Abstract

Planar metalenses are regarded as promising functional nanodevices because of their lightweight, nano-resolution properties, and, therefore, they can serve as versatile platforms for imaging and Fourier transforming. Here, we demonstrate a meta-device that functions as an isotropic bifocal all-dielectric Huygens' metalens to realize nanoscale real-time coaxial digital hologram generation. We design an isotropic bifocal metalens for micro/nano hologram recording, and the metalens utilizes the complete region compared to a previously reported interleaved multifocal metalens scheme. In addition, the hologram generation does not depend on complex polarization conversion, thereby improving the practical efficiency. For high-fidelity reconstruction, compressive reconstruction is utilized to remove twin-image and zero-order items and to suppress noise. Such concept would be extended to white-light achromatic meta-holography and three-dimensional micro/nano in vivo incoherent super-resolution imaging under subwavelength modulation.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
    [Crossref]
  2. H. L. Zhu, S. W. Cheung, K. L. Chung, and T. I. Yuk, “Linear-to-circular polarization conversion using metasurface,” IEEE Trans. Antennas Propag. 61(9), 4615–4623 (2013).
    [Crossref]
  3. Y. Zhao and A. Alu, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84(20), 205428 (2011).
    [Crossref]
  4. X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4(1), 2807 (2013).
    [Crossref]
  5. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
    [Crossref]
  6. L. Huang, X. Chen, H. Muehlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
    [Crossref]
  7. H. Zhou, B. Sain, Y. Wang, C. Schlickriede, R. Zhao, X. Zhang, Q. Wei, X. Li, L. Huang, and T. Zentgraf, “Polarization-encrypted orbital angular momentum multiple metasurface holography,” ACS Nano 14(5), 5553–5559 (2020).
    [Crossref]
  8. Q. Wei, B. Sain, Y. Wang, B. Reineke, X. Li, L. Huang, and T. Zentgraf, “Simultaneous spectral and spatial modulation for color printing and holography using all-dielectric metasurface,” Nano Lett. 19(12), 8964–8971 (2019).
    [Crossref]
  9. X. Song, L. Huang, L. Sun, X. Zhang, R. Zhao, X. Li, J. Wang, B. Bai, and Y. Wang, “Near-field plasmonic beam engineering with complex amplitude modulation based on metasurface,” Appl. Phys. Lett. 112(7), 073104 (2018).
    [Crossref]
  10. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
    [Crossref]
  11. S. Abdollahramezani, K. Arik, A. Khavasi, and Z. Kavehvash, “Analog computing using graphene-based metalindes,” Opt. Lett. 41(15), 3451–3454 (2016).
    [Crossref]
  12. S. Abdollahramezani, A. Chizari, A. E. Dorch, M. V. Jamali, and J. A. Salehi, “Dielectric metasurfaces solve differential and integro-differential equations,” Opt. Lett. 42(7), 1197–1200 (2017).
    [Crossref]
  13. L. Huang, S. Zhang, and T. Zentgraf, “Metasurface holography: from fundamentals to applications,” Nanophotonics 7(6), 1169–1190 (2018).
    [Crossref]
  14. R. Paniagua-Dominguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18(3), 2124–2132 (2018).
    [Crossref]
  15. X. Chen, L. Huang, H. Muehlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
    [Crossref]
  16. M. Hashemi, A. Moazami, M. Naserpour, and C. J. Zapata-Rodriguez, “A broadband multifocal metalens in the terahertz frequency range,” Opt. Commun. 370, 306–310 (2016).
    [Crossref]
  17. P. Lalanne and P. Chavel, “Metalenses at visible wavelengths: past, present, perspectives,” Laser Photonics Rev. 11(3), 1600295 (2017).
    [Crossref]
  18. X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light: Sci. Appl. 2(4), e72 (2013).
    [Crossref]
  19. H. Tang and P. Liu, “Long-distance enhanced fourier transform by hyperbolic gradient-Index metalens,” 40th International Conference on Infrared Millimeter and Terahertz Waves, 7327447 (2015).
  20. H. Lv, X. Lu, Y. Han, Z. Mou, and S. Teng, “Multifocal metalens with a controllable intensity ratio,” Opt. Lett. 44(10), 2518–2521 (2019).
    [Crossref]
  21. C. Chen, W. Song, J. Chen, J. Wang, Y. H. Chen, B. Xu, M. Chen, H. Li, B. Fang, J. Chen, H. Y. Kuo, S. Wang, D. P. Tsai, S. Zhu, and T. Li, “Spectral tomographic imaging with aplanatic metalens,” Light: Sci. Appl. 8(1), 99 (2019).
    [Crossref]
  22. K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alu, and C. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
    [Crossref]
  23. S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alu, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” arXiv:2001.06335 (2020)
  24. S. Li, C. Zhou, G. Ban, H. Wang, H. Lu, and Y. Wang, “Active all-dielectric bifocal metalens assisted by germanium antimony telluride,” J. Phys. D: Appl. Phys. 52(9), 095106 (2019).
    [Crossref]
  25. W. Bai, P. Yang, J. Huang, D. Chen, J. Zhang, Z. Zhang, J. Yang, and B. Xu, “Near-infrared tunable metalens based on phase change material Ge2Se2Te5,” Sci. Rep. 9(1), 5368 (2019).
    [Crossref]
  26. X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light: Sci. Appl. 6(7), e17016 (2017).
    [Crossref]
  27. S. Tian, H. Guo, J. Hu, and S. Zhuang, “Dielectric longitudinal bifocal metalens with adjustable intensity and high focusing efficiency,” Opt. Express 27(2), 680–688 (2019).
    [Crossref]
  28. X. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Yue, C. Qiu, and S. Zhang, “Longitudinal multifoci metalens for circularly polarized light,” Adv. Opt. Mater. 3(9), 1201–1206 (2015).
    [Crossref]
  29. P. de Gracia, C. Dorronsoro, and S. Marcos, “Multiple zone multifocal phase designs,” Opt. Lett. 38(18), 3526–3529 (2013).
    [Crossref]
  30. J. Jia, J. Jiang, C. Xie, and M. Liu, “Photon sieve for reduction of the far-field diffraction spot size in the laser free-space communication system,” Opt. Commun. 281(17), 4536–4539 (2008).
    [Crossref]
  31. W. Wang, Z. Guo, K. Zhou, Y. Sun, F. Shen, Y. Li, S. Qu, and S. Liu, “Polarization-independent longitudinal multi-focusing metalens,” Opt. Express 23(23), 29855–29866 (2015).
    [Crossref]
  32. J. Jia, C. H. Zhou, and L. Liu, “Superresolution technology for reduction of the far-field diffraction spot size in the laser free-space communication system,” Opt. Commun. 228(4-6), 271–278 (2003).
    [Crossref]
  33. M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
    [Crossref]
  34. P. Banerjee, G. Barbastathis, M. Kim, and N. Kukhtarev, “Digital holography and 3-D imaging,” Appl. Opt. 50(34), H1–H2 (2011).
    [Crossref]
  35. J. Rosen and G. Brooker, “Incoherent digital holographic microscopy with coherent and incoherent light,” 87–112 (2011).
  36. K. Choi, J. Yim, and S. Min, “Optical defocus noise suppressing by using a pinhole-polarizer in Fresnel incoherent correlation holography,” Appl. Opt. 56(13), F121–F127 (2017).
    [Crossref]
  37. L. T. Bang, H. Y. Wu, Y. Zhao, E. G. Kim, and N. Kim, “Depth enhancement of 3D microscopic living-cell image using incoherent fluorescent digital holography,” J. Microsc. (Oxford, U. K.) 265(3), 372–385 (2017).
    [Crossref]
  38. N. Siegel, J. Rosen, and G. Brooker, “Reconstruction of objects above and below the objective focal plane with dimensional fidelity by FINCH fluorescence microscopy,” Opt. Express 20(18), 19822–19835 (2012).
    [Crossref]
  39. Y. Bai, R. Zang, P. Wang, T. Rong, F. Ma, D. Yan-Li, Z. Duan, and Q. Gong, “Single-shot incoherent digital holography based on spatial light modulator,” Acta Phys. Sin. 67, 064202 (2018).
    [Crossref]
  40. T. Tahara, T. Kanno, Y. Arai, and T. Ozawa, “T Single-shot phase-shifting incoherent digital holography,” J. Opt. 19(6), 065705 (2017).
    [Crossref]
  41. T. Nobukawa, T. Muroi, Y. Katano, N. Kinoshita, and N. Ishii, “Single-shot phase shifting incoherent digital holography with multiplexed checkerboard phase gratings,” Opt. Lett. 43(8), 1698–1701 (2018).
    [Crossref]
  42. X. Quan, O. Matoba, and Y. Awatsuji, “Single-shot incoherent digital holography using a dual-focusing lens with diffraction gratings,” Opt. Lett. 42(3), 383–386 (2017).
    [Crossref]
  43. Y. Wan, T. Man, F. Wu, M. K. Kim, and D. Wang, “Parallel phase-shifting self-interference digital holography with faithful reconstruction using compressive sensing,” Opt. Laser Eng. 86, 38–43 (2016).
    [Crossref]
  44. I. Yamaguchi, “Holography and speckle in phase-shifting digital holography,” Chin. Opt. Lett. 7(12), 1104–1108 (2009).
    [Crossref]
  45. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997).
    [Crossref]
  46. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17(15), 13040–13049 (2009).
    [Crossref]
  47. W. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
    [Crossref]
  48. S. Wang, P. Wu, V. Su, Y. Lai, M. Chen, H. Kuo, B. Chen, Y. Chen, T. Huang, J. Wang, R. Lin, C. Kuan, T. Li, Z. Wang, S. Zhu, and D. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
    [Crossref]
  49. T. Man, Y. Wan, F. Wu, and D. Wang, “Self-interference compressive digital holography with improved axial resolution and signal-to-noise ratio,” Appl. Opt. 56(13), F91–F96 (2017).
    [Crossref]
  50. W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-image-free holography: a compressive sensing approach,” Phys. Rev. Lett. 121(9), 093902 (2018).
    [Crossref]
  51. J. M. Bioucas-Dias and M. A. T. Figueiredo, “A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE T. Image Process 16(12), 2992–3004 (2007).
    [Crossref]

