Abstract

A blazed chirped Bragg grating in a planar silica waveguide device was used to create an integrated diffractive element for a spectrometer. The grating diffracts light from a waveguide and creates a wavelength dependent focus in a manner similar to a bulk diffraction grating spectrometer. An external imaging system is used to analyse the light, later device iterations plan to integrate detectors to make a fully integrated spectrometer. Devices were fabricated with grating period chirp rates in excess of 100 nm mm−1, achieving a focal length of 5.5 mm. Correction of coma aberrations resulted in a device with a footprint of 20 mm×10 mm, a peak FWHM resolution of 1.8 nm, a typical FWHM resolution of 2.6 nm and operating with a 160 nm bandwidth centered at 1550 nm.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Velasco, P. Cheben, P. J. Bock, A. Delâge, J. H. Schmid, J. Lapointe, S. Janz, M. L. Calvo, D. Xu, and M. Vachon, “High-resolution Fourier-transform spectrometer chip with microphotonic silicon spiral waveguides,” Opt. Lett. 38(5), 706–708 (2013).
    [Crossref]
  2. S. Wielandy and S. C. Dunn, “Tilted superstructure fiber grating used as a Fourier-transform spectrometer,” Opt. Lett. 29(14), 1614–1616 (2004).
    [Crossref]
  3. C. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomsom, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007).
    [Crossref]
  4. P. Cheben, J. H. Schmid, A. Delâge, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, and D. Xu, “A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides,” Opt. Express 15(5), 2299 (2007).
    [Crossref]
  5. X. Ma, M. Li, and J. J. He, “CMOS-compatible integrated spectrometer based on echelle diffraction grating and MSM photodetector array,” IEEE Photonics J. 5(2), 6600807 (2013).
    [Crossref]
  6. G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light: Sci. Appl. 3(9), e203 (2014).
    [Crossref]
  7. B. Redding, S. M. Popoff, and H. Cao, “All-fiber spectrometer based on speckle pattern reconstruction,” Opt. Express 21(5), 6584 (2013).
    [Crossref]
  8. B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
    [Crossref]
  9. C. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. DeMarco, “Planar waveguide optical spectrum analyzer using a UV-induced grating,” IEEE J. Sel. Top. Quantum Electron. 4(6), 925–929 (1998).
    [Crossref]
  10. C. Koeppen, J. L. Wagener, T. A. Strasser, and J. DeMarco, “High resolution fibre grating optical network monitor,” in NFOEC Proc., (1998), p. session 17 paper 2.
  11. A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
    [Crossref]
  12. S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors 12(2), 1898–1918 (2012).
    [Crossref]
  13. G. Meltz, W. W. Morey, and W. Glenn, “In-fiber Bragg grating tap,” in Optical Fibre Communication, (1990), p. Paper TUG1.
  14. P. J. Bock, P. Cheben, J. H. Schmid, A. V. Velasco, A. Delâge, S. Janz, D. Xu, J. Lapointe, T. J. Hall, and M. L. Calvo, “Demonstration of a curved sidewall grating demultiplexer on silicon,” Opt. Express 20(18), 19882–19892 (2012).
    [Crossref]
  15. C. Sima, J. C. Gates, H. L. Rogers, P. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Ultra-wide detuning planar Bragg grating fabrication technique based on direct UV grating writing with electro-optic phase modulation,” Opt. Express 21(13), 15747–15754 (2013).
    [Crossref]
  16. A. J. den Dekker and A. van den Bos, “Resolution: a survey,” J. Opt. Soc. Am. A 14(3), 547–557 (1997).
    [Crossref]
  17. C. C. Davis, Lasers and Electro-Optics, 1st ed (Cambridge University Press, 1996), chap. 16.
  18. C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. M. Adikan, C. B. E. Gawith, and P. G. R. Smith, “Direct UV-written planar Bragg grating sensors,” Meas. Sci. Technol. 26(11), 112001 (2015).
    [Crossref]
  19. R. H. Bannerman, “Microfabrication of waveguide-based devices for quantum optics,” Ph.D. thesis, University of Southampton (2019).
  20. M. Born and E. Wolf, Principles of Optics, 4th ed (Pergamon Press, 1970), chap. 8.

