Abstract

Higher spatial resolution of the reflection spectrum measurement of Brillouin dynamic grating (BDG) was achieved by controlling phonon power distribution. We experimentally demonstrate the improvement effect of the light-source intensity-modulation method, proposed recently in a correlation-domain technique, and successfully detected an 8-cm cooled section in a 100-m-long polarization-maintaining fiber. Our method can improve the spatial resolution of BDG measurements, leading to high resolution discriminative and distributed fiber sensing of temperature and strain.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Y. Song, W. Zou, Z. He, and K. Hotate, “All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber,” Opt. Lett. 33(9), 926–928 (2008).
    [Crossref]
  2. A. Bergman and M. Tur, “Brillouin dynamic gratings—a practical form of Brillouin enhanced four wave mixing in waveguides: The first decade and beyond,” Sensors 18(9), 2863 (2018).
    [Crossref]
  3. A. H. Hartog, An Introduction to Distributed Optical Fibre Sensors (CRC, 2017).
  4. P. Lu, N. Lalam, M. Badar, B. Liu, B. T. Chorpening, M. P. Buric, and P. R. Ohodnicki, “Distributed optical fiber sensing: Review and perspective,” Appl. Phys. Rev. 6(4), 041302 (2019).
    [Crossref]
  5. Y. Dong, L. Chen, and X. Bao, “Truly distributed birefringence measurement of polarization-maintaining fibers based on transient Brillouin grating,” Opt. Lett. 35(2), 193–195 (2010).
    [Crossref]
  6. Y. H. Kim and K. Y. Song, “Characterization of nonlinear temperature dependence of Brillouin dynamic grating spectra in polarization-maintaining fibers,” J. Lightwave Technol. 33(23), 4922–4927 (2015).
    [Crossref]
  7. W. Zou, Z. He, and K. Hotate, “Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber,” Opt. Express 17(3), 1248–1255 (2009).
    [Crossref]
  8. W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photonics Technol. Lett. 22(8), 526–528 (2010).
    [Crossref]
  9. K. Y. Song, S. Chin, N. Primerov, and L. Thévenaz, “Time-domain distributed fiber sensor with 1 cm spatial resolution based on Brillouin dynamic grating,” J. Lightwave Technol. 28(14), 2062–2067 (2010).
    [Crossref]
  10. G. Bashan, Y. London, H. H. Diamandi, and A. Zadok, “Distributed cladding mode fiber-optic sensor,” Optica 7(1), 85–92 (2020).
    [Crossref]
  11. K. Y. Song, K. Hotate, W. Zou, and Z. He, “Applications of Brillouin dynamic grating to distributed fiber sensors,” J. Lightwave Technol. 35(16), 3268–3280 (2017).
    [Crossref]
  12. K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique–proposal, experiment and simulation,” IEICE Trans. on Electron. E83-C, 405–412 (2000).
  13. K. Hotate, “Brillouin optical correlation-domain technologies based on synthesis of optical coherence function as fiber optic nerve systems for structural health monitoring,” Appl. Sci. 9(1), 187 (2019).
    [Crossref]
  14. W. Zou, Z. He, K.-Y. Song, and K. Hotate, “Correlation-based distributed measurement of a dynamic grating spectrum generated in stimulated Brillouin scattering in a polarization-maintaining optical fiber,” Opt. Lett. 34(7), 1126–1128 (2009).
    [Crossref]
  15. Y. Antman, N. Primerov, J. Sancho, L. Thevenaz, and A. Zadok, “Localized and stationary dynamic gratings via stimulated Brillouin scattering with phase modulated pumps,” Opt. Express 20(7), 7807–7821 (2012).
    [Crossref]
  16. T. Horiguchi and M. Tateda, “Optical-fiber-attenuation investigation using stimulated Brillouin scattering between a pulse and a continuous wave,” Opt. Lett. 14(8), 408–410 (1989).
    [Crossref]
  17. W. Zou, Z. He, and K. Hotate, “One-laser-based generation/detection of Brillouin dynamic grating and its application to distributed discrimination of strain and temperature,” Opt. Express 19(3), 2363–2370 (2011).
    [Crossref]
  18. Y. Kumagai, S. Matsuura, T. Yari, N. Saito, K. Hotate, M. Kishi, and M. Yoshida, “Fiber-optic distributed strain and temperature sensor using BOCDA technology at high speed and with high spatial resolution,” Tech. Rep. 2, Yokogawa (2013).
  19. Y. Okawa, R. K. Yamashita, M. Kishi, and K. Hotate, “Analysis of Brillouin dynamic grating localized by intensity-modulated correlation-domain technique for distributed fiber sensing,” Opt. Express 28(5), 6981–6994 (2020).
    [Crossref]
  20. X. Lu, M. A. Soto, and L. Thévenaz, “Temperature-strain discrimination in distributed optical fiber sensing using phase-sensitive optical time-domain reflectometry,” Opt. Express 25(14), 16059–16071 (2017).
    [Crossref]
  21. K. Y. Song, Z. He, and K. Hotate, “Effects of intensity modulation of light source on Brillouin optical correlation domain analysis,” J. Lightwave Technol. 25(5), 1238–1246 (2007).
    [Crossref]
  22. R. K. Yamashita, Z. He, and K. Hotate, “Spatial resolution improvement in correlation domain distributed measurement of Brillouin grating,” IEEE Photonics Technol. Lett. 26(5), 473–476 (2014).
    [Crossref]
  23. T. Sasai, M. Kishi, and K. Hotate, “Enhancement of spatial resolution in distributed measurement of Brillouin dynamic grating spectrum by optical correlation domain analysis,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2016), p. SM3P.6.
  24. K. Kajiwara, Z. He, and K. Hotate, “Dynamic range enhancement in reflectometry by synthesis of optical coherence function with half-wave intensity modulation,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, (Optical Society of America, 2011), p. OTuL3.
  25. K. Hotate, H. Arai, and K. Y. Song, “Range-enlargement of simplified Brillouin optical correlation domain analysis based on a temporal gating scheme,” SICE J. Control. Meas. Syst. Integration 1(4), 271–274 (2008).
    [Crossref]
  26. K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
    [Crossref]
  27. K. Y. Song and H. J. Yoon, “Observation of narrowband intrinsic spectra of Brillouin dynamic gratings,” Opt. Lett. 35(17), 2958–2960 (2010).
    [Crossref]