2020 (1)

H. Zhou, B. Sain, Y. Wang, C. Schlickriede, R. Zhao, X. Zhang, Q. Wei, X. Li, L. Huang, and T. Zentgraf, “Polarization-encrypted orbital angular momentum multiple metasurface holography,” ACS Nano 14(5), 5553–5559 (2020).
[Crossref]

2019 (6)

Q. Wei, B. Sain, Y. Wang, B. Reineke, X. Li, L. Huang, and T. Zentgraf, “Simultaneous spectral and spatial modulation for color printing and holography using all-dielectric metasurface,” Nano Lett. 19(12), 8964–8971 (2019).
[Crossref]

H. Lv, X. Lu, Y. Han, Z. Mou, and S. Teng, “Multifocal metalens with a controllable intensity ratio,” Opt. Lett. 44(10), 2518–2521 (2019).
[Crossref]

C. Chen, W. Song, J. Chen, J. Wang, Y. H. Chen, B. Xu, M. Chen, H. Li, B. Fang, J. Chen, H. Y. Kuo, S. Wang, D. P. Tsai, S. Zhu, and T. Li, “Spectral tomographic imaging with aplanatic metalens,” Light: Sci. Appl. 8(1), 99 (2019).
[Crossref]

S. Li, C. Zhou, G. Ban, H. Wang, H. Lu, and Y. Wang, “Active all-dielectric bifocal metalens assisted by germanium antimony telluride,” J. Phys. D: Appl. Phys. 52(9), 095106 (2019).
[Crossref]

W. Bai, P. Yang, J. Huang, D. Chen, J. Zhang, Z. Zhang, J. Yang, and B. Xu, “Near-infrared tunable metalens based on phase change material Ge2Se2Te5,” Sci. Rep. 9(1), 5368 (2019).
[Crossref]

S. Tian, H. Guo, J. Hu, and S. Zhuang, “Dielectric longitudinal bifocal metalens with adjustable intensity and high focusing efficiency,” Opt. Express 27(2), 680–688 (2019).
[Crossref]

2018 (8)

Y. Bai, R. Zang, P. Wang, T. Rong, F. Ma, D. Yan-Li, Z. Duan, and Q. Gong, “Single-shot incoherent digital holography based on spatial light modulator,” Acta Phys. Sin. 67, 064202 (2018).
[Crossref]

X. Song, L. Huang, L. Sun, X. Zhang, R. Zhao, X. Li, J. Wang, B. Bai, and Y. Wang, “Near-field plasmonic beam engineering with complex amplitude modulation based on metasurface,” Appl. Phys. Lett. 112(7), 073104 (2018).
[Crossref]

L. Huang, S. Zhang, and T. Zentgraf, “Metasurface holography: from fundamentals to applications,” Nanophotonics 7(6), 1169–1190 (2018).
[Crossref]

R. Paniagua-Dominguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18(3), 2124–2132 (2018).
[Crossref]

T. Nobukawa, T. Muroi, Y. Katano, N. Kinoshita, and N. Ishii, “Single-shot phase shifting incoherent digital holography with multiplexed checkerboard phase gratings,” Opt. Lett. 43(8), 1698–1701 (2018).
[Crossref]

W. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref]

S. Wang, P. Wu, V. Su, Y. Lai, M. Chen, H. Kuo, B. Chen, Y. Chen, T. Huang, J. Wang, R. Lin, C. Kuan, T. Li, Z. Wang, S. Zhu, and D. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref]

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-image-free holography: a compressive sensing approach,” Phys. Rev. Lett. 121(9), 093902 (2018).
[Crossref]

2017 (9)

T. Man, Y. Wan, F. Wu, and D. Wang, “Self-interference compressive digital holography with improved axial resolution and signal-to-noise ratio,” Appl. Opt. 56(13), F91–F96 (2017).
[Crossref]

X. Quan, O. Matoba, and Y. Awatsuji, “Single-shot incoherent digital holography using a dual-focusing lens with diffraction gratings,” Opt. Lett. 42(3), 383–386 (2017).
[Crossref]

S. Abdollahramezani, A. Chizari, A. E. Dorch, M. V. Jamali, and J. A. Salehi, “Dielectric metasurfaces solve differential and integro-differential equations,” Opt. Lett. 42(7), 1197–1200 (2017).
[Crossref]

P. Lalanne and P. Chavel, “Metalenses at visible wavelengths: past, present, perspectives,” Laser Photonics Rev. 11(3), 1600295 (2017).
[Crossref]

T. Tahara, T. Kanno, Y. Arai, and T. Ozawa, “T Single-shot phase-shifting incoherent digital holography,” J. Opt. 19(6), 065705 (2017).
[Crossref]

K. Choi, J. Yim, and S. Min, “Optical defocus noise suppressing by using a pinhole-polarizer in Fresnel incoherent correlation holography,” Appl. Opt. 56(13), F121–F127 (2017).
[Crossref]

L. T. Bang, H. Y. Wu, Y. Zhao, E. G. Kim, and N. Kim, “Depth enhancement of 3D microscopic living-cell image using incoherent fluorescent digital holography,” J. Microsc. (Oxford, U. K.) 265(3), 372–385 (2017).
[Crossref]

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light: Sci. Appl. 6(7), e17016 (2017).
[Crossref]

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alu, and C. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref]

2016 (4)

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref]

M. Hashemi, A. Moazami, M. Naserpour, and C. J. Zapata-Rodriguez, “A broadband multifocal metalens in the terahertz frequency range,” Opt. Commun. 370, 306–310 (2016).
[Crossref]

S. Abdollahramezani, K. Arik, A. Khavasi, and Z. Kavehvash, “Analog computing using graphene-based metalindes,” Opt. Lett. 41(15), 3451–3454 (2016).
[Crossref]

Y. Wan, T. Man, F. Wu, M. K. Kim, and D. Wang, “Parallel phase-shifting self-interference digital holography with faithful reconstruction using compressive sensing,” Opt. Laser Eng. 86, 38–43 (2016).
[Crossref]

2015 (2)

W. Wang, Z. Guo, K. Zhou, Y. Sun, F. Shen, Y. Li, S. Qu, and S. Liu, “Polarization-independent longitudinal multi-focusing metalens,” Opt. Express 23(23), 29855–29866 (2015).
[Crossref]

X. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Yue, C. Qiu, and S. Zhang, “Longitudinal multifoci metalens for circularly polarized light,” Adv. Opt. Mater. 3(9), 1201–1206 (2015).
[Crossref]

2013 (6)

P. de Gracia, C. Dorronsoro, and S. Marcos, “Multiple zone multifocal phase designs,” Opt. Lett. 38(18), 3526–3529 (2013).
[Crossref]

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light: Sci. Appl. 2(4), e72 (2013).
[Crossref]

H. L. Zhu, S. W. Cheung, K. L. Chung, and T. I. Yuk, “Linear-to-circular polarization conversion using metasurface,” IEEE Trans. Antennas Propag. 61(9), 4615–4623 (2013).
[Crossref]

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4(1), 2807 (2013).
[Crossref]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref]

L. Huang, X. Chen, H. Muehlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

2012 (3)

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref]

X. Chen, L. Huang, H. Muehlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

N. Siegel, J. Rosen, and G. Brooker, “Reconstruction of objects above and below the objective focal plane with dimensional fidelity by FINCH fluorescence microscopy,” Opt. Express 20(18), 19822–19835 (2012).
[Crossref]

2011 (2)

P. Banerjee, G. Barbastathis, M. Kim, and N. Kukhtarev, “Digital holography and 3-D imaging,” Appl. Opt. 50(34), H1–H2 (2011).
[Crossref]

Y. Zhao and A. Alu, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84(20), 205428 (2011).
[Crossref]

2009 (3)

2008 (1)

J. Jia, J. Jiang, C. Xie, and M. Liu, “Photon sieve for reduction of the far-field diffraction spot size in the laser free-space communication system,” Opt. Commun. 281(17), 4536–4539 (2008).
[Crossref]

2007 (1)

J. M. Bioucas-Dias and M. A. T. Figueiredo, “A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE T. Image Process 16(12), 2992–3004 (2007).
[Crossref]

2003 (1)

J. Jia, C. H. Zhou, and L. Liu, “Superresolution technology for reduction of the far-field diffraction spot size in the laser free-space communication system,” Opt. Commun. 228(4-6), 271–278 (2003).
[Crossref]

1997 (1)

Abdollahramezani, S.