2015 (1)

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. M. Adikan, C. B. E. Gawith, and P. G. R. Smith, “Direct UV-written planar Bragg grating sensors,” Meas. Sci. Technol. 26(11), 112001 (2015).
[Crossref]

2014 (1)

G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light: Sci. Appl. 3(9), e203 (2014).
[Crossref]

2013 (5)

2012 (2)

2007 (2)

2004 (1)

1998 (1)

C. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. DeMarco, “Planar waveguide optical spectrum analyzer using a UV-induced grating,” IEEE J. Sel. Top. Quantum Electron. 4(6), 925–929 (1998).
[Crossref]

1997 (2)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

A. J. den Dekker and A. van den Bos, “Resolution: a survey,” J. Opt. Soc. Am. A 14(3), 547–557 (1997).
[Crossref]

Adikan, F. R. M.

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. M. Adikan, C. B. E. Gawith, and P. G. R. Smith, “Direct UV-written planar Bragg grating sensors,” Meas. Sci. Technol. 26(11), 112001 (2015).
[Crossref]

Albert, J.

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Babin, S.

G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light: Sci. Appl. 3(9), e203 (2014).
[Crossref]

Bannerman, R. H.

R. H. Bannerman, “Microfabrication of waveguide-based devices for quantum optics,” Ph.D. thesis, University of Southampton (2019).

Bock, P. J.

Born, M.

M. Born and E. Wolf, Principles of Optics, 4th ed (Pergamon Press, 1970), chap. 8.

Cabrini, S.

G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light: Sci. Appl. 3(9), e203 (2014).
[Crossref]

Calafiore, G.

G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light: Sci. Appl. 3(9), e203 (2014).
[Crossref]

Calvo, M. L.

Cao, H.

B. Redding, S. M. Popoff, and H. Cao, “All-fiber spectrometer based on speckle pattern reconstruction,” Opt. Express 21(5), 6584 (2013).
[Crossref]

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
[Crossref]

Carpenter, L. G.

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. M. Adikan, C. B. E. Gawith, and P. G. R. Smith, “Direct UV-written planar Bragg grating sensors,” Meas. Sci. Technol. 26(11), 112001 (2015).
[Crossref]

Chan, C.

Chaotan, S.

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. M. Adikan, C. B. E. Gawith, and P. G. R. Smith, “Direct UV-written planar Bragg grating sensors,” Meas. Sci. Technol. 26(11), 112001 (2015).
[Crossref]

Cheben, P.

Chen, C.

Cooper, P. A.

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. M. Adikan, C. B. E. Gawith, and P. G. R. Smith, “Direct UV-written planar Bragg grating sensors,” Meas. Sci. Technol. 26(11), 112001 (2015).
[Crossref]

Davis, C. C.

C. C. Davis, Lasers and Electro-Optics, 1st ed (Cambridge University Press, 1996), chap. 16.

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Delâge, A.

DeMarco, J.

C. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. DeMarco, “Planar waveguide optical spectrum analyzer using a UV-induced grating,” IEEE J. Sel. Top. Quantum Electron. 4(6), 925–929 (1998).
[Crossref]

C. Koeppen, J. L. Wagener, T. A. Strasser, and J. DeMarco, “High resolution fibre grating optical network monitor,” in NFOEC Proc., (1998), p. session 17 paper 2.

den Dekker, A. J.

Densmore, A.

Dhuey, S.

G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light: Sci. Appl. 3(9), e203 (2014).
[Crossref]

Dunn, S. C.

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Gates, J. C.

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. M. Adikan, C. B. E. Gawith, and P. G. R. Smith, “Direct UV-written planar Bragg grating sensors,” Meas. Sci. Technol. 26(11), 112001 (2015).
[Crossref]

C. Sima, J. C. Gates, H. L. Rogers, P. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Ultra-wide detuning planar Bragg grating fabrication technique based on direct UV grating writing with electro-optic phase modulation,” Opt. Express 21(13), 15747–15754 (2013).
[Crossref]

Gawith, C. B. E.

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. M. Adikan, C. B. E. Gawith, and P. G. R. Smith, “Direct UV-written planar Bragg grating sensors,” Meas. Sci. Technol. 26(11), 112001 (2015).
[Crossref]

Glenn, W.

G. Meltz, W. W. Morey, and W. Glenn, “In-fiber Bragg grating tap,” in Optical Fibre Communication, (1990), p. Paper TUG1.

Goltsov, A.

G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light: Sci. Appl. 3(9), e203 (2014).
[Crossref]

Hall, T. J.

He, J. J.

X. Ma, M. Li, and J. J. He, “CMOS-compatible integrated spectrometer based on echelle diffraction grating and MSM photodetector array,” IEEE Photonics J. 5(2), 6600807 (2013).
[Crossref]

Holmes, C.

