Abstract

We propose a feedback-assisted direct laser writing method to perform laser ablation of fiber optic devices in which their light-collection signal is used to optimize their properties. A femtosecond-pulsed laser beam is used to ablate a metal coating deposited around a tapered optical fiber, employed to show the suitability of the approach to pattern devices with a small radius of curvature. During processing, the same pulses generate two-photon fluorescence in the surrounding environment and the signal is monitored to identify different patterning regimes over time through spectral analysis. The employed fs beam mostly interacts with the metal coating, leaving almost intact the underlying silica and enabling fluorescence to couple with a specific subset of guided modes, as verified by far-field analysis. Although the method is described here for tapered optical fibers used to obtain efficient light collection in the field of optical neural interfaces, it can be easily extended to other waveguide-based devices and represents a general approach to support the implementation of a closed-loop laser ablation system of fiber optics.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
    [Crossref]
  2. J. Cheng, C. S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
    [Crossref]
  3. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  4. K. M. Tanvir Ahmmed, C. Grambow, and A. M. Kietzig, “Fabrication of micro/nano structures on metals by femtosecond laser micromachining,” Micromachines 5(4), 1219–1253 (2014).
    [Crossref]
  5. A. Y. Vorobyev and C. Guo, “Femtosecond laser blackening of platinum,” J. Appl. Phys. 104(5), 053516 (2008).
    [Crossref]
  6. B. Li, M. Zhou, R. Yuan, and L. Cai, “Fabrication of titanium-based microstructured surfaces and study on their superhydrophobic stability,” J. Mater. Res. 23(9), 2491–2499 (2008).
    [Crossref]
  7. H. Nguyen, M. M. Parvez Arnob, A. T. Becker, J. C. Wolfe, M. K. Hogan, P. J. Horner, and W. C. Shih, “Fabrication of multipoint side-firing optical fiber by laser micro-ablation,” Opt. Lett. 42(9), 1808 (2017).
    [Crossref]
  8. A. J. Conneely, C. Bennett, G. M. O’Connor, T. Vollmerhausen, C. O’Byrne, G. Spence, D. Rowe, and J. Victor, “Generation of side-emitting polymer optical fibres by laser ablation for use in antimicrobial applications,” 604, M604 (2019).
  9. S. Korposh, S. W. James, S. W. Lee, and R. P. Tatam, “Tapered Optical Fibre Sensors: Current Trends and Future Perspectives,” Sensors 19(10), 2294 (2019).
    [Crossref]
  10. J. P. Golden, G. P. Anderson, S. Y. Rabbany, and F. S. Ligler, “An Evanescent Wave Biosensor—Part II: Fluorescent Signal Acquisition from Tapered Fiber Optic Probes,” IEEE Trans. Biomed. Eng. 41(6), 585–591 (1994).
    [Crossref]
  11. H. Latifi, M. I. Zibaii, S. M. Hosseini, and P. Jorge, “Nonadiabatic Photonic Sensors Nonadiabatic Tapered Optical Fiber for Biosensor Applications,” Photonic Sens. 2(4), 340–356 (2012).
    [Crossref]
  12. F. Pisano, M. Pisanello, S. J. Lee, J. Lee, E. Maglie, A. Balena, L. Sileo, B. Spagnolo, M. Bianco, M. Hyun, M. De Vittorio, B. L. Sabatini, and F. Pisanello, “Depth-resolved fiber photometry with a single tapered optical fiber implant,” Nat. Methods 16(11), 1185–1192 (2019).
    [Crossref]
  13. F. Pisanello, G. Mandelbaum, M. Pisanello, I. A. Oldenburg, L. Sileo, J. E. Markowitz, R. E. Peterson, A. Della Patria, T. M. Haynes, M. S. Emara, B. Spagnolo, S. R. Datta, M. De Vittorio, and B. L. Sabatini, “Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber,” Nat. Neurosci. 20(8), 1180–1188 (2017).
    [Crossref]
  14. F. Pisanello, L. Sileo, I. A. Oldenburg, M. Pisanello, L. Martiradonna, J. A. Assad, B. L. Sabatini, and M. De Vittorio, “Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics,” Neuron 82(6), 1245 (2014).
    [Crossref]
  15. M. Pisanello, A. Della Patria, L. Sileo, B. L. Sabatini, M. De Vittorio, and F. Pisanello, “Modal demultiplexing properties of tapered and nanostructured optical fibers for in vivo optogenetic control of neural activity,” Biomed. Opt. Express 6(10), 4014–4026 (2015).
    [Crossref]
  16. M. Pisanello, F. Pisano, L. Sileo, E. Maglie, E. Bellistri, B. Spagnolo, G. Mandelbaum, B. L. Sabatini, M. De Vittorio, and F. Pisanello, “Tailoring light delivery for optogenetics by modal demultiplexing in tapered optical fibers,” Sci. Rep. 8(1), 4467 (2018).
    [Crossref]
  17. B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
    [Crossref]
  18. F. Pisano, M. Pisanello, L. Sileo, A. Qualtieri, B. L. Sabatini, M. De Vittorio, and F. Pisanello, “Focused ion beam nanomachining of tapered optical fibers for patterned light delivery,” Microelectron. Eng. 195, 41–49 (2018).
    [Crossref]
  19. L. Sileo, M. Pisanello, M. De Vittorio, and F. Pisanello, “Fabrication of multipoint light emitting optical fibers for optogenetics,” Proc. SPIE 9305, 93052O (2015).
    [Crossref]
  20. A. Rizzo, E. D. Lemma, F. Pisano, M. Pisanello, L. Sileo, M. De Vittorio, and F. Pisanello, “Laser micromachining of tapered optical fibers for spatially selective control of neural activity,” Microelectron. Eng. 192, 88–95 (2018).
    [Crossref]
  21. M. Chalfie, “Green Fluorescent Protein,” Photochem. Photobiol. 62(4), 651–656 (1995).
    [Crossref]
  22. K. D. Piatkevich, S. Bensussen, H. Tseng, S. N. Shroff, V. G. Lopez-Huerta, D. Park, E. E. Jung, O. A. Shemesh, C. Straub, H. J. Gritton, M. F. Romano, E. Costa, B. L. Sabatini, Z. Fu, E. S. Boyden, and X. Han, “Population imaging of neural activity in awake behaving mice,” Nature 574(7778), 413–417 (2019).
    [Crossref]
  23. Y. Yang, N. Liu, Y. He, Y. Liu, L. Ge, L. Zou, S. Song, W. Xiong, and X. Liu, “Improved calcium sensor GCaMP-X overcomes the calcium channel perturbations induced by the calmodulin in GCaMP,” Nat. Commun. 9(1), 1504 (2018).
    [Crossref]
  24. T. Patriarchi, J. R. Cho, K. Merten, M. W. Howe, A. Marley, W. H. Xiong, R. W. Folk, G. J. Broussard, R. Liang, M. J. Jang, H. Zhong, D. Dombeck, M. von Zastrow, A. Nimmerjahn, V. Gradinaru, J. T. Williams, and L. Tian, “Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors,” Science 360(6396), eaat4422 (2018).
    [Crossref]
  25. N. N. Nedialkov, S. E. Imamova, P. A. Atanasov, P. Berger, and F. Dausinger, “Mechanism of ultrashort laser ablation of metals: molecular dynamics simulation,” Appl. Surf. Sci. 247(1-4), 243–248 (2005).
    [Crossref]
  26. M. K. Kim, T. Takao, Y. Oki, and M. Maeda, “Thin-layer ablation of metals and silicon by femtosecond laser pulses for application to surface analysis,” Jpn. J. Appl. Phys., Part 1 Regul. Pap. Short Notes Rev. Pap. 39(Part 1, No. 11), 6277–6280 (2000).
    [Crossref]
  27. B. Chimier, O. Utéza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Légaré, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime,” Phys. Rev. B: Condens. Matter Mater. Phys. 84(9), 94104 (2011).
    [Crossref]
  28. K. L. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L. M. Raff, and R. Komanduri, “Micromachining of silicon by short-pulse laser ablation in air and under water,” Mater. Sci. Eng., A 372(1-2), 145–162 (2004).
    [Crossref]
  29. N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550-1600 nm excitation wavelength range,” Opt. Express 16(6), 4029–4047 (2008).
    [Crossref]
  30. J. M. S. Ong, T. I. Noue, H. K. Awazumi, and T. O. Gawa, “Determination of Two Photon Absorption Cross Section of Fluorescein Using a Mode Locked Titanium Sapphire Laser,” Anal. Sci. 15(6), 601–603 (1999).
    [Crossref]
  31. R. Sjöback, J. Nygren, and M. Kubista, “Absorption and fluorescence properties of fluorescein,” Spectrochim. Acta, Part A 51(6), L7–L21 (1995).
    [Crossref]
  32. L. François, M. Mostafavi, J. Belloni, and J. A. Delaire, “Optical limitation induced by gold clusters: Mechanism and efficiency,” Phys. Chem. Chem. Phys. 3(22), 4965–4971 (2001).
    [Crossref]
  33. X. Chen, R. Q. Xu, J. P. Chen, Z. H. Shen, L. Jian, and X. W. Ni, “Shock-wave propagation and cavitation bubble oscillation by Nd:YAG laser ablation of a metal in water,” Appl. Opt. 43(16), 3251–3257 (2004).
    [Crossref]
  34. A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
    [Crossref]
  35. E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B: Condens. Matter Mater. Phys. 73(21), 214101 (2006).
    [Crossref]
  36. J. A. King, J. Freer, and R. Woodard, Materials Handbook for Hybrid Microelectronics (Artech House, 1988).
  37. C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A: Mater. Sci. Process. 76(3), 351–354 (2003).
    [Crossref]
  38. P. E. Dyer, D. M. Karnakis, P. H. Key, and P. Monk, “Excimer laser ablation for micro-machining: Geometric effects,” Appl. Surf. Sci. 96-98, 415–419 (1996).
    [Crossref]
  39. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099–1119 (1983).
    [Crossref]
  40. M. Pisanello, F. Pisano, M. Hyun, E. Maglie, A. Balena, M. De Vittorio, B. L. Sabatini, and F. Pisanello, “The three-dimensional signal collection field for fiber photometry in brain tissue,” Front. Neurosci. 13, 82 (2019).
    [Crossref]
  41. A. Y. Vorobyev and C. Guo, “Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation,” Appl. Phys. Lett. 86(1), 011916 (2005).
    [Crossref]
  42. A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys. A: Mater. Sci. Process. 82(2), 357–362 (2006).
    [Crossref]
  43. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Springer, 1983).
  44. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).
  45. A. Balena, M. Bianco, F. Pisano, M. Pisanello, L. Sileo, B. Spagnolo, B. Sabatini, M. De Vittorio, and F. Pisanello, “Tapered Fibers for Optogenetics: Gaining Spatial Resolution in Deep Brain Regions by Exploiting Angle-Selective Light Injection Systems,” in 2019 21st International Conference on Transparent Optical Networks (ICTON) (2019), pp. 1–7.
  46. S. J. Lee, Y. Chen, B. Lodder, and B. L. Sabatini, “Monitoring Behaviorally Induced Biochemical Changes Using Fluorescence Lifetime Photometry,” Front. Neurosci. 13, 766 (2019).
    [Crossref]
  47. Y. Fu and N. K. A. Bryan, “Investigation of physical properties of quartz after focused ion beam bombardment,” Appl. Phys. B: Lasers Opt. 80(4-5), 581–585 (2005).
    [Crossref]
  48. G. Yona, N. Meitav, I. Kahn, and S. Shoham, “Realistic Numerical and Analytical Modeling of Light Scattering in Brain Tissue for Optogenetic Applications,” eNeuro 3(1), 005915 (2016).
    [Crossref]

2019 (5)

S. Korposh, S. W. James, S. W. Lee, and R. P. Tatam, “Tapered Optical Fibre Sensors: Current Trends and Future Perspectives,” Sensors 19(10), 2294 (2019).
[Crossref]

F. Pisano, M. Pisanello, S. J. Lee, J. Lee, E. Maglie, A. Balena, L. Sileo, B. Spagnolo, M. Bianco, M. Hyun, M. De Vittorio, B. L. Sabatini, and F. Pisanello, “Depth-resolved fiber photometry with a single tapered optical fiber implant,” Nat. Methods 16(11), 1185–1192 (2019).
[Crossref]

K. D. Piatkevich, S. Bensussen, H. Tseng, S. N. Shroff, V. G. Lopez-Huerta, D. Park, E. E. Jung, O. A. Shemesh, C. Straub, H. J. Gritton, M. F. Romano, E. Costa, B. L. Sabatini, Z. Fu, E. S. Boyden, and X. Han, “Population imaging of neural activity in awake behaving mice,” Nature 574(7778), 413–417 (2019).
[Crossref]

M. Pisanello, F. Pisano, M. Hyun, E. Maglie, A. Balena, M. De Vittorio, B. L. Sabatini, and F. Pisanello, “The three-dimensional signal collection field for fiber photometry in brain tissue,” Front. Neurosci. 13, 82 (2019).
[Crossref]

S. J. Lee, Y. Chen, B. Lodder, and B. L. Sabatini, “Monitoring Behaviorally Induced Biochemical Changes Using Fluorescence Lifetime Photometry,” Front. Neurosci. 13, 766 (2019).
[Crossref]

2018 (5)

