Abstract

Correlation property of light limits the performance in related applications such as the visibility of ghost imaging or intensity interferometry. To exceed these performance limits, we here manipulate the degree of second- and higher-order coherence of light by changing controllable variables in four-wave mixing (FWM) process. The measured degree of second- and third-order coherence of the output light beams considerably exceed those of the incident pseudothermal light. Namely superbunching effects, g(2)(0) value up to 7.47 and g(3)(0) value up to 58.34, are observed experimentally. In addition, strong second- and third-order cross-correlation exist between the output light beams. Further insights into the dependence of superbunching light on the temperature of Rb vapor, the laser detuning and the optical power of all the incident light beams show that it can serve as a light source with a tunable superbunching degree.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177(4497), 27–29 (1956).
    [Crossref]
  2. R. H. Brown and R. Q. Twiss, “A test of a new type of stellar interferometer on sirius,” Nature 178(4541), 1046–1048 (1956).
    [Crossref]
  3. S. M. H. Rafsanjani, M. Mirhosseini, O. S. Magaña-Loaiza, B. T. Gard, R. Birrittella, B. Koltenbah, C. Parazzoli, B. A. Capron, C. C. Gerry, J. P. Dowling, and R. W. Boyd, “Quantum-enhanced interferometry with weak thermal light,” Optica 4(4), 487–491 (2017).
    [Crossref]
  4. Y. Zhai, F. E. Becerra, J. Fan, and A. Migdall, “Direct measurement of sub-wavelength interference using thermal light and photon-number-resolved detection,” Appl. Phys. Lett. 105(10), 101104 (2014).
    [Crossref]
  5. Y. Zhai, X. Chen, and L. Wu, “Two-photon interference with two independent pseudothermal sources,” Phys. Rev. A 74(5), 053807 (2006).
    [Crossref]
  6. E. Zhang, W. Liu, and P. Chen, “Lensless ghost interference with classical incoherent light,” Opt. Commun. 351, 135–139 (2015).
    [Crossref]
  7. R. S. Bennink, S. J. Bentley, and R. W. Boyd, “"two-photon" coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
    [Crossref]
  8. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classicalcorrelation,” Phys. Rev. Lett. 93(9), 093602 (2004).
    [Crossref]
  9. A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94(6), 063601 (2005).
    [Crossref]
  10. R. J. Glauber, “Coherent and incoherent states of the radiation field,” Phys. Rev. 131(6), 2766–2788 (1963).
    [Crossref]
  11. L. Mandel and E. Wolf, Optical coherence and quantum optics (Cambridge University, 1995).
  12. Y. Zhou, J. Simon, J. Liu, and Y. Shih, “Third-order correlation function and ghost imaging of chaotic thermal light in the photon counting regime,” Phys. Rev. A 81(4), 043831 (2010).
    [Crossref]
  13. H. Li, J. Shi, Z. Chen, and G. Zeng, “Detailed quality analysis of ideal high-order thermal ghost imaging,” J. Opt. Soc. Am. A 29(11), 2256–2262 (2012).
    [Crossref]
  14. P. Hong, J. Liu, and G. Zhang, “Two-photon superbunching of thermal light via multiple two-photon path interference,” Phys. Rev. A 86(1), 013807 (2012).
    [Crossref]
  15. L. Zhang, Y. Lu, D. Zhou, H. Zhang, L. Li, and G. Zhang, “Superbunching effect of classical light with a digitally designed spatially phase-correlated wave front,” Phys. Rev. A 99(6), 063827 (2019).
    [Crossref]
  16. Y. Zhou, F. Li, B. Bai, H. Chen, J. Liu, Z. Xu, and H. Zheng, “Superbunching pseudothermal light,” Phys. Rev. A 95(5), 053809 (2017).
    [Crossref]
  17. B. Bai, J. Liu, Y. Zhou, H. Zheng, H. Chen, S. Zhang, Y. He, F. Li, and Z. Xu, “Photon superbunching of classical light in the hanbury brown–twiss interferometer,” J. Opt. Soc. Am. B 34(10), 2081–2088 (2017).
    [Crossref]
  18. I. Straka, J. Mika, and M. Ježek, “Generator of arbitrary classical photon statistics,” Opt. Express 26(7), 8998–9010 (2018).
    [Crossref]
  19. Y. Zhou, X. Zhang, Z. Wang, F. Zhang, H. Chen, H. Zheng, J. Liu, F. Li, and Z. Xu, “Superbunching pseudothermal light with intensity modulated laser light and rotating groundglass,” Opt. Commun. 437, 330–336 (2019).
    [Crossref]
  20. Y. Bromberg and H. Cao, “Generating non-rayleigh speckles with tailored intensity statistics,” Phys. Rev. Lett. 112(21), 213904 (2014).
    [Crossref]
  21. N. Bender, H. Yılmaz, Y. Bromberg, and H. Cao, “Customizing speckle intensity statistics,” Optica 5(5), 595–600 (2018).
    [Crossref]
  22. P. Hong, L. Li, J. Liu, and G. Zhang, “Active control on high-order coherence and statistic characterization on random phase fluctuation of two classical point sources,” Sci. Rep. 6(1), 23614 (2016).
    [Crossref]
  23. Y. Zhou, S. Luo, Z. Tang, H. Zheng, H. Chen, J. Liu, F. Li, and Z. Xu, “Experimental observation of three-photon superbunching with classical light in a linear system,” J. Opt. Soc. Am. B 36(1), 96–100 (2019).
    [Crossref]
  24. R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93(1), 99–110 (1954).
    [Crossref]
  25. D. Bhatti, J. Von Zanthier, and G. S. Agarwal, “Superbunching and nonclassicality as new hallmarks of superradiance,” Sci. Rep. 5(1), 17335 (2015).
    [Crossref]
  26. F. Boitier, A. Godard, N. Dubreuil, P. Delaye, C. Fabre, and E. Rosencher, “Photon extrabunching in ultrabright twin beams measured by two-photon counting in a semiconductor,” Nat. Commun. 2(1), 425 (2011).
    [Crossref]
  27. T. S. Iskhakov, A. Pérez, K. Y. Spasibko, M. Chekhova, and G. Leuchs, “Superbunched bright squeezed vacuum state,” Opt. Lett. 37(11), 1919–1921 (2012).
    [Crossref]
  28. C. C. Leon, A. Rosławska, A. Grewal, O. Gunnarsson, K. Kuhnke, and K. Kern, “Photon superbunching from a generic tunnel junction,” Sci. Adv. 5(5), eaav4986 (2019).
    [Crossref]
  29. F. Jahnke, C. Gies, M. Aßmann, M. Bayer, H. Leymann, A. Foerster, J. Wiersig, C. Schneider, M. Kamp, and S. Höfling, “Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers,” Nat. Commun. 7(1), 11540 (2016).
    [Crossref]
  30. Y. Bromberg, Y. Lahini, E. Small, and Y. Silberberg, “Hanbury brown and twiss interferometry with interacting photons,” Nat. Photonics 4(10), 721–726 (2010).
    [Crossref]
  31. J. Perina, “Photon statistics of four-wave mixing of nonclassical light with pump depletion,” in 16th Congress of the International Commission for Optics: Optics as a Key to High Technology, vol. 1983 (International Society for Optics and Photonics, 1993), p. 19830U.
  32. K. Y. Spasibko, D. A. Kopylov, V. L. Krutyanskiy, T. V. Murzina, G. Leuchs, and M. V. Chekhova, “Multiphoton effects enhanced due to ultrafast photon-number fluctuations,” Phys. Rev. Lett. 119(22), 223603 (2017).
    [Crossref]
  33. M. Manceau, K. Y. Spasibko, G. Leuchs, R. Filip, and M. V. Chekhova, “Indefinite-mean pareto photon distribution from amplified quantum noise,” Phys. Rev. Lett. 123(12), 123606 (2019).
    [Crossref]
  34. M. Cao, X. Yang, J. Wang, S. Qiu, D. Wei, H. Gao, and F. Li, “Resolution enhancement of ghost imaging in atom vapor,” Opt. Lett. 41(22), 5349–5352 (2016).
    [Crossref]
  35. Y. Yu, C. Wang, J. Liu, J. Wang, M. Cao, D. Wei, H. Gao, and F. Li, “Ghost imaging with different frequencies through non-degenerated four-wave mixing,” Opt. Express 24(16), 18290–18296 (2016).
    [Crossref]
  36. R. W. Boyd, Nonlinear optics (Elsevier, 2003).
  37. D. A. Steck, “Rubidium 87 d line data,” (2001).
  38. Y. Zhang and M. Xiao, Multi-Wave Mixing Processes: from ultrafast polarization beats to electromagnetically induced trans (Springer-Verlag and Higher Education, 2009).