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. M. Adikan, C. B. E. Gawith, and P. G. R. Smith, “Direct UV-written planar Bragg grating sensors,” Meas. Sci. Technol. 26(11), 112001 (2015).
[Crossref]

C. Sima, J. C. Gates, H. L. Rogers, P. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Ultra-wide detuning planar Bragg grating fabrication technique based on direct UV grating writing with electro-optic phase modulation,” Opt. Express 21(13), 15747–15754 (2013).
[Crossref]

Jafari, A.

Janz, S.

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Koeppen, C.

C. Koeppen, J. L. Wagener, T. A. Strasser, and J. DeMarco, “High resolution fibre grating optical network monitor,” in NFOEC Proc., (1998), p. session 17 paper 2.

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Koshelev, A.

G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light: Sci. Appl. 3(9), e203 (2014).
[Crossref]

Lamontagne, B.

Lapointe, J.

Laronche, A.

Laskowski, E. J.

C. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. DeMarco, “Planar waveguide optical spectrum analyzer using a UV-induced grating,” IEEE J. Sel. Top. Quantum Electron. 4(6), 925–929 (1998).
[Crossref]

Leblanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Li, M.

X. Ma, M. Li, and J. J. He, “CMOS-compatible integrated spectrometer based on echelle diffraction grating and MSM photodetector array,” IEEE Photonics J. 5(2), 6600807 (2013).
[Crossref]

Liew, S. F.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
[Crossref]

Ma, X.

X. Ma, M. Li, and J. J. He, “CMOS-compatible integrated spectrometer based on echelle diffraction grating and MSM photodetector array,” IEEE Photonics J. 5(2), 6600807 (2013).
[Crossref]

Madsen, C. K.

C. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. DeMarco, “Planar waveguide optical spectrum analyzer using a UV-induced grating,” IEEE J. Sel. Top. Quantum Electron. 4(6), 925–929 (1998).
[Crossref]

Meltz, G.

G. Meltz, W. W. Morey, and W. Glenn, “In-fiber Bragg grating tap,” in Optical Fibre Communication, (1990), p. Paper TUG1.

Mennea, P.

Mihailov, S. J.

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors 12(2), 1898–1918 (2012).
[Crossref]

Milbrodt, M. A.

C. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. DeMarco, “Planar waveguide optical spectrum analyzer using a UV-induced grating,” IEEE J. Sel. Top. Quantum Electron. 4(6), 925–929 (1998).
[Crossref]

Morey, W. W.

G. Meltz, W. W. Morey, and W. Glenn, “In-fiber Bragg grating tap,” in Optical Fibre Communication, (1990), p. Paper TUG1.

Muehlner, D.

C. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. DeMarco, “Planar waveguide optical spectrum analyzer using a UV-induced grating,” IEEE J. Sel. Top. Quantum Electron. 4(6), 925–929 (1998).
[Crossref]

Parker, R. M.

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. M. Adikan, C. B. E. Gawith, and P. G. R. Smith, “Direct UV-written planar Bragg grating sensors,” Meas. Sci. Technol. 26(11), 112001 (2015).
[Crossref]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Peroz, C.

G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light: Sci. Appl. 3(9), e203 (2014).
[Crossref]

Popoff, S. M.

Post, E.

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Redding, B.

B. Redding, S. M. Popoff, and H. Cao, “All-fiber spectrometer based on speckle pattern reconstruction,” Opt. Express 21(5), 6584 (2013).
[Crossref]

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
[Crossref]

Rogers, H. L.

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. M. Adikan, C. B. E. Gawith, and P. G. R. Smith, “Direct UV-written planar Bragg grating sensors,” Meas. Sci. Technol. 26(11), 112001 (2015).
[Crossref]

C. Sima, J. C. Gates, H. L. Rogers, P. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Ultra-wide detuning planar Bragg grating fabrication technique based on direct UV grating writing with electro-optic phase modulation,” Opt. Express 21(13), 15747–15754 (2013).
[Crossref]

Sarma, R.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
[Crossref]

Sasorov, P.

G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light: Sci. Appl. 3(9), e203 (2014).
[Crossref]

Schmid, J. H.

Sima, C.

Smith, P. G. R.

