Barbastathis, “Single-shot lensless imaging with fresnel zone aperture and incoherent illumination,” Light: Sci. Appl. 9(1), 53 (2020).

[Crossref]

A. Goy, G. Rughoobur, S. Li, K. Arthur, A. I. Akinwande, and G. Barbastathis, “High-resolution limited-angle phase tomography of dense layered objects using deep neural networks,” Proc. Natl. Acad. Sci. U. S. A. 116(40), 19848–19856 (2019).

[Crossref]

G. Barbastathis, A. Ozcan, and G. Situ, “On the use of deep learning for computational imaging,” Optica 6(8), 921–943 (2019).

[Crossref]

S. Li and G. Barbastathis, “Spectral pre-modulation of training examples enhances the spatial resolution of the phase extraction neural network (phenn),” Opt. Express 26(22), 29340–29352 (2018).

[Crossref]

A. Goy, K. Arthur, S. Li, and G. Barbastathis, “Low photon count phase retrieval using deep learning,” Phys. Rev. Lett. 121(24), 243902 (2018).

[Crossref]

A. Sinha, J. Lee, S. Li, and G. Barbastathis, “Lensless computational imaging through deep learning,” Optica 4(9), 1117–1125 (2017).

[Crossref]

Y. Zhu, A. Shanker, L. Tian, L. Waller, and G. Barbastathis, “Low-noise phase imaging by hybrid uniform and structured illumination transport of intensity equation,” Opt. Express 22(22), 26696–26711 (2014).

[Crossref]

L. Waller, M. Tsang, S. Ponda, S. Y. Yang, and G. Barbastathis, “Phase and amplitude imaging from noisy images by kalman filtering,” Opt. Express 19(3), 2805–2815 (2011).

[Crossref]

L. Waller, S. S. Kou, C. J. Sheppard, and G. Barbastathis, “Phase from chromatic aberrations,” Opt. Express 18(22), 22817–22825 (2010).

[Crossref]

L. Waller, L. Tian, and G. Barbastathis, “Transport of intensity phase-amplitude imaging with higher order intensity derivatives,” Opt. Express 18(12), 12552–12561 (2010).

[Crossref]

M. Deng, S. Li, I. Kang, N. X. Fang, and G. Barbastathis, “On the interplay between physical and content priors in deep learning for computational imaging,” arXiv preprint arXiv:2004.06355 (2020).

A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM J. Imaging Sci. 2(1), 183–202 (2009).

[Crossref]

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6(1), 5913 (2015).

[Crossref]

M. Bertero and P. Boccacci, Introduction to inverse problems in imaging (CRC press, 1998).

L. Gignac, C. Beslin, J. Gonsalves, F. Stellari, and C.-C. Lin, “High energy bse/se/stem imaging of 8 um thick semiconductor interconnects,” Microsc. Microanal. 20(S3), 8–9 (2014).

[Crossref]

M. Bertero and P. Boccacci, Introduction to inverse problems in imaging (CRC press, 1998).

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. on Image Process. 13(4), 600–612 (2004).

[Crossref]

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6(1), 5913 (2015).

[Crossref]

O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention (MICCAI), (Springer, 2015), pp. 234–241.

M. Holler, A. Díaz, M. Guizar-Sicairos, P. Karvinen, E. Färm, E. Härkönen, M. Ritala, A. Menzel, J. Raabe, and O. Bunk, “X-ray ptychographic computed tomography at 16 nm isotropic 3d resolution,” Sci. Rep. 4(1), 3857 (2015).

[Crossref]

Y. Wu, Y. Luo, G. Chaudhari, Y. Rivenson, A. Calis, K. de Haan, and A. Ozcan, “Bright-field holography: cross-modality deep learning enables snapshot 3d imaging with bright-field contrast using a single hologram,” Light: Sci. Appl. 8(1), 25 (2019).

[Crossref]

A. Ulvestad, W. Cha, I. Calvo-Almazan, S. Maddali, S. Wild, E. Maxey, M. Duparaz, and S. Hruszkewycz, “Bragg coherent modulation imaging: Strain-and defect-sensitive single views of extended samples,” arXiv preprint arXiv:1808.00115 (2018).

J. Wu, H. Zhang, W. Zhang, G. Jin, L. Cao, and G. Barbastathis, “Single-shot lensless imaging with fresnel zone aperture and incoherent illumination,” Light: Sci. Appl. 9(1), 53 (2020).

[Crossref]

A. Ulvestad, W. Cha, I. Calvo-Almazan, S. Maddali, S. Wild, E. Maxey, M. Duparaz, and S. Hruszkewycz, “Bragg coherent modulation imaging: Strain-and defect-sensitive single views of extended samples,” arXiv preprint arXiv:1808.00115 (2018).

Y. Wu, Y. Luo, G. Chaudhari, Y. Rivenson, A. Calis, K. de Haan, and A. Ozcan, “Bright-field holography: cross-modality deep learning enables snapshot 3d imaging with bright-field contrast using a single hologram,” Light: Sci. Appl. 8(1), 25 (2019).

[Crossref]

F. Zhang, B. Chen, G. R. Morrison, J. Vila-Comamala, M. Guizar-Sicairos, and I. K. Robinson, “Phase retrieval by coherent modulation imaging,” Nat. Commun. 7(1), 13367 (2016).

[Crossref]

B. Chen and J. J. Stamnes, “Validity of diffraction tomography based on the first born and the first rytov approximations,” Appl. Opt. 37(14), 2996–3006 (1998).

[Crossref]

B. Abbey, K. A. Nugent, G. J. Williams, J. N. Clark, A. G. Peele, M. A. Pfeifer, M. De Jonge, and I. McNulty, “Keyhole coherent diffractive imaging,” Nat. Phys. 4(5), 394–398 (2008).

[Crossref]

Y. Wu, Y. Luo, G. Chaudhari, Y. Rivenson, A. Calis, K. de Haan, and A. Ozcan, “Bright-field holography: cross-modality deep learning enables snapshot 3d imaging with bright-field contrast using a single hologram,” Light: Sci. Appl. 8(1), 25 (2019).

[Crossref]

B. Abbey, K. A. Nugent, G. J. Williams, J. N. Clark, A. G. Peele, M. A. Pfeifer, M. De Jonge, and I. McNulty, “Keyhole coherent diffractive imaging,” Nat. Phys. 4(5), 394–398 (2008).

[Crossref]

G. Williams, H. Quiney, B. Dhal, C. Tran, K. A. Nugent, A. Peele, D. Paterson, and M. De Jonge, “Fresnel coherent diffractive imaging,” Phys. Rev. Lett. 97(2), 025506 (2006).

[Crossref]

G. K. Matsopoulos, N. A. Mouravliansky, K. K. Delibasis, and K. S. Nikita, “Automatic retinal image registration scheme using global optimization techniques,” IEEE Trans. Inf. Technol. Biomed. 3(1), 47–60 (1999).

