Abstract

We study the theoretical formation of optical vortices using a nanostructured gradient index phase mask. We consider structures composed of spatially distributed thermally matched glass nanorods with high and low refractive indices. Influence of effective refractive profile distribution, refractive index contrast of component glasses and charge value on the quality of generation of vortices are discussed. A trade-off between waveguiding and phase modulation effects for various refractive index contrast is presented and analysed.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. K. Singh, H. Nagar, Y. Roichman, and A. Arie, “Particle manipulation beyond the diffraction limit using structured super-oscillating light beams,” Light: Sci. Appl. 6(9), e17050 (2017).
    [Crossref]
  2. S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral phase contrast imaging in microscopy,” Opt. Express 13(3), 689–694 (2005).
    [Crossref]
  3. J. J. J. Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Direct Femtosecond Laser Surface Structuring with Optical Vortex Beams Generated by a q-plate,” Sci. Rep. 5(1), 17929 (2015).
    [Crossref]
  4. V. V. Kotlyar, A. A. Almazov, S. N. Khonina, V. A. Soifer, H. Elfstrom, and J. Turunen, “Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate,” J. Opt. Soc. Am. A 22(5), 849–861 (2005).
    [Crossref]
  5. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17(3), 221–223 (1992).
    [Crossref]
  6. D. Ganic, X. Gan, M. Gu, M. Hain, S. Somalingam, S. Stankovic, and T. Tschudi, “Generation of doughnut laser beams by use of a liquid-crystal cell with a conversion efficiency near 100,” Opt. Lett. 27(15), 1351–1353 (2002).
    [Crossref]
  7. G. Campbell, B. Hage, B. Buchler, and P. K. Lam, “Generation of high-order optical vortices using directly machined spiral phase mirrors,” Appl. Opt. 51(7), 873–876 (2012).
    [Crossref]
  8. S. Lightman, R. Gvishi, G. Hurvitz, and A. Arie, “Shaping of light beams by 3D direct laser writing on facets of nonlinear crystals,” Opt. Lett. 40(19), 4460–4463 (2015).
    [Crossref]
  9. M. Massari, G. Ruffato, M. Gintoli, F. Ricci, and F. Romanato, “Fabrication and characterization of high-quality spiral phase plates for optical applications,” Appl. Opt. 54(13), 4077–4083 (2015).
    [Crossref]
  10. K. Weber, F. Hütt, S. Thiele, T. Gissibl, A. Herkommer, and H. Giessen, “Single mode fiber based delivery of OAM light by 3D direct laser writing,” Opt. Express 25(17), 19672–19679 (2017).
    [Crossref]
  11. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristiensen, and J. P. Woerdman, “Helical-wave front laser beams produced with a spiral phase plate,” Opt. Commun. 112(5-6), 321–327 (1994).
    [Crossref]
  12. K. Switkowski, A. Anuszkiewicz, A. Filipkowski, D. Pysz, R. Stępień, W. Królikowski, and R. Buczynski, “Formation of optical vortices with all-glass nanostructured gradient index masks,” Opt. Express 25(25), 31443–31450 (2017).
    [Crossref]
  13. A. Sihvola, Electromagnetic Mixing Formulas and Applications, (The Institution of Electrical Engineers, 1999).
  14. J. Nowosielski, R. Buczynski, A. J. Waddie, A. Filipkowski, D. Pysz, A. McCarthy, R. Stepien, and M. R. Taghizadeh, “Large diameter nanostructured gradient index lens,” Opt. Express 20(11), 11767–11777 (2012).
    [Crossref]
  15. R. Kasztelanic, A. Filipkowski, D. Pysz, R. Stepień, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “High resolution Shack-Hartmann sensor based on array of nanostructured GRIN lenses,” Opt. Express 25(3), 1680–1691 (2017).
    [Crossref]
  16. A. Filipkowski, B. Piechal, D. Pysz, R. Stepien, A. Waddie, M. R. Taghizadeh, and R. Buczynski, “Nanostructured gradient index microaxicons made by a modified stack and draw method,” Opt. Lett. 40(22), 5200–5203 (2015).
    [Crossref]
  17. A. J. Waddie, R. Buczynski, F. Hudelist, J. Nowosielski, D. Pysz, R. Stepien, and M. R. Taghizadeh, “Form birefringence in nanostructured micro-optical devices,” Opt. Mater. Express 1(7), 1251–1261 (2011).
    [Crossref]
  18. R. Kasztelanic, A. Filipkowski, A. Anuszkiewicz, P. Stafiej, G. Stepniewski, D. Pysz, K. Krzyżak, R. Stepien, M. Klimczak, and R. Buczynski, “Integrating Free-Form Nanostructured GRIN Microlenses with Single-Mode Fibers for Optofluidic Systems,” Sci. Rep. 8(1), 5072 (2018).
    [Crossref]
  19. L. Gong, B. Gu, G. Rui, Y. Cui, Z. Zhu, and Q. Zhan, “Optical forces of focused femtosecond laser pulses on nonlinear optical Rayleigh particles,” Photonics Res. 6(2), 138–143 (2018).
    [Crossref]
  20. T. Omatsu, K. Miyamoto, K. Toyoda, R. Morita, Y. Arita, and K. Dholakia, “A New Twist for Materials Science : The Formation of Chiral Structures using The Angular Momentum of Light,” Adv. Opt. Mater. 7(14), 1801672 (2019).
    [Crossref]
  21. A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
    [Crossref]
  22. K. Okamoto, “Fundamentals of Optical Waveguides”, (Academic, San Diego, 2000).
  23. J. Cimek, R. Stępień, G. Stepniewski, B. Siwicki, P. Stafiej, M. Klimczak, D. Pysz, and R. Buczyński, “High contrast glasses for all-solid fibers fabrication,” Opt. Mater. 62, 159–163 (2016).
    [Crossref]
  24. R. Stępień, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczyński, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
    [Crossref]
  25. L. M. Cook, “Chemical processes in glass polishing,” J. Non-Cryst. Solids 120(1-3), 152–171 (1990).
    [Crossref]
  26. G. Zhao, Z. Wei, W. Wang, D. Feng, A. Xu, W. Liu, and Z. Song, “Review on modeling and application of chemical mechanical polishing,” Nanotechnol. Rev. 9(1), 182–189 (2020).
    [Crossref]
  27. J. Wang, A. Cao, M. Zhang, H. Pang, S. Hu, Y. Fu, L. Shi, and Q. Deng, “Study of characteristics of vortex beam produced by fabricated spiral phase plates,” IEEE Photonics J. 8(2), 1–9 (2016).
    [Crossref]