2019 (5)

L. Zhang, Y. Lu, D. Zhou, H. Zhang, L. Li, and G. Zhang, “Superbunching effect of classical light with a digitally designed spatially phase-correlated wave front,” Phys. Rev. A 99(6), 063827 (2019).
[Crossref]

Y. Zhou, X. Zhang, Z. Wang, F. Zhang, H. Chen, H. Zheng, J. Liu, F. Li, and Z. Xu, “Superbunching pseudothermal light with intensity modulated laser light and rotating groundglass,” Opt. Commun. 437, 330–336 (2019).
[Crossref]

Y. Zhou, S. Luo, Z. Tang, H. Zheng, H. Chen, J. Liu, F. Li, and Z. Xu, “Experimental observation of three-photon superbunching with classical light in a linear system,” J. Opt. Soc. Am. B 36(1), 96–100 (2019).
[Crossref]

C. C. Leon, A. Rosławska, A. Grewal, O. Gunnarsson, K. Kuhnke, and K. Kern, “Photon superbunching from a generic tunnel junction,” Sci. Adv. 5(5), eaav4986 (2019).
[Crossref]

M. Manceau, K. Y. Spasibko, G. Leuchs, R. Filip, and M. V. Chekhova, “Indefinite-mean pareto photon distribution from amplified quantum noise,” Phys. Rev. Lett. 123(12), 123606 (2019).
[Crossref]

2018 (2)

2017 (4)

K. Y. Spasibko, D. A. Kopylov, V. L. Krutyanskiy, T. V. Murzina, G. Leuchs, and M. V. Chekhova, “Multiphoton effects enhanced due to ultrafast photon-number fluctuations,” Phys. Rev. Lett. 119(22), 223603 (2017).
[Crossref]

Y. Zhou, F. Li, B. Bai, H. Chen, J. Liu, Z. Xu, and H. Zheng, “Superbunching pseudothermal light,” Phys. Rev. A 95(5), 053809 (2017).
[Crossref]

B. Bai, J. Liu, Y. Zhou, H. Zheng, H. Chen, S. Zhang, Y. He, F. Li, and Z. Xu, “Photon superbunching of classical light in the hanbury brown–twiss interferometer,” J. Opt. Soc. Am. B 34(10), 2081–2088 (2017).
[Crossref]

S. M. H. Rafsanjani, M. Mirhosseini, O. S. Magaña-Loaiza, B. T. Gard, R. Birrittella, B. Koltenbah, C. Parazzoli, B. A. Capron, C. C. Gerry, J. P. Dowling, and R. W. Boyd, “Quantum-enhanced interferometry with weak thermal light,” Optica 4(4), 487–491 (2017).
[Crossref]

2016 (4)

M. Cao, X. Yang, J. Wang, S. Qiu, D. Wei, H. Gao, and F. Li, “Resolution enhancement of ghost imaging in atom vapor,” Opt. Lett. 41(22), 5349–5352 (2016).
[Crossref]

Y. Yu, C. Wang, J. Liu, J. Wang, M. Cao, D. Wei, H. Gao, and F. Li, “Ghost imaging with different frequencies through non-degenerated four-wave mixing,” Opt. Express 24(16), 18290–18296 (2016).
[Crossref]

F. Jahnke, C. Gies, M. Aßmann, M. Bayer, H. Leymann, A. Foerster, J. Wiersig, C. Schneider, M. Kamp, and S. Höfling, “Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers,” Nat. Commun. 7(1), 11540 (2016).
[Crossref]

P. Hong, L. Li, J. Liu, and G. Zhang, “Active control on high-order coherence and statistic characterization on random phase fluctuation of two classical point sources,” Sci. Rep. 6(1), 23614 (2016).
[Crossref]

2015 (2)

D. Bhatti, J. Von Zanthier, and G. S. Agarwal, “Superbunching and nonclassicality as new hallmarks of superradiance,” Sci. Rep. 5(1), 17335 (2015).
[Crossref]

E. Zhang, W. Liu, and P. Chen, “Lensless ghost interference with classical incoherent light,” Opt. Commun. 351, 135–139 (2015).
[Crossref]

2014 (2)

Y. Zhai, F. E. Becerra, J. Fan, and A. Migdall, “Direct measurement of sub-wavelength interference using thermal light and photon-number-resolved detection,” Appl. Phys. Lett. 105(10), 101104 (2014).
[Crossref]

Y. Bromberg and H. Cao, “Generating non-rayleigh speckles with tailored intensity statistics,” Phys. Rev. Lett. 112(21), 213904 (2014).
[Crossref]

2012 (3)

2011 (1)