[Crossref]

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), (2009), pp. 248–255.

M. Deng, A. Goy, S. Li, K. Arthur, and G. Barbastathis, “Probing shallower: perceptual loss trained phase extraction neural network (plt-phenn) for artifact-free reconstruction at low photon budget,” Opt. Express 28(2), 2511–2535 (2020).

[Crossref]

M. Deng, S. Li, A. Goy, I. Kang, and G. Barbastathis, “Learning to synthesize: Robust phase retrieval at low photon counts,” Light: Sci. Appl. 9(1), 36 (2020).

[Crossref]

M. Deng, S. Li, I. Kang, N. X. Fang, and G. Barbastathis, “On the interplay between physical and content priors in deep learning for computational imaging,” arXiv preprint arXiv:2004.06355 (2020).

G. Williams, H. Quiney, B. Dhal, C. Tran, K. A. Nugent, A. Peele, D. Paterson, and M. De Jonge, “Fresnel coherent diffractive imaging,” Phys. Rev. Lett. 97(2), 025506 (2006).

[Crossref]

M. Holler, A. Díaz, M. Guizar-Sicairos, P. Karvinen, E. Färm, E. Härkönen, M. Ritala, A. Menzel, J. Raabe, and O. Bunk, “X-ray ptychographic computed tomography at 16 nm isotropic 3d resolution,” Sci. Rep. 4(1), 3857 (2015).

[Crossref]

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), (2009), pp. 248–255.

A. Ulvestad, W. Cha, I. Calvo-Almazan, S. Maddali, S. Wild, E. Maxey, M. Duparaz, and S. Hruszkewycz, “Bragg coherent modulation imaging: Strain-and defect-sensitive single views of extended samples,” arXiv preprint arXiv:1808.00115 (2018).

R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable effectiveness of deep features as a perceptual metric,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., (2018), pp. 586–595.

A. M. Eskicioglu and P. S. Fisher, “Image quality measures and their performance,” IEEE Trans. Commun. 43(12), 2959–2965 (1995).

[Crossref]

M. Deng, S. Li, I. Kang, N. X. Fang, and G. Barbastathis, “On the interplay between physical and content priors in deep learning for computational imaging,” arXiv preprint arXiv:2004.06355 (2020).

M. Holler, A. Díaz, M. Guizar-Sicairos, P. Karvinen, E. Färm, E. Härkönen, M. Ritala, A. Menzel, J. Raabe, and O. Bunk, “X-ray ptychographic computed tomography at 16 nm isotropic 3d resolution,” Sci. Rep. 4(1), 3857 (2015).

[Crossref]

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Phys. D 60(1-4), 259–268 (1992).

[Crossref]

J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style transfer and super-resolution,” in European Conference on Computer Vision (ECCV), (Springer, 2016), pp. 694–711.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), (2009), pp. 248–255.

O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention (MICCAI), (Springer, 2015), pp. 234–241.

A. M. Eskicioglu and P. S. Fisher, “Image quality measures and their performance,” IEEE Trans. Commun. 43(12), 2959–2965 (1995).

[Crossref]

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).

[Crossref]

R. W. Gerchberg, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

A. Strehl and J. Ghosh, “Cluster ensembles—a knowledge reuse framework for combining multiple partitions,” J. Mach. Learn. Res. 3, 583–617 (2002).

L. Gignac, C. Beslin, J. Gonsalves, F. Stellari, and C.-C. Lin, “High energy bse/se/stem imaging of 8 um thick semiconductor interconnects,” Microsc. Microanal. 20(S3), 8–9 (2014).

[Crossref]

L. Gignac, C. Beslin, J. Gonsalves, F. Stellari, and C.-C. Lin, “High energy bse/se/stem imaging of 8 um thick semiconductor interconnects,” Microsc. Microanal. 20(S3), 8–9 (2014).

[Crossref]

J. W. Goodman, Introduction to Fourier optics (Roberts and Company Publishers, 2005).

M. Deng, S. Li, A. Goy, I. Kang, and G. Barbastathis, “Learning to synthesize: Robust phase retrieval at low photon counts,” Light: Sci. Appl. 9(1), 36 (2020).

[Crossref]

M. Deng, A. Goy, S. Li, K. Arthur, and G. Barbastathis, “Probing shallower: perceptual loss trained phase extraction neural network (plt-phenn) for artifact-free reconstruction at low photon budget,” Opt. Express 28(2), 2511–2535 (2020).

[Crossref]

A. Goy, G. Rughoobur, S. Li, K. Arthur, A. I. Akinwande, and G. Barbastathis, “High-resolution limited-angle phase tomography of dense layered objects using deep neural networks,” Proc. Natl. Acad. Sci. U. S. A. 116(40), 19848–19856 (2019).

[Crossref]

A. Goy, K. Arthur, S. Li, and G. Barbastathis, “Low photon count phase retrieval using deep learning,” Phys. Rev. Lett. 121(24), 243902 (2018).

[Crossref]

F. Zhang, B. Chen, G. R. Morrison, J. Vila-Comamala, M. Guizar-Sicairos, and I. K. Robinson, “Phase retrieval by coherent modulation imaging,” Nat. Commun. 7(1), 13367 (2016).

[Crossref]

M. Holler, A. Díaz, M. Guizar-Sicairos, P. Karvinen, E. Färm, E. Härkönen, M. Ritala, A. Menzel, J. Raabe, and O. Bunk, “X-ray ptychographic computed tomography at 16 nm isotropic 3d resolution,” Sci. Rep. 4(1), 3857 (2015).

[Crossref]

Y. Rivenson, Y. Zhang, H. Günaydın, D. Teng, and A. Ozcan, “Phase recovery and holographic image reconstruction using deep learning in neural networks,” Light: Sci. Appl. 7(2), 17141 (2018).

[Crossref]

Y. Wu, Y. Rivenson, Y. Zhang, Z. Wei, H. Günaydin, X. Lin, and A. Ozcan, “Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery,” Optica 5(6), 704–710 (2018).

[Crossref]

W. Tang, J. Yang, W. Yi, Q. Nie, J. Zhu, M. Zhu, Y. Guo, M. Li, X. Li, and W. Wang, “Single-shot coherent power-spectrum imaging of objects hidden by opaque scattering media,” Appl. Opt. 58(4), 1033–1039 (2019).

[Crossref]

M. Holler, A. Díaz, M. Guizar-Sicairos, P. Karvinen, E. Färm, E. Härkönen, M. Ritala, A. Menzel, J. Raabe, and O. Bunk, “X-ray ptychographic computed tomography at 16 nm isotropic 3d resolution,” Sci. Rep. 4(1), 3857 (2015).

[Crossref]

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), (2016), pp. 770–778.