2020 (2)

2019 (2)

K. Hotate, “Brillouin optical correlation-domain technologies based on synthesis of optical coherence function as fiber optic nerve systems for structural health monitoring,” Appl. Sci. 9(1), 187 (2019).
[Crossref]

P. Lu, N. Lalam, M. Badar, B. Liu, B. T. Chorpening, M. P. Buric, and P. R. Ohodnicki, “Distributed optical fiber sensing: Review and perspective,” Appl. Phys. Rev. 6(4), 041302 (2019).
[Crossref]

2018 (1)

A. Bergman and M. Tur, “Brillouin dynamic gratings—a practical form of Brillouin enhanced four wave mixing in waveguides: The first decade and beyond,” Sensors 18(9), 2863 (2018).
[Crossref]

2017 (2)

2015 (1)

2014 (1)

R. K. Yamashita, Z. He, and K. Hotate, “Spatial resolution improvement in correlation domain distributed measurement of Brillouin grating,” IEEE Photonics Technol. Lett. 26(5), 473–476 (2014).
[Crossref]

2012 (1)

2011 (1)

2010 (4)

2009 (2)

2008 (2)

K. Y. Song, W. Zou, Z. He, and K. Hotate, “All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber,” Opt. Lett. 33(9), 926–928 (2008).
[Crossref]

K. Hotate, H. Arai, and K. Y. Song, “Range-enlargement of simplified Brillouin optical correlation domain analysis based on a temporal gating scheme,” SICE J. Control. Meas. Syst. Integration 1(4), 271–274 (2008).
[Crossref]

2007 (1)

2006 (1)

2000 (1)

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique–proposal, experiment and simulation,” IEICE Trans. on Electron. E83-C, 405–412 (2000).

1989 (1)

Antman, Y.

Arai, H.

K. Hotate, H. Arai, and K. Y. Song, “Range-enlargement of simplified Brillouin optical correlation domain analysis based on a temporal gating scheme,” SICE J. Control. Meas. Syst. Integration 1(4), 271–274 (2008).
[Crossref]

Badar, M.

P. Lu, N. Lalam, M. Badar, B. Liu, B. T. Chorpening, M. P. Buric, and P. R. Ohodnicki, “Distributed optical fiber sensing: Review and perspective,” Appl. Phys. Rev. 6(4), 041302 (2019).
[Crossref]

Bao, X.