2020 (1)

G. Zhao, Z. Wei, W. Wang, D. Feng, A. Xu, W. Liu, and Z. Song, “Review on modeling and application of chemical mechanical polishing,” Nanotechnol. Rev. 9(1), 182–189 (2020).
[Crossref]

2019 (1)

T. Omatsu, K. Miyamoto, K. Toyoda, R. Morita, Y. Arita, and K. Dholakia, “A New Twist for Materials Science : The Formation of Chiral Structures using The Angular Momentum of Light,” Adv. Opt. Mater. 7(14), 1801672 (2019).
[Crossref]

2018 (3)

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
[Crossref]

R. Kasztelanic, A. Filipkowski, A. Anuszkiewicz, P. Stafiej, G. Stepniewski, D. Pysz, K. Krzyżak, R. Stepien, M. Klimczak, and R. Buczynski, “Integrating Free-Form Nanostructured GRIN Microlenses with Single-Mode Fibers for Optofluidic Systems,” Sci. Rep. 8(1), 5072 (2018).
[Crossref]

L. Gong, B. Gu, G. Rui, Y. Cui, Z. Zhu, and Q. Zhan, “Optical forces of focused femtosecond laser pulses on nonlinear optical Rayleigh particles,” Photonics Res. 6(2), 138–143 (2018).
[Crossref]

2017 (4)

2016 (2)

J. Cimek, R. Stępień, G. Stepniewski, B. Siwicki, P. Stafiej, M. Klimczak, D. Pysz, and R. Buczyński, “High contrast glasses for all-solid fibers fabrication,” Opt. Mater. 62, 159–163 (2016).
[Crossref]

J. Wang, A. Cao, M. Zhang, H. Pang, S. Hu, Y. Fu, L. Shi, and Q. Deng, “Study of characteristics of vortex beam produced by fabricated spiral phase plates,” IEEE Photonics J. 8(2), 1–9 (2016).
[Crossref]

2015 (4)

2014 (1)

R. Stępień, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczyński, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[Crossref]

2012 (2)

2011 (1)

2005 (2)

2002 (1)

1994 (1)

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristiensen, and J. P. Woerdman, “Helical-wave front laser beams produced with a spiral phase plate,” Opt. Commun. 112(5-6), 321–327 (1994).
[Crossref]

1992 (1)

1990 (1)

L. M. Cook, “Chemical processes in glass polishing,” J. Non-Cryst. Solids 120(1-3), 152–171 (1990).
[Crossref]

Almazov, A. A.

Amoruso, S.

J. J. J. Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Direct Femtosecond Laser Surface Structuring with Optical Vortex Beams Generated by a q-plate,” Sci. Rep. 5(1), 17929 (2015).
[Crossref]

Anuszkiewicz, A.

R. Kasztelanic, A. Filipkowski, A. Anuszkiewicz, P. Stafiej, G. Stepniewski, D. Pysz, K. Krzyżak, R. Stepien, M. Klimczak, and R. Buczynski, “Integrating Free-Form Nanostructured GRIN Microlenses with Single-Mode Fibers for Optofluidic Systems,” Sci. Rep. 8(1), 5072 (2018).
[Crossref]

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
[Crossref]

K. Switkowski, A. Anuszkiewicz, A. Filipkowski, D. Pysz, R. Stępień, W. Królikowski, and R. Buczynski, “Formation of optical vortices with all-glass nanostructured gradient index masks,” Opt. Express 25(25), 31443–31450 (2017).
[Crossref]

Arie, A.