F. Boitier, A. Godard, N. Dubreuil, P. Delaye, C. Fabre, and E. Rosencher, “Photon extrabunching in ultrabright twin beams measured by two-photon counting in a semiconductor,” Nat. Commun. 2(1), 425 (2011).
[Crossref]

2010 (2)

Y. Bromberg, Y. Lahini, E. Small, and Y. Silberberg, “Hanbury brown and twiss interferometry with interacting photons,” Nat. Photonics 4(10), 721–726 (2010).
[Crossref]

Y. Zhou, J. Simon, J. Liu, and Y. Shih, “Third-order correlation function and ghost imaging of chaotic thermal light in the photon counting regime,” Phys. Rev. A 81(4), 043831 (2010).
[Crossref]

2006 (1)

Y. Zhai, X. Chen, and L. Wu, “Two-photon interference with two independent pseudothermal sources,” Phys. Rev. A 74(5), 053807 (2006).
[Crossref]

2005 (1)

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94(6), 063601 (2005).
[Crossref]

2004 (1)

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classicalcorrelation,” Phys. Rev. Lett. 93(9), 093602 (2004).
[Crossref]

2002 (1)

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “"two-photon" coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref]

1963 (1)

R. J. Glauber, “Coherent and incoherent states of the radiation field,” Phys. Rev. 131(6), 2766–2788 (1963).
[Crossref]

1956 (2)

R. H. Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177(4497), 27–29 (1956).
[Crossref]

R. H. Brown and R. Q. Twiss, “A test of a new type of stellar interferometer on sirius,” Nature 178(4541), 1046–1048 (1956).
[Crossref]

1954 (1)

R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93(1), 99–110 (1954).
[Crossref]

Agarwal, G. S.

D. Bhatti, J. Von Zanthier, and G. S. Agarwal, “Superbunching and nonclassicality as new hallmarks of superradiance,” Sci. Rep. 5(1), 17335 (2015).
[Crossref]

Aßmann, M.

F. Jahnke, C. Gies, M. Aßmann, M. Bayer, H. Leymann, A. Foerster, J. Wiersig, C. Schneider, M. Kamp, and S. Höfling, “Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers,” Nat. Commun. 7(1), 11540 (2016).
[Crossref]

Bache, M.

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classicalcorrelation,” Phys. Rev. Lett. 93(9), 093602 (2004).
[Crossref]

Bai, B.

Bayer, M.

F. Jahnke, C. Gies, M. Aßmann, M. Bayer, H. Leymann, A. Foerster, J. Wiersig, C. Schneider, M. Kamp, and S. Höfling, “Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers,” Nat. Commun. 7(1), 11540 (2016).
[Crossref]

Becerra, F. E.

Y. Zhai, F. E. Becerra, J. Fan, and A. Migdall, “Direct measurement of sub-wavelength interference using thermal light and photon-number-resolved detection,” Appl. Phys. Lett. 105(10), 101104 (2014).
[Crossref]

Bender, N.

Bennink, R. S.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “"two-photon" coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref]

Bentley, S. J.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “"two-photon" coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref]

Bhatti, D.

D. Bhatti, J. Von Zanthier, and G. S. Agarwal, “Superbunching and nonclassicality as new hallmarks of superradiance,” Sci. Rep. 5(1), 17335 (2015).
[Crossref]

Birrittella, R.

Boitier, F.

F. Boitier, A. Godard, N. Dubreuil, P. Delaye, C. Fabre, and E. Rosencher, “Photon extrabunching in ultrabright twin beams measured by two-photon counting in a semiconductor,” Nat. Commun. 2(1), 425 (2011).
[Crossref]

Boyd, R. W.

S. M. H. Rafsanjani, M. Mirhosseini, O. S. Magaña-Loaiza, B. T. Gard, R. Birrittella, B. Koltenbah, C. Parazzoli, B. A. Capron, C. C. Gerry, J. P. Dowling, and R. W. Boyd, “Quantum-enhanced interferometry with weak thermal light,” Optica 4(4), 487–491 (2017).
[Crossref]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “"two-photon" coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref]

R. W. Boyd, Nonlinear optics (Elsevier, 2003).

Brambilla, E.

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classicalcorrelation,” Phys. Rev. Lett. 93(9), 093602 (2004).
[Crossref]

Bromberg, Y.

N. Bender, H. Yılmaz, Y. Bromberg, and H. Cao, “Customizing speckle intensity statistics,” Optica 5(5), 595–600 (2018).
[Crossref]

Y. Bromberg and H. Cao, “Generating non-rayleigh speckles with tailored intensity statistics,” Phys. Rev. Lett. 112(21), 213904 (2014).
[Crossref]

Y. Bromberg, Y. Lahini, E. Small, and Y. Silberberg, “Hanbury brown and twiss interferometry with interacting photons,” Nat. Photonics 4(10), 721–726 (2010).
[Crossref]

Brown, R. H.

R. H. Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177(4497), 27–29 (1956).
[Crossref]

R. H. Brown and R. Q. Twiss, “A test of a new type of stellar interferometer on sirius,” Nature 178(4541), 1046–1048 (1956).
[Crossref]

Cao, H.

N. Bender, H. Yılmaz, Y. Bromberg, and H. Cao, “Customizing speckle intensity statistics,” Optica 5(5), 595–600 (2018).
[Crossref]

Y. Bromberg and H. Cao, “Generating non-rayleigh speckles with tailored intensity statistics,” Phys. Rev. Lett. 112(21), 213904 (2014).
[Crossref]

Cao, M.

Capron, B. A.

Chekhova, M.

Chekhova, M. V.

M. Manceau, K. Y. Spasibko, G. Leuchs, R. Filip, and M. V. Chekhova, “Indefinite-mean pareto photon distribution from amplified quantum noise,” Phys. Rev. Lett. 123(12), 123606 (2019).
[Crossref]

K. Y. Spasibko, D. A. Kopylov, V. L. Krutyanskiy, T. V. Murzina, G. Leuchs, and M. V. Chekhova, “Multiphoton effects enhanced due to ultrafast photon-number fluctuations,” Phys. Rev. Lett. 119(22), 223603 (2017).
[Crossref]

Chen, H.

Y. Zhou, X. Zhang, Z. Wang, F. Zhang, H. Chen, H. Zheng, J. Liu, F. Li, and Z. Xu, “Superbunching pseudothermal light with intensity modulated laser light and rotating groundglass,” Opt. Commun. 437, 330–336 (2019).
[Crossref]

Y. Zhou, S. Luo, Z. Tang, H. Zheng, H. Chen, J. Liu, F. Li, and Z. Xu, “Experimental observation of three-photon superbunching with classical light in a linear system,” J. Opt. Soc. Am. B 36(1), 96–100 (2019).
[Crossref]

B. Bai, J. Liu, Y. Zhou, H. Zheng, H. Chen, S. Zhang, Y. He, F. Li, and Z. Xu, “Photon superbunching of classical light in the hanbury brown–twiss interferometer,” J. Opt. Soc. Am. B 34(10), 2081–2088 (2017).
[Crossref]

Y. Zhou, F. Li, B. Bai, H. Chen, J. Liu, Z. Xu, and H. Zheng, “Superbunching pseudothermal light,” Phys. Rev. A 95(5), 053809 (2017).
[Crossref]

Chen, P.