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. M. Adikan, C. B. E. Gawith, and P. G. R. Smith, “Direct UV-written planar Bragg grating sensors,” Meas. Sci. Technol. 26(11), 112001 (2015).
[Crossref]

C. Sima, J. C. Gates, H. L. Rogers, P. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Ultra-wide detuning planar Bragg grating fabrication technique based on direct UV grating writing with electro-optic phase modulation,” Opt. Express 21(13), 15747–15754 (2013).
[Crossref]

Strasser, T. A.

C. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. DeMarco, “Planar waveguide optical spectrum analyzer using a UV-induced grating,” IEEE J. Sel. Top. Quantum Electron. 4(6), 925–929 (1998).
[Crossref]

C. Koeppen, J. L. Wagener, T. A. Strasser, and J. DeMarco, “High resolution fibre grating optical network monitor,” in NFOEC Proc., (1998), p. session 17 paper 2.

Thomsom, D. J.

Vachon, M.

van den Bos, A.

Velasco, A. V.

Wagener, J.

C. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. DeMarco, “Planar waveguide optical spectrum analyzer using a UV-induced grating,” IEEE J. Sel. Top. Quantum Electron. 4(6), 925–929 (1998).
[Crossref]

Wagener, J. L.

C. Koeppen, J. L. Wagener, T. A. Strasser, and J. DeMarco, “High resolution fibre grating optical network monitor,” in NFOEC Proc., (1998), p. session 17 paper 2.

Waldron, P.

Wielandy, S.

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 4th ed (Pergamon Press, 1970), chap. 8.

Xu, D.

Yankov, V.

G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light: Sci. Appl. 3(9), e203 (2014).
[Crossref]

Zervas, M. N.

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

C. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. DeMarco, “Planar waveguide optical spectrum analyzer using a UV-induced grating,” IEEE J. Sel. Top. Quantum Electron. 4(6), 925–929 (1998).
[Crossref]

IEEE Photonics J. (1)

X. Ma, M. Li, and J. J. He, “CMOS-compatible integrated spectrometer based on echelle diffraction grating and MSM photodetector array,” IEEE Photonics J. 5(2), 6600807 (2013).
[Crossref]

J. Lightwave Technol. (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

J. Opt. Soc. Am. A (1)

Light: Sci. Appl. (1)

G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light: Sci. Appl. 3(9), e203 (2014).
[Crossref]

Meas. Sci. Technol. (1)

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. M. Adikan, C. B. E. Gawith, and P. G. R. Smith, “Direct UV-written planar Bragg grating sensors,” Meas. Sci. Technol. 26(11), 112001 (2015).
[Crossref]

Nat. Photonics (1)

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Sensors (1)

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors 12(2), 1898–1918 (2012).
[Crossref]

Other (5)

G. Meltz, W. W. Morey, and W. Glenn, “In-fiber Bragg grating tap,” in Optical Fibre Communication, (1990), p. Paper TUG1.

C. C. Davis, Lasers and Electro-Optics, 1st ed (Cambridge University Press, 1996), chap. 16.

C. Koeppen, J. L. Wagener, T. A. Strasser, and J. DeMarco, “High resolution fibre grating optical network monitor,” in NFOEC Proc., (1998), p. session 17 paper 2.

R. H. Bannerman, “Microfabrication of waveguide-based devices for quantum optics,” Ph.D. thesis, University of Southampton (2019).