B. K. Singh, H. Nagar, Y. Roichman, and A. Arie, “Particle manipulation beyond the diffraction limit using structured super-oscillating light beams,” Light: Sci. Appl. 6(9), e17050 (2017).
[Crossref]

S. Lightman, R. Gvishi, G. Hurvitz, and A. Arie, “Shaping of light beams by 3D direct laser writing on facets of nonlinear crystals,” Opt. Lett. 40(19), 4460–4463 (2015).
[Crossref]

Arita, Y.

T. Omatsu, K. Miyamoto, K. Toyoda, R. Morita, Y. Arita, and K. Dholakia, “A New Twist for Materials Science : The Formation of Chiral Structures using The Angular Momentum of Light,” Adv. Opt. Mater. 7(14), 1801672 (2019).
[Crossref]

Beijersbergen, M. W.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristiensen, and J. P. Woerdman, “Helical-wave front laser beams produced with a spiral phase plate,” Opt. Commun. 112(5-6), 321–327 (1994).
[Crossref]

Bernet, S.

Bruzzese, R.

J. J. J. Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Direct Femtosecond Laser Surface Structuring with Optical Vortex Beams Generated by a q-plate,” Sci. Rep. 5(1), 17929 (2015).
[Crossref]

Buchler, B.

Buczynski, R.

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
[Crossref]

R. Kasztelanic, A. Filipkowski, A. Anuszkiewicz, P. Stafiej, G. Stepniewski, D. Pysz, K. Krzyżak, R. Stepien, M. Klimczak, and R. Buczynski, “Integrating Free-Form Nanostructured GRIN Microlenses with Single-Mode Fibers for Optofluidic Systems,” Sci. Rep. 8(1), 5072 (2018).
[Crossref]

R. Kasztelanic, A. Filipkowski, D. Pysz, R. Stepień, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “High resolution Shack-Hartmann sensor based on array of nanostructured GRIN lenses,” Opt. Express 25(3), 1680–1691 (2017).
[Crossref]

K. Switkowski, A. Anuszkiewicz, A. Filipkowski, D. Pysz, R. Stępień, W. Królikowski, and R. Buczynski, “Formation of optical vortices with all-glass nanostructured gradient index masks,” Opt. Express 25(25), 31443–31450 (2017).
[Crossref]

J. Cimek, R. Stępień, G. Stepniewski, B. Siwicki, P. Stafiej, M. Klimczak, D. Pysz, and R. Buczyński, “High contrast glasses for all-solid fibers fabrication,” Opt. Mater. 62, 159–163 (2016).
[Crossref]

A. Filipkowski, B. Piechal, D. Pysz, R. Stepien, A. Waddie, M. R. Taghizadeh, and R. Buczynski, “Nanostructured gradient index microaxicons made by a modified stack and draw method,” Opt. Lett. 40(22), 5200–5203 (2015).
[Crossref]

R. Stępień, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczyński, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[Crossref]

J. Nowosielski, R. Buczynski, A. J. Waddie, A. Filipkowski, D. Pysz, A. McCarthy, R. Stepien, and M. R. Taghizadeh, “Large diameter nanostructured gradient index lens,” Opt. Express 20(11), 11767–11777 (2012).
[Crossref]

A. J. Waddie, R. Buczynski, F. Hudelist, J. Nowosielski, D. Pysz, R. Stepien, and M. R. Taghizadeh, “Form birefringence in nanostructured micro-optical devices,” Opt. Mater. Express 1(7), 1251–1261 (2011).
[Crossref]

Campbell, G.

Cao, A.

J. Wang, A. Cao, M. Zhang, H. Pang, S. Hu, Y. Fu, L. Shi, and Q. Deng, “Study of characteristics of vortex beam produced by fabricated spiral phase plates,” IEEE Photonics J. 8(2), 1–9 (2016).
[Crossref]

Cimek, J.

J. Cimek, R. Stępień, G. Stepniewski, B. Siwicki, P. Stafiej, M. Klimczak, D. Pysz, and R. Buczyński, “High contrast glasses for all-solid fibers fabrication,” Opt. Mater. 62, 159–163 (2016).
[Crossref]

R. Stępień, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczyński, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[Crossref]

Coerwinkel, R. P. C.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristiensen, and J. P. Woerdman, “Helical-wave front laser beams produced with a spiral phase plate,” Opt. Commun. 112(5-6), 321–327 (1994).
[Crossref]

Cook, L. M.

L. M. Cook, “Chemical processes in glass polishing,” J. Non-Cryst. Solids 120(1-3), 152–171 (1990).
[Crossref]

Cui, Y.

L. Gong, B. Gu, G. Rui, Y. Cui, Z. Zhu, and Q. Zhan, “Optical forces of focused femtosecond laser pulses on nonlinear optical Rayleigh particles,” Photonics Res. 6(2), 138–143 (2018).
[Crossref]

Deng, Q.

J. Wang, A. Cao, M. Zhang, H. Pang, S. Hu, Y. Fu, L. Shi, and Q. Deng, “Study of characteristics of vortex beam produced by fabricated spiral phase plates,” IEEE Photonics J. 8(2), 1–9 (2016).
[Crossref]

Dholakia, K.