Adibi, A.

S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alu, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” arXiv:2001.06335 (2020)

Aieta, F.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref]

Alu, A.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alu, and C. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref]

Y. Zhao and A. Alu, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84(20), 205428 (2011).
[Crossref]

S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alu, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” arXiv:2001.06335 (2020)

Arai, Y.

T. Tahara, T. Kanno, Y. Arai, and T. Ozawa, “T Single-shot phase-shifting incoherent digital holography,” J. Opt. 19(6), 065705 (2017).
[Crossref]

Arik, K.

Awatsuji, Y.

Bai, B.

X. Song, L. Huang, L. Sun, X. Zhang, R. Zhao, X. Li, J. Wang, B. Bai, and Y. Wang, “Near-field plasmonic beam engineering with complex amplitude modulation based on metasurface,” Appl. Phys. Lett. 112(7), 073104 (2018).
[Crossref]

L. Huang, X. Chen, H. Muehlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

X. Chen, L. Huang, H. Muehlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

Bai, W.

W. Bai, P. Yang, J. Huang, D. Chen, J. Zhang, Z. Zhang, J. Yang, and B. Xu, “Near-infrared tunable metalens based on phase change material Ge2Se2Te5,” Sci. Rep. 9(1), 5368 (2019).
[Crossref]

Bai, Y.

Y. Bai, R. Zang, P. Wang, T. Rong, F. Ma, D. Yan-Li, Z. Duan, and Q. Gong, “Single-shot incoherent digital holography based on spatial light modulator,” Acta Phys. Sin. 67, 064202 (2018).
[Crossref]

Bakker, R. M.

R. Paniagua-Dominguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18(3), 2124–2132 (2018).
[Crossref]

Ban, G.

S. Li, C. Zhou, G. Ban, H. Wang, H. Lu, and Y. Wang, “Active all-dielectric bifocal metalens assisted by germanium antimony telluride,” J. Phys. D: Appl. Phys. 52(9), 095106 (2019).
[Crossref]

Banerjee, P.

Bang, L. T.

L. T. Bang, H. Y. Wu, Y. Zhao, E. G. Kim, and N. Kim, “Depth enhancement of 3D microscopic living-cell image using incoherent fluorescent digital holography,” J. Microsc. (Oxford, U. K.) 265(3), 372–385 (2017).
[Crossref]

Barbastathis, G.

Bioucas-Dias, J. M.

J. M. Bioucas-Dias and M. A. T. Figueiredo, “A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE T. Image Process 16(12), 2992–3004 (2007).
[Crossref]

Boltasseva, A.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref]

Brady, D. J.

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-image-free holography: a compressive sensing approach,” Phys. Rev. Lett. 121(9), 093902 (2018).
[Crossref]

D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17(15), 13040–13049 (2009).
[Crossref]

Brooker, G.

Cang, J.

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-image-free holography: a compressive sensing approach,” Phys. Rev. Lett. 121(9), 093902 (2018).
[Crossref]

Cao, L.

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-image-free holography: a compressive sensing approach,” Phys. Rev. Lett. 121(9), 093902 (2018).
[Crossref]

Capasso, F.

W. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref]

Chavel, P.

P. Lalanne and P. Chavel, “Metalenses at visible wavelengths: past, present, perspectives,” Laser Photonics Rev. 11(3), 1600295 (2017).
[Crossref]

Cheah, K.

L. Huang, X. Chen, H. Muehlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Chen, B.

S. Wang, P. Wu, V. Su, Y. Lai, M. Chen, H. Kuo, B. Chen, Y. Chen, T. Huang, J. Wang, R. Lin, C. Kuan, T. Li, Z. Wang, S. Zhu, and D. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref]

Chen, C.

C. Chen, W. Song, J. Chen, J. Wang, Y. H. Chen, B. Xu, M. Chen, H. Li, B. Fang, J. Chen, H. Y. Kuo, S. Wang, D. P. Tsai, S. Zhu, and T. Li, “Spectral tomographic imaging with aplanatic metalens,” Light: Sci. Appl. 8(1), 99 (2019).
[Crossref]

Chen, D.

W. Bai, P. Yang, J. Huang, D. Chen, J. Zhang, Z. Zhang, J. Yang, and B. Xu, “Near-infrared tunable metalens based on phase change material Ge2Se2Te5,” Sci. Rep. 9(1), 5368 (2019).
[Crossref]

Chen, J.

C. Chen, W. Song, J. Chen, J. Wang, Y. H. Chen, B. Xu, M. Chen, H. Li, B. Fang, J. Chen, H. Y. Kuo, S. Wang, D. P. Tsai, S. Zhu, and T. Li, “Spectral tomographic imaging with aplanatic metalens,” Light: Sci. Appl. 8(1), 99 (2019).
[Crossref]

C. Chen, W. Song, J. Chen, J. Wang, Y. H. Chen, B. Xu, M. Chen, H. Li, B. Fang, J. Chen, H. Y. Kuo, S. Wang, D. P. Tsai, S. Zhu, and T. Li, “Spectral tomographic imaging with aplanatic metalens,” Light: Sci. Appl. 8(1), 99 (2019).
[Crossref]

Chen, K.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alu, and C. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref]

Chen, M.

C. Chen, W. Song, J. Chen, J. Wang, Y. H. Chen, B. Xu, M. Chen, H. Li, B. Fang, J. Chen, H. Y. Kuo, S. Wang, D. P. Tsai, S. Zhu, and T. Li, “Spectral tomographic imaging with aplanatic metalens,” Light: Sci. Appl. 8(1), 99 (2019).
[Crossref]

S. Wang, P. Wu, V. Su, Y. Lai, M. Chen, H. Kuo, B. Chen, Y. Chen, T. Huang, J. Wang, R. Lin, C. Kuan, T. Li, Z. Wang, S. Zhu, and D. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref]

X. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Yue, C. Qiu, and S. Zhang, “Longitudinal multifoci metalens for circularly polarized light,” Adv. Opt. Mater. 3(9), 1201–1206 (2015).
[Crossref]

Chen, S.

L. Huang, X. Chen, H. Muehlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Chen, W.

W. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref]

Chen, X.

X. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Yue, C. Qiu, and S. Zhang, “Longitudinal multifoci metalens for circularly polarized light,” Adv. Opt. Mater. 3(9), 1201–1206 (2015).
[Crossref]

L. Huang, X. Chen, H. Muehlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

X. Chen, L. Huang, H. Muehlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

Chen, Y.

S. Wang, P. Wu, V. Su, Y. Lai, M. Chen, H. Kuo, B. Chen, Y. Chen, T. Huang, J. Wang, R. Lin, C. Kuan, T. Li, Z. Wang, S. Zhu, and D. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref]

Chen, Y. H.

C. Chen, W. Song, J. Chen, J. Wang, Y. H. Chen, B. Xu, M. Chen, H. Li, B. Fang, J. Chen, H. Y. Kuo, S. Wang, D. P. Tsai, S. Zhu, and T. Li, “Spectral tomographic imaging with aplanatic metalens,” Light: Sci. Appl. 8(1), 99 (2019).
[Crossref]

Cheung, S. W.

H. L. Zhu, S. W. Cheung, K. L. Chung, and T. I. Yuk, “Linear-to-circular polarization conversion using metasurface,” IEEE Trans. Antennas Propag. 61(9), 4615–4623 (2013).
[Crossref]

Chizari, A.

Choi, K.

Choi, S.

R. Paniagua-Dominguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18(3), 2124–2132 (2018).
[Crossref]

Chon, J. W. M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref]

Chung, K. L.

H. L. Zhu, S. W. Cheung, K. L. Chung, and T. I. Yuk, “Linear-to-circular polarization conversion using metasurface,” IEEE Trans. Antennas Propag. 61(9), 4615–4623 (2013).
[Crossref]

Danner, A.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref]

de Gracia, P.

Ding, X.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alu, and C. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref]

Dorch, A. E.

Dorronsoro, C.

Duan, Z.

Y. Bai, R. Zang, P. Wang, T. Rong, F. Ma, D. Yan-Li, Z. Duan, and Q. Gong, “Single-shot incoherent digital holography based on spatial light modulator,” Acta Phys. Sin. 67, 064202 (2018).
[Crossref]

Fang, B.