Y. Yang, N. Liu, Y. He, Y. Liu, L. Ge, L. Zou, S. Song, W. Xiong, and X. Liu, “Improved calcium sensor GCaMP-X overcomes the calcium channel perturbations induced by the calmodulin in GCaMP,” Nat. Commun. 9(1), 1504 (2018).
[Crossref]

T. Patriarchi, J. R. Cho, K. Merten, M. W. Howe, A. Marley, W. H. Xiong, R. W. Folk, G. J. Broussard, R. Liang, M. J. Jang, H. Zhong, D. Dombeck, M. von Zastrow, A. Nimmerjahn, V. Gradinaru, J. T. Williams, and L. Tian, “Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors,” Science 360(6396), eaat4422 (2018).
[Crossref]

A. Rizzo, E. D. Lemma, F. Pisano, M. Pisanello, L. Sileo, M. De Vittorio, and F. Pisanello, “Laser micromachining of tapered optical fibers for spatially selective control of neural activity,” Microelectron. Eng. 192, 88–95 (2018).
[Crossref]

M. Pisanello, F. Pisano, L. Sileo, E. Maglie, E. Bellistri, B. Spagnolo, G. Mandelbaum, B. L. Sabatini, M. De Vittorio, and F. Pisanello, “Tailoring light delivery for optogenetics by modal demultiplexing in tapered optical fibers,” Sci. Rep. 8(1), 4467 (2018).
[Crossref]

F. Pisano, M. Pisanello, L. Sileo, A. Qualtieri, B. L. Sabatini, M. De Vittorio, and F. Pisanello, “Focused ion beam nanomachining of tapered optical fibers for patterned light delivery,” Microelectron. Eng. 195, 41–49 (2018).
[Crossref]

2017 (2)

F. Pisanello, G. Mandelbaum, M. Pisanello, I. A. Oldenburg, L. Sileo, J. E. Markowitz, R. E. Peterson, A. Della Patria, T. M. Haynes, M. S. Emara, B. Spagnolo, S. R. Datta, M. De Vittorio, and B. L. Sabatini, “Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber,” Nat. Neurosci. 20(8), 1180–1188 (2017).
[Crossref]

H. Nguyen, M. M. Parvez Arnob, A. T. Becker, J. C. Wolfe, M. K. Hogan, P. J. Horner, and W. C. Shih, “Fabrication of multipoint side-firing optical fiber by laser micro-ablation,” Opt. Lett. 42(9), 1808 (2017).
[Crossref]

2016 (1)

G. Yona, N. Meitav, I. Kahn, and S. Shoham, “Realistic Numerical and Analytical Modeling of Light Scattering in Brain Tissue for Optogenetic Applications,” eNeuro 3(1), 005915 (2016).
[Crossref]

2015 (2)

2014 (2)

F. Pisanello, L. Sileo, I. A. Oldenburg, M. Pisanello, L. Martiradonna, J. A. Assad, B. L. Sabatini, and M. De Vittorio, “Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics,” Neuron 82(6), 1245 (2014).
[Crossref]

K. M. Tanvir Ahmmed, C. Grambow, and A. M. Kietzig, “Fabrication of micro/nano structures on metals by femtosecond laser micromachining,” Micromachines 5(4), 1219–1253 (2014).
[Crossref]

2013 (1)

J. Cheng, C. S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[Crossref]

2012 (1)

H. Latifi, M. I. Zibaii, S. M. Hosseini, and P. Jorge, “Nonadiabatic Photonic Sensors Nonadiabatic Tapered Optical Fiber for Biosensor Applications,” Photonic Sens. 2(4), 340–356 (2012).
[Crossref]

2011 (1)

B. Chimier, O. Utéza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Légaré, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime,” Phys. Rev. B: Condens. Matter Mater. Phys. 84(9), 94104 (2011).
[Crossref]

2009 (1)

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
[Crossref]

2008 (4)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

A. Y. Vorobyev and C. Guo, “Femtosecond laser blackening of platinum,” J. Appl. Phys. 104(5), 053516 (2008).
[Crossref]

B. Li, M. Zhou, R. Yuan, and L. Cai, “Fabrication of titanium-based microstructured surfaces and study on their superhydrophobic stability,” J. Mater. Res. 23(9), 2491–2499 (2008).
[Crossref]

N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550-1600 nm excitation wavelength range,” Opt. Express 16(6), 4029–4047 (2008).
[Crossref]

2006 (2)

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B: Condens. Matter Mater. Phys. 73(21), 214101 (2006).
[Crossref]

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys. A: Mater. Sci. Process. 82(2), 357–362 (2006).
[Crossref]

2005 (3)

A. Y. Vorobyev and C. Guo, “Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation,” Appl. Phys. Lett. 86(1), 011916 (2005).
[Crossref]

Y. Fu and N. K. A. Bryan, “Investigation of physical properties of quartz after focused ion beam bombardment,” Appl. Phys. B: Lasers Opt. 80(4-5), 581–585 (2005).
[Crossref]

N. N. Nedialkov, S. E. Imamova, P. A. Atanasov, P. Berger, and F. Dausinger, “Mechanism of ultrashort laser ablation of metals: molecular dynamics simulation,” Appl. Surf. Sci. 247(1-4), 243–248 (2005).
[Crossref]

2004 (2)

K. L. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L. M. Raff, and R. Komanduri, “Micromachining of silicon by short-pulse laser ablation in air and under water,” Mater. Sci. Eng., A 372(1-2), 145–162 (2004).
[Crossref]

X. Chen, R. Q. Xu, J. P. Chen, Z. H. Shen, L. Jian, and X. W. Ni, “Shock-wave propagation and cavitation bubble oscillation by Nd:YAG laser ablation of a metal in water,” Appl. Opt. 43(16), 3251–3257 (2004).
[Crossref]

2003 (1)

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A: Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

2001 (1)

L. François, M. Mostafavi, J. Belloni, and J. A. Delaire, “Optical limitation induced by gold clusters: Mechanism and efficiency,” Phys. Chem. Chem. Phys. 3(22), 4965–4971 (2001).
[Crossref]

2000 (1)

M. K. Kim, T. Takao, Y. Oki, and M. Maeda, “Thin-layer ablation of metals and silicon by femtosecond laser pulses for application to surface analysis,” Jpn. J. Appl. Phys., Part 1 Regul. Pap. Short Notes Rev. Pap. 39(Part 1, No. 11), 6277–6280 (2000).
[Crossref]

1999 (1)

J. M. S. Ong, T. I. Noue, H. K. Awazumi, and T. O. Gawa, “Determination of Two Photon Absorption Cross Section of Fluorescein Using a Mode Locked Titanium Sapphire Laser,” Anal. Sci. 15(6), 601–603 (1999).
[Crossref]

1997 (1)

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[Crossref]

1996 (2)

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
[Crossref]

P. E. Dyer, D. M. Karnakis, P. H. Key, and P. Monk, “Excimer laser ablation for micro-machining: Geometric effects,” Appl. Surf. Sci. 96-98, 415–419 (1996).
[Crossref]

1995 (2)

R. Sjöback, J. Nygren, and M. Kubista, “Absorption and fluorescence properties of fluorescein,” Spectrochim. Acta, Part A 51(6), L7–L21 (1995).
[Crossref]

M. Chalfie, “Green Fluorescent Protein,” Photochem. Photobiol. 62(4), 651–656 (1995).
[Crossref]

1994 (1)

J. P. Golden, G. P. Anderson, S. Y. Rabbany, and F. S. Ligler, “An Evanescent Wave Biosensor—Part II: Fluorescent Signal Acquisition from Tapered Fiber Optic Probes,” IEEE Trans. Biomed. Eng. 41(6), 585–591 (1994).
[Crossref]

1983 (1)

Alexander, R. W.

Anderson, G. P.

J. P. Golden, G. P. Anderson, S. Y. Rabbany, and F. S. Ligler, “An Evanescent Wave Biosensor—Part II: Fluorescent Signal Acquisition from Tapered Fiber Optic Probes,” IEEE Trans. Biomed. Eng. 41(6), 585–591 (1994).
[Crossref]

Assad, J. A.

F. Pisanello, L. Sileo, I. A. Oldenburg, M. Pisanello, L. Martiradonna, J. A. Assad, B. L. Sabatini, and M. De Vittorio, “Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics,” Neuron 82(6), 1245 (2014).
[Crossref]

Atanasov, P. A.

N. N. Nedialkov, S. E. Imamova, P. A. Atanasov, P. Berger, and F. Dausinger, “Mechanism of ultrashort laser ablation of metals: molecular dynamics simulation,” Appl. Surf. Sci. 247(1-4), 243–248 (2005).
[Crossref]

Awazumi, H. K.

J. M. S. Ong, T. I. Noue, H. K. Awazumi, and T. O. Gawa, “Determination of Two Photon Absorption Cross Section of Fluorescein Using a Mode Locked Titanium Sapphire Laser,” Anal. Sci. 15(6), 601–603 (1999).
[Crossref]

Balena, A.

M. Pisanello, F. Pisano, M. Hyun, E. Maglie, A. Balena, M. De Vittorio, B. L. Sabatini, and F. Pisanello, “The three-dimensional signal collection field for fiber photometry in brain tissue,” Front. Neurosci. 13, 82 (2019).
[Crossref]

F. Pisano, M. Pisanello, S. J. Lee, J. Lee, E. Maglie, A. Balena, L. Sileo, B. Spagnolo, M. Bianco, M. Hyun, M. De Vittorio, B. L. Sabatini, and F. Pisanello, “Depth-resolved fiber photometry with a single tapered optical fiber implant,” Nat. Methods 16(11), 1185–1192 (2019).
[Crossref]

A. Balena, M. Bianco, F. Pisano, M. Pisanello, L. Sileo, B. Spagnolo, B. Sabatini, M. De Vittorio, and F. Pisanello, “Tapered Fibers for Optogenetics: Gaining Spatial Resolution in Deep Brain Regions by Exploiting Angle-Selective Light Injection Systems,” in 2019 21st International Conference on Transparent Optical Networks (ICTON) (2019), pp. 1–7.

Becker, A. T.

Bell, R. J.

Bell, R. R.

Bell, S. E.

Bellistri, E.

M. Pisanello, F. Pisano, L. Sileo, E. Maglie, E. Bellistri, B. Spagnolo, G. Mandelbaum, B. L. Sabatini, M. De Vittorio, and F. Pisanello, “Tailoring light delivery for optogenetics by modal demultiplexing in tapered optical fibers,” Sci. Rep. 8(1), 4467 (2018).
[Crossref]

Belloni, J.

L. François, M. Mostafavi, J. Belloni, and J. A. Delaire, “Optical limitation induced by gold clusters: Mechanism and efficiency,” Phys. Chem. Chem. Phys. 3(22), 4965–4971 (2001).
[Crossref]

Bennett, C.

A. J. Conneely, C. Bennett, G. M. O’Connor, T. Vollmerhausen, C. O’Byrne, G. Spence, D. Rowe, and J. Victor, “Generation of side-emitting polymer optical fibres by laser ablation for use in antimicrobial applications,” 604, M604 (2019).

Bensussen, S.

K. D. Piatkevich, S. Bensussen, H. Tseng, S. N. Shroff, V. G. Lopez-Huerta, D. Park, E. E. Jung, O. A. Shemesh, C. Straub, H. J. Gritton, M. F. Romano, E. Costa, B. L. Sabatini, Z. Fu, E. S. Boyden, and X. Han, “Population imaging of neural activity in awake behaving mice,” Nature 574(7778), 413–417 (2019).
[Crossref]

Berger, P.

N. N. Nedialkov, S. E. Imamova, P. A. Atanasov, P. Berger, and F. Dausinger, “Mechanism of ultrashort laser ablation of metals: molecular dynamics simulation,” Appl. Surf. Sci. 247(1-4), 243–248 (2005).
[Crossref]

Bianco, M.

F. Pisano, M. Pisanello, S. J. Lee, J. Lee, E. Maglie, A. Balena, L. Sileo, B. Spagnolo, M. Bianco, M. Hyun, M. De Vittorio, B. L. Sabatini, and F. Pisanello, “Depth-resolved fiber photometry with a single tapered optical fiber implant,” Nat. Methods 16(11), 1185–1192 (2019).
[Crossref]

A. Balena, M. Bianco, F. Pisano, M. Pisanello, L. Sileo, B. Spagnolo, B. Sabatini, M. De Vittorio, and F. Pisanello, “Tapered Fibers for Optogenetics: Gaining Spatial Resolution in Deep Brain Regions by Exploiting Angle-Selective Light Injection Systems,” in 2019 21st International Conference on Transparent Optical Networks (ICTON) (2019), pp. 1–7.

Boyden, E. S.

K. D. Piatkevich, S. Bensussen, H. Tseng, S. N. Shroff, V. G. Lopez-Huerta, D. Park, E. E. Jung, O. A. Shemesh, C. Straub, H. J. Gritton, M. F. Romano, E. Costa, B. L. Sabatini, Z. Fu, E. S. Boyden, and X. Han, “Population imaging of neural activity in awake behaving mice,” Nature 574(7778), 413–417 (2019).
[Crossref]

Broussard, G. J.

T. Patriarchi, J. R. Cho, K. Merten, M. W. Howe, A. Marley, W. H. Xiong, R. W. Folk, G. J. Broussard, R. Liang, M. J. Jang, H. Zhong, D. Dombeck, M. von Zastrow, A. Nimmerjahn, V. Gradinaru, J. T. Williams, and L. Tian, “Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors,” Science 360(6396), eaat4422 (2018).
[Crossref]

Bryan, N. K. A.