E. Zhang, W. Liu, and P. Chen, “Lensless ghost interference with classical incoherent light,” Opt. Commun. 351, 135–139 (2015).
[Crossref]

Chen, X.

Y. Zhai, X. Chen, and L. Wu, “Two-photon interference with two independent pseudothermal sources,” Phys. Rev. A 74(5), 053807 (2006).
[Crossref]

Chen, Z.

D’Angelo, M.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94(6), 063601 (2005).
[Crossref]

Delaye, P.

F. Boitier, A. Godard, N. Dubreuil, P. Delaye, C. Fabre, and E. Rosencher, “Photon extrabunching in ultrabright twin beams measured by two-photon counting in a semiconductor,” Nat. Commun. 2(1), 425 (2011).
[Crossref]

Dicke, R. H.

R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93(1), 99–110 (1954).
[Crossref]

Dowling, J. P.

Dubreuil, N.

F. Boitier, A. Godard, N. Dubreuil, P. Delaye, C. Fabre, and E. Rosencher, “Photon extrabunching in ultrabright twin beams measured by two-photon counting in a semiconductor,” Nat. Commun. 2(1), 425 (2011).
[Crossref]

Fabre, C.

F. Boitier, A. Godard, N. Dubreuil, P. Delaye, C. Fabre, and E. Rosencher, “Photon extrabunching in ultrabright twin beams measured by two-photon counting in a semiconductor,” Nat. Commun. 2(1), 425 (2011).
[Crossref]

Fan, J.

Y. Zhai, F. E. Becerra, J. Fan, and A. Migdall, “Direct measurement of sub-wavelength interference using thermal light and photon-number-resolved detection,” Appl. Phys. Lett. 105(10), 101104 (2014).
[Crossref]

Filip, R.

M. Manceau, K. Y. Spasibko, G. Leuchs, R. Filip, and M. V. Chekhova, “Indefinite-mean pareto photon distribution from amplified quantum noise,” Phys. Rev. Lett. 123(12), 123606 (2019).
[Crossref]

Foerster, A.

F. Jahnke, C. Gies, M. Aßmann, M. Bayer, H. Leymann, A. Foerster, J. Wiersig, C. Schneider, M. Kamp, and S. Höfling, “Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers,” Nat. Commun. 7(1), 11540 (2016).
[Crossref]

Gao, H.

Gard, B. T.

Gatti, A.

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classicalcorrelation,” Phys. Rev. Lett. 93(9), 093602 (2004).
[Crossref]

Gerry, C. C.

Gies, C.

F. Jahnke, C. Gies, M. Aßmann, M. Bayer, H. Leymann, A. Foerster, J. Wiersig, C. Schneider, M. Kamp, and S. Höfling, “Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers,” Nat. Commun. 7(1), 11540 (2016).
[Crossref]

Glauber, R. J.

R. J. Glauber, “Coherent and incoherent states of the radiation field,” Phys. Rev. 131(6), 2766–2788 (1963).
[Crossref]

Godard, A.

F. Boitier, A. Godard, N. Dubreuil, P. Delaye, C. Fabre, and E. Rosencher, “Photon extrabunching in ultrabright twin beams measured by two-photon counting in a semiconductor,” Nat. Commun. 2(1), 425 (2011).
[Crossref]

Grewal, A.

C. C. Leon, A. Rosławska, A. Grewal, O. Gunnarsson, K. Kuhnke, and K. Kern, “Photon superbunching from a generic tunnel junction,” Sci. Adv. 5(5), eaav4986 (2019).
[Crossref]

Gunnarsson, O.

C. C. Leon, A. Rosławska, A. Grewal, O. Gunnarsson, K. Kuhnke, and K. Kern, “Photon superbunching from a generic tunnel junction,” Sci. Adv. 5(5), eaav4986 (2019).
[Crossref]

He, Y.

Höfling, S.

F. Jahnke, C. Gies, M. Aßmann, M. Bayer, H. Leymann, A. Foerster, J. Wiersig, C. Schneider, M. Kamp, and S. Höfling, “Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers,” Nat. Commun. 7(1), 11540 (2016).
[Crossref]

Hong, P.

P. Hong, L. Li, J. Liu, and G. Zhang, “Active control on high-order coherence and statistic characterization on random phase fluctuation of two classical point sources,” Sci. Rep. 6(1), 23614 (2016).
[Crossref]

P. Hong, J. Liu, and G. Zhang, “Two-photon superbunching of thermal light via multiple two-photon path interference,” Phys. Rev. A 86(1), 013807 (2012).
[Crossref]

Iskhakov, T. S.

Jahnke, F.

F. Jahnke, C. Gies, M. Aßmann, M. Bayer, H. Leymann, A. Foerster, J. Wiersig, C. Schneider, M. Kamp, and S. Höfling, “Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers,” Nat. Commun. 7(1), 11540 (2016).
[Crossref]

Ježek, M.

Kamp, M.

F. Jahnke, C. Gies, M. Aßmann, M. Bayer, H. Leymann, A. Foerster, J. Wiersig, C. Schneider, M. Kamp, and S. Höfling, “Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers,” Nat. Commun. 7(1), 11540 (2016).
[Crossref]

Kern, K.

C. C. Leon, A. Rosławska, A. Grewal, O. Gunnarsson, K. Kuhnke, and K. Kern, “Photon superbunching from a generic tunnel junction,” Sci. Adv. 5(5), eaav4986 (2019).
[Crossref]

Koltenbah, B.

Kopylov, D. A.

K. Y. Spasibko, D. A. Kopylov, V. L. Krutyanskiy, T. V. Murzina, G. Leuchs, and M. V. Chekhova, “Multiphoton effects enhanced due to ultrafast photon-number fluctuations,” Phys. Rev. Lett. 119(22), 223603 (2017).
[Crossref]

Krutyanskiy, V. L.

K. Y. Spasibko, D. A. Kopylov, V. L. Krutyanskiy, T. V. Murzina, G. Leuchs, and M. V. Chekhova, “Multiphoton effects enhanced due to ultrafast photon-number fluctuations,” Phys. Rev. Lett. 119(22), 223603 (2017).
[Crossref]

Kuhnke, K.