Bashan, G.

Bergman, A.

A. Bergman and M. Tur, “Brillouin dynamic gratings—a practical form of Brillouin enhanced four wave mixing in waveguides: The first decade and beyond,” Sensors 18(9), 2863 (2018).
[Crossref]

Buric, M. P.

P. Lu, N. Lalam, M. Badar, B. Liu, B. T. Chorpening, M. P. Buric, and P. R. Ohodnicki, “Distributed optical fiber sensing: Review and perspective,” Appl. Phys. Rev. 6(4), 041302 (2019).
[Crossref]

Chen, L.

Chin, S.

Chorpening, B. T.

P. Lu, N. Lalam, M. Badar, B. Liu, B. T. Chorpening, M. P. Buric, and P. R. Ohodnicki, “Distributed optical fiber sensing: Review and perspective,” Appl. Phys. Rev. 6(4), 041302 (2019).
[Crossref]

Diamandi, H. H.

Dong, Y.

Hartog, A. H.

A. H. Hartog, An Introduction to Distributed Optical Fibre Sensors (CRC, 2017).

Hasegawa, T.

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique–proposal, experiment and simulation,” IEICE Trans. on Electron. E83-C, 405–412 (2000).

He, Z.

K. Y. Song, K. Hotate, W. Zou, and Z. He, “Applications of Brillouin dynamic grating to distributed fiber sensors,” J. Lightwave Technol. 35(16), 3268–3280 (2017).
[Crossref]

R. K. Yamashita, Z. He, and K. Hotate, “Spatial resolution improvement in correlation domain distributed measurement of Brillouin grating,” IEEE Photonics Technol. Lett. 26(5), 473–476 (2014).
[Crossref]

W. Zou, Z. He, and K. Hotate, “One-laser-based generation/detection of Brillouin dynamic grating and its application to distributed discrimination of strain and temperature,” Opt. Express 19(3), 2363–2370 (2011).
[Crossref]

W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photonics Technol. Lett. 22(8), 526–528 (2010).
[Crossref]

W. Zou, Z. He, and K. Hotate, “Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber,” Opt. Express 17(3), 1248–1255 (2009).
[Crossref]

W. Zou, Z. He, K.-Y. Song, and K. Hotate, “Correlation-based distributed measurement of a dynamic grating spectrum generated in stimulated Brillouin scattering in a polarization-maintaining optical fiber,” Opt. Lett. 34(7), 1126–1128 (2009).
[Crossref]

K. Y. Song, W. Zou, Z. He, and K. Hotate, “All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber,” Opt. Lett. 33(9), 926–928 (2008).
[Crossref]

K. Y. Song, Z. He, and K. Hotate, “Effects of intensity modulation of light source on Brillouin optical correlation domain analysis,” J. Lightwave Technol. 25(5), 1238–1246 (2007).
[Crossref]

K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
[Crossref]

K. Kajiwara, Z. He, and K. Hotate, “Dynamic range enhancement in reflectometry by synthesis of optical coherence function with half-wave intensity modulation,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, (Optical Society of America, 2011), p. OTuL3.

Horiguchi, T.

Hotate, K.

Y. Okawa, R. K. Yamashita, M. Kishi, and K. Hotate, “Analysis of Brillouin dynamic grating localized by intensity-modulated correlation-domain technique for distributed fiber sensing,” Opt. Express 28(5), 6981–6994 (2020).
[Crossref]

K. Hotate, “Brillouin optical correlation-domain technologies based on synthesis of optical coherence function as fiber optic nerve systems for structural health monitoring,” Appl. Sci. 9(1), 187 (2019).
[Crossref]

K. Y. Song, K. Hotate, W. Zou, and Z. He, “Applications of Brillouin dynamic grating to distributed fiber sensors,” J. Lightwave Technol. 35(16), 3268–3280 (2017).
[Crossref]

R. K. Yamashita, Z. He, and K. Hotate, “Spatial resolution improvement in correlation domain distributed measurement of Brillouin grating,” IEEE Photonics Technol. Lett. 26(5), 473–476 (2014).
[Crossref]

W. Zou, Z. He, and K. Hotate, “One-laser-based generation/detection of Brillouin dynamic grating and its application to distributed discrimination of strain and temperature,” Opt. Express 19(3), 2363–2370 (2011).
[Crossref]