Y. Fu and N. K. A. Bryan, “Investigation of physical properties of quartz after focused ion beam bombardment,” Appl. Phys. B: Lasers Opt. 80(4-5), 581–585 (2005).
[Crossref]

Busch, S.

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
[Crossref]

Cai, L.

B. Li, M. Zhou, R. Yuan, and L. Cai, “Fabrication of titanium-based microstructured surfaces and study on their superhydrophobic stability,” J. Mater. Res. 23(9), 2491–2499 (2008).
[Crossref]

Chalfie, M.

M. Chalfie, “Green Fluorescent Protein,” Photochem. Photobiol. 62(4), 651–656 (1995).
[Crossref]

Chen, J. P.

Chen, X.

Chen, Y.

S. J. Lee, Y. Chen, B. Lodder, and B. L. Sabatini, “Monitoring Behaviorally Induced Biochemical Changes Using Fluorescence Lifetime Photometry,” Front. Neurosci. 13, 766 (2019).
[Crossref]

Cheng, J.

J. Cheng, C. S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[Crossref]

Chimier, B.

B. Chimier, O. Utéza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Légaré, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime,” Phys. Rev. B: Condens. Matter Mater. Phys. 84(9), 94104 (2011).
[Crossref]

Cho, J. R.

T. Patriarchi, J. R. Cho, K. Merten, M. W. Howe, A. Marley, W. H. Xiong, R. W. Folk, G. J. Broussard, R. Liang, M. J. Jang, H. Zhong, D. Dombeck, M. von Zastrow, A. Nimmerjahn, V. Gradinaru, J. T. Williams, and L. Tian, “Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors,” Science 360(6396), eaat4422 (2018).
[Crossref]

Choo, K. L.

K. L. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L. M. Raff, and R. Komanduri, “Micromachining of silicon by short-pulse laser ablation in air and under water,” Mater. Sci. Eng., A 372(1-2), 145–162 (2004).
[Crossref]

Conneely, A. J.

A. J. Conneely, C. Bennett, G. M. O’Connor, T. Vollmerhausen, C. O’Byrne, G. Spence, D. Rowe, and J. Victor, “Generation of side-emitting polymer optical fibres by laser ablation for use in antimicrobial applications,” 604, M604 (2019).

Costa, E.

K. D. Piatkevich, S. Bensussen, H. Tseng, S. N. Shroff, V. G. Lopez-Huerta, D. Park, E. E. Jung, O. A. Shemesh, C. Straub, H. J. Gritton, M. F. Romano, E. Costa, B. L. Sabatini, Z. Fu, E. S. Boyden, and X. Han, “Population imaging of neural activity in awake behaving mice,” Nature 574(7778), 413–417 (2019).
[Crossref]

Dai, J.

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys. A: Mater. Sci. Process. 82(2), 357–362 (2006).
[Crossref]

Datta, S. R.

F. Pisanello, G. Mandelbaum, M. Pisanello, I. A. Oldenburg, L. Sileo, J. E. Markowitz, R. E. Peterson, A. Della Patria, T. M. Haynes, M. S. Emara, B. Spagnolo, S. R. Datta, M. De Vittorio, and B. L. Sabatini, “Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber,” Nat. Neurosci. 20(8), 1180–1188 (2017).
[Crossref]

Dausinger, F.

N. N. Nedialkov, S. E. Imamova, P. A. Atanasov, P. Berger, and F. Dausinger, “Mechanism of ultrashort laser ablation of metals: molecular dynamics simulation,” Appl. Surf. Sci. 247(1-4), 243–248 (2005).
[Crossref]

De Vittorio, M.

M. Pisanello, F. Pisano, M. Hyun, E. Maglie, A. Balena, M. De Vittorio, B. L. Sabatini, and F. Pisanello, “The three-dimensional signal collection field for fiber photometry in brain tissue,” Front. Neurosci. 13, 82 (2019).
[Crossref]

F. Pisano, M. Pisanello, S. J. Lee, J. Lee, E. Maglie, A. Balena, L. Sileo, B. Spagnolo, M. Bianco, M. Hyun, M. De Vittorio, B. L. Sabatini, and F. Pisanello, “Depth-resolved fiber photometry with a single tapered optical fiber implant,” Nat. Methods 16(11), 1185–1192 (2019).
[Crossref]

A. Rizzo, E. D. Lemma, F. Pisano, M. Pisanello, L. Sileo, M. De Vittorio, and F. Pisanello, “Laser micromachining of tapered optical fibers for spatially selective control of neural activity,” Microelectron. Eng. 192, 88–95 (2018).
[Crossref]

M. Pisanello, F. Pisano, L. Sileo, E. Maglie, E. Bellistri, B. Spagnolo, G. Mandelbaum, B. L. Sabatini, M. De Vittorio, and F. Pisanello, “Tailoring light delivery for optogenetics by modal demultiplexing in tapered optical fibers,” Sci. Rep. 8(1), 4467 (2018).
[Crossref]

F. Pisano, M. Pisanello, L. Sileo, A. Qualtieri, B. L. Sabatini, M. De Vittorio, and F. Pisanello, “Focused ion beam nanomachining of tapered optical fibers for patterned light delivery,” Microelectron. Eng. 195, 41–49 (2018).
[Crossref]

F. Pisanello, G. Mandelbaum, M. Pisanello, I. A. Oldenburg, L. Sileo, J. E. Markowitz, R. E. Peterson, A. Della Patria, T. M. Haynes, M. S. Emara, B. Spagnolo, S. R. Datta, M. De Vittorio, and B. L. Sabatini, “Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber,” Nat. Neurosci. 20(8), 1180–1188 (2017).
[Crossref]

M. Pisanello, A. Della Patria, L. Sileo, B. L. Sabatini, M. De Vittorio, and F. Pisanello, “Modal demultiplexing properties of tapered and nanostructured optical fibers for in vivo optogenetic control of neural activity,” Biomed. Opt. Express 6(10), 4014–4026 (2015).
[Crossref]

L. Sileo, M. Pisanello, M. De Vittorio, and F. Pisanello, “Fabrication of multipoint light emitting optical fibers for optogenetics,” Proc. SPIE 9305, 93052O (2015).
[Crossref]

F. Pisanello, L. Sileo, I. A. Oldenburg, M. Pisanello, L. Martiradonna, J. A. Assad, B. L. Sabatini, and M. De Vittorio, “Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics,” Neuron 82(6), 1245 (2014).
[Crossref]

A. Balena, M. Bianco, F. Pisano, M. Pisanello, L. Sileo, B. Spagnolo, B. Sabatini, M. De Vittorio, and F. Pisanello, “Tapered Fibers for Optogenetics: Gaining Spatial Resolution in Deep Brain Regions by Exploiting Angle-Selective Light Injection Systems,” in 2019 21st International Conference on Transparent Optical Networks (ICTON) (2019), pp. 1–7.

Dearden, G.

J. Cheng, C. S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[Crossref]

Delaire, J. A.

L. François, M. Mostafavi, J. Belloni, and J. A. Delaire, “Optical limitation induced by gold clusters: Mechanism and efficiency,” Phys. Chem. Chem. Phys. 3(22), 4965–4971 (2001).
[Crossref]

Della Patria, A.

F. Pisanello, G. Mandelbaum, M. Pisanello, I. A. Oldenburg, L. Sileo, J. E. Markowitz, R. E. Peterson, A. Della Patria, T. M. Haynes, M. S. Emara, B. Spagnolo, S. R. Datta, M. De Vittorio, and B. L. Sabatini, “Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber,” Nat. Neurosci. 20(8), 1180–1188 (2017).
[Crossref]

M. Pisanello, A. Della Patria, L. Sileo, B. L. Sabatini, M. De Vittorio, and F. Pisanello, “Modal demultiplexing properties of tapered and nanostructured optical fibers for in vivo optogenetic control of neural activity,” Biomed. Opt. Express 6(10), 4014–4026 (2015).
[Crossref]

Dombeck, D.

T. Patriarchi, J. R. Cho, K. Merten, M. W. Howe, A. Marley, W. H. Xiong, R. W. Folk, G. J. Broussard, R. Liang, M. J. Jang, H. Zhong, D. Dombeck, M. von Zastrow, A. Nimmerjahn, V. Gradinaru, J. T. Williams, and L. Tian, “Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors,” Science 360(6396), eaat4422 (2018).
[Crossref]

Drobizhev, M.

Du, D.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[Crossref]

Dyer, P. E.

P. E. Dyer, D. M. Karnakis, P. H. Key, and P. Monk, “Excimer laser ablation for micro-machining: Geometric effects,” Appl. Surf. Sci. 96-98, 415–419 (1996).
[Crossref]

Emara, M. S.

F. Pisanello, G. Mandelbaum, M. Pisanello, I. A. Oldenburg, L. Sileo, J. E. Markowitz, R. E. Peterson, A. Della Patria, T. M. Haynes, M. S. Emara, B. Spagnolo, S. R. Datta, M. De Vittorio, and B. L. Sabatini, “Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber,” Nat. Neurosci. 20(8), 1180–1188 (2017).
[Crossref]

Folk, R. W.

T. Patriarchi, J. R. Cho, K. Merten, M. W. Howe, A. Marley, W. H. Xiong, R. W. Folk, G. J. Broussard, R. Liang, M. J. Jang, H. Zhong, D. Dombeck, M. von Zastrow, A. Nimmerjahn, V. Gradinaru, J. T. Williams, and L. Tian, “Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors,” Science 360(6396), eaat4422 (2018).
[Crossref]

François, L.

L. François, M. Mostafavi, J. Belloni, and J. A. Delaire, “Optical limitation induced by gold clusters: Mechanism and efficiency,” Phys. Chem. Chem. Phys. 3(22), 4965–4971 (2001).
[Crossref]

Freer, J.

J. A. King, J. Freer, and R. Woodard, Materials Handbook for Hybrid Microelectronics (Artech House, 1988).

Fu, Y.

Y. Fu and N. K. A. Bryan, “Investigation of physical properties of quartz after focused ion beam bombardment,” Appl. Phys. B: Lasers Opt. 80(4-5), 581–585 (2005).
[Crossref]

Fu, Z.

K. D. Piatkevich, S. Bensussen, H. Tseng, S. N. Shroff, V. G. Lopez-Huerta, D. Park, E. E. Jung, O. A. Shemesh, C. Straub, H. J. Gritton, M. F. Romano, E. Costa, B. L. Sabatini, Z. Fu, E. S. Boyden, and X. Han, “Population imaging of neural activity in awake behaving mice,” Nature 574(7778), 413–417 (2019).
[Crossref]

Gamaly, E. G.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B: Condens. Matter Mater. Phys. 73(21), 214101 (2006).
[Crossref]

García, J. F.

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A: Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Gawa, T. O.

J. M. S. Ong, T. I. Noue, H. K. Awazumi, and T. O. Gawa, “Determination of Two Photon Absorption Cross Section of Fluorescein Using a Mode Locked Titanium Sapphire Laser,” Anal. Sci. 15(6), 601–603 (1999).
[Crossref]

Ge, L.

Y. Yang, N. Liu, Y. He, Y. Liu, L. Ge, L. Zou, S. Song, W. Xiong, and X. Liu, “Improved calcium sensor GCaMP-X overcomes the calcium channel perturbations induced by the calmodulin in GCaMP,” Nat. Commun. 9(1), 1504 (2018).
[Crossref]

Golden, J. P.

J. P. Golden, G. P. Anderson, S. Y. Rabbany, and F. S. Ligler, “An Evanescent Wave Biosensor—Part II: Fluorescent Signal Acquisition from Tapered Fiber Optic Probes,” IEEE Trans. Biomed. Eng. 41(6), 585–591 (1994).
[Crossref]

Gradinaru, V.

T. Patriarchi, J. R. Cho, K. Merten, M. W. Howe, A. Marley, W. H. Xiong, R. W. Folk, G. J. Broussard, R. Liang, M. J. Jang, H. Zhong, D. Dombeck, M. von Zastrow, A. Nimmerjahn, V. Gradinaru, J. T. Williams, and L. Tian, “Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors,” Science 360(6396), eaat4422 (2018).
[Crossref]

Grambow, C.

K. M. Tanvir Ahmmed, C. Grambow, and A. M. Kietzig, “Fabrication of micro/nano structures on metals by femtosecond laser micromachining,” Micromachines 5(4), 1219–1253 (2014).
[Crossref]

Gritton, H. J.

K. D. Piatkevich, S. Bensussen, H. Tseng, S. N. Shroff, V. G. Lopez-Huerta, D. Park, E. E. Jung, O. A. Shemesh, C. Straub, H. J. Gritton, M. F. Romano, E. Costa, B. L. Sabatini, Z. Fu, E. S. Boyden, and X. Han, “Population imaging of neural activity in awake behaving mice,” Nature 574(7778), 413–417 (2019).
[Crossref]

Guo, C.

A. Y. Vorobyev and C. Guo, “Femtosecond laser blackening of platinum,” J. Appl. Phys. 104(5), 053516 (2008).
[Crossref]

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys. A: Mater. Sci. Process. 82(2), 357–362 (2006).
[Crossref]

A. Y. Vorobyev and C. Guo, “Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation,” Appl. Phys. Lett. 86(1), 011916 (2005).
[Crossref]

Hallo, L.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B: Condens. Matter Mater. Phys. 73(21), 214101 (2006).
[Crossref]

Han, X.