T. Omatsu, K. Miyamoto, K. Toyoda, R. Morita, Y. Arita, and K. Dholakia, “A New Twist for Materials Science : The Formation of Chiral Structures using The Angular Momentum of Light,” Adv. Opt. Mater. 7(14), 1801672 (2019).
[Crossref]

Elfstrom, H.

Feng, D.

G. Zhao, Z. Wei, W. Wang, D. Feng, A. Xu, W. Liu, and Z. Song, “Review on modeling and application of chemical mechanical polishing,” Nanotechnol. Rev. 9(1), 182–189 (2020).
[Crossref]

Filipkowski, A.

Fu, Y.

J. Wang, A. Cao, M. Zhang, H. Pang, S. Hu, Y. Fu, L. Shi, and Q. Deng, “Study of characteristics of vortex beam produced by fabricated spiral phase plates,” IEEE Photonics J. 8(2), 1–9 (2016).
[Crossref]

Fürhapter, S.

Gan, X.

Ganic, D.

Giessen, H.

Gintoli, M.

Gissibl, T.

Gong, L.

L. Gong, B. Gu, G. Rui, Y. Cui, Z. Zhu, and Q. Zhan, “Optical forces of focused femtosecond laser pulses on nonlinear optical Rayleigh particles,” Photonics Res. 6(2), 138–143 (2018).
[Crossref]

Gu, B.

L. Gong, B. Gu, G. Rui, Y. Cui, Z. Zhu, and Q. Zhan, “Optical forces of focused femtosecond laser pulses on nonlinear optical Rayleigh particles,” Photonics Res. 6(2), 138–143 (2018).
[Crossref]

Gu, M.

Gvishi, R.

Hage, B.

Hain, M.

He, S.

J. J. J. Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Direct Femtosecond Laser Surface Structuring with Optical Vortex Beams Generated by a q-plate,” Sci. Rep. 5(1), 17929 (2015).
[Crossref]

Heckenberg, N. R.

Herkommer, A.

Hu, S.

J. Wang, A. Cao, M. Zhang, H. Pang, S. Hu, Y. Fu, L. Shi, and Q. Deng, “Study of characteristics of vortex beam produced by fabricated spiral phase plates,” IEEE Photonics J. 8(2), 1–9 (2016).
[Crossref]

Hudelist, F.

Hurvitz, G.

Hütt, F.

Jesacher, A.

Kasztelanic, R.

R. Kasztelanic, A. Filipkowski, A. Anuszkiewicz, P. Stafiej, G. Stepniewski, D. Pysz, K. Krzyżak, R. Stepien, M. Klimczak, and R. Buczynski, “Integrating Free-Form Nanostructured GRIN Microlenses with Single-Mode Fibers for Optofluidic Systems,” Sci. Rep. 8(1), 5072 (2018).
[Crossref]

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
[Crossref]

R. Kasztelanic, A. Filipkowski, D. Pysz, R. Stepień, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “High resolution Shack-Hartmann sensor based on array of nanostructured GRIN lenses,” Opt. Express 25(3), 1680–1691 (2017).
[Crossref]

Khonina, S. N.

Klimczak, M.

R. Kasztelanic, A. Filipkowski, A. Anuszkiewicz, P. Stafiej, G. Stepniewski, D. Pysz, K. Krzyżak, R. Stepien, M. Klimczak, and R. Buczynski, “Integrating Free-Form Nanostructured GRIN Microlenses with Single-Mode Fibers for Optofluidic Systems,” Sci. Rep. 8(1), 5072 (2018).
[Crossref]

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
[Crossref]

J. Cimek, R. Stępień, G. Stepniewski, B. Siwicki, P. Stafiej, M. Klimczak, D. Pysz, and R. Buczyński, “High contrast glasses for all-solid fibers fabrication,” Opt. Mater. 62, 159–163 (2016).
[Crossref]

R. Stępień, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczyński, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[Crossref]

Kotlyar, V. V.

Kristiensen, M.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristiensen, and J. P. Woerdman, “Helical-wave front laser beams produced with a spiral phase plate,” Opt. Commun. 112(5-6), 321–327 (1994).
[Crossref]

Królikowski, W.

Krzyzak, K.

R. Kasztelanic, A. Filipkowski, A. Anuszkiewicz, P. Stafiej, G. Stepniewski, D. Pysz, K. Krzyżak, R. Stepien, M. Klimczak, and R. Buczynski, “Integrating Free-Form Nanostructured GRIN Microlenses with Single-Mode Fibers for Optofluidic Systems,” Sci. Rep. 8(1), 5072 (2018).
[Crossref]

Kujawa, I.

R. Stępień, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczyński, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[Crossref]

Lam, P. K.

Lightman, S.

Liu, W.

G. Zhao, Z. Wei, W. Wang, D. Feng, A. Xu, W. Liu, and Z. Song, “Review on modeling and application of chemical mechanical polishing,” Nanotechnol. Rev. 9(1), 182–189 (2020).
[Crossref]

Marrucci, L.