C. Chen, W. Song, J. Chen, J. Wang, Y. H. Chen, B. Xu, M. Chen, H. Li, B. Fang, J. Chen, H. Y. Kuo, S. Wang, D. P. Tsai, S. Zhu, and T. Li, “Spectral tomographic imaging with aplanatic metalens,” Light: Sci. Appl. 8(1), 99 (2019).
[Crossref]

Feng, Y.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alu, and C. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref]

Figueiredo, M. A. T.

J. M. Bioucas-Dias and M. A. T. Figueiredo, “A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE T. Image Process 16(12), 2992–3004 (2007).
[Crossref]

Fu, Y. H.

R. Paniagua-Dominguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18(3), 2124–2132 (2018).
[Crossref]

Gaburro, Z.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref]

Genevet, P.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref]

Giessen, H.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light: Sci. Appl. 6(7), e17016 (2017).
[Crossref]

Gong, Q.

Y. Bai, R. Zang, P. Wang, T. Rong, F. Ma, D. Yan-Li, Z. Duan, and Q. Gong, “Single-shot incoherent digital holography based on spatial light modulator,” Acta Phys. Sin. 67, 064202 (2018).
[Crossref]

Gu, M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref]

Guo, H.

Guo, Z.

Han, Y.

Hashemi, M.

M. Hashemi, A. Moazami, M. Naserpour, and C. J. Zapata-Rodriguez, “A broadband multifocal metalens in the terahertz frequency range,” Opt. Commun. 370, 306–310 (2016).
[Crossref]

Hemmatyar, O.

S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alu, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” arXiv:2001.06335 (2020)

Horisaki, R.

Hu, J.

Huang, J.

W. Bai, P. Yang, J. Huang, D. Chen, J. Zhang, Z. Zhang, J. Yang, and B. Xu, “Near-infrared tunable metalens based on phase change material Ge2Se2Te5,” Sci. Rep. 9(1), 5368 (2019).
[Crossref]

Huang, K.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref]

Huang, L.

H. Zhou, B. Sain, Y. Wang, C. Schlickriede, R. Zhao, X. Zhang, Q. Wei, X. Li, L. Huang, and T. Zentgraf, “Polarization-encrypted orbital angular momentum multiple metasurface holography,” ACS Nano 14(5), 5553–5559 (2020).
[Crossref]

Q. Wei, B. Sain, Y. Wang, B. Reineke, X. Li, L. Huang, and T. Zentgraf, “Simultaneous spectral and spatial modulation for color printing and holography using all-dielectric metasurface,” Nano Lett. 19(12), 8964–8971 (2019).
[Crossref]

L. Huang, S. Zhang, and T. Zentgraf, “Metasurface holography: from fundamentals to applications,” Nanophotonics 7(6), 1169–1190 (2018).
[Crossref]

X. Song, L. Huang, L. Sun, X. Zhang, R. Zhao, X. Li, J. Wang, B. Bai, and Y. Wang, “Near-field plasmonic beam engineering with complex amplitude modulation based on metasurface,” Appl. Phys. Lett. 112(7), 073104 (2018).
[Crossref]

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light: Sci. Appl. 6(7), e17016 (2017).
[Crossref]

L. Huang, X. Chen, H. Muehlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

X. Chen, L. Huang, H. Muehlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

Huang, T.

S. Wang, P. Wu, V. Su, Y. Lai, M. Chen, H. Kuo, B. Chen, Y. Chen, T. Huang, J. Wang, R. Lin, C. Kuan, T. Li, Z. Wang, S. Zhu, and D. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref]

Hussain, S.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref]

Ishii, N.

Ishii, S.

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light: Sci. Appl. 2(4), e72 (2013).
[Crossref]

Jamali, M. V.

Jia, J.

J. Jia, J. Jiang, C. Xie, and M. Liu, “Photon sieve for reduction of the far-field diffraction spot size in the laser free-space communication system,” Opt. Commun. 281(17), 4536–4539 (2008).
[Crossref]

J. Jia, C. H. Zhou, and L. Liu, “Superresolution technology for reduction of the far-field diffraction spot size in the laser free-space communication system,” Opt. Commun. 228(4-6), 271–278 (2003).
[Crossref]

Jiang, J.

J. Jia, J. Jiang, C. Xie, and M. Liu, “Photon sieve for reduction of the far-field diffraction spot size in the laser free-space communication system,” Opt. Commun. 281(17), 4536–4539 (2008).
[Crossref]

Jiang, T.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alu, and C. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref]

Jin, G.

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-image-free holography: a compressive sensing approach,” Phys. Rev. Lett. 121(9), 093902 (2018).
[Crossref]

L. Huang, X. Chen, H. Muehlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

X. Chen, L. Huang, H. Muehlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

Kanno, T.

T. Tahara, T. Kanno, Y. Arai, and T. Ozawa, “T Single-shot phase-shifting incoherent digital holography,” J. Opt. 19(6), 065705 (2017).
[Crossref]

Katano, Y.

Kats, M. A.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref]

Kavehvash, Z.

Khaidarov, E.

R. Paniagua-Dominguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18(3), 2124–2132 (2018).
[Crossref]

Khavasi, A.

Khorasaninejad, M.

W. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref]

Kiarashinejad, Y.

S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alu, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” arXiv:2001.06335 (2020)

Kildishev, A. V.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref]

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4(1), 2807 (2013).
[Crossref]

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light: Sci. Appl. 2(4), e72 (2013).
[Crossref]

Kim, E. G.

L. T. Bang, H. Y. Wu, Y. Zhao, E. G. Kim, and N. Kim, “Depth enhancement of 3D microscopic living-cell image using incoherent fluorescent digital holography,” J. Microsc. (Oxford, U. K.) 265(3), 372–385 (2017).
[Crossref]

Kim, M.

Kim, M. K.

Y. Wan, T. Man, F. Wu, M. K. Kim, and D. Wang, “Parallel phase-shifting self-interference digital holography with faithful reconstruction using compressive sensing,” Opt. Laser Eng. 86, 38–43 (2016).
[Crossref]

Kim, N.

L. T. Bang, H. Y. Wu, Y. Zhao, E. G. Kim, and N. Kim, “Depth enhancement of 3D microscopic living-cell image using incoherent fluorescent digital holography,” J. Microsc. (Oxford, U. K.) 265(3), 372–385 (2017).
[Crossref]

Kim, Y.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alu, and C. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref]

Kinoshita, N.

Krasnok, A.

S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alu, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” arXiv:2001.06335 (2020)

Krivitsky, L. A.

R. Paniagua-Dominguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18(3), 2124–2132 (2018).
[Crossref]

Kuan, C.

S. Wang, P. Wu, V. Su, Y. Lai, M. Chen, H. Kuo, B. Chen, Y. Chen, T. Huang, J. Wang, R. Lin, C. Kuan, T. Li, Z. Wang, S. Zhu, and D. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref]

Kukhtarev, N.

Kuo, H.

S. Wang, P. Wu, V. Su, Y. Lai, M. Chen, H. Kuo, B. Chen, Y. Chen, T. Huang, J. Wang, R. Lin, C. Kuan, T. Li, Z. Wang, S. Zhu, and D. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref]

Kuo, H. Y.

C. Chen, W. Song, J. Chen, J. Wang, Y. H. Chen, B. Xu, M. Chen, H. Li, B. Fang, J. Chen, H. Y. Kuo, S. Wang, D. P. Tsai, S. Zhu, and T. Li, “Spectral tomographic imaging with aplanatic metalens,” Light: Sci. Appl. 8(1), 99 (2019).
[Crossref]

Kuznetsov, A. I.

R. Paniagua-Dominguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18(3), 2124–2132 (2018).
[Crossref]

Lai, Y.

S. Wang, P. Wu, V. Su, Y. Lai, M. Chen, H. Kuo, B. Chen, Y. Chen, T. Huang, J. Wang, R. Lin, C. Kuan, T. Li, Z. Wang, S. Zhu, and D. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref]

Lalanne, P.

P. Lalanne and P. Chavel, “Metalenses at visible wavelengths: past, present, perspectives,” Laser Photonics Rev. 11(3), 1600295 (2017).
[Crossref]

Lee, E.

W. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref]

Leong, V.

R. Paniagua-Dominguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18(3), 2124–2132 (2018).
[Crossref]

Li, G.

X. Chen, L. Huang, H. Muehlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

Li, H.

C. Chen, W. Song, J. Chen, J. Wang, Y. H. Chen, B. Xu, M. Chen, H. Li, B. Fang, J. Chen, H. Y. Kuo, S. Wang, D. P. Tsai, S. Zhu, and T. Li, “Spectral tomographic imaging with aplanatic metalens,” Light: Sci. Appl. 8(1), 99 (2019).
[Crossref]

Li, J.

L. Huang, X. Chen, H. Muehlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Li, S.

S. Li, C. Zhou, G. Ban, H. Wang, H. Lu, and Y. Wang, “Active all-dielectric bifocal metalens assisted by germanium antimony telluride,” J. Phys. D: Appl. Phys. 52(9), 095106 (2019).
[Crossref]

Li, T.