W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photonics Technol. Lett. 22(8), 526–528 (2010).
[Crossref]

W. Zou, Z. He, and K. Hotate, “Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber,” Opt. Express 17(3), 1248–1255 (2009).
[Crossref]

W. Zou, Z. He, K.-Y. Song, and K. Hotate, “Correlation-based distributed measurement of a dynamic grating spectrum generated in stimulated Brillouin scattering in a polarization-maintaining optical fiber,” Opt. Lett. 34(7), 1126–1128 (2009).
[Crossref]

K. Y. Song, W. Zou, Z. He, and K. Hotate, “All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber,” Opt. Lett. 33(9), 926–928 (2008).
[Crossref]

K. Hotate, H. Arai, and K. Y. Song, “Range-enlargement of simplified Brillouin optical correlation domain analysis based on a temporal gating scheme,” SICE J. Control. Meas. Syst. Integration 1(4), 271–274 (2008).
[Crossref]

K. Y. Song, Z. He, and K. Hotate, “Effects of intensity modulation of light source on Brillouin optical correlation domain analysis,” J. Lightwave Technol. 25(5), 1238–1246 (2007).
[Crossref]

K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
[Crossref]

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique–proposal, experiment and simulation,” IEICE Trans. on Electron. E83-C, 405–412 (2000).

Y. Kumagai, S. Matsuura, T. Yari, N. Saito, K. Hotate, M. Kishi, and M. Yoshida, “Fiber-optic distributed strain and temperature sensor using BOCDA technology at high speed and with high spatial resolution,” Tech. Rep. 2, Yokogawa (2013).

K. Kajiwara, Z. He, and K. Hotate, “Dynamic range enhancement in reflectometry by synthesis of optical coherence function with half-wave intensity modulation,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, (Optical Society of America, 2011), p. OTuL3.

T. Sasai, M. Kishi, and K. Hotate, “Enhancement of spatial resolution in distributed measurement of Brillouin dynamic grating spectrum by optical correlation domain analysis,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2016), p. SM3P.6.

Kajiwara, K.

K. Kajiwara, Z. He, and K. Hotate, “Dynamic range enhancement in reflectometry by synthesis of optical coherence function with half-wave intensity modulation,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, (Optical Society of America, 2011), p. OTuL3.

Kim, Y. H.

Kishi, M.

Y. Okawa, R. K. Yamashita, M. Kishi, and K. Hotate, “Analysis of Brillouin dynamic grating localized by intensity-modulated correlation-domain technique for distributed fiber sensing,” Opt. Express 28(5), 6981–6994 (2020).
[Crossref]

Y. Kumagai, S. Matsuura, T. Yari, N. Saito, K. Hotate, M. Kishi, and M. Yoshida, “Fiber-optic distributed strain and temperature sensor using BOCDA technology at high speed and with high spatial resolution,” Tech. Rep. 2, Yokogawa (2013).

T. Sasai, M. Kishi, and K. Hotate, “Enhancement of spatial resolution in distributed measurement of Brillouin dynamic grating spectrum by optical correlation domain analysis,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2016), p. SM3P.6.

Kumagai, Y.

Y. Kumagai, S. Matsuura, T. Yari, N. Saito, K. Hotate, M. Kishi, and M. Yoshida, “Fiber-optic distributed strain and temperature sensor using BOCDA technology at high speed and with high spatial resolution,” Tech. Rep. 2, Yokogawa (2013).

Lalam, N.

P. Lu, N. Lalam, M. Badar, B. Liu, B. T. Chorpening, M. P. Buric, and P. R. Ohodnicki, “Distributed optical fiber sensing: Review and perspective,” Appl. Phys. Rev. 6(4), 041302 (2019).
[Crossref]

Liu, B.

P. Lu, N. Lalam, M. Badar, B. Liu, B. T. Chorpening, M. P. Buric, and P. R. Ohodnicki, “Distributed optical fiber sensing: Review and perspective,” Appl. Phys. Rev. 6(4), 041302 (2019).
[Crossref]

London, Y.

Lu, P.

P. Lu, N. Lalam, M. Badar, B. Liu, B. T. Chorpening, M. P. Buric, and P. R. Ohodnicki, “Distributed optical fiber sensing: Review and perspective,” Appl. Phys. Rev. 6(4), 041302 (2019).
[Crossref]

Lu, X.

Matsuura, S.