J. J. J. Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Direct Femtosecond Laser Surface Structuring with Optical Vortex Beams Generated by a q-plate,” Sci. Rep. 5(1), 17929 (2015).
[Crossref]

Massari, M.

McCarthy, A.

McDuff, R.

Miyamoto, K.

T. Omatsu, K. Miyamoto, K. Toyoda, R. Morita, Y. Arita, and K. Dholakia, “A New Twist for Materials Science : The Formation of Chiral Structures using The Angular Momentum of Light,” Adv. Opt. Mater. 7(14), 1801672 (2019).
[Crossref]

Morita, R.

T. Omatsu, K. Miyamoto, K. Toyoda, R. Morita, Y. Arita, and K. Dholakia, “A New Twist for Materials Science : The Formation of Chiral Structures using The Angular Momentum of Light,” Adv. Opt. Mater. 7(14), 1801672 (2019).
[Crossref]

Nagar, H.

B. K. Singh, H. Nagar, Y. Roichman, and A. Arie, “Particle manipulation beyond the diffraction limit using structured super-oscillating light beams,” Light: Sci. Appl. 6(9), e17050 (2017).
[Crossref]

Nivas, J. J. J.

J. J. J. Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Direct Femtosecond Laser Surface Structuring with Optical Vortex Beams Generated by a q-plate,” Sci. Rep. 5(1), 17929 (2015).
[Crossref]

Nowosielski, J.

Okamoto, K.

K. Okamoto, “Fundamentals of Optical Waveguides”, (Academic, San Diego, 2000).

Omatsu, T.

T. Omatsu, K. Miyamoto, K. Toyoda, R. Morita, Y. Arita, and K. Dholakia, “A New Twist for Materials Science : The Formation of Chiral Structures using The Angular Momentum of Light,” Adv. Opt. Mater. 7(14), 1801672 (2019).
[Crossref]

Pang, H.

J. Wang, A. Cao, M. Zhang, H. Pang, S. Hu, Y. Fu, L. Shi, and Q. Deng, “Study of characteristics of vortex beam produced by fabricated spiral phase plates,” IEEE Photonics J. 8(2), 1–9 (2016).
[Crossref]

Paparo, D.

J. J. J. Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Direct Femtosecond Laser Surface Structuring with Optical Vortex Beams Generated by a q-plate,” Sci. Rep. 5(1), 17929 (2015).
[Crossref]

Piechal, B.

Pysz, D.

R. Kasztelanic, A. Filipkowski, A. Anuszkiewicz, P. Stafiej, G. Stepniewski, D. Pysz, K. Krzyżak, R. Stepien, M. Klimczak, and R. Buczynski, “Integrating Free-Form Nanostructured GRIN Microlenses with Single-Mode Fibers for Optofluidic Systems,” Sci. Rep. 8(1), 5072 (2018).
[Crossref]

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
[Crossref]

R. Kasztelanic, A. Filipkowski, D. Pysz, R. Stepień, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “High resolution Shack-Hartmann sensor based on array of nanostructured GRIN lenses,” Opt. Express 25(3), 1680–1691 (2017).
[Crossref]

K. Switkowski, A. Anuszkiewicz, A. Filipkowski, D. Pysz, R. Stępień, W. Królikowski, and R. Buczynski, “Formation of optical vortices with all-glass nanostructured gradient index masks,” Opt. Express 25(25), 31443–31450 (2017).
[Crossref]

J. Cimek, R. Stępień, G. Stepniewski, B. Siwicki, P. Stafiej, M. Klimczak, D. Pysz, and R. Buczyński, “High contrast glasses for all-solid fibers fabrication,” Opt. Mater. 62, 159–163 (2016).
[Crossref]

A. Filipkowski, B. Piechal, D. Pysz, R. Stepien, A. Waddie, M. R. Taghizadeh, and R. Buczynski, “Nanostructured gradient index microaxicons made by a modified stack and draw method,” Opt. Lett. 40(22), 5200–5203 (2015).
[Crossref]

R. Stępień, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczyński, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[Crossref]

J. Nowosielski, R. Buczynski, A. J. Waddie, A. Filipkowski, D. Pysz, A. McCarthy, R. Stepien, and M. R. Taghizadeh, “Large diameter nanostructured gradient index lens,” Opt. Express 20(11), 11767–11777 (2012).
[Crossref]

A. J. Waddie, R. Buczynski, F. Hudelist, J. Nowosielski, D. Pysz, R. Stepien, and M. R. Taghizadeh, “Form birefringence in nanostructured micro-optical devices,” Opt. Mater. Express 1(7), 1251–1261 (2011).
[Crossref]

Ricci, F.

Ritsch-Marte, M.

Roichman, Y.

B. K. Singh, H. Nagar, Y. Roichman, and A. Arie, “Particle manipulation beyond the diffraction limit using structured super-oscillating light beams,” Light: Sci. Appl. 6(9), e17050 (2017).
[Crossref]

Romanato, F.

Rubano, A.

J. J. J. Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Direct Femtosecond Laser Surface Structuring with Optical Vortex Beams Generated by a q-plate,” Sci. Rep. 5(1), 17929 (2015).
[Crossref]

Ruffato, G.