C. Chen, W. Song, J. Chen, J. Wang, Y. H. Chen, B. Xu, M. Chen, H. Li, B. Fang, J. Chen, H. Y. Kuo, S. Wang, D. P. Tsai, S. Zhu, and T. Li, “Spectral tomographic imaging with aplanatic metalens,” Light: Sci. Appl. 8(1), 99 (2019).
[Crossref]

S. Wang, P. Wu, V. Su, Y. Lai, M. Chen, H. Kuo, B. Chen, Y. Chen, T. Huang, J. Wang, R. Lin, C. Kuan, T. Li, Z. Wang, S. Zhu, and D. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref]

Li, X.

H. Zhou, B. Sain, Y. Wang, C. Schlickriede, R. Zhao, X. Zhang, Q. Wei, X. Li, L. Huang, and T. Zentgraf, “Polarization-encrypted orbital angular momentum multiple metasurface holography,” ACS Nano 14(5), 5553–5559 (2020).
[Crossref]

Q. Wei, B. Sain, Y. Wang, B. Reineke, X. Li, L. Huang, and T. Zentgraf, “Simultaneous spectral and spatial modulation for color printing and holography using all-dielectric metasurface,” Nano Lett. 19(12), 8964–8971 (2019).
[Crossref]

X. Song, L. Huang, L. Sun, X. Zhang, R. Zhao, X. Li, J. Wang, B. Bai, and Y. Wang, “Near-field plasmonic beam engineering with complex amplitude modulation based on metasurface,” Appl. Phys. Lett. 112(7), 073104 (2018).
[Crossref]

Li, Y.

Liang, X.

R. Paniagua-Dominguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18(3), 2124–2132 (2018).
[Crossref]

Lim, S.

Lin, R.

S. Wang, P. Wu, V. Su, Y. Lai, M. Chen, H. Kuo, B. Chen, Y. Chen, T. Huang, J. Wang, R. Lin, C. Kuan, T. Li, Z. Wang, S. Zhu, and D. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref]

Ling, X.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref]

Liu, H.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref]

Liu, L.

J. Jia, C. H. Zhou, and L. Liu, “Superresolution technology for reduction of the far-field diffraction spot size in the laser free-space communication system,” Opt. Commun. 228(4-6), 271–278 (2003).
[Crossref]

Liu, M.

J. Jia, J. Jiang, C. Xie, and M. Liu, “Photon sieve for reduction of the far-field diffraction spot size in the laser free-space communication system,” Opt. Commun. 281(17), 4536–4539 (2008).
[Crossref]

Liu, P.

H. Tang and P. Liu, “Long-distance enhanced fourier transform by hyperbolic gradient-Index metalens,” 40th International Conference on Infrared Millimeter and Terahertz Waves, 7327447 (2015).

Liu, S.

Lu, H.

S. Li, C. Zhou, G. Ban, H. Wang, H. Lu, and Y. Wang, “Active all-dielectric bifocal metalens assisted by germanium antimony telluride,” J. Phys. D: Appl. Phys. 52(9), 095106 (2019).
[Crossref]

Lu, X.

Lv, H.

Ma, F.

Y. Bai, R. Zang, P. Wang, T. Rong, F. Ma, D. Yan-Li, Z. Duan, and Q. Gong, “Single-shot incoherent digital holography based on spatial light modulator,” Acta Phys. Sin. 67, 064202 (2018).
[Crossref]

Man, T.

T. Man, Y. Wan, F. Wu, and D. Wang, “Self-interference compressive digital holography with improved axial resolution and signal-to-noise ratio,” Appl. Opt. 56(13), F91–F96 (2017).
[Crossref]

Y. Wan, T. Man, F. Wu, M. K. Kim, and D. Wang, “Parallel phase-shifting self-interference digital holography with faithful reconstruction using compressive sensing,” Opt. Laser Eng. 86, 38–43 (2016).
[Crossref]

Marcos, S.

Marks, D. L.

Matoba, O.

Mehmood, M. Q.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref]

X. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Yue, C. Qiu, and S. Zhang, “Longitudinal multifoci metalens for circularly polarized light,” Adv. Opt. Mater. 3(9), 1201–1206 (2015).
[Crossref]

Mei, S.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref]

Min, S.

Moazami, A.

M. Hashemi, A. Moazami, M. Naserpour, and C. J. Zapata-Rodriguez, “A broadband multifocal metalens in the terahertz frequency range,” Opt. Commun. 370, 306–310 (2016).
[Crossref]

Monticone, F.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alu, and C. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref]

Mou, Z.

Muehlenbernd, H.

L. Huang, X. Chen, H. Muehlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

X. Chen, L. Huang, H. Muehlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

Muroi, T.

Naserpour, M.

M. Hashemi, A. Moazami, M. Naserpour, and C. J. Zapata-Rodriguez, “A broadband multifocal metalens in the terahertz frequency range,” Opt. Commun. 370, 306–310 (2016).
[Crossref]

Ni, X.

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light: Sci. Appl. 2(4), e72 (2013).
[Crossref]

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4(1), 2807 (2013).
[Crossref]

Nobukawa, T.

Ozawa, T.

T. Tahara, T. Kanno, Y. Arai, and T. Ozawa, “T Single-shot phase-shifting incoherent digital holography,” J. Opt. 19(6), 065705 (2017).
[Crossref]

Paniagua-Dominguez, R.

R. Paniagua-Dominguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18(3), 2124–2132 (2018).
[Crossref]

Qiu, C.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alu, and C. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref]

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref]

X. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Yue, C. Qiu, and S. Zhang, “Longitudinal multifoci metalens for circularly polarized light,” Adv. Opt. Mater. 3(9), 1201–1206 (2015).
[Crossref]

L. Huang, X. Chen, H. Muehlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

X. Chen, L. Huang, H. Muehlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

Qu, S.

Quan, X.

Reineke, B.

Q. Wei, B. Sain, Y. Wang, B. Reineke, X. Li, L. Huang, and T. Zentgraf, “Simultaneous spectral and spatial modulation for color printing and holography using all-dielectric metasurface,” Nano Lett. 19(12), 8964–8971 (2019).
[Crossref]

Rong, T.

Y. Bai, R. Zang, P. Wang, T. Rong, F. Ma, D. Yan-Li, Z. Duan, and Q. Gong, “Single-shot incoherent digital holography based on spatial light modulator,” Acta Phys. Sin. 67, 064202 (2018).
[Crossref]

Rosen, J.

Sain, B.

H. Zhou, B. Sain, Y. Wang, C. Schlickriede, R. Zhao, X. Zhang, Q. Wei, X. Li, L. Huang, and T. Zentgraf, “Polarization-encrypted orbital angular momentum multiple metasurface holography,” ACS Nano 14(5), 5553–5559 (2020).
[Crossref]

Q. Wei, B. Sain, Y. Wang, B. Reineke, X. Li, L. Huang, and T. Zentgraf, “Simultaneous spectral and spatial modulation for color printing and holography using all-dielectric metasurface,” Nano Lett. 19(12), 8964–8971 (2019).
[Crossref]

Salehi, J. A.

Sanjeev, V.

W. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref]

Schlickriede, C.

H. Zhou, B. Sain, Y. Wang, C. Schlickriede, R. Zhao, X. Zhang, Q. Wei, X. Li, L. Huang, and T. Zentgraf, “Polarization-encrypted orbital angular momentum multiple metasurface holography,” ACS Nano 14(5), 5553–5559 (2020).
[Crossref]

Shalaev, V. M.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref]

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4(1), 2807 (2013).
[Crossref]

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light: Sci. Appl. 2(4), e72 (2013).
[Crossref]

Shen, F.

Shi, Z.

W. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref]

Siegel, N.

Siew, S. Y.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref]

Song, W.

C. Chen, W. Song, J. Chen, J. Wang, Y. H. Chen, B. Xu, M. Chen, H. Li, B. Fang, J. Chen, H. Y. Kuo, S. Wang, D. P. Tsai, S. Zhu, and T. Li, “Spectral tomographic imaging with aplanatic metalens,” Light: Sci. Appl. 8(1), 99 (2019).
[Crossref]

Song, X.

X. Song, L. Huang, L. Sun, X. Zhang, R. Zhao, X. Li, J. Wang, B. Bai, and Y. Wang, “Near-field plasmonic beam engineering with complex amplitude modulation based on metasurface,” Appl. Phys. Lett. 112(7), 073104 (2018).
[Crossref]

Steinle, T.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light: Sci. Appl. 6(7), e17016 (2017).
[Crossref]

Su, V.

S. Wang, P. Wu, V. Su, Y. Lai, M. Chen, H. Kuo, B. Chen, Y. Chen, T. Huang, J. Wang, R. Lin, C. Kuan, T. Li, Z. Wang, S. Zhu, and D. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref]

Sun, L.