M. Holler, A. Díaz, M. Guizar-Sicairos, P. Karvinen, E. Färm, E. Härkönen, M. Ritala, A. Menzel, J. Raabe, and O. Bunk, “X-ray ptychographic computed tomography at 16 nm isotropic 3d resolution,” Sci. Rep. 4(1), 3857 (2015).

[Crossref]

R. Horisaki, R. Takagi, and J. Tanida, “Learning-based imaging through scattering media,” Opt. Express 24(13), 13738–13743 (2016).

[Crossref]

D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17(15), 13040–13049 (2009).

[Crossref]

A. Ulvestad, W. Cha, I. Calvo-Almazan, S. Maddali, S. Wild, E. Maxey, M. Duparaz, and S. Hruszkewycz, “Bragg coherent modulation imaging: Strain-and defect-sensitive single views of extended samples,” arXiv preprint arXiv:1808.00115 (2018).

R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable effectiveness of deep features as a perceptual metric,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., (2018), pp. 586–595.

J. Wu, H. Zhang, W. Zhang, G. Jin, L. Cao, and G. Barbastathis, “Single-shot lensless imaging with fresnel zone aperture and incoherent illumination,” Light: Sci. Appl. 9(1), 53 (2020).

[Crossref]

J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style transfer and super-resolution,” in European Conference on Computer Vision (ECCV), (Springer, 2016), pp. 694–711.

M. Deng, S. Li, A. Goy, I. Kang, and G. Barbastathis, “Learning to synthesize: Robust phase retrieval at low photon counts,” Light: Sci. Appl. 9(1), 36 (2020).

[Crossref]

M. Deng, S. Li, I. Kang, N. X. Fang, and G. Barbastathis, “On the interplay between physical and content priors in deep learning for computational imaging,” arXiv preprint arXiv:2004.06355 (2020).

M. Holler, A. Díaz, M. Guizar-Sicairos, P. Karvinen, E. Färm, E. Härkönen, M. Ritala, A. Menzel, J. Raabe, and O. Bunk, “X-ray ptychographic computed tomography at 16 nm isotropic 3d resolution,” Sci. Rep. 4(1), 3857 (2015).

[Crossref]

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980 (2014).

P. P. Laissue, R. A. Alghamdi, P. Tomancak, E. G. Reynaud, and H. Shroff, “Assessing phototoxicity in live fluorescence imaging,” Nat. Methods 14(7), 657–661 (2017).

[Crossref]

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), (2009), pp. 248–255.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), (2009), pp. 248–255.

W. Tang, J. Yang, W. Yi, Q. Nie, J. Zhu, M. Zhu, Y. Guo, M. Li, X. Li, and W. Wang, “Single-shot coherent power-spectrum imaging of objects hidden by opaque scattering media,” Appl. Opt. 58(4), 1033–1039 (2019).

[Crossref]

M. Deng, A. Goy, S. Li, K. Arthur, and G. Barbastathis, “Probing shallower: perceptual loss trained phase extraction neural network (plt-phenn) for artifact-free reconstruction at low photon budget,” Opt. Express 28(2), 2511–2535 (2020).

[Crossref]

M. Deng, S. Li, A. Goy, I. Kang, and G. Barbastathis, “Learning to synthesize: Robust phase retrieval at low photon counts,” Light: Sci. Appl. 9(1), 36 (2020).

[Crossref]

A. Goy, G. Rughoobur, S. Li, K. Arthur, A. I. Akinwande, and G. Barbastathis, “High-resolution limited-angle phase tomography of dense layered objects using deep neural networks,” Proc. Natl. Acad. Sci. U. S. A. 116(40), 19848–19856 (2019).

[Crossref]

S. Li and G. Barbastathis, “Spectral pre-modulation of training examples enhances the spatial resolution of the phase extraction neural network (phenn),” Opt. Express 26(22), 29340–29352 (2018).

[Crossref]

A. Goy, K. Arthur, S. Li, and G. Barbastathis, “Low photon count phase retrieval using deep learning,” Phys. Rev. Lett. 121(24), 243902 (2018).

[Crossref]

A. Sinha, J. Lee, S. Li, and G. Barbastathis, “Lensless computational imaging through deep learning,” Optica 4(9), 1117–1125 (2017).

[Crossref]

M. Deng, S. Li, I. Kang, N. X. Fang, and G. Barbastathis, “On the interplay between physical and content priors in deep learning for computational imaging,” arXiv preprint arXiv:2004.06355 (2020).

W. Tang, J. Yang, W. Yi, Q. Nie, J. Zhu, M. Zhu, Y. Guo, M. Li, X. Li, and W. Wang, “Single-shot coherent power-spectrum imaging of objects hidden by opaque scattering media,” Appl. Opt. 58(4), 1033–1039 (2019).

[Crossref]

L. Tian, X. Li, K. Ramchandran, and L. Waller, “Multiplexed coded illumination for fourier ptychography with an led array microscope,” Biomed. Opt. Express 5(7), 2376–2389 (2014).

[Crossref]

T.-A. Pham, E. Soubies, A. Ayoub, J. Lim, D. Psaltis, and M. Unser, “Three-dimensional optical diffraction tomography with lippmann-schwinger model,” IEEE Trans. Comput. Imaging 6, 727–738 (2020).

[Crossref]

J. Lim, A. B. Ayoub, E. E. Antoine, and D. Psaltis, “High-fidelity optical diffraction tomography of multiple scattering samples,” Light: Sci. Appl. 8(1), 1–12 (2019).

[Crossref]

L. Gignac, C. Beslin, J. Gonsalves, F. Stellari, and C.-C. Lin, “High energy bse/se/stem imaging of 8 um thick semiconductor interconnects,” Microsc. Microanal. 20(S3), 8–9 (2014).

[Crossref]

Y. Wu, Y. Luo, G. Chaudhari, Y. Rivenson, A. Calis, K. de Haan, and A. Ozcan, “Bright-field holography: cross-modality deep learning enables snapshot 3d imaging with bright-field contrast using a single hologram,” Light: Sci. Appl. 8(1), 25 (2019).

[Crossref]

A. Ulvestad, W. Cha, I. Calvo-Almazan, S. Maddali, S. Wild, E. Maxey, M. Duparaz, and S. Hruszkewycz, “Bragg coherent modulation imaging: Strain-and defect-sensitive single views of extended samples,” arXiv preprint arXiv:1808.00115 (2018).

A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109(10), 1256–1262 (2009).

[Crossref]

G. K. Matsopoulos, N. A. Mouravliansky, K. K. Delibasis, and K. S. Nikita, “Automatic retinal image registration scheme using global optimization techniques,” IEEE Trans. Inf. Technol. Biomed. 3(1), 47–60 (1999).

[Crossref]

A. Ulvestad, W. Cha, I. Calvo-Almazan, S. Maddali, S. Wild, E. Maxey, M. Duparaz, and S. Hruszkewycz, “Bragg coherent modulation imaging: Strain-and defect-sensitive single views of extended samples,” arXiv preprint arXiv:1808.00115 (2018).