Y. Kumagai, S. Matsuura, T. Yari, N. Saito, K. Hotate, M. Kishi, and M. Yoshida, “Fiber-optic distributed strain and temperature sensor using BOCDA technology at high speed and with high spatial resolution,” Tech. Rep. 2, Yokogawa (2013).

Ohodnicki, P. R.

P. Lu, N. Lalam, M. Badar, B. Liu, B. T. Chorpening, M. P. Buric, and P. R. Ohodnicki, “Distributed optical fiber sensing: Review and perspective,” Appl. Phys. Rev. 6(4), 041302 (2019).
[Crossref]

Okawa, Y.

Primerov, N.

Saito, N.

Y. Kumagai, S. Matsuura, T. Yari, N. Saito, K. Hotate, M. Kishi, and M. Yoshida, “Fiber-optic distributed strain and temperature sensor using BOCDA technology at high speed and with high spatial resolution,” Tech. Rep. 2, Yokogawa (2013).

Sancho, J.

Sasai, T.

T. Sasai, M. Kishi, and K. Hotate, “Enhancement of spatial resolution in distributed measurement of Brillouin dynamic grating spectrum by optical correlation domain analysis,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2016), p. SM3P.6.

Song, K. Y.

K. Y. Song, K. Hotate, W. Zou, and Z. He, “Applications of Brillouin dynamic grating to distributed fiber sensors,” J. Lightwave Technol. 35(16), 3268–3280 (2017).
[Crossref]

Y. H. Kim and K. Y. Song, “Characterization of nonlinear temperature dependence of Brillouin dynamic grating spectra in polarization-maintaining fibers,” J. Lightwave Technol. 33(23), 4922–4927 (2015).
[Crossref]

K. Y. Song, S. Chin, N. Primerov, and L. Thévenaz, “Time-domain distributed fiber sensor with 1 cm spatial resolution based on Brillouin dynamic grating,” J. Lightwave Technol. 28(14), 2062–2067 (2010).
[Crossref]

K. Y. Song and H. J. Yoon, “Observation of narrowband intrinsic spectra of Brillouin dynamic gratings,” Opt. Lett. 35(17), 2958–2960 (2010).
[Crossref]

K. Hotate, H. Arai, and K. Y. Song, “Range-enlargement of simplified Brillouin optical correlation domain analysis based on a temporal gating scheme,” SICE J. Control. Meas. Syst. Integration 1(4), 271–274 (2008).
[Crossref]

K. Y. Song, W. Zou, Z. He, and K. Hotate, “All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber,” Opt. Lett. 33(9), 926–928 (2008).
[Crossref]

K. Y. Song, Z. He, and K. Hotate, “Effects of intensity modulation of light source on Brillouin optical correlation domain analysis,” J. Lightwave Technol. 25(5), 1238–1246 (2007).
[Crossref]

K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
[Crossref]

Song, K.-Y.

Soto, M. A.

Tateda, M.

Thevenaz, L.

Thévenaz, L.

Tur, M.

A. Bergman and M. Tur, “Brillouin dynamic gratings—a practical form of Brillouin enhanced four wave mixing in waveguides: The first decade and beyond,” Sensors 18(9), 2863 (2018).
[Crossref]

Yamashita, R. K.

Y. Okawa, R. K. Yamashita, M. Kishi, and K. Hotate, “Analysis of Brillouin dynamic grating localized by intensity-modulated correlation-domain technique for distributed fiber sensing,” Opt. Express 28(5), 6981–6994 (2020).
[Crossref]

R. K. Yamashita, Z. He, and K. Hotate, “Spatial resolution improvement in correlation domain distributed measurement of Brillouin grating,” IEEE Photonics Technol. Lett. 26(5), 473–476 (2014).
[Crossref]

Yari, T.

Y. Kumagai, S. Matsuura, T. Yari, N. Saito, K. Hotate, M. Kishi, and M. Yoshida, “Fiber-optic distributed strain and temperature sensor using BOCDA technology at high speed and with high spatial resolution,” Tech. Rep. 2, Yokogawa (2013).

Yoon, H. J.

Yoshida, M.

Y. Kumagai, S. Matsuura, T. Yari, N. Saito, K. Hotate, M. Kishi, and M. Yoshida, “Fiber-optic distributed strain and temperature sensor using BOCDA technology at high speed and with high spatial resolution,” Tech. Rep. 2, Yokogawa (2013).