C. C. Leon, A. Rosławska, A. Grewal, O. Gunnarsson, K. Kuhnke, and K. Kern, “Photon superbunching from a generic tunnel junction,” Sci. Adv. 5(5), eaav4986 (2019).
[Crossref]

Lahini, Y.

Y. Bromberg, Y. Lahini, E. Small, and Y. Silberberg, “Hanbury brown and twiss interferometry with interacting photons,” Nat. Photonics 4(10), 721–726 (2010).
[Crossref]

Leon, C. C.

C. C. Leon, A. Rosławska, A. Grewal, O. Gunnarsson, K. Kuhnke, and K. Kern, “Photon superbunching from a generic tunnel junction,” Sci. Adv. 5(5), eaav4986 (2019).
[Crossref]

Leuchs, G.

M. Manceau, K. Y. Spasibko, G. Leuchs, R. Filip, and M. V. Chekhova, “Indefinite-mean pareto photon distribution from amplified quantum noise,” Phys. Rev. Lett. 123(12), 123606 (2019).
[Crossref]

K. Y. Spasibko, D. A. Kopylov, V. L. Krutyanskiy, T. V. Murzina, G. Leuchs, and M. V. Chekhova, “Multiphoton effects enhanced due to ultrafast photon-number fluctuations,” Phys. Rev. Lett. 119(22), 223603 (2017).
[Crossref]

T. S. Iskhakov, A. Pérez, K. Y. Spasibko, M. Chekhova, and G. Leuchs, “Superbunched bright squeezed vacuum state,” Opt. Lett. 37(11), 1919–1921 (2012).
[Crossref]

Leymann, H.

F. Jahnke, C. Gies, M. Aßmann, M. Bayer, H. Leymann, A. Foerster, J. Wiersig, C. Schneider, M. Kamp, and S. Höfling, “Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers,” Nat. Commun. 7(1), 11540 (2016).
[Crossref]

Li, F.

Li, H.

Li, L.

L. Zhang, Y. Lu, D. Zhou, H. Zhang, L. Li, and G. Zhang, “Superbunching effect of classical light with a digitally designed spatially phase-correlated wave front,” Phys. Rev. A 99(6), 063827 (2019).
[Crossref]

P. Hong, L. Li, J. Liu, and G. Zhang, “Active control on high-order coherence and statistic characterization on random phase fluctuation of two classical point sources,” Sci. Rep. 6(1), 23614 (2016).
[Crossref]

Liu, J.

Y. Zhou, S. Luo, Z. Tang, H. Zheng, H. Chen, J. Liu, F. Li, and Z. Xu, “Experimental observation of three-photon superbunching with classical light in a linear system,” J. Opt. Soc. Am. B 36(1), 96–100 (2019).
[Crossref]

Y. Zhou, X. Zhang, Z. Wang, F. Zhang, H. Chen, H. Zheng, J. Liu, F. Li, and Z. Xu, “Superbunching pseudothermal light with intensity modulated laser light and rotating groundglass,” Opt. Commun. 437, 330–336 (2019).
[Crossref]

Y. Zhou, F. Li, B. Bai, H. Chen, J. Liu, Z. Xu, and H. Zheng, “Superbunching pseudothermal light,” Phys. Rev. A 95(5), 053809 (2017).
[Crossref]

B. Bai, J. Liu, Y. Zhou, H. Zheng, H. Chen, S. Zhang, Y. He, F. Li, and Z. Xu, “Photon superbunching of classical light in the hanbury brown–twiss interferometer,” J. Opt. Soc. Am. B 34(10), 2081–2088 (2017).
[Crossref]

P. Hong, L. Li, J. Liu, and G. Zhang, “Active control on high-order coherence and statistic characterization on random phase fluctuation of two classical point sources,” Sci. Rep. 6(1), 23614 (2016).
[Crossref]

Y. Yu, C. Wang, J. Liu, J. Wang, M. Cao, D. Wei, H. Gao, and F. Li, “Ghost imaging with different frequencies through non-degenerated four-wave mixing,” Opt. Express 24(16), 18290–18296 (2016).
[Crossref]

P. Hong, J. Liu, and G. Zhang, “Two-photon superbunching of thermal light via multiple two-photon path interference,” Phys. Rev. A 86(1), 013807 (2012).
[Crossref]

Y. Zhou, J. Simon, J. Liu, and Y. Shih, “Third-order correlation function and ghost imaging of chaotic thermal light in the photon counting regime,” Phys. Rev. A 81(4), 043831 (2010).
[Crossref]

Liu, W.

E. Zhang, W. Liu, and P. Chen, “Lensless ghost interference with classical incoherent light,” Opt. Commun. 351, 135–139 (2015).
[Crossref]

Lu, Y.

L. Zhang, Y. Lu, D. Zhou, H. Zhang, L. Li, and G. Zhang, “Superbunching effect of classical light with a digitally designed spatially phase-correlated wave front,” Phys. Rev. A 99(6), 063827 (2019).
[Crossref]

Lugiato, L. A.

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classicalcorrelation,” Phys. Rev. Lett. 93(9), 093602 (2004).
[Crossref]

Luo, S.

Magaña-Loaiza, O. S.

Manceau, M.

M. Manceau, K. Y. Spasibko, G. Leuchs, R. Filip, and M. V. Chekhova, “Indefinite-mean pareto photon distribution from amplified quantum noise,” Phys. Rev. Lett. 123(12), 123606 (2019).
[Crossref]

Mandel, L.

L. Mandel and E. Wolf, Optical coherence and quantum optics (Cambridge University, 1995).

Migdall, A.

Y. Zhai, F. E. Becerra, J. Fan, and A. Migdall, “Direct measurement of sub-wavelength interference using thermal light and photon-number-resolved detection,” Appl. Phys. Lett. 105(10), 101104 (2014).
[Crossref]

Mika, J.

Mirhosseini, M.

Murzina, T. V.

K. Y. Spasibko, D. A. Kopylov, V. L. Krutyanskiy, T. V. Murzina, G. Leuchs, and M. V. Chekhova, “Multiphoton effects enhanced due to ultrafast photon-number fluctuations,” Phys. Rev. Lett. 119(22), 223603 (2017).
[Crossref]

Parazzoli, C.

Pérez, A.

Perina, J.

J. Perina, “Photon statistics of four-wave mixing of nonclassical light with pump depletion,” in 16th Congress of the International Commission for Optics: Optics as a Key to High Technology, vol. 1983 (International Society for Optics and Photonics, 1993), p. 19830U.

Qiu, S.

Rafsanjani, S. M. H.

Rosencher, E.

F. Boitier, A. Godard, N. Dubreuil, P. Delaye, C. Fabre, and E. Rosencher, “Photon extrabunching in ultrabright twin beams measured by two-photon counting in a semiconductor,” Nat. Commun. 2(1), 425 (2011).
[Crossref]

Roslawska, A.