B. Abbey, K. A. Nugent, G. J. Williams, J. N. Clark, A. G. Peele, M. A. Pfeifer, M. De Jonge, and I. McNulty, “Keyhole coherent diffractive imaging,” Nat. Phys. 4(5), 394–398 (2008).

[Crossref]

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7(4), 308–313 (1965).

[Crossref]

M. Holler, A. Díaz, M. Guizar-Sicairos, P. Karvinen, E. Färm, E. Härkönen, M. Ritala, A. Menzel, J. Raabe, and O. Bunk, “X-ray ptychographic computed tomography at 16 nm isotropic 3d resolution,” Sci. Rep. 4(1), 3857 (2015).

[Crossref]

J. Miao, R. L. Sandberg, and C. Song, “Coherent x-ray diffraction imaging,” IEEE J. Sel. Top. Quantum Electron. 18(1), 399–410 (2012).

[Crossref]

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6(1), 5913 (2015).

[Crossref]

F. Zhang, B. Chen, G. R. Morrison, J. Vila-Comamala, M. Guizar-Sicairos, and I. K. Robinson, “Phase retrieval by coherent modulation imaging,” Nat. Commun. 7(1), 13367 (2016).

[Crossref]

I. Utke, S. Moshkalev, and P. Russell, Nanofabrication using focused ion and electron beams: principles and applications (Oxford University Press, 2012).

G. K. Matsopoulos, N. A. Mouravliansky, K. K. Delibasis, and K. S. Nikita, “Automatic retinal image registration scheme using global optimization techniques,” IEEE Trans. Inf. Technol. Biomed. 3(1), 47–60 (1999).

[Crossref]

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7(4), 308–313 (1965).

[Crossref]

W. Tang, J. Yang, W. Yi, Q. Nie, J. Zhu, M. Zhu, Y. Guo, M. Li, X. Li, and W. Wang, “Single-shot coherent power-spectrum imaging of objects hidden by opaque scattering media,” Appl. Opt. 58(4), 1033–1039 (2019).

[Crossref]

G. K. Matsopoulos, N. A. Mouravliansky, K. K. Delibasis, and K. S. Nikita, “Automatic retinal image registration scheme using global optimization techniques,” IEEE Trans. Inf. Technol. Biomed. 3(1), 47–60 (1999).

[Crossref]

G. Williams, H. Quiney, A. Peele, and K. Nugent, “Fresnel coherent diffractive imaging: treatment and analysis of data,” New J. Phys. 12(3), 035020 (2010).

[Crossref]

K. A. Nugent, “Coherent methods in the x-ray sciences,” Adv. Phys. 59(1), 1–99 (2010).

[Crossref]

B. Abbey, K. A. Nugent, G. J. Williams, J. N. Clark, A. G. Peele, M. A. Pfeifer, M. De Jonge, and I. McNulty, “Keyhole coherent diffractive imaging,” Nat. Phys. 4(5), 394–398 (2008).

[Crossref]

G. Williams, H. Quiney, B. Dhal, C. Tran, K. A. Nugent, A. Peele, D. Paterson, and M. De Jonge, “Fresnel coherent diffractive imaging,” Phys. Rev. Lett. 97(2), 025506 (2006).

[Crossref]

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Phys. D 60(1-4), 259–268 (1992).

[Crossref]

C. Kohler, F. Zhang, and W. Osten, “Characterization of a spatial light modulator and its application in phase retrieval,” Appl. Opt. 48(20), 4003–4008 (2009).

[Crossref]

F. Zhang, G. Pedrini, and W. Osten, “Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation,” Phys. Rev. A 75(4), 043805 (2007).

[Crossref]

Y. Wu, Y. Luo, G. Chaudhari, Y. Rivenson, A. Calis, K. de Haan, and A. Ozcan, “Bright-field holography: cross-modality deep learning enables snapshot 3d imaging with bright-field contrast using a single hologram,” Light: Sci. Appl. 8(1), 25 (2019).

[Crossref]

G. Barbastathis, A. Ozcan, and G. Situ, “On the use of deep learning for computational imaging,” Optica 6(8), 921–943 (2019).

[Crossref]

Y. Wu, Y. Rivenson, Y. Zhang, Z. Wei, H. Günaydin, X. Lin, and A. Ozcan, “Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery,” Optica 5(6), 704–710 (2018).

[Crossref]

Y. Rivenson, Y. Zhang, H. Günaydın, D. Teng, and A. Ozcan, “Phase recovery and holographic image reconstruction using deep learning in neural networks,” Light: Sci. Appl. 7(2), 17141 (2018).

[Crossref]

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6(1), 5913 (2015).

[Crossref]

G. Williams, H. Quiney, B. Dhal, C. Tran, K. A. Nugent, A. Peele, D. Paterson, and M. De Jonge, “Fresnel coherent diffractive imaging,” Phys. Rev. Lett. 97(2), 025506 (2006).

[Crossref]

F. Zhang, G. Pedrini, and W. Osten, “Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation,” Phys. Rev. A 75(4), 043805 (2007).

[Crossref]

G. Williams, H. Quiney, A. Peele, and K. Nugent, “Fresnel coherent diffractive imaging: treatment and analysis of data,” New J. Phys. 12(3), 035020 (2010).

[Crossref]

G. Williams, H. Quiney, B. Dhal, C. Tran, K. A. Nugent, A. Peele, D. Paterson, and M. De Jonge, “Fresnel coherent diffractive imaging,” Phys. Rev. Lett. 97(2), 025506 (2006).

[Crossref]

B. Abbey, K. A. Nugent, G. J. Williams, J. N. Clark, A. G. Peele, M. A. Pfeifer, M. De Jonge, and I. McNulty, “Keyhole coherent diffractive imaging,” Nat. Phys. 4(5), 394–398 (2008).

[Crossref]

B. Abbey, K. A. Nugent, G. J. Williams, J. N. Clark, A. G. Peele, M. A. Pfeifer, M. De Jonge, and I. McNulty, “Keyhole coherent diffractive imaging,” Nat. Phys. 4(5), 394–398 (2008).

[Crossref]

T.-A. Pham, E. Soubies, A. Ayoub, J. Lim, D. Psaltis, and M. Unser, “Three-dimensional optical diffraction tomography with lippmann-schwinger model,” IEEE Trans. Comput. Imaging 6, 727–738 (2020).

[Crossref]

T.-A. Pham, E. Soubies, A. Ayoub, J. Lim, D. Psaltis, and M. Unser, “Three-dimensional optical diffraction tomography with lippmann-schwinger model,” IEEE Trans. Comput. Imaging 6, 727–738 (2020).

[Crossref]

J. Lim, A. B. Ayoub, E. E. Antoine, and D. Psaltis, “High-fidelity optical diffraction tomography of multiple scattering samples,” Light: Sci. Appl. 8(1), 1–12 (2019).