Rui, G.

L. Gong, B. Gu, G. Rui, Y. Cui, Z. Zhu, and Q. Zhan, “Optical forces of focused femtosecond laser pulses on nonlinear optical Rayleigh particles,” Photonics Res. 6(2), 138–143 (2018).
[Crossref]

Shi, L.

J. Wang, A. Cao, M. Zhang, H. Pang, S. Hu, Y. Fu, L. Shi, and Q. Deng, “Study of characteristics of vortex beam produced by fabricated spiral phase plates,” IEEE Photonics J. 8(2), 1–9 (2016).
[Crossref]

Sihvola, A.

A. Sihvola, Electromagnetic Mixing Formulas and Applications, (The Institution of Electrical Engineers, 1999).

Singh, B. K.

B. K. Singh, H. Nagar, Y. Roichman, and A. Arie, “Particle manipulation beyond the diffraction limit using structured super-oscillating light beams,” Light: Sci. Appl. 6(9), e17050 (2017).
[Crossref]

Siwicki, B.

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
[Crossref]

J. Cimek, R. Stępień, G. Stepniewski, B. Siwicki, P. Stafiej, M. Klimczak, D. Pysz, and R. Buczyński, “High contrast glasses for all-solid fibers fabrication,” Opt. Mater. 62, 159–163 (2016).
[Crossref]

Smith, C. P.

Soifer, V. A.

Somalingam, S.

Song, Z.

G. Zhao, Z. Wei, W. Wang, D. Feng, A. Xu, W. Liu, and Z. Song, “Review on modeling and application of chemical mechanical polishing,” Nanotechnol. Rev. 9(1), 182–189 (2020).
[Crossref]

Stafiej, P.

R. Kasztelanic, A. Filipkowski, A. Anuszkiewicz, P. Stafiej, G. Stepniewski, D. Pysz, K. Krzyżak, R. Stepien, M. Klimczak, and R. Buczynski, “Integrating Free-Form Nanostructured GRIN Microlenses with Single-Mode Fibers for Optofluidic Systems,” Sci. Rep. 8(1), 5072 (2018).
[Crossref]

J. Cimek, R. Stępień, G. Stepniewski, B. Siwicki, P. Stafiej, M. Klimczak, D. Pysz, and R. Buczyński, “High contrast glasses for all-solid fibers fabrication,” Opt. Mater. 62, 159–163 (2016).
[Crossref]

Stankovic, S.

Stefaniuk, T.

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
[Crossref]

Stepien, R.

R. Kasztelanic, A. Filipkowski, A. Anuszkiewicz, P. Stafiej, G. Stepniewski, D. Pysz, K. Krzyżak, R. Stepien, M. Klimczak, and R. Buczynski, “Integrating Free-Form Nanostructured GRIN Microlenses with Single-Mode Fibers for Optofluidic Systems,” Sci. Rep. 8(1), 5072 (2018).
[Crossref]

R. Kasztelanic, A. Filipkowski, D. Pysz, R. Stepień, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “High resolution Shack-Hartmann sensor based on array of nanostructured GRIN lenses,” Opt. Express 25(3), 1680–1691 (2017).
[Crossref]

K. Switkowski, A. Anuszkiewicz, A. Filipkowski, D. Pysz, R. Stępień, W. Królikowski, and R. Buczynski, “Formation of optical vortices with all-glass nanostructured gradient index masks,” Opt. Express 25(25), 31443–31450 (2017).
[Crossref]

J. Cimek, R. Stępień, G. Stepniewski, B. Siwicki, P. Stafiej, M. Klimczak, D. Pysz, and R. Buczyński, “High contrast glasses for all-solid fibers fabrication,” Opt. Mater. 62, 159–163 (2016).
[Crossref]

A. Filipkowski, B. Piechal, D. Pysz, R. Stepien, A. Waddie, M. R. Taghizadeh, and R. Buczynski, “Nanostructured gradient index microaxicons made by a modified stack and draw method,” Opt. Lett. 40(22), 5200–5203 (2015).
[Crossref]

R. Stępień, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczyński, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[Crossref]

J. Nowosielski, R. Buczynski, A. J. Waddie, A. Filipkowski, D. Pysz, A. McCarthy, R. Stepien, and M. R. Taghizadeh, “Large diameter nanostructured gradient index lens,” Opt. Express 20(11), 11767–11777 (2012).
[Crossref]

A. J. Waddie, R. Buczynski, F. Hudelist, J. Nowosielski, D. Pysz, R. Stepien, and M. R. Taghizadeh, “Form birefringence in nanostructured micro-optical devices,” Opt. Mater. Express 1(7), 1251–1261 (2011).
[Crossref]

Stepniewski, G.

R. Kasztelanic, A. Filipkowski, A. Anuszkiewicz, P. Stafiej, G. Stepniewski, D. Pysz, K. Krzyżak, R. Stepien, M. Klimczak, and R. Buczynski, “Integrating Free-Form Nanostructured GRIN Microlenses with Single-Mode Fibers for Optofluidic Systems,” Sci. Rep. 8(1), 5072 (2018).
[Crossref]

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
[Crossref]

J. Cimek, R. Stępień, G. Stepniewski, B. Siwicki, P. Stafiej, M. Klimczak, D. Pysz, and R. Buczyński, “High contrast glasses for all-solid fibers fabrication,” Opt. Mater. 62, 159–163 (2016).
[Crossref]

Switkowski, K.