C. C. Leon, A. Rosławska, A. Grewal, O. Gunnarsson, K. Kuhnke, and K. Kern, “Photon superbunching from a generic tunnel junction,” Sci. Adv. 5(5), eaav4986 (2019).
[Crossref]

Scarcelli, G.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94(6), 063601 (2005).
[Crossref]

Schneider, C.

F. Jahnke, C. Gies, M. Aßmann, M. Bayer, H. Leymann, A. Foerster, J. Wiersig, C. Schneider, M. Kamp, and S. Höfling, “Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers,” Nat. Commun. 7(1), 11540 (2016).
[Crossref]

Shi, J.

Shih, Y.

Y. Zhou, J. Simon, J. Liu, and Y. Shih, “Third-order correlation function and ghost imaging of chaotic thermal light in the photon counting regime,” Phys. Rev. A 81(4), 043831 (2010).
[Crossref]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94(6), 063601 (2005).
[Crossref]

Silberberg, Y.

Y. Bromberg, Y. Lahini, E. Small, and Y. Silberberg, “Hanbury brown and twiss interferometry with interacting photons,” Nat. Photonics 4(10), 721–726 (2010).
[Crossref]

Simon, J.

Y. Zhou, J. Simon, J. Liu, and Y. Shih, “Third-order correlation function and ghost imaging of chaotic thermal light in the photon counting regime,” Phys. Rev. A 81(4), 043831 (2010).
[Crossref]

Small, E.

Y. Bromberg, Y. Lahini, E. Small, and Y. Silberberg, “Hanbury brown and twiss interferometry with interacting photons,” Nat. Photonics 4(10), 721–726 (2010).
[Crossref]

Spasibko, K. Y.

M. Manceau, K. Y. Spasibko, G. Leuchs, R. Filip, and M. V. Chekhova, “Indefinite-mean pareto photon distribution from amplified quantum noise,” Phys. Rev. Lett. 123(12), 123606 (2019).
[Crossref]

K. Y. Spasibko, D. A. Kopylov, V. L. Krutyanskiy, T. V. Murzina, G. Leuchs, and M. V. Chekhova, “Multiphoton effects enhanced due to ultrafast photon-number fluctuations,” Phys. Rev. Lett. 119(22), 223603 (2017).
[Crossref]

T. S. Iskhakov, A. Pérez, K. Y. Spasibko, M. Chekhova, and G. Leuchs, “Superbunched bright squeezed vacuum state,” Opt. Lett. 37(11), 1919–1921 (2012).
[Crossref]

Steck, D. A.

D. A. Steck, “Rubidium 87 d line data,” (2001).

Straka, I.

Tang, Z.

Twiss, R. Q.

R. H. Brown and R. Q. Twiss, “A test of a new type of stellar interferometer on sirius,” Nature 178(4541), 1046–1048 (1956).
[Crossref]

R. H. Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177(4497), 27–29 (1956).
[Crossref]

Valencia, A.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94(6), 063601 (2005).
[Crossref]

Von Zanthier, J.

D. Bhatti, J. Von Zanthier, and G. S. Agarwal, “Superbunching and nonclassicality as new hallmarks of superradiance,” Sci. Rep. 5(1), 17335 (2015).
[Crossref]

Wang, C.

Wang, J.

Wang, Z.

Y. Zhou, X. Zhang, Z. Wang, F. Zhang, H. Chen, H. Zheng, J. Liu, F. Li, and Z. Xu, “Superbunching pseudothermal light with intensity modulated laser light and rotating groundglass,” Opt. Commun. 437, 330–336 (2019).
[Crossref]

Wei, D.

Wiersig, J.

F. Jahnke, C. Gies, M. Aßmann, M. Bayer, H. Leymann, A. Foerster, J. Wiersig, C. Schneider, M. Kamp, and S. Höfling, “Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers,” Nat. Commun. 7(1), 11540 (2016).
[Crossref]

Wolf, E.

L. Mandel and E. Wolf, Optical coherence and quantum optics (Cambridge University, 1995).

Wu, L.

Y. Zhai, X. Chen, and L. Wu, “Two-photon interference with two independent pseudothermal sources,” Phys. Rev. A 74(5), 053807 (2006).
[Crossref]

Xiao, M.

Y. Zhang and M. Xiao, Multi-Wave Mixing Processes: from ultrafast polarization beats to electromagnetically induced trans (Springer-Verlag and Higher Education, 2009).

Xu, Z.

Y. Zhou, X. Zhang, Z. Wang, F. Zhang, H. Chen, H. Zheng, J. Liu, F. Li, and Z. Xu, “Superbunching pseudothermal light with intensity modulated laser light and rotating groundglass,” Opt. Commun. 437, 330–336 (2019).
[Crossref]

Y. Zhou, S. Luo, Z. Tang, H. Zheng, H. Chen, J. Liu, F. Li, and Z. Xu, “Experimental observation of three-photon superbunching with classical light in a linear system,” J. Opt. Soc. Am. B 36(1), 96–100 (2019).
[Crossref]

Y. Zhou, F. Li, B. Bai, H. Chen, J. Liu, Z. Xu, and H. Zheng, “Superbunching pseudothermal light,” Phys. Rev. A 95(5), 053809 (2017).
[Crossref]

B. Bai, J. Liu, Y. Zhou, H. Zheng, H. Chen, S. Zhang, Y. He, F. Li, and Z. Xu, “Photon superbunching of classical light in the hanbury brown–twiss interferometer,” J. Opt. Soc. Am. B 34(10), 2081–2088 (2017).
[Crossref]

Yang, X.

Yilmaz, H.

Yu, Y.

Zeng, G.

Zhai, Y.

Y. Zhai, F. E. Becerra, J. Fan, and A. Migdall, “Direct measurement of sub-wavelength interference using thermal light and photon-number-resolved detection,” Appl. Phys. Lett. 105(10), 101104 (2014).
[Crossref]

Y. Zhai, X. Chen, and L. Wu, “Two-photon interference with two independent pseudothermal sources,” Phys. Rev. A 74(5), 053807 (2006).
[Crossref]

Zhang, E.

E. Zhang, W. Liu, and P. Chen, “Lensless ghost interference with classical incoherent light,” Opt. Commun. 351, 135–139 (2015).
[Crossref]

Zhang, F.

Y. Zhou, X. Zhang, Z. Wang, F. Zhang, H. Chen, H. Zheng, J. Liu, F. Li, and Z. Xu, “Superbunching pseudothermal light with intensity modulated laser light and rotating groundglass,” Opt. Commun. 437, 330–336 (2019).
[Crossref]

Zhang, G.