[Crossref]

G. Williams, H. Quiney, A. Peele, and K. Nugent, “Fresnel coherent diffractive imaging: treatment and analysis of data,” New J. Phys. 12(3), 035020 (2010).

[Crossref]

G. Williams, H. Quiney, B. Dhal, C. Tran, K. A. Nugent, A. Peele, D. Paterson, and M. De Jonge, “Fresnel coherent diffractive imaging,” Phys. Rev. Lett. 97(2), 025506 (2006).

[Crossref]

M. Holler, A. Díaz, M. Guizar-Sicairos, P. Karvinen, E. Färm, E. Härkönen, M. Ritala, A. Menzel, J. Raabe, and O. Bunk, “X-ray ptychographic computed tomography at 16 nm isotropic 3d resolution,” Sci. Rep. 4(1), 3857 (2015).

[Crossref]

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), (2016), pp. 770–778.

P. P. Laissue, R. A. Alghamdi, P. Tomancak, E. G. Reynaud, and H. Shroff, “Assessing phototoxicity in live fluorescence imaging,” Nat. Methods 14(7), 657–661 (2017).

[Crossref]

M. Holler, A. Díaz, M. Guizar-Sicairos, P. Karvinen, E. Färm, E. Härkönen, M. Ritala, A. Menzel, J. Raabe, and O. Bunk, “X-ray ptychographic computed tomography at 16 nm isotropic 3d resolution,” Sci. Rep. 4(1), 3857 (2015).

[Crossref]

Y. Wu, Y. Luo, G. Chaudhari, Y. Rivenson, A. Calis, K. de Haan, and A. Ozcan, “Bright-field holography: cross-modality deep learning enables snapshot 3d imaging with bright-field contrast using a single hologram,” Light: Sci. Appl. 8(1), 25 (2019).

[Crossref]

Y. Wu, Y. Rivenson, Y. Zhang, Z. Wei, H. Günaydin, X. Lin, and A. Ozcan, “Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery,” Optica 5(6), 704–710 (2018).

[Crossref]

Y. Rivenson, Y. Zhang, H. Günaydın, D. Teng, and A. Ozcan, “Phase recovery and holographic image reconstruction using deep learning in neural networks,” Light: Sci. Appl. 7(2), 17141 (2018).

[Crossref]

F. Zhang, B. Chen, G. R. Morrison, J. Vila-Comamala, M. Guizar-Sicairos, and I. K. Robinson, “Phase retrieval by coherent modulation imaging,” Nat. Commun. 7(1), 13367 (2016).

[Crossref]

F. Zhang and J. Rodenburg, “Phase retrieval based on wave-front relay and modulation,” Phys. Rev. B 82(12), 121104 (2010).

[Crossref]

A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109(10), 1256–1262 (2009).

[Crossref]

O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention (MICCAI), (Springer, 2015), pp. 234–241.

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Phys. D 60(1-4), 259–268 (1992).

[Crossref]

A. Goy, G. Rughoobur, S. Li, K. Arthur, A. I. Akinwande, and G. Barbastathis, “High-resolution limited-angle phase tomography of dense layered objects using deep neural networks,” Proc. Natl. Acad. Sci. U. S. A. 116(40), 19848–19856 (2019).

[Crossref]

I. Utke, S. Moshkalev, and P. Russell, Nanofabrication using focused ion and electron beams: principles and applications (Oxford University Press, 2012).

J. Miao, R. L. Sandberg, and C. Song, “Coherent x-ray diffraction imaging,” IEEE J. Sel. Top. Quantum Electron. 18(1), 399–410 (2012).

[Crossref]

W. Saxton, Computer techniques for image processing in electron microscopy, vol. 10 (Academic Press, 2013).

J. Schmidt, Numerical simulation of optical wave propagation with examples in matlab, (Society of Photo-Optical Instrumentation Engineers (SPIE), 2010).

R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable effectiveness of deep features as a perceptual metric,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., (2018), pp. 586–595.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. on Image Process. 13(4), 600–612 (2004).

[Crossref]

P. P. Laissue, R. A. Alghamdi, P. Tomancak, E. G. Reynaud, and H. Shroff, “Assessing phototoxicity in live fluorescence imaging,” Nat. Methods 14(7), 657–661 (2017).

[Crossref]

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. on Image Process. 13(4), 600–612 (2004).

[Crossref]

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), (2009), pp. 248–255.

J. Miao, R. L. Sandberg, and C. Song, “Coherent x-ray diffraction imaging,” IEEE J. Sel. Top. Quantum Electron. 18(1), 399–410 (2012).

[Crossref]

T.-A. Pham, E. Soubies, A. Ayoub, J. Lim, D. Psaltis, and M. Unser, “Three-dimensional optical diffraction tomography with lippmann-schwinger model,” IEEE Trans. Comput. Imaging 6, 727–738 (2020).

[Crossref]

L. Gignac, C. Beslin, J. Gonsalves, F. Stellari, and C.-C. Lin, “High energy bse/se/stem imaging of 8 um thick semiconductor interconnects,” Microsc. Microanal. 20(S3), 8–9 (2014).

[Crossref]

A. Strehl and J. Ghosh, “Cluster ensembles—a knowledge reuse framework for combining multiple partitions,” J. Mach. Learn. Res. 3, 583–617 (2002).

N. Streibl, “Phase imaging by the transport equation of intensity,” Opt. Commun. 49(1), 6–10 (1984).

[Crossref]

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), (2016), pp. 770–778.

W. Tang, J. Yang, W. Yi, Q. Nie, J. Zhu, M. Zhu, Y. Guo, M. Li, X. Li, and W. Wang, “Single-shot coherent power-spectrum imaging of objects hidden by opaque scattering media,” Appl. Opt. 58(4), 1033–1039 (2019).

[Crossref]

A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM J. Imaging Sci. 2(1), 183–202 (2009).

[Crossref]

Y. Rivenson, Y. Zhang, H. Günaydın, D. Teng, and A. Ozcan, “Phase recovery and holographic image reconstruction using deep learning in neural networks,” Light: Sci. Appl. 7(2), 17141 (2018).

[Crossref]

L. Tian, X. Li, K. Ramchandran, and L. Waller, “Multiplexed coded illumination for fourier ptychography with an led array microscope,” Biomed. Opt. Express 5(7), 2376–2389 (2014).

[Crossref]

Y. Zhu, A. Shanker, L. Tian, L. Waller, and G. Barbastathis, “Low-noise phase imaging by hybrid uniform and structured illumination transport of intensity equation,” Opt. Express 22(22), 26696–26711 (2014).

[Crossref]

L. Waller, L. Tian, and G. Barbastathis, “Transport of intensity phase-amplitude imaging with higher order intensity derivatives,” Opt. Express 18(12), 12552–12561 (2010).