M. Born and E. Wolf, Principles of Optics, 4th ed (Pergamon Press, 1970), chap. 8.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Silica-on-silicon substrate, showing UV channel waveguide and grating inscription inside a planar slab waveguide. Inset zoom shows the interference pattern used to create gratings via small-spot direct UV writing. (b) A blazed chirped grating diffracts input light (pink), into its spectral components (red and blue), while focusing the component wavelengths to different positions along the facet. The red and blue beams are vertically guided in the planar slab mode while focusing occurs. (c) Refractive index and thicknesses of layers. UV writing induces index change in the core layer of $\approx$3×10-3 to form the waveguide. The index change has a Gaussian horizontal profile with a $1/\textrm {e}$ diameter of 3.5 µm.
Fig. 2.
Fig. 2. (a) Schematic of a blazed grating showing naming conventions for grating parameters. Input light is ejected into a plane wave propagating at an angle $\theta _o$ by a grating. The solid red lines represent the direction of scattered waves, and as we will refer to later, can be described as rays. (b) Rays diffracted from sub-sections of a chirped grating forming a focus.
Fig. 3.
Fig. 3. The direction and strength of outcoupling from gratings is set by a k-vector matching condition. (a) Point scatterers diffract light in a direction dictated by phasematching (see Eq. (1)). (b) For finite width grating planes the direction normal to the grating plane should bisect the input and output rays for maximum diffraction (specular reflection). (c) If the grating blaze angle does not satisfy specular reflection at a given wavelength and $\theta _o$, it will diffract at lower efficiency.
Fig. 4.
Fig. 4. Beam propagation modeling of 2 mm uniform apodized gratings with different periods. Horizontal scale modified with focal length to keep diffraction visually constant. (a) 50 mm focal length linear chirp. (b) 30 mm focal length linear chirp. (c) 10 mm focal length linear chirp (d) 10 mm focal length ideal chirp. (e & f) Illustrative equivalent lens system for linear (uncorrected) chirp and coma corrected chirp respectively. A perfect lens results in coma, whereas a nonlinear chirp function results in a perfect focus.
Fig. 5.
Fig. 5. (a) Camera system used to image spectrometer output as wavelengths were changed. A magnification system was used to better resolve the spatial intensity profile of the focus. A micrometer stage was used to move the camera and imaging system along the edge of the chip. (b) Fabricated device and imaging system. Images were taken through a silica cover slip, as the chip facets were not polished.
Fig. 6.
Fig. 6. Series of camera data of spectrometer output with intensities displayed in the log domain. Images on the same row were taken with the same camera position. Diffraction from propagation outside the chip causes the distribution vertically; the vertical distribution overfills the lens of the imaging system, resulting in lens flare (highlighted by green ellipse), which changes angle depending on the position of the maximum of the horizontal distribution. Weak sidelobes are visible in the top row on the right of the main spectrometer output and stronger sidelobes are visible on the bottom to the left of the output. The sidelobes are on different sides as the top and bottom row are respectively above and below the design wavelength. At the design wavelength sidelobes disappear.
Fig. 7.
Fig. 7. Performance of fabricated device (blue dots), and modeled device before and after $A(z)$ modification (green and orange respectively). (a) Position of central lobe for modeled and fabricated devices. (b) Focal spot diameter and associated resolution showing disparity between modeled device (before $A(z$) modification) and fabricated devices. (c) Intensity profile at the focal plane (at 1550 nm) showing the difference in width and sidelobes between fabrication and modeling (before and after $A(z$) modification) (d) Resolution of fabricated device and modeling (after $A(z$) modification). (e). Grating strength profile before and after $A(z)$ modification.
Fig. 8.
Fig. 8. Normalised intensity profile of device output, referenced from the centre of the intensity distribution. Lens flare can be seen as a series of diagonal lines with a negative gradient. Discontinuities are due to stitching errors, likely caused by field curvature in the imaging system. Spectrometer aberrations can be seen as an asymmetric widening of the central lobe, and sidelobes. On either side of the design wavelength aberrations appear on opposite sides of the central peak.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

m λ = n e δ ( z ) [ 1 + cos θ o ( z ) ] ,
δ ( z ) = Λ ( z ) cos θ B ( z ) .
f sin θ 2 = z 2 z 1 sin α z α ,
f = z sin θ 2 α .
α = θ 1 θ 2
cos θ 2 cos θ 1 = λ n e ( 1 δ 1 Δ δ 1 δ 1 ) ,
cos θ 2 cos θ 1 = cos ( θ 1 α ) cos θ 1 α sin θ 1 ,
α λ Δ δ n e δ 1 2 sin θ 1 ,
f n e Λ 2 sin 2 θ o λ cos θ B C ,
2 w f = 4 λ f π L g n e sin θ o .
d z d λ = f d θ o d λ = f n e δ sin θ o .
Δ λ FWHM = 2 w f 1 2 ln 2 d λ d z = 2 2 ln 2 λ 2 n e π L g ( 1 + cos θ o ) ,
E ( z , x = 0 ) = A ( z ) sin [ ϕ ( z ) ] exp ( i k 0 n e z ) ,
ϕ ( z ) = 0 z 2 π δ ( z ) d z ,
ϕ ( z ) = 2 π cos θ B C ln ( 1 + C δ 0 cos θ B z ) ,
ϕ ( z ) = 2 π δ 0 z π C δ 0 2 cos θ B z 2 .
ϕ ( z ) = 2 π δ 0 z + k 0 n e z 2 2 f sin 2 θ o .
δ ( z ) = λ 0 cos θ B ( z ) n [ 1 + z f z ( z f z ) 2 + f x 2 ] ,

Metrics