K. D. Piatkevich, S. Bensussen, H. Tseng, S. N. Shroff, V. G. Lopez-Huerta, D. Park, E. E. Jung, O. A. Shemesh, C. Straub, H. J. Gritton, M. F. Romano, E. Costa, B. L. Sabatini, Z. Fu, E. S. Boyden, and X. Han, “Population imaging of neural activity in awake behaving mice,” Nature 574(7778), 413–417 (2019).
[Crossref]

Haynes, T. M.

F. Pisanello, G. Mandelbaum, M. Pisanello, I. A. Oldenburg, L. Sileo, J. E. Markowitz, R. E. Peterson, A. Della Patria, T. M. Haynes, M. S. Emara, B. Spagnolo, S. R. Datta, M. De Vittorio, and B. L. Sabatini, “Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber,” Nat. Neurosci. 20(8), 1180–1188 (2017).
[Crossref]

He, Y.

Y. Yang, N. Liu, Y. He, Y. Liu, L. Ge, L. Zou, S. Song, W. Xiong, and X. Liu, “Improved calcium sensor GCaMP-X overcomes the calcium channel perturbations induced by the calmodulin in GCaMP,” Nat. Commun. 9(1), 1504 (2018).
[Crossref]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).

Hogan, M. K.

Horner, P. J.

Hosseini, S. M.

H. Latifi, M. I. Zibaii, S. M. Hosseini, and P. Jorge, “Nonadiabatic Photonic Sensors Nonadiabatic Tapered Optical Fiber for Biosensor Applications,” Photonic Sens. 2(4), 340–356 (2012).
[Crossref]

Howe, M. W.

T. Patriarchi, J. R. Cho, K. Merten, M. W. Howe, A. Marley, W. H. Xiong, R. W. Folk, G. J. Broussard, R. Liang, M. J. Jang, H. Zhong, D. Dombeck, M. von Zastrow, A. Nimmerjahn, V. Gradinaru, J. T. Williams, and L. Tian, “Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors,” Science 360(6396), eaat4422 (2018).
[Crossref]

Hyun, M.

M. Pisanello, F. Pisano, M. Hyun, E. Maglie, A. Balena, M. De Vittorio, B. L. Sabatini, and F. Pisanello, “The three-dimensional signal collection field for fiber photometry in brain tissue,” Front. Neurosci. 13, 82 (2019).
[Crossref]

F. Pisano, M. Pisanello, S. J. Lee, J. Lee, E. Maglie, A. Balena, L. Sileo, B. Spagnolo, M. Bianco, M. Hyun, M. De Vittorio, B. L. Sabatini, and F. Pisanello, “Depth-resolved fiber photometry with a single tapered optical fiber implant,” Nat. Methods 16(11), 1185–1192 (2019).
[Crossref]

Imamova, S. E.

N. N. Nedialkov, S. E. Imamova, P. A. Atanasov, P. Berger, and F. Dausinger, “Mechanism of ultrashort laser ablation of metals: molecular dynamics simulation,” Appl. Surf. Sci. 247(1-4), 243–248 (2005).
[Crossref]

Itina, T.

B. Chimier, O. Utéza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Légaré, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime,” Phys. Rev. B: Condens. Matter Mater. Phys. 84(9), 94104 (2011).
[Crossref]

James, S. W.

S. Korposh, S. W. James, S. W. Lee, and R. P. Tatam, “Tapered Optical Fibre Sensors: Current Trends and Future Perspectives,” Sensors 19(10), 2294 (2019).
[Crossref]

Jang, M. J.

T. Patriarchi, J. R. Cho, K. Merten, M. W. Howe, A. Marley, W. H. Xiong, R. W. Folk, G. J. Broussard, R. Liang, M. J. Jang, H. Zhong, D. Dombeck, M. von Zastrow, A. Nimmerjahn, V. Gradinaru, J. T. Williams, and L. Tian, “Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors,” Science 360(6396), eaat4422 (2018).
[Crossref]

Jian, L.

Jorge, P.

H. Latifi, M. I. Zibaii, S. M. Hosseini, and P. Jorge, “Nonadiabatic Photonic Sensors Nonadiabatic Tapered Optical Fiber for Biosensor Applications,” Photonic Sens. 2(4), 340–356 (2012).
[Crossref]

Jung, E. E.

K. D. Piatkevich, S. Bensussen, H. Tseng, S. N. Shroff, V. G. Lopez-Huerta, D. Park, E. E. Jung, O. A. Shemesh, C. Straub, H. J. Gritton, M. F. Romano, E. Costa, B. L. Sabatini, Z. Fu, E. S. Boyden, and X. Han, “Population imaging of neural activity in awake behaving mice,” Nature 574(7778), 413–417 (2019).
[Crossref]

Juodkazis, S.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B: Condens. Matter Mater. Phys. 73(21), 214101 (2006).
[Crossref]

Kahn, I.

G. Yona, N. Meitav, I. Kahn, and S. Shoham, “Realistic Numerical and Analytical Modeling of Light Scattering in Brain Tissue for Optogenetic Applications,” eNeuro 3(1), 005915 (2016).
[Crossref]

Kanbargi, G.

K. L. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L. M. Raff, and R. Komanduri, “Micromachining of silicon by short-pulse laser ablation in air and under water,” Mater. Sci. Eng., A 372(1-2), 145–162 (2004).
[Crossref]

Karnakis, D. M.

P. E. Dyer, D. M. Karnakis, P. H. Key, and P. Monk, “Excimer laser ablation for micro-machining: Geometric effects,” Appl. Surf. Sci. 96-98, 415–419 (1996).
[Crossref]

Key, P. H.

P. E. Dyer, D. M. Karnakis, P. H. Key, and P. Monk, “Excimer laser ablation for micro-machining: Geometric effects,” Appl. Surf. Sci. 96-98, 415–419 (1996).
[Crossref]

Kieffer, J. C.

B. Chimier, O. Utéza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Légaré, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime,” Phys. Rev. B: Condens. Matter Mater. Phys. 84(9), 94104 (2011).
[Crossref]

Kietzig, A. M.

K. M. Tanvir Ahmmed, C. Grambow, and A. M. Kietzig, “Fabrication of micro/nano structures on metals by femtosecond laser micromachining,” Micromachines 5(4), 1219–1253 (2014).
[Crossref]

Kim, M. K.

M. K. Kim, T. Takao, Y. Oki, and M. Maeda, “Thin-layer ablation of metals and silicon by femtosecond laser pulses for application to surface analysis,” Jpn. J. Appl. Phys., Part 1 Regul. Pap. Short Notes Rev. Pap. 39(Part 1, No. 11), 6277–6280 (2000).
[Crossref]

King, J. A.

J. A. King, J. Freer, and R. Woodard, Materials Handbook for Hybrid Microelectronics (Artech House, 1988).

Kohns, P.

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys. A: Mater. Sci. Process. 82(2), 357–362 (2006).
[Crossref]

Kokody, N. G.

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys. A: Mater. Sci. Process. 82(2), 357–362 (2006).
[Crossref]

Komanduri, R.

K. L. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L. M. Raff, and R. Komanduri, “Micromachining of silicon by short-pulse laser ablation in air and under water,” Mater. Sci. Eng., A 372(1-2), 145–162 (2004).
[Crossref]

Korposh, S.

S. Korposh, S. W. James, S. W. Lee, and R. P. Tatam, “Tapered Optical Fibre Sensors: Current Trends and Future Perspectives,” Sensors 19(10), 2294 (2019).
[Crossref]

Kubista, M.

R. Sjöback, J. Nygren, and M. Kubista, “Absorption and fluorescence properties of fluorescein,” Spectrochim. Acta, Part A 51(6), L7–L21 (1995).
[Crossref]

Kuzmichev, V. M.

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys. A: Mater. Sci. Process. 82(2), 357–362 (2006).
[Crossref]

Lassonde, P.

B. Chimier, O. Utéza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Légaré, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime,” Phys. Rev. B: Condens. Matter Mater. Phys. 84(9), 94104 (2011).
[Crossref]

Latifi, H.

H. Latifi, M. I. Zibaii, S. M. Hosseini, and P. Jorge, “Nonadiabatic Photonic Sensors Nonadiabatic Tapered Optical Fiber for Biosensor Applications,” Photonic Sens. 2(4), 340–356 (2012).
[Crossref]

Lee, B.

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
[Crossref]

Lee, J.

F. Pisano, M. Pisanello, S. J. Lee, J. Lee, E. Maglie, A. Balena, L. Sileo, B. Spagnolo, M. Bianco, M. Hyun, M. De Vittorio, B. L. Sabatini, and F. Pisanello, “Depth-resolved fiber photometry with a single tapered optical fiber implant,” Nat. Methods 16(11), 1185–1192 (2019).
[Crossref]

Lee, S. J.

F. Pisano, M. Pisanello, S. J. Lee, J. Lee, E. Maglie, A. Balena, L. Sileo, B. Spagnolo, M. Bianco, M. Hyun, M. De Vittorio, B. L. Sabatini, and F. Pisanello, “Depth-resolved fiber photometry with a single tapered optical fiber implant,” Nat. Methods 16(11), 1185–1192 (2019).
[Crossref]

S. J. Lee, Y. Chen, B. Lodder, and B. L. Sabatini, “Monitoring Behaviorally Induced Biochemical Changes Using Fluorescence Lifetime Photometry,” Front. Neurosci. 13, 766 (2019).
[Crossref]

Lee, S. W.

S. Korposh, S. W. James, S. W. Lee, and R. P. Tatam, “Tapered Optical Fibre Sensors: Current Trends and Future Perspectives,” Sensors 19(10), 2294 (2019).
[Crossref]

Légaré, F.

B. Chimier, O. Utéza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Légaré, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime,” Phys. Rev. B: Condens. Matter Mater. Phys. 84(9), 94104 (2011).
[Crossref]

Lemma, E. D.

A. Rizzo, E. D. Lemma, F. Pisano, M. Pisanello, L. Sileo, M. De Vittorio, and F. Pisanello, “Laser micromachining of tapered optical fibers for spatially selective control of neural activity,” Microelectron. Eng. 192, 88–95 (2018).
[Crossref]

Li, B.

B. Li, M. Zhou, R. Yuan, and L. Cai, “Fabrication of titanium-based microstructured surfaces and study on their superhydrophobic stability,” J. Mater. Res. 23(9), 2491–2499 (2008).
[Crossref]

Liang, R.

T. Patriarchi, J. R. Cho, K. Merten, M. W. Howe, A. Marley, W. H. Xiong, R. W. Folk, G. J. Broussard, R. Liang, M. J. Jang, H. Zhong, D. Dombeck, M. von Zastrow, A. Nimmerjahn, V. Gradinaru, J. T. Williams, and L. Tian, “Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors,” Science 360(6396), eaat4422 (2018).
[Crossref]

Ligler, F. S.

J. P. Golden, G. P. Anderson, S. Y. Rabbany, and F. S. Ligler, “An Evanescent Wave Biosensor—Part II: Fluorescent Signal Acquisition from Tapered Fiber Optic Probes,” IEEE Trans. Biomed. Eng. 41(6), 585–591 (1994).
[Crossref]

Liu, C. S.

J. Cheng, C. S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[Crossref]

Liu, D.

J. Cheng, C. S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[Crossref]

Liu, N.

Y. Yang, N. Liu, Y. He, Y. Liu, L. Ge, L. Zou, S. Song, W. Xiong, and X. Liu, “Improved calcium sensor GCaMP-X overcomes the calcium channel perturbations induced by the calmodulin in GCaMP,” Nat. Commun. 9(1), 1504 (2018).
[Crossref]

Liu, X.

Y. Yang, N. Liu, Y. He, Y. Liu, L. Ge, L. Zou, S. Song, W. Xiong, and X. Liu, “Improved calcium sensor GCaMP-X overcomes the calcium channel perturbations induced by the calmodulin in GCaMP,” Nat. Commun. 9(1), 1504 (2018).
[Crossref]

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[Crossref]

Liu, Y.

Y. Yang, N. Liu, Y. He, Y. Liu, L. Ge, L. Zou, S. Song, W. Xiong, and X. Liu, “Improved calcium sensor GCaMP-X overcomes the calcium channel perturbations induced by the calmodulin in GCaMP,” Nat. Commun. 9(1), 1504 (2018).
[Crossref]

Lodder, B.

S. J. Lee, Y. Chen, B. Lodder, and B. L. Sabatini, “Monitoring Behaviorally Induced Biochemical Changes Using Fluorescence Lifetime Photometry,” Front. Neurosci. 13, 766 (2019).
[Crossref]

Long, L. L.

Lopez-Huerta, V. G.

K. D. Piatkevich, S. Bensussen, H. Tseng, S. N. Shroff, V. G. Lopez-Huerta, D. Park, E. E. Jung, O. A. Shemesh, C. Straub, H. J. Gritton, M. F. Romano, E. Costa, B. L. Sabatini, Z. Fu, E. S. Boyden, and X. Han, “Population imaging of neural activity in awake behaving mice,” Nature 574(7778), 413–417 (2019).
[Crossref]

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Springer, 1983).

Luther-Davies, B.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B: Condens. Matter Mater. Phys. 73(21), 214101 (2006).
[Crossref]

Maeda, M.

M. K. Kim, T. Takao, Y. Oki, and M. Maeda, “Thin-layer ablation of metals and silicon by femtosecond laser pulses for application to surface analysis,” Jpn. J. Appl. Phys., Part 1 Regul. Pap. Short Notes Rev. Pap. 39(Part 1, No. 11), 6277–6280 (2000).
[Crossref]

Maglie, E.