L. Zhang, Y. Lu, D. Zhou, H. Zhang, L. Li, and G. Zhang, “Superbunching effect of classical light with a digitally designed spatially phase-correlated wave front,” Phys. Rev. A 99(6), 063827 (2019).
[Crossref]

P. Hong, L. Li, J. Liu, and G. Zhang, “Active control on high-order coherence and statistic characterization on random phase fluctuation of two classical point sources,” Sci. Rep. 6(1), 23614 (2016).
[Crossref]

P. Hong, J. Liu, and G. Zhang, “Two-photon superbunching of thermal light via multiple two-photon path interference,” Phys. Rev. A 86(1), 013807 (2012).
[Crossref]

Zhang, H.

L. Zhang, Y. Lu, D. Zhou, H. Zhang, L. Li, and G. Zhang, “Superbunching effect of classical light with a digitally designed spatially phase-correlated wave front,” Phys. Rev. A 99(6), 063827 (2019).
[Crossref]

Zhang, L.

L. Zhang, Y. Lu, D. Zhou, H. Zhang, L. Li, and G. Zhang, “Superbunching effect of classical light with a digitally designed spatially phase-correlated wave front,” Phys. Rev. A 99(6), 063827 (2019).
[Crossref]

Zhang, S.

Zhang, X.

Y. Zhou, X. Zhang, Z. Wang, F. Zhang, H. Chen, H. Zheng, J. Liu, F. Li, and Z. Xu, “Superbunching pseudothermal light with intensity modulated laser light and rotating groundglass,” Opt. Commun. 437, 330–336 (2019).
[Crossref]

Zhang, Y.

Y. Zhang and M. Xiao, Multi-Wave Mixing Processes: from ultrafast polarization beats to electromagnetically induced trans (Springer-Verlag and Higher Education, 2009).

Zheng, H.

Y. Zhou, X. Zhang, Z. Wang, F. Zhang, H. Chen, H. Zheng, J. Liu, F. Li, and Z. Xu, “Superbunching pseudothermal light with intensity modulated laser light and rotating groundglass,” Opt. Commun. 437, 330–336 (2019).
[Crossref]

Y. Zhou, S. Luo, Z. Tang, H. Zheng, H. Chen, J. Liu, F. Li, and Z. Xu, “Experimental observation of three-photon superbunching with classical light in a linear system,” J. Opt. Soc. Am. B 36(1), 96–100 (2019).
[Crossref]

B. Bai, J. Liu, Y. Zhou, H. Zheng, H. Chen, S. Zhang, Y. He, F. Li, and Z. Xu, “Photon superbunching of classical light in the hanbury brown–twiss interferometer,” J. Opt. Soc. Am. B 34(10), 2081–2088 (2017).
[Crossref]

Y. Zhou, F. Li, B. Bai, H. Chen, J. Liu, Z. Xu, and H. Zheng, “Superbunching pseudothermal light,” Phys. Rev. A 95(5), 053809 (2017).
[Crossref]

Zhou, D.

L. Zhang, Y. Lu, D. Zhou, H. Zhang, L. Li, and G. Zhang, “Superbunching effect of classical light with a digitally designed spatially phase-correlated wave front,” Phys. Rev. A 99(6), 063827 (2019).
[Crossref]

Zhou, Y.

Y. Zhou, X. Zhang, Z. Wang, F. Zhang, H. Chen, H. Zheng, J. Liu, F. Li, and Z. Xu, “Superbunching pseudothermal light with intensity modulated laser light and rotating groundglass,” Opt. Commun. 437, 330–336 (2019).
[Crossref]

Y. Zhou, S. Luo, Z. Tang, H. Zheng, H. Chen, J. Liu, F. Li, and Z. Xu, “Experimental observation of three-photon superbunching with classical light in a linear system,” J. Opt. Soc. Am. B 36(1), 96–100 (2019).
[Crossref]

Y. Zhou, F. Li, B. Bai, H. Chen, J. Liu, Z. Xu, and H. Zheng, “Superbunching pseudothermal light,” Phys. Rev. A 95(5), 053809 (2017).
[Crossref]

B. Bai, J. Liu, Y. Zhou, H. Zheng, H. Chen, S. Zhang, Y. He, F. Li, and Z. Xu, “Photon superbunching of classical light in the hanbury brown–twiss interferometer,” J. Opt. Soc. Am. B 34(10), 2081–2088 (2017).
[Crossref]

Y. Zhou, J. Simon, J. Liu, and Y. Shih, “Third-order correlation function and ghost imaging of chaotic thermal light in the photon counting regime,” Phys. Rev. A 81(4), 043831 (2010).
[Crossref]

Appl. Phys. Lett. (1)

Y. Zhai, F. E. Becerra, J. Fan, and A. Migdall, “Direct measurement of sub-wavelength interference using thermal light and photon-number-resolved detection,” Appl. Phys. Lett. 105(10), 101104 (2014).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Nat. Commun. (2)

F. Boitier, A. Godard, N. Dubreuil, P. Delaye, C. Fabre, and E. Rosencher, “Photon extrabunching in ultrabright twin beams measured by two-photon counting in a semiconductor,” Nat. Commun. 2(1), 425 (2011).
[Crossref]

F. Jahnke, C. Gies, M. Aßmann, M. Bayer, H. Leymann, A. Foerster, J. Wiersig, C. Schneider, M. Kamp, and S. Höfling, “Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers,” Nat. Commun. 7(1), 11540 (2016).
[Crossref]

Nat. Photonics (1)

Y. Bromberg, Y. Lahini, E. Small, and Y. Silberberg, “Hanbury brown and twiss interferometry with interacting photons,” Nat. Photonics 4(10), 721–726 (2010).
[Crossref]

Nature (2)

R. H. Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177(4497), 27–29 (1956).
[Crossref]

R. H. Brown and R. Q. Twiss, “A test of a new type of stellar interferometer on sirius,” Nature 178(4541), 1046–1048 (1956).
[Crossref]

Opt. Commun. (2)

E. Zhang, W. Liu, and P. Chen, “Lensless ghost interference with classical incoherent light,” Opt. Commun. 351, 135–139 (2015).
[Crossref]

Y. Zhou, X. Zhang, Z. Wang, F. Zhang, H. Chen, H. Zheng, J. Liu, F. Li, and Z. Xu, “Superbunching pseudothermal light with intensity modulated laser light and rotating groundglass,” Opt. Commun. 437, 330–336 (2019).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Optica (2)

Phys. Rev. (2)

R. J. Glauber, “Coherent and incoherent states of the radiation field,” Phys. Rev. 131(6), 2766–2788 (1963).
[Crossref]

R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93(1), 99–110 (1954).
[Crossref]

Phys. Rev. A (5)

P. Hong, J. Liu, and G. Zhang, “Two-photon superbunching of thermal light via multiple two-photon path interference,” Phys. Rev. A 86(1), 013807 (2012).
[Crossref]