X. Song, L. Huang, L. Sun, X. Zhang, R. Zhao, X. Li, J. Wang, B. Bai, and Y. Wang, “Near-field plasmonic beam engineering with complex amplitude modulation based on metasurface,” Appl. Phys. Lett. 112(7), 073104 (2018).
[Crossref]

Sun, Y.

Taghinejad, H.

S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alu, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” arXiv:2001.06335 (2020)

Tahara, T.

T. Tahara, T. Kanno, Y. Arai, and T. Ozawa, “T Single-shot phase-shifting incoherent digital holography,” J. Opt. 19(6), 065705 (2017).
[Crossref]

Tan, Q.

L. Huang, X. Chen, H. Muehlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

X. Chen, L. Huang, H. Muehlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

Tang, H.

H. Tang and P. Liu, “Long-distance enhanced fourier transform by hyperbolic gradient-Index metalens,” 40th International Conference on Infrared Millimeter and Terahertz Waves, 7327447 (2015).

Taubner, T.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light: Sci. Appl. 6(7), e17016 (2017).
[Crossref]

Teng, J.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref]

Teng, S.

Tian, S.

Tsai, D.

S. Wang, P. Wu, V. Su, Y. Lai, M. Chen, H. Kuo, B. Chen, Y. Chen, T. Huang, J. Wang, R. Lin, C. Kuan, T. Li, Z. Wang, S. Zhu, and D. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref]

Tsai, D. P.

C. Chen, W. Song, J. Chen, J. Wang, Y. H. Chen, B. Xu, M. Chen, H. Li, B. Fang, J. Chen, H. Y. Kuo, S. Wang, D. P. Tsai, S. Zhu, and T. Li, “Spectral tomographic imaging with aplanatic metalens,” Light: Sci. Appl. 8(1), 99 (2019).
[Crossref]

Valuckas, V.

R. Paniagua-Dominguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18(3), 2124–2132 (2018).
[Crossref]

Wan, Y.

T. Man, Y. Wan, F. Wu, and D. Wang, “Self-interference compressive digital holography with improved axial resolution and signal-to-noise ratio,” Appl. Opt. 56(13), F91–F96 (2017).
[Crossref]

Y. Wan, T. Man, F. Wu, M. K. Kim, and D. Wang, “Parallel phase-shifting self-interference digital holography with faithful reconstruction using compressive sensing,” Opt. Laser Eng. 86, 38–43 (2016).
[Crossref]

Wang, D.

T. Man, Y. Wan, F. Wu, and D. Wang, “Self-interference compressive digital holography with improved axial resolution and signal-to-noise ratio,” Appl. Opt. 56(13), F91–F96 (2017).
[Crossref]

Y. Wan, T. Man, F. Wu, M. K. Kim, and D. Wang, “Parallel phase-shifting self-interference digital holography with faithful reconstruction using compressive sensing,” Opt. Laser Eng. 86, 38–43 (2016).
[Crossref]

Wang, H.

S. Li, C. Zhou, G. Ban, H. Wang, H. Lu, and Y. Wang, “Active all-dielectric bifocal metalens assisted by germanium antimony telluride,” J. Phys. D: Appl. Phys. 52(9), 095106 (2019).
[Crossref]

Wang, J.

C. Chen, W. Song, J. Chen, J. Wang, Y. H. Chen, B. Xu, M. Chen, H. Li, B. Fang, J. Chen, H. Y. Kuo, S. Wang, D. P. Tsai, S. Zhu, and T. Li, “Spectral tomographic imaging with aplanatic metalens,” Light: Sci. Appl. 8(1), 99 (2019).
[Crossref]

S. Wang, P. Wu, V. Su, Y. Lai, M. Chen, H. Kuo, B. Chen, Y. Chen, T. Huang, J. Wang, R. Lin, C. Kuan, T. Li, Z. Wang, S. Zhu, and D. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref]

X. Song, L. Huang, L. Sun, X. Zhang, R. Zhao, X. Li, J. Wang, B. Bai, and Y. Wang, “Near-field plasmonic beam engineering with complex amplitude modulation based on metasurface,” Appl. Phys. Lett. 112(7), 073104 (2018).
[Crossref]

Wang, P.

Y. Bai, R. Zang, P. Wang, T. Rong, F. Ma, D. Yan-Li, Z. Duan, and Q. Gong, “Single-shot incoherent digital holography based on spatial light modulator,” Acta Phys. Sin. 67, 064202 (2018).
[Crossref]

Wang, S.

C. Chen, W. Song, J. Chen, J. Wang, Y. H. Chen, B. Xu, M. Chen, H. Li, B. Fang, J. Chen, H. Y. Kuo, S. Wang, D. P. Tsai, S. Zhu, and T. Li, “Spectral tomographic imaging with aplanatic metalens,” Light: Sci. Appl. 8(1), 99 (2019).
[Crossref]

S. Wang, P. Wu, V. Su, Y. Lai, M. Chen, H. Kuo, B. Chen, Y. Chen, T. Huang, J. Wang, R. Lin, C. Kuan, T. Li, Z. Wang, S. Zhu, and D. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref]

Wang, W.

Wang, Y.

H. Zhou, B. Sain, Y. Wang, C. Schlickriede, R. Zhao, X. Zhang, Q. Wei, X. Li, L. Huang, and T. Zentgraf, “Polarization-encrypted orbital angular momentum multiple metasurface holography,” ACS Nano 14(5), 5553–5559 (2020).
[Crossref]

S. Li, C. Zhou, G. Ban, H. Wang, H. Lu, and Y. Wang, “Active all-dielectric bifocal metalens assisted by germanium antimony telluride,” J. Phys. D: Appl. Phys. 52(9), 095106 (2019).
[Crossref]

Q. Wei, B. Sain, Y. Wang, B. Reineke, X. Li, L. Huang, and T. Zentgraf, “Simultaneous spectral and spatial modulation for color printing and holography using all-dielectric metasurface,” Nano Lett. 19(12), 8964–8971 (2019).
[Crossref]

X. Song, L. Huang, L. Sun, X. Zhang, R. Zhao, X. Li, J. Wang, B. Bai, and Y. Wang, “Near-field plasmonic beam engineering with complex amplitude modulation based on metasurface,” Appl. Phys. Lett. 112(7), 073104 (2018).
[Crossref]

Wang, Z.

S. Wang, P. Wu, V. Su, Y. Lai, M. Chen, H. Kuo, B. Chen, Y. Chen, T. Huang, J. Wang, R. Lin, C. Kuan, T. Li, Z. Wang, S. Zhu, and D. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref]

Wei, Q.

H. Zhou, B. Sain, Y. Wang, C. Schlickriede, R. Zhao, X. Zhang, Q. Wei, X. Li, L. Huang, and T. Zentgraf, “Polarization-encrypted orbital angular momentum multiple metasurface holography,” ACS Nano 14(5), 5553–5559 (2020).
[Crossref]

Q. Wei, B. Sain, Y. Wang, B. Reineke, X. Li, L. Huang, and T. Zentgraf, “Simultaneous spectral and spatial modulation for color printing and holography using all-dielectric metasurface,” Nano Lett. 19(12), 8964–8971 (2019).
[Crossref]

Wen, D.

X. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Yue, C. Qiu, and S. Zhang, “Longitudinal multifoci metalens for circularly polarized light,” Adv. Opt. Mater. 3(9), 1201–1206 (2015).
[Crossref]

Wu, F.

T. Man, Y. Wan, F. Wu, and D. Wang, “Self-interference compressive digital holography with improved axial resolution and signal-to-noise ratio,” Appl. Opt. 56(13), F91–F96 (2017).
[Crossref]

Y. Wan, T. Man, F. Wu, M. K. Kim, and D. Wang, “Parallel phase-shifting self-interference digital holography with faithful reconstruction using compressive sensing,” Opt. Laser Eng. 86, 38–43 (2016).
[Crossref]

Wu, H. Y.

L. T. Bang, H. Y. Wu, Y. Zhao, E. G. Kim, and N. Kim, “Depth enhancement of 3D microscopic living-cell image using incoherent fluorescent digital holography,” J. Microsc. (Oxford, U. K.) 265(3), 372–385 (2017).
[Crossref]

Wu, P.

S. Wang, P. Wu, V. Su, Y. Lai, M. Chen, H. Kuo, B. Chen, Y. Chen, T. Huang, J. Wang, R. Lin, C. Kuan, T. Li, Z. Wang, S. Zhu, and D. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref]

Wuttig, M.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light: Sci. Appl. 6(7), e17016 (2017).
[Crossref]

Xie, C.

J. Jia, J. Jiang, C. Xie, and M. Liu, “Photon sieve for reduction of the far-field diffraction spot size in the laser free-space communication system,” Opt. Commun. 281(17), 4536–4539 (2008).
[Crossref]

Xu, B.