M. Pisanello, F. Pisano, M. Hyun, E. Maglie, A. Balena, M. De Vittorio, B. L. Sabatini, and F. Pisanello, “The three-dimensional signal collection field for fiber photometry in brain tissue,” Front. Neurosci. 13, 82 (2019).
[Crossref]

F. Pisano, M. Pisanello, S. J. Lee, J. Lee, E. Maglie, A. Balena, L. Sileo, B. Spagnolo, M. Bianco, M. Hyun, M. De Vittorio, B. L. Sabatini, and F. Pisanello, “Depth-resolved fiber photometry with a single tapered optical fiber implant,” Nat. Methods 16(11), 1185–1192 (2019).
[Crossref]

M. Pisanello, F. Pisano, L. Sileo, E. Maglie, E. Bellistri, B. Spagnolo, G. Mandelbaum, B. L. Sabatini, M. De Vittorio, and F. Pisanello, “Tailoring light delivery for optogenetics by modal demultiplexing in tapered optical fibers,” Sci. Rep. 8(1), 4467 (2018).
[Crossref]

Makarov, N. S.

Mandelbaum, G.

M. Pisanello, F. Pisano, L. Sileo, E. Maglie, E. Bellistri, B. Spagnolo, G. Mandelbaum, B. L. Sabatini, M. De Vittorio, and F. Pisanello, “Tailoring light delivery for optogenetics by modal demultiplexing in tapered optical fibers,” Sci. Rep. 8(1), 4467 (2018).
[Crossref]

F. Pisanello, G. Mandelbaum, M. Pisanello, I. A. Oldenburg, L. Sileo, J. E. Markowitz, R. E. Peterson, A. Della Patria, T. M. Haynes, M. S. Emara, B. Spagnolo, S. R. Datta, M. De Vittorio, and B. L. Sabatini, “Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber,” Nat. Neurosci. 20(8), 1180–1188 (2017).
[Crossref]

Markowitz, J. E.

F. Pisanello, G. Mandelbaum, M. Pisanello, I. A. Oldenburg, L. Sileo, J. E. Markowitz, R. E. Peterson, A. Della Patria, T. M. Haynes, M. S. Emara, B. Spagnolo, S. R. Datta, M. De Vittorio, and B. L. Sabatini, “Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber,” Nat. Neurosci. 20(8), 1180–1188 (2017).
[Crossref]

Marley, A.

T. Patriarchi, J. R. Cho, K. Merten, M. W. Howe, A. Marley, W. H. Xiong, R. W. Folk, G. J. Broussard, R. Liang, M. J. Jang, H. Zhong, D. Dombeck, M. von Zastrow, A. Nimmerjahn, V. Gradinaru, J. T. Williams, and L. Tian, “Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors,” Science 360(6396), eaat4422 (2018).
[Crossref]

Martiradonna, L.

F. Pisanello, L. Sileo, I. A. Oldenburg, M. Pisanello, L. Martiradonna, J. A. Assad, B. L. Sabatini, and M. De Vittorio, “Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics,” Neuron 82(6), 1245 (2014).
[Crossref]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A: Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

Meitav, N.

G. Yona, N. Meitav, I. Kahn, and S. Shoham, “Realistic Numerical and Analytical Modeling of Light Scattering in Brain Tissue for Optogenetic Applications,” eNeuro 3(1), 005915 (2016).
[Crossref]

Merten, K.

T. Patriarchi, J. R. Cho, K. Merten, M. W. Howe, A. Marley, W. H. Xiong, R. W. Folk, G. J. Broussard, R. Liang, M. J. Jang, H. Zhong, D. Dombeck, M. von Zastrow, A. Nimmerjahn, V. Gradinaru, J. T. Williams, and L. Tian, “Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors,” Science 360(6396), eaat4422 (2018).
[Crossref]

Misawa, H.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B: Condens. Matter Mater. Phys. 73(21), 214101 (2006).
[Crossref]

Monk, P.

P. E. Dyer, D. M. Karnakis, P. H. Key, and P. Monk, “Excimer laser ablation for micro-machining: Geometric effects,” Appl. Surf. Sci. 96-98, 415–419 (1996).
[Crossref]

Mostafavi, M.

L. François, M. Mostafavi, J. Belloni, and J. A. Delaire, “Optical limitation induced by gold clusters: Mechanism and efficiency,” Phys. Chem. Chem. Phys. 3(22), 4965–4971 (2001).
[Crossref]

Mourou, G.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[Crossref]

Nedialkov, N. N.

N. N. Nedialkov, S. E. Imamova, P. A. Atanasov, P. Berger, and F. Dausinger, “Mechanism of ultrashort laser ablation of metals: molecular dynamics simulation,” Appl. Surf. Sci. 247(1-4), 243–248 (2005).
[Crossref]

Nguyen, H.

Ni, X. W.

Nicolai, P.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B: Condens. Matter Mater. Phys. 73(21), 214101 (2006).
[Crossref]

Nimmerjahn, A.

T. Patriarchi, J. R. Cho, K. Merten, M. W. Howe, A. Marley, W. H. Xiong, R. W. Folk, G. J. Broussard, R. Liang, M. J. Jang, H. Zhong, D. Dombeck, M. von Zastrow, A. Nimmerjahn, V. Gradinaru, J. T. Williams, and L. Tian, “Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors,” Science 360(6396), eaat4422 (2018).
[Crossref]

Nishimura, K.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B: Condens. Matter Mater. Phys. 73(21), 214101 (2006).
[Crossref]

Noue, T. I.

J. M. S. Ong, T. I. Noue, H. K. Awazumi, and T. O. Gawa, “Determination of Two Photon Absorption Cross Section of Fluorescein Using a Mode Locked Titanium Sapphire Laser,” Anal. Sci. 15(6), 601–603 (1999).
[Crossref]

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).

Nygren, J.

R. Sjöback, J. Nygren, and M. Kubista, “Absorption and fluorescence properties of fluorescein,” Spectrochim. Acta, Part A 51(6), L7–L21 (1995).
[Crossref]

O’Byrne, C.

A. J. Conneely, C. Bennett, G. M. O’Connor, T. Vollmerhausen, C. O’Byrne, G. Spence, D. Rowe, and J. Victor, “Generation of side-emitting polymer optical fibres by laser ablation for use in antimicrobial applications,” 604, M604 (2019).

O’Connor, G. M.

A. J. Conneely, C. Bennett, G. M. O’Connor, T. Vollmerhausen, C. O’Byrne, G. Spence, D. Rowe, and J. Victor, “Generation of side-emitting polymer optical fibres by laser ablation for use in antimicrobial applications,” 604, M604 (2019).

Ogawa, Y.

K. L. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L. M. Raff, and R. Komanduri, “Micromachining of silicon by short-pulse laser ablation in air and under water,” Mater. Sci. Eng., A 372(1-2), 145–162 (2004).
[Crossref]

Oki, Y.

M. K. Kim, T. Takao, Y. Oki, and M. Maeda, “Thin-layer ablation of metals and silicon by femtosecond laser pulses for application to surface analysis,” Jpn. J. Appl. Phys., Part 1 Regul. Pap. Short Notes Rev. Pap. 39(Part 1, No. 11), 6277–6280 (2000).
[Crossref]

Oldenburg, I. A.

F. Pisanello, G. Mandelbaum, M. Pisanello, I. A. Oldenburg, L. Sileo, J. E. Markowitz, R. E. Peterson, A. Della Patria, T. M. Haynes, M. S. Emara, B. Spagnolo, S. R. Datta, M. De Vittorio, and B. L. Sabatini, “Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber,” Nat. Neurosci. 20(8), 1180–1188 (2017).
[Crossref]

F. Pisanello, L. Sileo, I. A. Oldenburg, M. Pisanello, L. Martiradonna, J. A. Assad, B. L. Sabatini, and M. De Vittorio, “Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics,” Neuron 82(6), 1245 (2014).
[Crossref]

Ong, J. M. S.

J. M. S. Ong, T. I. Noue, H. K. Awazumi, and T. O. Gawa, “Determination of Two Photon Absorption Cross Section of Fluorescein Using a Mode Locked Titanium Sapphire Laser,” Anal. Sci. 15(6), 601–603 (1999).
[Crossref]

Ordal, M. A.

Otra, V.

K. L. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L. M. Raff, and R. Komanduri, “Micromachining of silicon by short-pulse laser ablation in air and under water,” Mater. Sci. Eng., A 372(1-2), 145–162 (2004).
[Crossref]

Park, D.

K. D. Piatkevich, S. Bensussen, H. Tseng, S. N. Shroff, V. G. Lopez-Huerta, D. Park, E. E. Jung, O. A. Shemesh, C. Straub, H. J. Gritton, M. F. Romano, E. Costa, B. L. Sabatini, Z. Fu, E. S. Boyden, and X. Han, “Population imaging of neural activity in awake behaving mice,” Nature 574(7778), 413–417 (2019).
[Crossref]

Park, J.

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
[Crossref]

Parlitz, U.

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
[Crossref]

Parvez Arnob, M. M.

Patriarchi, T.

T. Patriarchi, J. R. Cho, K. Merten, M. W. Howe, A. Marley, W. H. Xiong, R. W. Folk, G. J. Broussard, R. Liang, M. J. Jang, H. Zhong, D. Dombeck, M. von Zastrow, A. Nimmerjahn, V. Gradinaru, J. T. Williams, and L. Tian, “Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors,” Science 360(6396), eaat4422 (2018).
[Crossref]

Perrie, W.

J. Cheng, C. S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[Crossref]

Peterson, R. E.

F. Pisanello, G. Mandelbaum, M. Pisanello, I. A. Oldenburg, L. Sileo, J. E. Markowitz, R. E. Peterson, A. Della Patria, T. M. Haynes, M. S. Emara, B. Spagnolo, S. R. Datta, M. De Vittorio, and B. L. Sabatini, “Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber,” Nat. Neurosci. 20(8), 1180–1188 (2017).
[Crossref]

Piatkevich, K. D.

K. D. Piatkevich, S. Bensussen, H. Tseng, S. N. Shroff, V. G. Lopez-Huerta, D. Park, E. E. Jung, O. A. Shemesh, C. Straub, H. J. Gritton, M. F. Romano, E. Costa, B. L. Sabatini, Z. Fu, E. S. Boyden, and X. Han, “Population imaging of neural activity in awake behaving mice,” Nature 574(7778), 413–417 (2019).
[Crossref]

Pisanello, F.

F. Pisano, M. Pisanello, S. J. Lee, J. Lee, E. Maglie, A. Balena, L. Sileo, B. Spagnolo, M. Bianco, M. Hyun, M. De Vittorio, B. L. Sabatini, and F. Pisanello, “Depth-resolved fiber photometry with a single tapered optical fiber implant,” Nat. Methods 16(11), 1185–1192 (2019).
[Crossref]

M. Pisanello, F. Pisano, M. Hyun, E. Maglie, A. Balena, M. De Vittorio, B. L. Sabatini, and F. Pisanello, “The three-dimensional signal collection field for fiber photometry in brain tissue,” Front. Neurosci. 13, 82 (2019).
[Crossref]

A. Rizzo, E. D. Lemma, F. Pisano, M. Pisanello, L. Sileo, M. De Vittorio, and F. Pisanello, “Laser micromachining of tapered optical fibers for spatially selective control of neural activity,” Microelectron. Eng. 192, 88–95 (2018).
[Crossref]

F. Pisano, M. Pisanello, L. Sileo, A. Qualtieri, B. L. Sabatini, M. De Vittorio, and F. Pisanello, “Focused ion beam nanomachining of tapered optical fibers for patterned light delivery,” Microelectron. Eng. 195, 41–49 (2018).
[Crossref]

M. Pisanello, F. Pisano, L. Sileo, E. Maglie, E. Bellistri, B. Spagnolo, G. Mandelbaum, B. L. Sabatini, M. De Vittorio, and F. Pisanello, “Tailoring light delivery for optogenetics by modal demultiplexing in tapered optical fibers,” Sci. Rep. 8(1), 4467 (2018).
[Crossref]

F. Pisanello, G. Mandelbaum, M. Pisanello, I. A. Oldenburg, L. Sileo, J. E. Markowitz, R. E. Peterson, A. Della Patria, T. M. Haynes, M. S. Emara, B. Spagnolo, S. R. Datta, M. De Vittorio, and B. L. Sabatini, “Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber,” Nat. Neurosci. 20(8), 1180–1188 (2017).
[Crossref]

M. Pisanello, A. Della Patria, L. Sileo, B. L. Sabatini, M. De Vittorio, and F. Pisanello, “Modal demultiplexing properties of tapered and nanostructured optical fibers for in vivo optogenetic control of neural activity,” Biomed. Opt. Express 6(10), 4014–4026 (2015).
[Crossref]

L. Sileo, M. Pisanello, M. De Vittorio, and F. Pisanello, “Fabrication of multipoint light emitting optical fibers for optogenetics,” Proc. SPIE 9305, 93052O (2015).
[Crossref]

F. Pisanello, L. Sileo, I. A. Oldenburg, M. Pisanello, L. Martiradonna, J. A. Assad, B. L. Sabatini, and M. De Vittorio, “Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics,” Neuron 82(6), 1245 (2014).
[Crossref]

A. Balena, M. Bianco, F. Pisano, M. Pisanello, L. Sileo, B. Spagnolo, B. Sabatini, M. De Vittorio, and F. Pisanello, “Tapered Fibers for Optogenetics: Gaining Spatial Resolution in Deep Brain Regions by Exploiting Angle-Selective Light Injection Systems,” in 2019 21st International Conference on Transparent Optical Networks (ICTON) (2019), pp. 1–7.