Taghizadeh, M. R.

Thiele, S.

Toyoda, K.

T. Omatsu, K. Miyamoto, K. Toyoda, R. Morita, Y. Arita, and K. Dholakia, “A New Twist for Materials Science : The Formation of Chiral Structures using The Angular Momentum of Light,” Adv. Opt. Mater. 7(14), 1801672 (2019).
[Crossref]

Tschudi, T.

Turunen, J.

Vecchione, A.

J. J. J. Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Direct Femtosecond Laser Surface Structuring with Optical Vortex Beams Generated by a q-plate,” Sci. Rep. 5(1), 17929 (2015).
[Crossref]

Waddie, A.

Waddie, A. J.

Wang, J.

J. Wang, A. Cao, M. Zhang, H. Pang, S. Hu, Y. Fu, L. Shi, and Q. Deng, “Study of characteristics of vortex beam produced by fabricated spiral phase plates,” IEEE Photonics J. 8(2), 1–9 (2016).
[Crossref]

Wang, W.

G. Zhao, Z. Wei, W. Wang, D. Feng, A. Xu, W. Liu, and Z. Song, “Review on modeling and application of chemical mechanical polishing,” Nanotechnol. Rev. 9(1), 182–189 (2020).
[Crossref]

Weber, K.

Wei, Z.

G. Zhao, Z. Wei, W. Wang, D. Feng, A. Xu, W. Liu, and Z. Song, “Review on modeling and application of chemical mechanical polishing,” Nanotechnol. Rev. 9(1), 182–189 (2020).
[Crossref]

White, A. G.

Woerdman, J. P.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristiensen, and J. P. Woerdman, “Helical-wave front laser beams produced with a spiral phase plate,” Opt. Commun. 112(5-6), 321–327 (1994).
[Crossref]

Xu, A.

G. Zhao, Z. Wei, W. Wang, D. Feng, A. Xu, W. Liu, and Z. Song, “Review on modeling and application of chemical mechanical polishing,” Nanotechnol. Rev. 9(1), 182–189 (2020).
[Crossref]

Zhan, Q.

L. Gong, B. Gu, G. Rui, Y. Cui, Z. Zhu, and Q. Zhan, “Optical forces of focused femtosecond laser pulses on nonlinear optical Rayleigh particles,” Photonics Res. 6(2), 138–143 (2018).
[Crossref]

Zhang, M.

J. Wang, A. Cao, M. Zhang, H. Pang, S. Hu, Y. Fu, L. Shi, and Q. Deng, “Study of characteristics of vortex beam produced by fabricated spiral phase plates,” IEEE Photonics J. 8(2), 1–9 (2016).
[Crossref]

Zhao, G.

G. Zhao, Z. Wei, W. Wang, D. Feng, A. Xu, W. Liu, and Z. Song, “Review on modeling and application of chemical mechanical polishing,” Nanotechnol. Rev. 9(1), 182–189 (2020).
[Crossref]

Zhu, Z.

L. Gong, B. Gu, G. Rui, Y. Cui, Z. Zhu, and Q. Zhan, “Optical forces of focused femtosecond laser pulses on nonlinear optical Rayleigh particles,” Photonics Res. 6(2), 138–143 (2018).
[Crossref]

Adv. Opt. Mater. (1)

T. Omatsu, K. Miyamoto, K. Toyoda, R. Morita, Y. Arita, and K. Dholakia, “A New Twist for Materials Science : The Formation of Chiral Structures using The Angular Momentum of Light,” Adv. Opt. Mater. 7(14), 1801672 (2019).
[Crossref]

Appl. Opt. (2)

IEEE Photonics J. (1)

J. Wang, A. Cao, M. Zhang, H. Pang, S. Hu, Y. Fu, L. Shi, and Q. Deng, “Study of characteristics of vortex beam produced by fabricated spiral phase plates,” IEEE Photonics J. 8(2), 1–9 (2016).
[Crossref]

J. Non-Cryst. Solids (1)

L. M. Cook, “Chemical processes in glass polishing,” J. Non-Cryst. Solids 120(1-3), 152–171 (1990).
[Crossref]

J. Opt. Soc. Am. A (1)

Light: Sci. Appl. (1)

B. K. Singh, H. Nagar, Y. Roichman, and A. Arie, “Particle manipulation beyond the diffraction limit using structured super-oscillating light beams,” Light: Sci. Appl. 6(9), e17050 (2017).
[Crossref]

Nanotechnol. Rev. (1)

G. Zhao, Z. Wei, W. Wang, D. Feng, A. Xu, W. Liu, and Z. Song, “Review on modeling and application of chemical mechanical polishing,” Nanotechnol. Rev. 9(1), 182–189 (2020).
[Crossref]

Opt. Commun. (1)