C. Chen, W. Song, J. Chen, J. Wang, Y. H. Chen, B. Xu, M. Chen, H. Li, B. Fang, J. Chen, H. Y. Kuo, S. Wang, D. P. Tsai, S. Zhu, and T. Li, “Spectral tomographic imaging with aplanatic metalens,” Light: Sci. Appl. 8(1), 99 (2019).
[Crossref]

W. Bai, P. Yang, J. Huang, D. Chen, J. Zhang, Z. Zhang, J. Yang, and B. Xu, “Near-infrared tunable metalens based on phase change material Ge2Se2Te5,” Sci. Rep. 9(1), 5368 (2019).
[Crossref]

Yamaguchi, I.

Yang, J.

W. Bai, P. Yang, J. Huang, D. Chen, J. Zhang, Z. Zhang, J. Yang, and B. Xu, “Near-infrared tunable metalens based on phase change material Ge2Se2Te5,” Sci. Rep. 9(1), 5368 (2019).
[Crossref]

Yang, P.

W. Bai, P. Yang, J. Huang, D. Chen, J. Zhang, Z. Zhang, J. Yang, and B. Xu, “Near-infrared tunable metalens based on phase change material Ge2Se2Te5,” Sci. Rep. 9(1), 5368 (2019).
[Crossref]

Yan-Li, D.

Y. Bai, R. Zang, P. Wang, T. Rong, F. Ma, D. Yan-Li, Z. Duan, and Q. Gong, “Single-shot incoherent digital holography based on spatial light modulator,” Acta Phys. Sin. 67, 064202 (2018).
[Crossref]

Yim, J.

Yin, X.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light: Sci. Appl. 6(7), e17016 (2017).
[Crossref]

Yu, N.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref]

Yu, Y. F.

R. Paniagua-Dominguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18(3), 2124–2132 (2018).
[Crossref]

Yue, F.

X. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Yue, C. Qiu, and S. Zhang, “Longitudinal multifoci metalens for circularly polarized light,” Adv. Opt. Mater. 3(9), 1201–1206 (2015).
[Crossref]

Yuk, T. I.

H. L. Zhu, S. W. Cheung, K. L. Chung, and T. I. Yuk, “Linear-to-circular polarization conversion using metasurface,” IEEE Trans. Antennas Propag. 61(9), 4615–4623 (2013).
[Crossref]

Zandehshahvar, M.

S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alu, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” arXiv:2001.06335 (2020)

Zang, R.

Y. Bai, R. Zang, P. Wang, T. Rong, F. Ma, D. Yan-Li, Z. Duan, and Q. Gong, “Single-shot incoherent digital holography based on spatial light modulator,” Acta Phys. Sin. 67, 064202 (2018).
[Crossref]

Zapata-Rodriguez, C. J.

M. Hashemi, A. Moazami, M. Naserpour, and C. J. Zapata-Rodriguez, “A broadband multifocal metalens in the terahertz frequency range,” Opt. Commun. 370, 306–310 (2016).
[Crossref]

Zentgraf, T.

H. Zhou, B. Sain, Y. Wang, C. Schlickriede, R. Zhao, X. Zhang, Q. Wei, X. Li, L. Huang, and T. Zentgraf, “Polarization-encrypted orbital angular momentum multiple metasurface holography,” ACS Nano 14(5), 5553–5559 (2020).
[Crossref]

Q. Wei, B. Sain, Y. Wang, B. Reineke, X. Li, L. Huang, and T. Zentgraf, “Simultaneous spectral and spatial modulation for color printing and holography using all-dielectric metasurface,” Nano Lett. 19(12), 8964–8971 (2019).
[Crossref]

L. Huang, S. Zhang, and T. Zentgraf, “Metasurface holography: from fundamentals to applications,” Nanophotonics 7(6), 1169–1190 (2018).
[Crossref]

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light: Sci. Appl. 6(7), e17016 (2017).
[Crossref]

L. Huang, X. Chen, H. Muehlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

X. Chen, L. Huang, H. Muehlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

Zhang, H.

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-image-free holography: a compressive sensing approach,” Phys. Rev. Lett. 121(9), 093902 (2018).
[Crossref]

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-image-free holography: a compressive sensing approach,” Phys. Rev. Lett. 121(9), 093902 (2018).
[Crossref]

L. Huang, X. Chen, H. Muehlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Zhang, J.

W. Bai, P. Yang, J. Huang, D. Chen, J. Zhang, Z. Zhang, J. Yang, and B. Xu, “Near-infrared tunable metalens based on phase change material Ge2Se2Te5,” Sci. Rep. 9(1), 5368 (2019).
[Crossref]

Zhang, L.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alu, and C. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref]

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref]

Zhang, S.

L. Huang, S. Zhang, and T. Zentgraf, “Metasurface holography: from fundamentals to applications,” Nanophotonics 7(6), 1169–1190 (2018).
[Crossref]

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alu, and C. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref]

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref]

X. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Yue, C. Qiu, and S. Zhang, “Longitudinal multifoci metalens for circularly polarized light,” Adv. Opt. Mater. 3(9), 1201–1206 (2015).
[Crossref]

L. Huang, X. Chen, H. Muehlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

X. Chen, L. Huang, H. Muehlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

Zhang, T.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref]

I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997).
[Crossref]

Zhang, W.

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-image-free holography: a compressive sensing approach,” Phys. Rev. Lett. 121(9), 093902 (2018).
[Crossref]

Zhang, X.

H. Zhou, B. Sain, Y. Wang, C. Schlickriede, R. Zhao, X. Zhang, Q. Wei, X. Li, L. Huang, and T. Zentgraf, “Polarization-encrypted orbital angular momentum multiple metasurface holography,” ACS Nano 14(5), 5553–5559 (2020).
[Crossref]

X. Song, L. Huang, L. Sun, X. Zhang, R. Zhao, X. Li, J. Wang, B. Bai, and Y. Wang, “Near-field plasmonic beam engineering with complex amplitude modulation based on metasurface,” Appl. Phys. Lett. 112(7), 073104 (2018).
[Crossref]

Zhang, Z.

W. Bai, P. Yang, J. Huang, D. Chen, J. Zhang, Z. Zhang, J. Yang, and B. Xu, “Near-infrared tunable metalens based on phase change material Ge2Se2Te5,” Sci. Rep. 9(1), 5368 (2019).
[Crossref]

Zhao, J.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alu, and C. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref]

Zhao, R.

H. Zhou, B. Sain, Y. Wang, C. Schlickriede, R. Zhao, X. Zhang, Q. Wei, X. Li, L. Huang, and T. Zentgraf, “Polarization-encrypted orbital angular momentum multiple metasurface holography,” ACS Nano 14(5), 5553–5559 (2020).
[Crossref]

X. Song, L. Huang, L. Sun, X. Zhang, R. Zhao, X. Li, J. Wang, B. Bai, and Y. Wang, “Near-field plasmonic beam engineering with complex amplitude modulation based on metasurface,” Appl. Phys. Lett. 112(7), 073104 (2018).
[Crossref]

Zhao, Y.

L. T. Bang, H. Y. Wu, Y. Zhao, E. G. Kim, and N. Kim, “Depth enhancement of 3D microscopic living-cell image using incoherent fluorescent digital holography,” J. Microsc. (Oxford, U. K.) 265(3), 372–385 (2017).
[Crossref]

Y. Zhao and A. Alu, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84(20), 205428 (2011).
[Crossref]

Zhou, C.

S. Li, C. Zhou, G. Ban, H. Wang, H. Lu, and Y. Wang, “Active all-dielectric bifocal metalens assisted by germanium antimony telluride,” J. Phys. D: Appl. Phys. 52(9), 095106 (2019).
[Crossref]

Zhou, C. H.

J. Jia, C. H. Zhou, and L. Liu, “Superresolution technology for reduction of the far-field diffraction spot size in the laser free-space communication system,” Opt. Commun. 228(4-6), 271–278 (2003).
[Crossref]

Zhou, H.

H. Zhou, B. Sain, Y. Wang, C. Schlickriede, R. Zhao, X. Zhang, Q. Wei, X. Li, L. Huang, and T. Zentgraf, “Polarization-encrypted orbital angular momentum multiple metasurface holography,” ACS Nano 14(5), 5553–5559 (2020).
[Crossref]

Zhou, K.

Zhu, A. Y.

W. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref]

Zhu, B.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alu, and C. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref]

Zhu, H. L.

H. L. Zhu, S. W. Cheung, K. L. Chung, and T. I. Yuk, “Linear-to-circular polarization conversion using metasurface,” IEEE Trans. Antennas Propag. 61(9), 4615–4623 (2013).
[Crossref]

Zhu, S.

C. Chen, W. Song, J. Chen, J. Wang, Y. H. Chen, B. Xu, M. Chen, H. Li, B. Fang, J. Chen, H. Y. Kuo, S. Wang, D. P. Tsai, S. Zhu, and T. Li, “Spectral tomographic imaging with aplanatic metalens,” Light: Sci. Appl. 8(1), 99 (2019).
[Crossref]

S. Wang, P. Wu, V. Su, Y. Lai, M. Chen, H. Kuo, B. Chen, Y. Chen, T. Huang, J. Wang, R. Lin, C. Kuan, T. Li, Z. Wang, S. Zhu, and D. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref]

Zhuang, S.