Pisanello, M.

M. Pisanello, F. Pisano, M. Hyun, E. Maglie, A. Balena, M. De Vittorio, B. L. Sabatini, and F. Pisanello, “The three-dimensional signal collection field for fiber photometry in brain tissue,” Front. Neurosci. 13, 82 (2019).
[Crossref]

F. Pisano, M. Pisanello, S. J. Lee, J. Lee, E. Maglie, A. Balena, L. Sileo, B. Spagnolo, M. Bianco, M. Hyun, M. De Vittorio, B. L. Sabatini, and F. Pisanello, “Depth-resolved fiber photometry with a single tapered optical fiber implant,” Nat. Methods 16(11), 1185–1192 (2019).
[Crossref]

M. Pisanello, F. Pisano, L. Sileo, E. Maglie, E. Bellistri, B. Spagnolo, G. Mandelbaum, B. L. Sabatini, M. De Vittorio, and F. Pisanello, “Tailoring light delivery for optogenetics by modal demultiplexing in tapered optical fibers,” Sci. Rep. 8(1), 4467 (2018).
[Crossref]

F. Pisano, M. Pisanello, L. Sileo, A. Qualtieri, B. L. Sabatini, M. De Vittorio, and F. Pisanello, “Focused ion beam nanomachining of tapered optical fibers for patterned light delivery,” Microelectron. Eng. 195, 41–49 (2018).
[Crossref]

A. Rizzo, E. D. Lemma, F. Pisano, M. Pisanello, L. Sileo, M. De Vittorio, and F. Pisanello, “Laser micromachining of tapered optical fibers for spatially selective control of neural activity,” Microelectron. Eng. 192, 88–95 (2018).
[Crossref]

F. Pisanello, G. Mandelbaum, M. Pisanello, I. A. Oldenburg, L. Sileo, J. E. Markowitz, R. E. Peterson, A. Della Patria, T. M. Haynes, M. S. Emara, B. Spagnolo, S. R. Datta, M. De Vittorio, and B. L. Sabatini, “Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber,” Nat. Neurosci. 20(8), 1180–1188 (2017).
[Crossref]

L. Sileo, M. Pisanello, M. De Vittorio, and F. Pisanello, “Fabrication of multipoint light emitting optical fibers for optogenetics,” Proc. SPIE 9305, 93052O (2015).
[Crossref]

M. Pisanello, A. Della Patria, L. Sileo, B. L. Sabatini, M. De Vittorio, and F. Pisanello, “Modal demultiplexing properties of tapered and nanostructured optical fibers for in vivo optogenetic control of neural activity,” Biomed. Opt. Express 6(10), 4014–4026 (2015).
[Crossref]

F. Pisanello, L. Sileo, I. A. Oldenburg, M. Pisanello, L. Martiradonna, J. A. Assad, B. L. Sabatini, and M. De Vittorio, “Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics,” Neuron 82(6), 1245 (2014).
[Crossref]

A. Balena, M. Bianco, F. Pisano, M. Pisanello, L. Sileo, B. Spagnolo, B. Sabatini, M. De Vittorio, and F. Pisanello, “Tapered Fibers for Optogenetics: Gaining Spatial Resolution in Deep Brain Regions by Exploiting Angle-Selective Light Injection Systems,” in 2019 21st International Conference on Transparent Optical Networks (ICTON) (2019), pp. 1–7.

Pisano, F.

M. Pisanello, F. Pisano, M. Hyun, E. Maglie, A. Balena, M. De Vittorio, B. L. Sabatini, and F. Pisanello, “The three-dimensional signal collection field for fiber photometry in brain tissue,” Front. Neurosci. 13, 82 (2019).
[Crossref]

F. Pisano, M. Pisanello, S. J. Lee, J. Lee, E. Maglie, A. Balena, L. Sileo, B. Spagnolo, M. Bianco, M. Hyun, M. De Vittorio, B. L. Sabatini, and F. Pisanello, “Depth-resolved fiber photometry with a single tapered optical fiber implant,” Nat. Methods 16(11), 1185–1192 (2019).
[Crossref]

M. Pisanello, F. Pisano, L. Sileo, E. Maglie, E. Bellistri, B. Spagnolo, G. Mandelbaum, B. L. Sabatini, M. De Vittorio, and F. Pisanello, “Tailoring light delivery for optogenetics by modal demultiplexing in tapered optical fibers,” Sci. Rep. 8(1), 4467 (2018).
[Crossref]

F. Pisano, M. Pisanello, L. Sileo, A. Qualtieri, B. L. Sabatini, M. De Vittorio, and F. Pisanello, “Focused ion beam nanomachining of tapered optical fibers for patterned light delivery,” Microelectron. Eng. 195, 41–49 (2018).
[Crossref]

A. Rizzo, E. D. Lemma, F. Pisano, M. Pisanello, L. Sileo, M. De Vittorio, and F. Pisanello, “Laser micromachining of tapered optical fibers for spatially selective control of neural activity,” Microelectron. Eng. 192, 88–95 (2018).
[Crossref]

A. Balena, M. Bianco, F. Pisano, M. Pisanello, L. Sileo, B. Spagnolo, B. Sabatini, M. De Vittorio, and F. Pisanello, “Tapered Fibers for Optogenetics: Gaining Spatial Resolution in Deep Brain Regions by Exploiting Angle-Selective Light Injection Systems,” in 2019 21st International Conference on Transparent Optical Networks (ICTON) (2019), pp. 1–7.

Qualtieri, A.

F. Pisano, M. Pisanello, L. Sileo, A. Qualtieri, B. L. Sabatini, M. De Vittorio, and F. Pisanello, “Focused ion beam nanomachining of tapered optical fibers for patterned light delivery,” Microelectron. Eng. 195, 41–49 (2018).
[Crossref]

Rabbany, S. Y.

J. P. Golden, G. P. Anderson, S. Y. Rabbany, and F. S. Ligler, “An Evanescent Wave Biosensor—Part II: Fluorescent Signal Acquisition from Tapered Fiber Optic Probes,” IEEE Trans. Biomed. Eng. 41(6), 585–591 (1994).
[Crossref]

Raff, L. M.

K. L. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L. M. Raff, and R. Komanduri, “Micromachining of silicon by short-pulse laser ablation in air and under water,” Mater. Sci. Eng., A 372(1-2), 145–162 (2004).
[Crossref]

Rebane, A.

Rizzo, A.

A. Rizzo, E. D. Lemma, F. Pisano, M. Pisanello, L. Sileo, M. De Vittorio, and F. Pisanello, “Laser micromachining of tapered optical fibers for spatially selective control of neural activity,” Microelectron. Eng. 192, 88–95 (2018).
[Crossref]

Roh, S.

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
[Crossref]

Romano, M. F.

K. D. Piatkevich, S. Bensussen, H. Tseng, S. N. Shroff, V. G. Lopez-Huerta, D. Park, E. E. Jung, O. A. Shemesh, C. Straub, H. J. Gritton, M. F. Romano, E. Costa, B. L. Sabatini, Z. Fu, E. S. Boyden, and X. Han, “Population imaging of neural activity in awake behaving mice,” Nature 574(7778), 413–417 (2019).
[Crossref]

Rowe, D.

A. J. Conneely, C. Bennett, G. M. O’Connor, T. Vollmerhausen, C. O’Byrne, G. Spence, D. Rowe, and J. Victor, “Generation of side-emitting polymer optical fibres by laser ablation for use in antimicrobial applications,” 604, M604 (2019).

Sabatini, B.

A. Balena, M. Bianco, F. Pisano, M. Pisanello, L. Sileo, B. Spagnolo, B. Sabatini, M. De Vittorio, and F. Pisanello, “Tapered Fibers for Optogenetics: Gaining Spatial Resolution in Deep Brain Regions by Exploiting Angle-Selective Light Injection Systems,” in 2019 21st International Conference on Transparent Optical Networks (ICTON) (2019), pp. 1–7.

Sabatini, B. L.

S. J. Lee, Y. Chen, B. Lodder, and B. L. Sabatini, “Monitoring Behaviorally Induced Biochemical Changes Using Fluorescence Lifetime Photometry,” Front. Neurosci. 13, 766 (2019).
[Crossref]

M. Pisanello, F. Pisano, M. Hyun, E. Maglie, A. Balena, M. De Vittorio, B. L. Sabatini, and F. Pisanello, “The three-dimensional signal collection field for fiber photometry in brain tissue,” Front. Neurosci. 13, 82 (2019).
[Crossref]

F. Pisano, M. Pisanello, S. J. Lee, J. Lee, E. Maglie, A. Balena, L. Sileo, B. Spagnolo, M. Bianco, M. Hyun, M. De Vittorio, B. L. Sabatini, and F. Pisanello, “Depth-resolved fiber photometry with a single tapered optical fiber implant,” Nat. Methods 16(11), 1185–1192 (2019).
[Crossref]

K. D. Piatkevich, S. Bensussen, H. Tseng, S. N. Shroff, V. G. Lopez-Huerta, D. Park, E. E. Jung, O. A. Shemesh, C. Straub, H. J. Gritton, M. F. Romano, E. Costa, B. L. Sabatini, Z. Fu, E. S. Boyden, and X. Han, “Population imaging of neural activity in awake behaving mice,” Nature 574(7778), 413–417 (2019).
[Crossref]

M. Pisanello, F. Pisano, L. Sileo, E. Maglie, E. Bellistri, B. Spagnolo, G. Mandelbaum, B. L. Sabatini, M. De Vittorio, and F. Pisanello, “Tailoring light delivery for optogenetics by modal demultiplexing in tapered optical fibers,” Sci. Rep. 8(1), 4467 (2018).
[Crossref]

F. Pisano, M. Pisanello, L. Sileo, A. Qualtieri, B. L. Sabatini, M. De Vittorio, and F. Pisanello, “Focused ion beam nanomachining of tapered optical fibers for patterned light delivery,” Microelectron. Eng. 195, 41–49 (2018).
[Crossref]

F. Pisanello, G. Mandelbaum, M. Pisanello, I. A. Oldenburg, L. Sileo, J. E. Markowitz, R. E. Peterson, A. Della Patria, T. M. Haynes, M. S. Emara, B. Spagnolo, S. R. Datta, M. De Vittorio, and B. L. Sabatini, “Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber,” Nat. Neurosci. 20(8), 1180–1188 (2017).
[Crossref]

M. Pisanello, A. Della Patria, L. Sileo, B. L. Sabatini, M. De Vittorio, and F. Pisanello, “Modal demultiplexing properties of tapered and nanostructured optical fibers for in vivo optogenetic control of neural activity,” Biomed. Opt. Express 6(10), 4014–4026 (2015).
[Crossref]

F. Pisanello, L. Sileo, I. A. Oldenburg, M. Pisanello, L. Martiradonna, J. A. Assad, B. L. Sabatini, and M. De Vittorio, “Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics,” Neuron 82(6), 1245 (2014).
[Crossref]

Sanner, N.

B. Chimier, O. Utéza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Légaré, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime,” Phys. Rev. B: Condens. Matter Mater. Phys. 84(9), 94104 (2011).
[Crossref]

Schaffer, C. B.

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A: Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

Sentis, M.

B. Chimier, O. Utéza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Légaré, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime,” Phys. Rev. B: Condens. Matter Mater. Phys. 84(9), 94104 (2011).
[Crossref]

Shang, S.

J. Cheng, C. S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[Crossref]

Shemesh, O. A.

K. D. Piatkevich, S. Bensussen, H. Tseng, S. N. Shroff, V. G. Lopez-Huerta, D. Park, E. E. Jung, O. A. Shemesh, C. Straub, H. J. Gritton, M. F. Romano, E. Costa, B. L. Sabatini, Z. Fu, E. S. Boyden, and X. Han, “Population imaging of neural activity in awake behaving mice,” Nature 574(7778), 413–417 (2019).
[Crossref]

Shen, Z. H.

Shih, W. C.

Shoham, S.

G. Yona, N. Meitav, I. Kahn, and S. Shoham, “Realistic Numerical and Analytical Modeling of Light Scattering in Brain Tissue for Optogenetic Applications,” eNeuro 3(1), 005915 (2016).
[Crossref]

Shroff, S. N.

K. D. Piatkevich, S. Bensussen, H. Tseng, S. N. Shroff, V. G. Lopez-Huerta, D. Park, E. E. Jung, O. A. Shemesh, C. Straub, H. J. Gritton, M. F. Romano, E. Costa, B. L. Sabatini, Z. Fu, E. S. Boyden, and X. Han, “Population imaging of neural activity in awake behaving mice,” Nature 574(7778), 413–417 (2019).
[Crossref]

Sileo, L.