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristiensen, and J. P. Woerdman, “Helical-wave front laser beams produced with a spiral phase plate,” Opt. Commun. 112(5-6), 321–327 (1994).
[Crossref]

Opt. Eng. (1)

R. Stępień, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczyński, “Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Opt. Mater. (1)

J. Cimek, R. Stępień, G. Stepniewski, B. Siwicki, P. Stafiej, M. Klimczak, D. Pysz, and R. Buczyński, “High contrast glasses for all-solid fibers fabrication,” Opt. Mater. 62, 159–163 (2016).
[Crossref]

Opt. Mater. Express (1)

Photonics Res. (1)

L. Gong, B. Gu, G. Rui, Y. Cui, Z. Zhu, and Q. Zhan, “Optical forces of focused femtosecond laser pulses on nonlinear optical Rayleigh particles,” Photonics Res. 6(2), 138–143 (2018).
[Crossref]

Sci. Rep. (3)

R. Kasztelanic, A. Filipkowski, A. Anuszkiewicz, P. Stafiej, G. Stepniewski, D. Pysz, K. Krzyżak, R. Stepien, M. Klimczak, and R. Buczynski, “Integrating Free-Form Nanostructured GRIN Microlenses with Single-Mode Fibers for Optofluidic Systems,” Sci. Rep. 8(1), 5072 (2018).
[Crossref]

A. Anuszkiewicz, R. Kasztelanic, A. Filipkowski, G. Stepniewski, T. Stefaniuk, B. Siwicki, D. Pysz, M. Klimczak, and R. Buczynski, “Fused silica optical fibers with graded index nanostructured core,” Sci. Rep. 8(1), 12329 (2018).
[Crossref]

J. J. J. Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Direct Femtosecond Laser Surface Structuring with Optical Vortex Beams Generated by a q-plate,” Sci. Rep. 5(1), 17929 (2015).
[Crossref]

Other (2)

A. Sihvola, Electromagnetic Mixing Formulas and Applications, (The Institution of Electrical Engineers, 1999).

K. Okamoto, “Fundamentals of Optical Waveguides”, (Academic, San Diego, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Schematic comparison between spiral phase-plate (SPP) (a) and nanostructured phase-mask (NPM) (b).
Fig. 2.
Fig. 2. Generation of vortex beam with gradient index phase mask: azimuthal gradient index distribution (a), profile of azimuthal refractive index distribution (b).
Fig. 3.
Fig. 3. Material dispersion for three pairs of glasses selected for development of NPM.
Fig. 4.
Fig. 4. Refractive index, intensity and phase distribution (columns) calculated for three types of vortex masks (rows). The rows represent the FS, NC and UP structures, respectively.
Fig. 5.
Fig. 5. Refractive index profile as a function of azimuthal angle for NC structure of gradient index phase mask with thickness of 60 µm for various values of the shape power index g defined in Eq. (7).
Fig. 6.
Fig. 6. Generation of vortex beam with gradient index phase mask with various azimuthal refractive index profiles determined by shape power index g. A NC gradient index phase mask with thickness of 60 µm, that corresponds to 2π phase shift is considered.
Fig. 7.
Fig. 7. Generation of vortex beam with gradient index phase mask with various azimuthal refractive index profiles determined by the shape power index g. An UP gradient index phase mask with thickness of 4 µm, that corresponds to 2π phase shift is considered.
Fig. 8.
Fig. 8. Azimuthal linear index distribution that corresponds to single and multiple 2π-phase change for optical vortex generation with charge m=+1, +2, +3, +4, +5, +6, and +9 for the wavelength of 1.55 µm. An UP gradient index phase mask with thickness of 4 µm, that corresponds to 2π-phase shift is considered.
Fig. 9.
Fig. 9. Generation of vortex beam with topological charge of m=+1, +2, +3, +4, +5, +6, and +9 with gradient index phase mask with various multiple 2π phase change azimuthal refractive index profiles. An UP gradient index phase mask with thickness of 4 µm, that corresponds to 2π phase shift is considered.
Fig. 10.
Fig. 10. Generation of vortex beam with topological charge of m=+1, +2, +3, +4, +5, +6, and +8 with linear gradient index phase mask with 2π phase change azimuthal refractive index profiles. An UP gradient index phase mask with various thickness, that corresponds to multiple 2π phase shift is considered.

Tables (1)

Tables Icon

Table 1. Fundamental properties of investigated structures.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δ φ S P P = 2 π h λ ( n S P P n a i r ) = 2 π h λ ( n S P P 1 ) ,
Δ φ N P M = 2 π d λ ( n h i g h n l o w ) .
Δ φ S P P , N P M = 2 π m .
ψ f s ( x , y , z + s ) = F 1 { F { ψ f s ( x , y , z ) } exp ( i β s ) } ,
β 2 = k 0 2 n 0 2 4 π 2 ( v x 2 + v y 2 ) .
ψ ( x , y , z + s ) = exp [ i k 0 ( n n ¯ ) s ] ψ f s ( x , y , z + s ) .
n ( α ) = n l o w + Δ n ( α 2 π ) 1 g ,
Δ n = n h i g h n l o w ,

Metrics