Zadok, A.

Zou, W.

Appl. Phys. Rev. (1)

P. Lu, N. Lalam, M. Badar, B. Liu, B. T. Chorpening, M. P. Buric, and P. R. Ohodnicki, “Distributed optical fiber sensing: Review and perspective,” Appl. Phys. Rev. 6(4), 041302 (2019).
[Crossref]

Appl. Sci. (1)

K. Hotate, “Brillouin optical correlation-domain technologies based on synthesis of optical coherence function as fiber optic nerve systems for structural health monitoring,” Appl. Sci. 9(1), 187 (2019).
[Crossref]

IEEE Photonics Technol. Lett. (2)

R. K. Yamashita, Z. He, and K. Hotate, “Spatial resolution improvement in correlation domain distributed measurement of Brillouin grating,” IEEE Photonics Technol. Lett. 26(5), 473–476 (2014).
[Crossref]

W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photonics Technol. Lett. 22(8), 526–528 (2010).
[Crossref]

IEICE Trans. on Electron. (1)

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique–proposal, experiment and simulation,” IEICE Trans. on Electron. E83-C, 405–412 (2000).

J. Lightwave Technol. (4)

Opt. Express (5)

Opt. Lett. (6)

Optica (1)

Sensors (1)

A. Bergman and M. Tur, “Brillouin dynamic gratings—a practical form of Brillouin enhanced four wave mixing in waveguides: The first decade and beyond,” Sensors 18(9), 2863 (2018).
[Crossref]

SICE J. Control. Meas. Syst. Integration (1)

K. Hotate, H. Arai, and K. Y. Song, “Range-enlargement of simplified Brillouin optical correlation domain analysis based on a temporal gating scheme,” SICE J. Control. Meas. Syst. Integration 1(4), 271–274 (2008).
[Crossref]

Other (4)

A. H. Hartog, An Introduction to Distributed Optical Fibre Sensors (CRC, 2017).

T. Sasai, M. Kishi, and K. Hotate, “Enhancement of spatial resolution in distributed measurement of Brillouin dynamic grating spectrum by optical correlation domain analysis,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2016), p. SM3P.6.

K. Kajiwara, Z. He, and K. Hotate, “Dynamic range enhancement in reflectometry by synthesis of optical coherence function with half-wave intensity modulation,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, (Optical Society of America, 2011), p. OTuL3.

Y. Kumagai, S. Matsuura, T. Yari, N. Saito, K. Hotate, M. Kishi, and M. Yoshida, “Fiber-optic distributed strain and temperature sensor using BOCDA technology at high speed and with high spatial resolution,” Tech. Rep. 2, Yokogawa (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic illustration of the BDG-BOCDA system.
Fig. 2.
Fig. 2. Modulation waveform of the light source (FM and IM) and resulting phonon power distribution along the fiber in each method.
Fig. 3.
Fig. 3. Experimental setup of the BDG-BOCDA system. LD, laser diode; FM, frequency modulation; IM, intensity modulator; SSBM, single side-band modulation; EDFA, erbium-doped fiber amplifier; PBC, polarization beam combiner; LIA, lock-in amplifier; PD, photo detector; FUT, fiber under test.
Fig. 4.
Fig. 4. Comparison of each method in various measurements. (a) Light source spectra, (b) Phonon power distributions, (c) BOCDA outputs, and (d) BDG reflection spectra. The modulation parameters are (a) $\Delta f=3.6$ GHz; $f_m=1$ MHz; (b) $\Delta f=0.7$ GHz; (c) $\Delta f=0.15$ GHz, $f_m=1$ MHz; and (d) $\Delta f=3.6$ GHz, $f_m=1$ MHz.
Fig. 5.
Fig. 5. BDG reflection spectra of (a1) no apodization, (a2) conventional apodization method, and (a3) half-apodization method, while changing the length of the section immersed in cold water at the CP position from 20 cm to 2 m. (b) Peak power ratio of section immersed in $11^\circ$C cold water to room-temperature section. The black dashed line shows the BOCDA theoretical resolution, $\Delta z=27$ cm, and the orange dashed line shows the peak power ratio of one.
Fig. 6.
Fig. 6. (a) Distributed measurement result of BDG reflection spectrum in the half-apodization method when an 8-cm section at the center of the 100-m PMF is immersed in ice water. (b) Distribution of the maximum peak frequency in (a).

Metrics