F. Pisano, M. Pisanello, S. J. Lee, J. Lee, E. Maglie, A. Balena, L. Sileo, B. Spagnolo, M. Bianco, M. Hyun, M. De Vittorio, B. L. Sabatini, and F. Pisanello, “Depth-resolved fiber photometry with a single tapered optical fiber implant,” Nat. Methods 16(11), 1185–1192 (2019).
[Crossref]

A. Rizzo, E. D. Lemma, F. Pisano, M. Pisanello, L. Sileo, M. De Vittorio, and F. Pisanello, “Laser micromachining of tapered optical fibers for spatially selective control of neural activity,” Microelectron. Eng. 192, 88–95 (2018).
[Crossref]

M. Pisanello, F. Pisano, L. Sileo, E. Maglie, E. Bellistri, B. Spagnolo, G. Mandelbaum, B. L. Sabatini, M. De Vittorio, and F. Pisanello, “Tailoring light delivery for optogenetics by modal demultiplexing in tapered optical fibers,” Sci. Rep. 8(1), 4467 (2018).
[Crossref]

F. Pisano, M. Pisanello, L. Sileo, A. Qualtieri, B. L. Sabatini, M. De Vittorio, and F. Pisanello, “Focused ion beam nanomachining of tapered optical fibers for patterned light delivery,” Microelectron. Eng. 195, 41–49 (2018).
[Crossref]

F. Pisanello, G. Mandelbaum, M. Pisanello, I. A. Oldenburg, L. Sileo, J. E. Markowitz, R. E. Peterson, A. Della Patria, T. M. Haynes, M. S. Emara, B. Spagnolo, S. R. Datta, M. De Vittorio, and B. L. Sabatini, “Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber,” Nat. Neurosci. 20(8), 1180–1188 (2017).
[Crossref]

L. Sileo, M. Pisanello, M. De Vittorio, and F. Pisanello, “Fabrication of multipoint light emitting optical fibers for optogenetics,” Proc. SPIE 9305, 93052O (2015).
[Crossref]

M. Pisanello, A. Della Patria, L. Sileo, B. L. Sabatini, M. De Vittorio, and F. Pisanello, “Modal demultiplexing properties of tapered and nanostructured optical fibers for in vivo optogenetic control of neural activity,” Biomed. Opt. Express 6(10), 4014–4026 (2015).
[Crossref]

F. Pisanello, L. Sileo, I. A. Oldenburg, M. Pisanello, L. Martiradonna, J. A. Assad, B. L. Sabatini, and M. De Vittorio, “Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics,” Neuron 82(6), 1245 (2014).
[Crossref]

A. Balena, M. Bianco, F. Pisano, M. Pisanello, L. Sileo, B. Spagnolo, B. Sabatini, M. De Vittorio, and F. Pisanello, “Tapered Fibers for Optogenetics: Gaining Spatial Resolution in Deep Brain Regions by Exploiting Angle-Selective Light Injection Systems,” in 2019 21st International Conference on Transparent Optical Networks (ICTON) (2019), pp. 1–7.

Sjöback, R.

R. Sjöback, J. Nygren, and M. Kubista, “Absorption and fluorescence properties of fluorescein,” Spectrochim. Acta, Part A 51(6), L7–L21 (1995).
[Crossref]

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Springer, 1983).

Song, S.

Y. Yang, N. Liu, Y. He, Y. Liu, L. Ge, L. Zou, S. Song, W. Xiong, and X. Liu, “Improved calcium sensor GCaMP-X overcomes the calcium channel perturbations induced by the calmodulin in GCaMP,” Nat. Commun. 9(1), 1504 (2018).
[Crossref]

Spagnolo, B.

F. Pisano, M. Pisanello, S. J. Lee, J. Lee, E. Maglie, A. Balena, L. Sileo, B. Spagnolo, M. Bianco, M. Hyun, M. De Vittorio, B. L. Sabatini, and F. Pisanello, “Depth-resolved fiber photometry with a single tapered optical fiber implant,” Nat. Methods 16(11), 1185–1192 (2019).
[Crossref]

M. Pisanello, F. Pisano, L. Sileo, E. Maglie, E. Bellistri, B. Spagnolo, G. Mandelbaum, B. L. Sabatini, M. De Vittorio, and F. Pisanello, “Tailoring light delivery for optogenetics by modal demultiplexing in tapered optical fibers,” Sci. Rep. 8(1), 4467 (2018).
[Crossref]

F. Pisanello, G. Mandelbaum, M. Pisanello, I. A. Oldenburg, L. Sileo, J. E. Markowitz, R. E. Peterson, A. Della Patria, T. M. Haynes, M. S. Emara, B. Spagnolo, S. R. Datta, M. De Vittorio, and B. L. Sabatini, “Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber,” Nat. Neurosci. 20(8), 1180–1188 (2017).
[Crossref]

A. Balena, M. Bianco, F. Pisano, M. Pisanello, L. Sileo, B. Spagnolo, B. Sabatini, M. De Vittorio, and F. Pisanello, “Tapered Fibers for Optogenetics: Gaining Spatial Resolution in Deep Brain Regions by Exploiting Angle-Selective Light Injection Systems,” in 2019 21st International Conference on Transparent Optical Networks (ICTON) (2019), pp. 1–7.

Spence, G.

A. J. Conneely, C. Bennett, G. M. O’Connor, T. Vollmerhausen, C. O’Byrne, G. Spence, D. Rowe, and J. Victor, “Generation of side-emitting polymer optical fibres by laser ablation for use in antimicrobial applications,” 604, M604 (2019).

Straub, C.

K. D. Piatkevich, S. Bensussen, H. Tseng, S. N. Shroff, V. G. Lopez-Huerta, D. Park, E. E. Jung, O. A. Shemesh, C. Straub, H. J. Gritton, M. F. Romano, E. Costa, B. L. Sabatini, Z. Fu, E. S. Boyden, and X. Han, “Population imaging of neural activity in awake behaving mice,” Nature 574(7778), 413–417 (2019).
[Crossref]

Takao, T.

M. K. Kim, T. Takao, Y. Oki, and M. Maeda, “Thin-layer ablation of metals and silicon by femtosecond laser pulses for application to surface analysis,” Jpn. J. Appl. Phys., Part 1 Regul. Pap. Short Notes Rev. Pap. 39(Part 1, No. 11), 6277–6280 (2000).
[Crossref]

Tanvir Ahmmed, K. M.

K. M. Tanvir Ahmmed, C. Grambow, and A. M. Kietzig, “Fabrication of micro/nano structures on metals by femtosecond laser micromachining,” Micromachines 5(4), 1219–1253 (2014).
[Crossref]

Tatam, R. P.

S. Korposh, S. W. James, S. W. Lee, and R. P. Tatam, “Tapered Optical Fibre Sensors: Current Trends and Future Perspectives,” Sensors 19(10), 2294 (2019).
[Crossref]

Tian, L.

T. Patriarchi, J. R. Cho, K. Merten, M. W. Howe, A. Marley, W. H. Xiong, R. W. Folk, G. J. Broussard, R. Liang, M. J. Jang, H. Zhong, D. Dombeck, M. von Zastrow, A. Nimmerjahn, V. Gradinaru, J. T. Williams, and L. Tian, “Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors,” Science 360(6396), eaat4422 (2018).
[Crossref]

Tikhonchuk, V. T.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B: Condens. Matter Mater. Phys. 73(21), 214101 (2006).
[Crossref]

Tseng, H.

K. D. Piatkevich, S. Bensussen, H. Tseng, S. N. Shroff, V. G. Lopez-Huerta, D. Park, E. E. Jung, O. A. Shemesh, C. Straub, H. J. Gritton, M. F. Romano, E. Costa, B. L. Sabatini, Z. Fu, E. S. Boyden, and X. Han, “Population imaging of neural activity in awake behaving mice,” Nature 574(7778), 413–417 (2019).
[Crossref]

Utéza, O.

B. Chimier, O. Utéza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Légaré, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime,” Phys. Rev. B: Condens. Matter Mater. Phys. 84(9), 94104 (2011).
[Crossref]

Victor, J.

A. J. Conneely, C. Bennett, G. M. O’Connor, T. Vollmerhausen, C. O’Byrne, G. Spence, D. Rowe, and J. Victor, “Generation of side-emitting polymer optical fibres by laser ablation for use in antimicrobial applications,” 604, M604 (2019).

Vidal, F.

B. Chimier, O. Utéza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Légaré, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime,” Phys. Rev. B: Condens. Matter Mater. Phys. 84(9), 94104 (2011).
[Crossref]

Vogel, A.

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
[Crossref]

Vollmerhausen, T.

A. J. Conneely, C. Bennett, G. M. O’Connor, T. Vollmerhausen, C. O’Byrne, G. Spence, D. Rowe, and J. Victor, “Generation of side-emitting polymer optical fibres by laser ablation for use in antimicrobial applications,” 604, M604 (2019).

von Zastrow, M.

T. Patriarchi, J. R. Cho, K. Merten, M. W. Howe, A. Marley, W. H. Xiong, R. W. Folk, G. J. Broussard, R. Liang, M. J. Jang, H. Zhong, D. Dombeck, M. von Zastrow, A. Nimmerjahn, V. Gradinaru, J. T. Williams, and L. Tian, “Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors,” Science 360(6396), eaat4422 (2018).
[Crossref]

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, “Femtosecond laser blackening of platinum,” J. Appl. Phys. 104(5), 053516 (2008).
[Crossref]

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys. A: Mater. Sci. Process. 82(2), 357–362 (2006).
[Crossref]

A. Y. Vorobyev and C. Guo, “Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation,” Appl. Phys. Lett. 86(1), 011916 (2005).
[Crossref]

Ward, C. A.

Watkins, K.

J. Cheng, C. S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[Crossref]

Williams, J. T.

T. Patriarchi, J. R. Cho, K. Merten, M. W. Howe, A. Marley, W. H. Xiong, R. W. Folk, G. J. Broussard, R. Liang, M. J. Jang, H. Zhong, D. Dombeck, M. von Zastrow, A. Nimmerjahn, V. Gradinaru, J. T. Williams, and L. Tian, “Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors,” Science 360(6396), eaat4422 (2018).
[Crossref]

Wolfe, J. C.

Woodard, R.

J. A. King, J. Freer, and R. Woodard, Materials Handbook for Hybrid Microelectronics (Artech House, 1988).

Xiong, W.

Y. Yang, N. Liu, Y. He, Y. Liu, L. Ge, L. Zou, S. Song, W. Xiong, and X. Liu, “Improved calcium sensor GCaMP-X overcomes the calcium channel perturbations induced by the calmodulin in GCaMP,” Nat. Commun. 9(1), 1504 (2018).
[Crossref]

Xiong, W. H.

T. Patriarchi, J. R. Cho, K. Merten, M. W. Howe, A. Marley, W. H. Xiong, R. W. Folk, G. J. Broussard, R. Liang, M. J. Jang, H. Zhong, D. Dombeck, M. von Zastrow, A. Nimmerjahn, V. Gradinaru, J. T. Williams, and L. Tian, “Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors,” Science 360(6396), eaat4422 (2018).
[Crossref]

Xu, R. Q.

Yang, Y.

Y. Yang, N. Liu, Y. He, Y. Liu, L. Ge, L. Zou, S. Song, W. Xiong, and X. Liu, “Improved calcium sensor GCaMP-X overcomes the calcium channel perturbations induced by the calmodulin in GCaMP,” Nat. Commun. 9(1), 1504 (2018).
[Crossref]

Yona, G.

G. Yona, N. Meitav, I. Kahn, and S. Shoham, “Realistic Numerical and Analytical Modeling of Light Scattering in Brain Tissue for Optogenetic Applications,” eNeuro 3(1), 005915 (2016).
[Crossref]

Yuan, R.

B. Li, M. Zhou, R. Yuan, and L. Cai, “Fabrication of titanium-based microstructured surfaces and study on their superhydrophobic stability,” J. Mater. Res. 23(9), 2491–2499 (2008).
[Crossref]

Zhong, H.

T. Patriarchi, J. R. Cho, K. Merten, M. W. Howe, A. Marley, W. H. Xiong, R. W. Folk, G. J. Broussard, R. Liang, M. J. Jang, H. Zhong, D. Dombeck, M. von Zastrow, A. Nimmerjahn, V. Gradinaru, J. T. Williams, and L. Tian, “Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors,” Science 360(6396), eaat4422 (2018).
[Crossref]

Zhou, M.

B. Li, M. Zhou, R. Yuan, and L. Cai, “Fabrication of titanium-based microstructured surfaces and study on their superhydrophobic stability,” J. Mater. Res. 23(9), 2491–2499 (2008).
[Crossref]

Zibaii, M. I.

H. Latifi, M. I. Zibaii, S. M. Hosseini, and P. Jorge, “Nonadiabatic Photonic Sensors Nonadiabatic Tapered Optical Fiber for Biosensor Applications,” Photonic Sens. 2(4), 340–356 (2012).
[Crossref]

Zou, L.