[Crossref]

P. P. Laissue, R. A. Alghamdi, P. Tomancak, E. G. Reynaud, and H. Shroff, “Assessing phototoxicity in live fluorescence imaging,” Nat. Methods 14(7), 657–661 (2017).

[Crossref]

D. Torrieri, Principles of spread-spectrum communication systems, vol. 1 (Springer, 2005).

G. Williams, H. Quiney, B. Dhal, C. Tran, K. A. Nugent, A. Peele, D. Paterson, and M. De Jonge, “Fresnel coherent diffractive imaging,” Phys. Rev. Lett. 97(2), 025506 (2006).

[Crossref]

A. Ulvestad, W. Cha, I. Calvo-Almazan, S. Maddali, S. Wild, E. Maxey, M. Duparaz, and S. Hruszkewycz, “Bragg coherent modulation imaging: Strain-and defect-sensitive single views of extended samples,” arXiv preprint arXiv:1808.00115 (2018).

T.-A. Pham, E. Soubies, A. Ayoub, J. Lim, D. Psaltis, and M. Unser, “Three-dimensional optical diffraction tomography with lippmann-schwinger model,” IEEE Trans. Comput. Imaging 6, 727–738 (2020).

[Crossref]

I. Utke, S. Moshkalev, and P. Russell, Nanofabrication using focused ion and electron beams: principles and applications (Oxford University Press, 2012).

A. van der Schaaf and J. H. van Hateren, “Modelling the power spectra of natural images: statistics and information,” Vision Res. 36(17), 2759–2770 (1996).

[Crossref]

A. van der Schaaf and J. H. van Hateren, “Modelling the power spectra of natural images: statistics and information,” Vision Res. 36(17), 2759–2770 (1996).

[Crossref]

F. Zhang, B. Chen, G. R. Morrison, J. Vila-Comamala, M. Guizar-Sicairos, and I. K. Robinson, “Phase retrieval by coherent modulation imaging,” Nat. Commun. 7(1), 13367 (2016).

[Crossref]

L. Tian, X. Li, K. Ramchandran, and L. Waller, “Multiplexed coded illumination for fourier ptychography with an led array microscope,” Biomed. Opt. Express 5(7), 2376–2389 (2014).

[Crossref]

Y. Zhu, A. Shanker, L. Tian, L. Waller, and G. Barbastathis, “Low-noise phase imaging by hybrid uniform and structured illumination transport of intensity equation,” Opt. Express 22(22), 26696–26711 (2014).

[Crossref]

L. Waller, M. Tsang, S. Ponda, S. Y. Yang, and G. Barbastathis, “Phase and amplitude imaging from noisy images by kalman filtering,” Opt. Express 19(3), 2805–2815 (2011).

[Crossref]

L. Waller, S. S. Kou, C. J. Sheppard, and G. Barbastathis, “Phase from chromatic aberrations,” Opt. Express 18(22), 22817–22825 (2010).

[Crossref]

L. Waller, L. Tian, and G. Barbastathis, “Transport of intensity phase-amplitude imaging with higher order intensity derivatives,” Opt. Express 18(12), 12552–12561 (2010).

[Crossref]

R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable effectiveness of deep features as a perceptual metric,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., (2018), pp. 586–595.

W. Tang, J. Yang, W. Yi, Q. Nie, J. Zhu, M. Zhu, Y. Guo, M. Li, X. Li, and W. Wang, “Single-shot coherent power-spectrum imaging of objects hidden by opaque scattering media,” Appl. Opt. 58(4), 1033–1039 (2019).

[Crossref]

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. on Image Process. 13(4), 600–612 (2004).

[Crossref]

A. Ulvestad, W. Cha, I. Calvo-Almazan, S. Maddali, S. Wild, E. Maxey, M. Duparaz, and S. Hruszkewycz, “Bragg coherent modulation imaging: Strain-and defect-sensitive single views of extended samples,” arXiv preprint arXiv:1808.00115 (2018).

G. Williams, H. Quiney, A. Peele, and K. Nugent, “Fresnel coherent diffractive imaging: treatment and analysis of data,” New J. Phys. 12(3), 035020 (2010).

[Crossref]

G. Williams, H. Quiney, B. Dhal, C. Tran, K. A. Nugent, A. Peele, D. Paterson, and M. De Jonge, “Fresnel coherent diffractive imaging,” Phys. Rev. Lett. 97(2), 025506 (2006).

[Crossref]

B. Abbey, K. A. Nugent, G. J. Williams, J. N. Clark, A. G. Peele, M. A. Pfeifer, M. De Jonge, and I. McNulty, “Keyhole coherent diffractive imaging,” Nat. Phys. 4(5), 394–398 (2008).

[Crossref]

J. Wu, H. Zhang, W. Zhang, G. Jin, L. Cao, and G. Barbastathis, “Single-shot lensless imaging with fresnel zone aperture and incoherent illumination,” Light: Sci. Appl. 9(1), 53 (2020).

[Crossref]

Y. Wu, Y. Luo, G. Chaudhari, Y. Rivenson, A. Calis, K. de Haan, and A. Ozcan, “Bright-field holography: cross-modality deep learning enables snapshot 3d imaging with bright-field contrast using a single hologram,” Light: Sci. Appl. 8(1), 25 (2019).

[Crossref]

Y. Wu, Y. Rivenson, Y. Zhang, Z. Wei, H. Günaydin, X. Lin, and A. Ozcan, “Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery,” Optica 5(6), 704–710 (2018).

[Crossref]

W. Tang, J. Yang, W. Yi, Q. Nie, J. Zhu, M. Zhu, Y. Guo, M. Li, X. Li, and W. Wang, “Single-shot coherent power-spectrum imaging of objects hidden by opaque scattering media,” Appl. Opt. 58(4), 1033–1039 (2019).

[Crossref]

W. Tang, J. Yang, W. Yi, Q. Nie, J. Zhu, M. Zhu, Y. Guo, M. Li, X. Li, and W. Wang, “Single-shot coherent power-spectrum imaging of objects hidden by opaque scattering media,” Appl. Opt. 58(4), 1033–1039 (2019).

[Crossref]

F. Zhang, B. Chen, G. R. Morrison, J. Vila-Comamala, M. Guizar-Sicairos, and I. K. Robinson, “Phase retrieval by coherent modulation imaging,” Nat. Commun. 7(1), 13367 (2016).

[Crossref]

F. Zhang and J. Rodenburg, “Phase retrieval based on wave-front relay and modulation,” Phys. Rev. B 82(12), 121104 (2010).

[Crossref]

C. Kohler, F. Zhang, and W. Osten, “Characterization of a spatial light modulator and its application in phase retrieval,” Appl. Opt. 48(20), 4003–4008 (2009).

[Crossref]

F. Zhang, G. Pedrini, and W. Osten, “Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation,” Phys. Rev. A 75(4), 043805 (2007).