L. Zhang, Y. Lu, D. Zhou, H. Zhang, L. Li, and G. Zhang, “Superbunching effect of classical light with a digitally designed spatially phase-correlated wave front,” Phys. Rev. A 99(6), 063827 (2019).
[Crossref]

Y. Zhou, F. Li, B. Bai, H. Chen, J. Liu, Z. Xu, and H. Zheng, “Superbunching pseudothermal light,” Phys. Rev. A 95(5), 053809 (2017).
[Crossref]

Y. Zhai, X. Chen, and L. Wu, “Two-photon interference with two independent pseudothermal sources,” Phys. Rev. A 74(5), 053807 (2006).
[Crossref]

Y. Zhou, J. Simon, J. Liu, and Y. Shih, “Third-order correlation function and ghost imaging of chaotic thermal light in the photon counting regime,” Phys. Rev. A 81(4), 043831 (2010).
[Crossref]

Phys. Rev. Lett. (6)

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “"two-photon" coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classicalcorrelation,” Phys. Rev. Lett. 93(9), 093602 (2004).
[Crossref]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94(6), 063601 (2005).
[Crossref]

Y. Bromberg and H. Cao, “Generating non-rayleigh speckles with tailored intensity statistics,” Phys. Rev. Lett. 112(21), 213904 (2014).
[Crossref]

K. Y. Spasibko, D. A. Kopylov, V. L. Krutyanskiy, T. V. Murzina, G. Leuchs, and M. V. Chekhova, “Multiphoton effects enhanced due to ultrafast photon-number fluctuations,” Phys. Rev. Lett. 119(22), 223603 (2017).
[Crossref]

M. Manceau, K. Y. Spasibko, G. Leuchs, R. Filip, and M. V. Chekhova, “Indefinite-mean pareto photon distribution from amplified quantum noise,” Phys. Rev. Lett. 123(12), 123606 (2019).
[Crossref]

Sci. Adv. (1)

C. C. Leon, A. Rosławska, A. Grewal, O. Gunnarsson, K. Kuhnke, and K. Kern, “Photon superbunching from a generic tunnel junction,” Sci. Adv. 5(5), eaav4986 (2019).
[Crossref]

Sci. Rep. (2)

D. Bhatti, J. Von Zanthier, and G. S. Agarwal, “Superbunching and nonclassicality as new hallmarks of superradiance,” Sci. Rep. 5(1), 17335 (2015).
[Crossref]

P. Hong, L. Li, J. Liu, and G. Zhang, “Active control on high-order coherence and statistic characterization on random phase fluctuation of two classical point sources,” Sci. Rep. 6(1), 23614 (2016).
[Crossref]

Other (5)

J. Perina, “Photon statistics of four-wave mixing of nonclassical light with pump depletion,” in 16th Congress of the International Commission for Optics: Optics as a Key to High Technology, vol. 1983 (International Society for Optics and Photonics, 1993), p. 19830U.

R. W. Boyd, Nonlinear optics (Elsevier, 2003).

D. A. Steck, “Rubidium 87 d line data,” (2001).

Y. Zhang and M. Xiao, Multi-Wave Mixing Processes: from ultrafast polarization beats to electromagnetically induced trans (Springer-Verlag and Higher Education, 2009).

L. Mandel and E. Wolf, Optical coherence and quantum optics (Cambridge University, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Schematics of the experimental setup and the phase-conjugate geometry for FWM process. (b) The corresponding energy diagram and transitions. (c) The measured FWM signal spectra.
Fig. 2.
Fig. 2. The measured second-order auto-correlation functions of (a) FWM signal, (b) probe beam, (c) forward and (d) backward pump beams. Dashed green lines represent the normalized degree of second-order coherence ${g^{(2)}}(0)$ of thermal light in theory, that is boundary between bunching and superbunching effect. Solid blue lines are the measured second-order coherence functions of beams without Rb cell, namely the measured second-order coherence function of pseudothermal light source experimentally. Solid red lines indicate the measured second-order coherence functions of beams via FWM process.
Fig. 3.
Fig. 3. The third-order auto-correlation functions of (a) FWM signal, (b) probe beam, (c) forward and (d) backward pump beam. The 3D third-order coherence function is plotted as a function of ${t_{13}}\equiv {t_1} - {t_3}$ and ${t_{23}} \equiv {t_2} - {t_3}$ .
Fig. 4.
Fig. 4. The third-order cross-correlation functions of any three beams involved in FWM process, (a) $FWM$ & $Probe$ & $Pum{p_b}$ , (b) $Pum{p_f}$ & $Probe$ & $Pum{p_b}$ , (c) $FWM$ & $Probe$ & $Pum{p_f}$ .
Fig. 5.
Fig. 5. Dependence of the degree of second- and third-order coherence on (a)(c) temperature and (b)(d) laser detuning.
Fig. 6.
Fig. 6. Dependence of the degree of second- and third-order coherence on power of (a)(c) pseudothermal light source and (b)(d) probe beam.
Fig. 7.
Fig. 7. Dependence of the degree of second- and third-order coherence on power of (a)(c) forward pump and (b)(d) backward pump beam.

Tables (1)

Tables Icon

Table 1. The second-order auto-correlation and cross-correlation degree g ( 2 ) ( 0 ) of beams via FWM process.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E ~ i ( t ) = E i e i ω t + c . c . ,
P i ( ω ) = ε 0 χ ( 1 ) ( ω ) E i + 3 ε 0 χ ( 3 ) ( ω ) E m E n E j .
χ ( 1 ) ( ω ) = N μ 2 ω ε 0 T 2 ( i + Δ T 2 ) 2 ( 1 + Δ 2 T 2 2 ) + 4 T 1 T 2 μ 2 E m E n ,
χ ( 3 ) ( ω ) = 4 N μ 4 ω 3 ε 0 ( i + Δ T 2 ) T 1 T 2 2 2 ( 1 + Δ 2 T 2 2 ) + 4 T 1 T 2 μ 2 E m E n ,
lg N = a b / T lg ( k T ) .
E i = A i e i k i z ,
d A i d z = α A i + κ A j e i Δ k z .
α = ω 2 n c Im χ ( 1 ) ( ω ) ,
κ = i 3 ω 2 n c χ ( 3 ) ( ω ) A m A n .
I i = 2 n ε 0 c | A i | 2 .
g ( 2 ) ( τ ) = I i ( t ) I j ( t + τ ) I i ( t ) I j ( t + τ ) ,
g ( 3 ) ( t 1 , t 2 , t 3 ) = I i ( t 1 ) I j ( t 2 ) I m ( t 3 ) I i ( t 1 ) I j ( t 2 ) I m ( t 3 ) ,

Metrics