Y. Yang, N. Liu, Y. He, Y. Liu, L. Ge, L. Zou, S. Song, W. Xiong, and X. Liu, “Improved calcium sensor GCaMP-X overcomes the calcium channel perturbations induced by the calmodulin in GCaMP,” Nat. Commun. 9(1), 1504 (2018).
[Crossref]

Anal. Sci. (1)

J. M. S. Ong, T. I. Noue, H. K. Awazumi, and T. O. Gawa, “Determination of Two Photon Absorption Cross Section of Fluorescein Using a Mode Locked Titanium Sapphire Laser,” Anal. Sci. 15(6), 601–603 (1999).
[Crossref]

Appl. Opt. (2)

Appl. Phys. A: Mater. Sci. Process. (2)

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A: Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys. A: Mater. Sci. Process. 82(2), 357–362 (2006).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

Y. Fu and N. K. A. Bryan, “Investigation of physical properties of quartz after focused ion beam bombardment,” Appl. Phys. B: Lasers Opt. 80(4-5), 581–585 (2005).
[Crossref]

Appl. Phys. Lett. (1)

A. Y. Vorobyev and C. Guo, “Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation,” Appl. Phys. Lett. 86(1), 011916 (2005).
[Crossref]

Appl. Surf. Sci. (2)

P. E. Dyer, D. M. Karnakis, P. H. Key, and P. Monk, “Excimer laser ablation for micro-machining: Geometric effects,” Appl. Surf. Sci. 96-98, 415–419 (1996).
[Crossref]

N. N. Nedialkov, S. E. Imamova, P. A. Atanasov, P. Berger, and F. Dausinger, “Mechanism of ultrashort laser ablation of metals: molecular dynamics simulation,” Appl. Surf. Sci. 247(1-4), 243–248 (2005).
[Crossref]

Biomed. Opt. Express (1)

eNeuro (1)

G. Yona, N. Meitav, I. Kahn, and S. Shoham, “Realistic Numerical and Analytical Modeling of Light Scattering in Brain Tissue for Optogenetic Applications,” eNeuro 3(1), 005915 (2016).
[Crossref]

Front. Neurosci. (2)

M. Pisanello, F. Pisano, M. Hyun, E. Maglie, A. Balena, M. De Vittorio, B. L. Sabatini, and F. Pisanello, “The three-dimensional signal collection field for fiber photometry in brain tissue,” Front. Neurosci. 13, 82 (2019).
[Crossref]

S. J. Lee, Y. Chen, B. Lodder, and B. L. Sabatini, “Monitoring Behaviorally Induced Biochemical Changes Using Fluorescence Lifetime Photometry,” Front. Neurosci. 13, 766 (2019).
[Crossref]

IEEE J. Quantum Electron. (1)

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

J. P. Golden, G. P. Anderson, S. Y. Rabbany, and F. S. Ligler, “An Evanescent Wave Biosensor—Part II: Fluorescent Signal Acquisition from Tapered Fiber Optic Probes,” IEEE Trans. Biomed. Eng. 41(6), 585–591 (1994).
[Crossref]

J. Acoust. Soc. Am. (1)

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
[Crossref]

J. Appl. Phys. (1)

A. Y. Vorobyev and C. Guo, “Femtosecond laser blackening of platinum,” J. Appl. Phys. 104(5), 053516 (2008).
[Crossref]

J. Mater. Res. (1)

B. Li, M. Zhou, R. Yuan, and L. Cai, “Fabrication of titanium-based microstructured surfaces and study on their superhydrophobic stability,” J. Mater. Res. 23(9), 2491–2499 (2008).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. K. Kim, T. Takao, Y. Oki, and M. Maeda, “Thin-layer ablation of metals and silicon by femtosecond laser pulses for application to surface analysis,” Jpn. J. Appl. Phys., Part 1 Regul. Pap. Short Notes Rev. Pap. 39(Part 1, No. 11), 6277–6280 (2000).
[Crossref]

Mater. Sci. Eng., A (1)

K. L. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L. M. Raff, and R. Komanduri, “Micromachining of silicon by short-pulse laser ablation in air and under water,” Mater. Sci. Eng., A 372(1-2), 145–162 (2004).
[Crossref]

Microelectron. Eng. (2)

F. Pisano, M. Pisanello, L. Sileo, A. Qualtieri, B. L. Sabatini, M. De Vittorio, and F. Pisanello, “Focused ion beam nanomachining of tapered optical fibers for patterned light delivery,” Microelectron. Eng. 195, 41–49 (2018).
[Crossref]

A. Rizzo, E. D. Lemma, F. Pisano, M. Pisanello, L. Sileo, M. De Vittorio, and F. Pisanello, “Laser micromachining of tapered optical fibers for spatially selective control of neural activity,” Microelectron. Eng. 192, 88–95 (2018).
[Crossref]

Micromachines (1)

K. M. Tanvir Ahmmed, C. Grambow, and A. M. Kietzig, “Fabrication of micro/nano structures on metals by femtosecond laser micromachining,” Micromachines 5(4), 1219–1253 (2014).
[Crossref]

Nat. Commun. (1)

Y. Yang, N. Liu, Y. He, Y. Liu, L. Ge, L. Zou, S. Song, W. Xiong, and X. Liu, “Improved calcium sensor GCaMP-X overcomes the calcium channel perturbations induced by the calmodulin in GCaMP,” Nat. Commun. 9(1), 1504 (2018).
[Crossref]

Nat. Methods (1)

F. Pisano, M. Pisanello, S. J. Lee, J. Lee, E. Maglie, A. Balena, L. Sileo, B. Spagnolo, M. Bianco, M. Hyun, M. De Vittorio, B. L. Sabatini, and F. Pisanello, “Depth-resolved fiber photometry with a single tapered optical fiber implant,” Nat. Methods 16(11), 1185–1192 (2019).
[Crossref]

Nat. Neurosci. (1)

F. Pisanello, G. Mandelbaum, M. Pisanello, I. A. Oldenburg, L. Sileo, J. E. Markowitz, R. E. Peterson, A. Della Patria, T. M. Haynes, M. S. Emara, B. Spagnolo, S. R. Datta, M. De Vittorio, and B. L. Sabatini, “Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber,” Nat. Neurosci. 20(8), 1180–1188 (2017).
[Crossref]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Nature (1)

K. D. Piatkevich, S. Bensussen, H. Tseng, S. N. Shroff, V. G. Lopez-Huerta, D. Park, E. E. Jung, O. A. Shemesh, C. Straub, H. J. Gritton, M. F. Romano, E. Costa, B. L. Sabatini, Z. Fu, E. S. Boyden, and X. Han, “Population imaging of neural activity in awake behaving mice,” Nature 574(7778), 413–417 (2019).
[Crossref]

Neuron (1)

F. Pisanello, L. Sileo, I. A. Oldenburg, M. Pisanello, L. Martiradonna, J. A. Assad, B. L. Sabatini, and M. De Vittorio, “Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics,” Neuron 82(6), 1245 (2014).
[Crossref]

Opt. Express (1)

Opt. Fiber Technol. (1)

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
[Crossref]

Opt. Laser Technol. (1)

J. Cheng, C. S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[Crossref]

Opt. Lett. (1)

Photochem. Photobiol. (1)

M. Chalfie, “Green Fluorescent Protein,” Photochem. Photobiol. 62(4), 651–656 (1995).
[Crossref]

Photonic Sens. (1)

H. Latifi, M. I. Zibaii, S. M. Hosseini, and P. Jorge, “Nonadiabatic Photonic Sensors Nonadiabatic Tapered Optical Fiber for Biosensor Applications,” Photonic Sens. 2(4), 340–356 (2012).
[Crossref]

Phys. Chem. Chem. Phys. (1)

L. François, M. Mostafavi, J. Belloni, and J. A. Delaire, “Optical limitation induced by gold clusters: Mechanism and efficiency,” Phys. Chem. Chem. Phys. 3(22), 4965–4971 (2001).
[Crossref]

Phys. Rev. B: Condens. Matter Mater. Phys. (2)

B. Chimier, O. Utéza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Légaré, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime,” Phys. Rev. B: Condens. Matter Mater. Phys. 84(9), 94104 (2011).
[Crossref]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B: Condens. Matter Mater. Phys. 73(21), 214101 (2006).
[Crossref]

Proc. SPIE (1)

L. Sileo, M. Pisanello, M. De Vittorio, and F. Pisanello, “Fabrication of multipoint light emitting optical fibers for optogenetics,” Proc. SPIE 9305, 93052O (2015).
[Crossref]

Sci. Rep. (1)

M. Pisanello, F. Pisano, L. Sileo, E. Maglie, E. Bellistri, B. Spagnolo, G. Mandelbaum, B. L. Sabatini, M. De Vittorio, and F. Pisanello, “Tailoring light delivery for optogenetics by modal demultiplexing in tapered optical fibers,” Sci. Rep. 8(1), 4467 (2018).
[Crossref]

Science (1)

T. Patriarchi, J. R. Cho, K. Merten, M. W. Howe, A. Marley, W. H. Xiong, R. W. Folk, G. J. Broussard, R. Liang, M. J. Jang, H. Zhong, D. Dombeck, M. von Zastrow, A. Nimmerjahn, V. Gradinaru, J. T. Williams, and L. Tian, “Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors,” Science 360(6396), eaat4422 (2018).
[Crossref]

Sensors (1)

S. Korposh, S. W. James, S. W. Lee, and R. P. Tatam, “Tapered Optical Fibre Sensors: Current Trends and Future Perspectives,” Sensors 19(10), 2294 (2019).
[Crossref]

Spectrochim. Acta, Part A (1)

R. Sjöback, J. Nygren, and M. Kubista, “Absorption and fluorescence properties of fluorescein,” Spectrochim. Acta, Part A 51(6), L7–L21 (1995).
[Crossref]

Other (5)

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Springer, 1983).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).

A. Balena, M. Bianco, F. Pisano, M. Pisanello, L. Sileo, B. Spagnolo, B. Sabatini, M. De Vittorio, and F. Pisanello, “Tapered Fibers for Optogenetics: Gaining Spatial Resolution in Deep Brain Regions by Exploiting Angle-Selective Light Injection Systems,” in 2019 21st International Conference on Transparent Optical Networks (ICTON) (2019), pp. 1–7.

A. J. Conneely, C. Bennett, G. M. O’Connor, T. Vollmerhausen, C. O’Byrne, G. Spence, D. Rowe, and J. Victor, “Generation of side-emitting polymer optical fibres by laser ablation for use in antimicrobial applications,” 604, M604 (2019).

J. A. King, J. Freer, and R. Woodard, Materials Handbook for Hybrid Microelectronics (Artech House, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Custom Two-Photon Microscope for spatially restricted Laser Ablation of Aluminum deposited on TFs and for the optical characterization of the resulting devices. The zooms show sketched details on the raster scanning trajectories of the Laser spot in two different configurations: the Ablation Configuration on the left and the Characterization Configuration on the right. (b) Fluorescence Collection optical setup that allows for real-time Feedback of the Ablation process and the related optical characterization.
Fig. 2.
Fig. 2. (a) Real-time time-resolved fluorescence collection map used as feedback of the ablation process. Inset: three spectra are extracted at different timestamps from the map to better show the spectral shape of the collected signal. Spectra are normalized to the respective maximum value. (b) Scatter plot of the spectra integrated intensity versus time, with the beginning of the process being at t = 0). The dashed lines divide the plot into three different regimes, described in the main text. (c) Ablation depth per pulse dependence from the TF curvature, determined through Eq. (1). (d) Ablation depth per pulse dependence from the axial inclination of the TF, determined throug Eq. (1). (e) Resulting effect on the ablation depth per pulse. Red dashed lines enclose the non-zero ablation depth per pulse region. (f) Scanning Electron Micrograph of a 2PFA-DLW window at a diameter of ∼60 µm. Scale bar is 25 µm. (g) Difference between the Field of View and the final 2PFA-DLW window surface.
Fig. 3.
Fig. 3. (a) Schematic representation of a dielectric TF. (b) Schematic representation of a metal coated TF. (c) Scanning Electron Micrograph of a 2PFA-DLW window. Scale bar is 25 µm. (d) Collection efficiency map for 2PFA-DLW window (red). Scale bar is 20 µm. White dashed line represents the edge of the fiber. (e) Scanning Electron Micrograph of a 40 × 40 µm2 FIB milled window. Scale bar is 25 µm. (f) Collection efficiency map for FIB milled window (blue). Scale bar is 20 µm. White dashed line represents the edge of the fiber. (g) Spectra registered for the two type of windows. (h) Collection areas at different percentages of the maximum collection efficiency value. (i) Decay profile for normalized collection efficiencies. The decay is measured along a straight line which starts from the center of the window and forms with the taper edge (white dashed lines in Figs. 3(d) and (f)) an angle equal to θM, that is the mean between the angles formed by the taper edge and the two edges of the 20% iso-surface profile (θ1 and θ2, example on a detail from Fig. 3(d)).
Fig. 4.
Fig. 4. (a) Sketch of the light emitted by the fiber and the correlation between the emission angle and the coordinates on the focal plane. (b) Scheme of the optical setup employed for angle selective light coupling inside the fiber and (B) far-field imaging of the collected signal. (c) Sketch of the light emitted by the fiber and the correlation between the emission angle and the coordinates on the detection plane (Band Pass Filter BPF is omitted).
Fig. 5.
Fig. 5. (a) “Raw” Far-Field pattern obtained from the subtraction between the signal collected while the fiber is submerged in a PBS:Fluorescein solution drop and the signal collected while the TF is submerged in non-fluorescent PBS. (b) Ring-shaped pattern obtained from the algorithm. (c) (Yellow) Histogram of the distance in units of 2π/λ between the non-zero pixels of the image corrected as described in the main text and the centroid of the image (only a bar each 4 is shown for visibility). Red lines indicate the interval of histogram values greater than the 90% of the maximum. This interval corresponds to the extracted modal subpopulation. The dot-dashed line corresponds to the maximum kt that could be emitted by the fiber (0.39 2π/λ). (d-f) As in A-C for a FIB milled window. White dashed circles the maximum kt that could be emitted by the fiber (0.39 2π/λ).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ y ( x ) = α 1 log { F F t cos [ tan 1 ( d y d x ) ] } ,
k t l , m ( z ) r ( z = 0 ) r ( z ) k t l , m ( z = 0 ) ,
η ( x , z ) = N f ( x , z ) Q N s ( x , z ) ,
k t = 2 π λ sin [ tan 1 ( f 4 f 3 f 5 | R ( u , v ) | ) ] ,

Metrics