[Crossref]

F. Zhang, I. Yamaguchi, and L. Yaroslavsky, “Algorithm for reconstruction of digital holograms with adjustable magnification,” Opt. Lett. 29(14), 1668–1670 (2004).

[Crossref]

J. Wu, H. Zhang, W. Zhang, G. Jin, L. Cao, and G. Barbastathis, “Single-shot lensless imaging with fresnel zone aperture and incoherent illumination,” Light: Sci. Appl. 9(1), 53 (2020).

[Crossref]

R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable effectiveness of deep features as a perceptual metric,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., (2018), pp. 586–595.

J. Wu, H. Zhang, W. Zhang, G. Jin, L. Cao, and G. Barbastathis, “Single-shot lensless imaging with fresnel zone aperture and incoherent illumination,” Light: Sci. Appl. 9(1), 53 (2020).

[Crossref]

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), (2016), pp. 770–778.

Y. Wu, Y. Rivenson, Y. Zhang, Z. Wei, H. Günaydin, X. Lin, and A. Ozcan, “Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery,” Optica 5(6), 704–710 (2018).

[Crossref]

Y. Rivenson, Y. Zhang, H. Günaydın, D. Teng, and A. Ozcan, “Phase recovery and holographic image reconstruction using deep learning in neural networks,” Light: Sci. Appl. 7(2), 17141 (2018).

[Crossref]

W. Tang, J. Yang, W. Yi, Q. Nie, J. Zhu, M. Zhu, Y. Guo, M. Li, X. Li, and W. Wang, “Single-shot coherent power-spectrum imaging of objects hidden by opaque scattering media,” Appl. Opt. 58(4), 1033–1039 (2019).

[Crossref]

X. Dong, X. Pan, C. Liu, and J. Zhu, “Single shot multi-wavelength phase retrieval with coherent modulation imaging,” Opt. Lett. 43(8), 1762–1765 (2018).

[Crossref]

W. Tang, J. Yang, W. Yi, Q. Nie, J. Zhu, M. Zhu, Y. Guo, M. Li, X. Li, and W. Wang, “Single-shot coherent power-spectrum imaging of objects hidden by opaque scattering media,” Appl. Opt. 58(4), 1033–1039 (2019).

[Crossref]

K. A. Nugent, “Coherent methods in the x-ray sciences,” Adv. Phys. 59(1), 1–99 (2010).

[Crossref]

J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21(15), 2758–2769 (1982).

[Crossref]

J. R. Fienup, “Invariant error metrics for image reconstruction,” Appl. Opt. 36(32), 8352–8357 (1997).

[Crossref]

B. Chen and J. J. Stamnes, “Validity of diffraction tomography based on the first born and the first rytov approximations,” Appl. Opt. 37(14), 2996–3006 (1998).

[Crossref]

C. Kohler, F. Zhang, and W. Osten, “Characterization of a spatial light modulator and its application in phase retrieval,” Appl. Opt. 48(20), 4003–4008 (2009).

[Crossref]

P. Gemayel, B. Colicchio, A. Dieterlen, and P. Ambs, “Cross-talk compensation of a spatial light modulator for iterative phase retrieval applications,” Appl. Opt. 55(4), 802–810 (2016).

[Crossref]

W. Tang, J. Yang, W. Yi, Q. Nie, J. Zhu, M. Zhu, Y. Guo, M. Li, X. Li, and W. Wang, “Single-shot coherent power-spectrum imaging of objects hidden by opaque scattering media,” Appl. Opt. 58(4), 1033–1039 (2019).

[Crossref]

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7(4), 308–313 (1965).

[Crossref]

J. Miao, R. L. Sandberg, and C. Song, “Coherent x-ray diffraction imaging,” IEEE J. Sel. Top. Quantum Electron. 18(1), 399–410 (2012).

[Crossref]

A. M. Eskicioglu and P. S. Fisher, “Image quality measures and their performance,” IEEE Trans. Commun. 43(12), 2959–2965 (1995).

[Crossref]

T.-A. Pham, E. Soubies, A. Ayoub, J. Lim, D. Psaltis, and M. Unser, “Three-dimensional optical diffraction tomography with lippmann-schwinger model,” IEEE Trans. Comput. Imaging 6, 727–738 (2020).

[Crossref]

G. K. Matsopoulos, N. A. Mouravliansky, K. K. Delibasis, and K. S. Nikita, “Automatic retinal image registration scheme using global optimization techniques,” IEEE Trans. Inf. Technol. Biomed. 3(1), 47–60 (1999).

[Crossref]

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. on Image Process. 13(4), 600–612 (2004).

[Crossref]

A. Strehl and J. Ghosh, “Cluster ensembles—a knowledge reuse framework for combining multiple partitions,” J. Mach. Learn. Res. 3, 583–617 (2002).

J. Lim, A. B. Ayoub, E. E. Antoine, and D. Psaltis, “High-fidelity optical diffraction tomography of multiple scattering samples,” Light: Sci. Appl. 8(1), 1–12 (2019).

[Crossref]

J. Wu, H. Zhang, W. Zhang, G. Jin, L. Cao, and G. Barbastathis, “Single-shot lensless imaging with fresnel zone aperture and incoherent illumination,” Light: Sci. Appl. 9(1), 53 (2020).

[Crossref]

M. Deng, S. Li, A. Goy, I. Kang, and G. Barbastathis, “Learning to synthesize: Robust phase retrieval at low photon counts,” Light: Sci. Appl. 9(1), 36 (2020).

[Crossref]

Y. Rivenson, Y. Zhang, H. Günaydın, D. Teng, and A. Ozcan, “Phase recovery and holographic image reconstruction using deep learning in neural networks,” Light: Sci. Appl. 7(2), 17141 (2018).

[Crossref]

Y. Wu, Y. Luo, G. Chaudhari, Y. Rivenson, A. Calis, K. de Haan, and A. Ozcan, “Bright-field holography: cross-modality deep learning enables snapshot 3d imaging with bright-field contrast using a single hologram,” Light: Sci. Appl. 8(1), 25 (2019).

[Crossref]

L. Gignac, C. Beslin, J. Gonsalves, F. Stellari, and C.-C. Lin, “High energy bse/se/stem imaging of 8 um thick semiconductor interconnects,” Microsc. Microanal. 20(S3), 8–9 (2014).

[Crossref]

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6(1), 5913 (2015).

[Crossref]

F. Zhang, B. Chen, G. R. Morrison, J. Vila-Comamala, M. Guizar-Sicairos, and I. K. Robinson, “Phase retrieval by coherent modulation imaging,” Nat. Commun. 7(1), 13367 (2016).

[Crossref]

P. P. Laissue, R. A. Alghamdi, P. Tomancak, E. G. Reynaud, and H. Shroff, “Assessing phototoxicity in live fluorescence imaging,” Nat. Methods 14(7), 657–661 (2017).