Zijlstra, P.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref]

ACS Nano (1)

H. Zhou, B. Sain, Y. Wang, C. Schlickriede, R. Zhao, X. Zhang, Q. Wei, X. Li, L. Huang, and T. Zentgraf, “Polarization-encrypted orbital angular momentum multiple metasurface holography,” ACS Nano 14(5), 5553–5559 (2020).
[Crossref]

Acta Phys. Sin. (1)

Y. Bai, R. Zang, P. Wang, T. Rong, F. Ma, D. Yan-Li, Z. Duan, and Q. Gong, “Single-shot incoherent digital holography based on spatial light modulator,” Acta Phys. Sin. 67, 064202 (2018).
[Crossref]

Adv. Mater. (2)

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alu, and C. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref]

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref]

Adv. Opt. Mater. (1)

X. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Yue, C. Qiu, and S. Zhang, “Longitudinal multifoci metalens for circularly polarized light,” Adv. Opt. Mater. 3(9), 1201–1206 (2015).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

X. Song, L. Huang, L. Sun, X. Zhang, R. Zhao, X. Li, J. Wang, B. Bai, and Y. Wang, “Near-field plasmonic beam engineering with complex amplitude modulation based on metasurface,” Appl. Phys. Lett. 112(7), 073104 (2018).
[Crossref]

Chin. Opt. Lett. (1)

IEEE T. Image Process (1)

J. M. Bioucas-Dias and M. A. T. Figueiredo, “A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE T. Image Process 16(12), 2992–3004 (2007).
[Crossref]

IEEE Trans. Antennas Propag. (1)

H. L. Zhu, S. W. Cheung, K. L. Chung, and T. I. Yuk, “Linear-to-circular polarization conversion using metasurface,” IEEE Trans. Antennas Propag. 61(9), 4615–4623 (2013).
[Crossref]

J. Microsc. (Oxford, U. K.) (1)

L. T. Bang, H. Y. Wu, Y. Zhao, E. G. Kim, and N. Kim, “Depth enhancement of 3D microscopic living-cell image using incoherent fluorescent digital holography,” J. Microsc. (Oxford, U. K.) 265(3), 372–385 (2017).
[Crossref]

J. Opt. (1)

T. Tahara, T. Kanno, Y. Arai, and T. Ozawa, “T Single-shot phase-shifting incoherent digital holography,” J. Opt. 19(6), 065705 (2017).
[Crossref]

J. Phys. D: Appl. Phys. (1)

S. Li, C. Zhou, G. Ban, H. Wang, H. Lu, and Y. Wang, “Active all-dielectric bifocal metalens assisted by germanium antimony telluride,” J. Phys. D: Appl. Phys. 52(9), 095106 (2019).
[Crossref]

Laser Photonics Rev. (1)

P. Lalanne and P. Chavel, “Metalenses at visible wavelengths: past, present, perspectives,” Laser Photonics Rev. 11(3), 1600295 (2017).
[Crossref]

Light: Sci. Appl. (3)

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light: Sci. Appl. 2(4), e72 (2013).
[Crossref]

C. Chen, W. Song, J. Chen, J. Wang, Y. H. Chen, B. Xu, M. Chen, H. Li, B. Fang, J. Chen, H. Y. Kuo, S. Wang, D. P. Tsai, S. Zhu, and T. Li, “Spectral tomographic imaging with aplanatic metalens,” Light: Sci. Appl. 8(1), 99 (2019).
[Crossref]

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light: Sci. Appl. 6(7), e17016 (2017).
[Crossref]

Nano Lett. (3)

R. Paniagua-Dominguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18(3), 2124–2132 (2018).
[Crossref]

Q. Wei, B. Sain, Y. Wang, B. Reineke, X. Li, L. Huang, and T. Zentgraf, “Simultaneous spectral and spatial modulation for color printing and holography using all-dielectric metasurface,” Nano Lett. 19(12), 8964–8971 (2019).
[Crossref]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref]

Nanophotonics (1)

L. Huang, S. Zhang, and T. Zentgraf, “Metasurface holography: from fundamentals to applications,” Nanophotonics 7(6), 1169–1190 (2018).
[Crossref]

Nat. Commun. (3)

X. Chen, L. Huang, H. Muehlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

L. Huang, X. Chen, H. Muehlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4(1), 2807 (2013).
[Crossref]

Nat. Nanotechnol. (2)

W. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref]

S. Wang, P. Wu, V. Su, Y. Lai, M. Chen, H. Kuo, B. Chen, Y. Chen, T. Huang, J. Wang, R. Lin, C. Kuan, T. Li, Z. Wang, S. Zhu, and D. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref]

Nature (1)

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref]

Opt. Commun. (3)

M. Hashemi, A. Moazami, M. Naserpour, and C. J. Zapata-Rodriguez, “A broadband multifocal metalens in the terahertz frequency range,” Opt. Commun. 370, 306–310 (2016).
[Crossref]

J. Jia, J. Jiang, C. Xie, and M. Liu, “Photon sieve for reduction of the far-field diffraction spot size in the laser free-space communication system,” Opt. Commun. 281(17), 4536–4539 (2008).
[Crossref]

J. Jia, C. H. Zhou, and L. Liu, “Superresolution technology for reduction of the far-field diffraction spot size in the laser free-space communication system,” Opt. Commun. 228(4-6), 271–278 (2003).
[Crossref]

Opt. Express (4)

Opt. Laser Eng. (1)

Y. Wan, T. Man, F. Wu, M. K. Kim, and D. Wang, “Parallel phase-shifting self-interference digital holography with faithful reconstruction using compressive sensing,” Opt. Laser Eng. 86, 38–43 (2016).
[Crossref]

Opt. Lett. (7)

Phys. Rev. B (1)

Y. Zhao and A. Alu, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84(20), 205428 (2011).
[Crossref]

Phys. Rev. Lett. (1)

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-image-free holography: a compressive sensing approach,” Phys. Rev. Lett. 121(9), 093902 (2018).
[Crossref]

Sci. Rep. (1)

W. Bai, P. Yang, J. Huang, D. Chen, J. Zhang, Z. Zhang, J. Yang, and B. Xu, “Near-infrared tunable metalens based on phase change material Ge2Se2Te5,” Sci. Rep. 9(1), 5368 (2019).
[Crossref]

Science (1)

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref]

Other (3)

H. Tang and P. Liu, “Long-distance enhanced fourier transform by hyperbolic gradient-Index metalens,” 40th International Conference on Infrared Millimeter and Terahertz Waves, 7327447 (2015).

S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alu, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” arXiv:2001.06335 (2020)

J. Rosen and G. Brooker, “Incoherent digital holographic microscopy with coherent and incoherent light,” 87–112 (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Coaxial holography and CS reconstruction using a bifocal metalens.
Fig. 2.
Fig. 2. Hologram recording diagram, (a)Coaxial holography principle scheme; (b) Bifocal metalens wrap phase profile. Ds: distance between object voxel and bifocal metalens; Dh: recording distance; D1 /D2: two beams converge distance from bifocal metalens.
Fig. 3.
Fig. 3. Nanostructure and optical setup: (a) Nanodisk structure; (b) The phase and amplitude of the nanodisks at wavelength 800 nm; (c) Partial phase profile of the double-focal metalens, and it corresponds to nanodisks with various radii; (d) Nanodisk electromagnetic energy distribution; (e) The optical setup of coaxial holography (USAF1951: resolution chart; objective: 20×/0.45; CCD: camera).
Fig. 4.
Fig. 4. Scanning electric microscopy images and bifocal metalens axial intensity. (a) Top-view and (b) 45°-side-view SEM images. : (c) Simulated and (d) Experimental results of intensity distribution along propagation direction of such bifocal metalens; simulated focal lengths: 1400 and 1600 µm; measured focal lengths: 1340 and 1580 µm; (e) Normalized intensity distribution at the two foci and their line cross-section; (f) FTIR-measurement of different polarization channels.
Fig. 5.
Fig. 5. Experimental results: (a-g) Coaxial holograms; (h-n) Fresnel back-propagation reconstructions; (o-u) CS reconstructions of point-source and USAF1951 resolution chart Group 5; scalebar: 16.6 µm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E  =  | G ( 1 f c 1 + D h ) + G ( 1 f c 2 + D h ) | 2
E  =  I 1  +  G [ 1 z r ] + G [ 1 z r ]
z r = ( f c 1 + D h ) ( f c 2 + D h ) f c 2 f c 1
φ L  = arg | B 1 exp ( i 2 π λ ( ( x 2 + y 2 + f 1 2 ) f 1 ) )  +  B 2 exp ( i 2 π λ ( ( x 2 + y 2 + f 2 2 ) f 2 ) ) |
I g  =  Φ f
f ^ = arg min f { | | I g Φ f | | 2 2 + τ | | f | | T V }

Metrics