[Crossref]

B. Abbey, K. A. Nugent, G. J. Williams, J. N. Clark, A. G. Peele, M. A. Pfeifer, M. De Jonge, and I. McNulty, “Keyhole coherent diffractive imaging,” Nat. Phys. 4(5), 394–398 (2008).

[Crossref]

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).

[Crossref]

G. Williams, H. Quiney, A. Peele, and K. Nugent, “Fresnel coherent diffractive imaging: treatment and analysis of data,” New J. Phys. 12(3), 035020 (2010).

[Crossref]

N. Streibl, “Phase imaging by the transport equation of intensity,” Opt. Commun. 49(1), 6–10 (1984).

[Crossref]

D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17(15), 13040–13049 (2009).

[Crossref]

L. Waller, L. Tian, and G. Barbastathis, “Transport of intensity phase-amplitude imaging with higher order intensity derivatives,” Opt. Express 18(12), 12552–12561 (2010).

[Crossref]

L. Waller, S. S. Kou, C. J. Sheppard, and G. Barbastathis, “Phase from chromatic aberrations,” Opt. Express 18(22), 22817–22825 (2010).

[Crossref]

L. Waller, M. Tsang, S. Ponda, S. Y. Yang, and G. Barbastathis, “Phase and amplitude imaging from noisy images by kalman filtering,” Opt. Express 19(3), 2805–2815 (2011).

[Crossref]

S. Li and G. Barbastathis, “Spectral pre-modulation of training examples enhances the spatial resolution of the phase extraction neural network (phenn),” Opt. Express 26(22), 29340–29352 (2018).

[Crossref]

M. Deng, A. Goy, S. Li, K. Arthur, and G. Barbastathis, “Probing shallower: perceptual loss trained phase extraction neural network (plt-phenn) for artifact-free reconstruction at low photon budget,” Opt. Express 28(2), 2511–2535 (2020).

[Crossref]

Y. Zhu, A. Shanker, L. Tian, L. Waller, and G. Barbastathis, “Low-noise phase imaging by hybrid uniform and structured illumination transport of intensity equation,” Opt. Express 22(22), 26696–26711 (2014).

[Crossref]

R. Horisaki, R. Takagi, and J. Tanida, “Learning-based imaging through scattering media,” Opt. Express 24(13), 13738–13743 (2016).

[Crossref]

X. Dong, X. Pan, C. Liu, and J. Zhu, “Single shot multi-wavelength phase retrieval with coherent modulation imaging,” Opt. Lett. 43(8), 1762–1765 (2018).

[Crossref]

A. Devaney, “Inverse-scattering theory within the rytov approximation,” Opt. Lett. 6(8), 374–376 (1981).

[Crossref]

F. Zhang, I. Yamaguchi, and L. Yaroslavsky, “Algorithm for reconstruction of digital holograms with adjustable magnification,” Opt. Lett. 29(14), 1668–1670 (2004).

[Crossref]

Y. Wu, Y. Rivenson, Y. Zhang, Z. Wei, H. Günaydin, X. Lin, and A. Ozcan, “Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery,” Optica 5(6), 704–710 (2018).

[Crossref]

A. Sinha, J. Lee, S. Li, and G. Barbastathis, “Lensless computational imaging through deep learning,” Optica 4(9), 1117–1125 (2017).

[Crossref]

G. Barbastathis, A. Ozcan, and G. Situ, “On the use of deep learning for computational imaging,” Optica 6(8), 921–943 (2019).

[Crossref]

R. W. Gerchberg, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Phys. D 60(1-4), 259–268 (1992).

[Crossref]

F. Zhang, G. Pedrini, and W. Osten, “Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation,” Phys. Rev. A 75(4), 043805 (2007).

[Crossref]

F. Zhang and J. Rodenburg, “Phase retrieval based on wave-front relay and modulation,” Phys. Rev. B 82(12), 121104 (2010).

[Crossref]

G. Williams, H. Quiney, B. Dhal, C. Tran, K. A. Nugent, A. Peele, D. Paterson, and M. De Jonge, “Fresnel coherent diffractive imaging,” Phys. Rev. Lett. 97(2), 025506 (2006).

[Crossref]

A. Goy, K. Arthur, S. Li, and G. Barbastathis, “Low photon count phase retrieval using deep learning,” Phys. Rev. Lett. 121(24), 243902 (2018).

[Crossref]

A. Goy, G. Rughoobur, S. Li, K. Arthur, A. I. Akinwande, and G. Barbastathis, “High-resolution limited-angle phase tomography of dense layered objects using deep neural networks,” Proc. Natl. Acad. Sci. U. S. A. 116(40), 19848–19856 (2019).

[Crossref]

M. Holler, A. Díaz, M. Guizar-Sicairos, P. Karvinen, E. Färm, E. Härkönen, M. Ritala, A. Menzel, J. Raabe, and O. Bunk, “X-ray ptychographic computed tomography at 16 nm isotropic 3d resolution,” Sci. Rep. 4(1), 3857 (2015).

[Crossref]

A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM J. Imaging Sci. 2(1), 183–202 (2009).

[Crossref]

A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109(10), 1256–1262 (2009).

[Crossref]

A. van der Schaaf and J. H. van Hateren, “Modelling the power spectra of natural images: statistics and information,” Vision Res. 36(17), 2759–2770 (1996).

[Crossref]

J. Schmidt, Numerical simulation of optical wave propagation with examples in matlab, (Society of Photo-Optical Instrumentation Engineers (SPIE), 2010).

J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style transfer and super-resolution,” in European Conference on Computer Vision (ECCV), (Springer, 2016), pp. 694–711.

R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable effectiveness of deep features as a perceptual metric,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., (2018), pp. 586–595.

M. Bertero and P. Boccacci, Introduction to inverse problems in imaging (CRC press, 1998).

I. Utke, S. Moshkalev, and P. Russell, Nanofabrication using focused ion and electron beams: principles and applications (Oxford University Press, 2012).

M. Deng, S. Li, I. Kang, N. X. Fang, and G. Barbastathis, “On the interplay between physical and content priors in deep learning for computational imaging,” arXiv preprint arXiv:2004.06355 (2020).

W. Saxton, Computer techniques for image processing in electron microscopy, vol. 10 (Academic Press, 2013).

O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention (MICCAI), (Springer, 2015), pp. 234–241.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), (2016), pp. 770–778.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), (2009), pp. 248–255.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980 (2014).

J. W. Goodman, Introduction to Fourier optics (Roberts and Company Publishers, 2005).

D. Torrieri, Principles of spread-spectrum communication systems, vol. 1 (Springer, 2005).

A. Ulvestad, W. Cha, I. Calvo-Almazan, S. Maddali, S. Wild, E. Maxey, M. Duparaz, and S. Hruszkewycz, “Bragg coherent modulation imaging: Strain-and defect-sensitive single views of extended samples,” arXiv preprint arXiv:1808.00115 (2018).