Abstract

Image transmission through multimode optical fibers has been an area of immense interests driven by the demand for miniature endoscopes in biomedicine and higher speed and capacity in telecommunications. Conventionally, a complex-valued transmission matrix is obtained experimentally to link the input and output light fields of a multimode fiber for image retrieval, which complicates the experimental setup and increases the computational complexity. Here, we report a simple and high-speed method for image retrieval based on our demonstration of a pseudo-linearity between the input and output light intensity distributions of multimode fibers. We studied the impact of several key parameters to image retrieval, including image pixel count, fiber core diameter and numerical aperture. We further demonstrated with experiments and numerical simulations that a wide variety of input binary and gray scale images could be faithfully retrieved from the corresponding output speckle patterns. Thus, it promises to be useful for highly miniaturized endoscopy in biomedicine and spatial-mode-division multiplexing in telecommunications.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibers,” Nat. Photonics 9(8), 529–535 (2015).
    [Crossref]
  2. E. R. Andresen, S. Sivankutty, V. Tsvirkun, G. Bouwmans, and H. Rigneault, “Ultrathin endoscopes based on multicore fibers and adaptive optics: a status review and perspectives,” J. Biomed. Opt. 21(12), 121506 (2016).
    [Crossref]
  3. W. Xiong, C. Hsu, and H. Cao, “Long-range spatio-temporal correlations in multimode fibers for pulse delivery,” Nat. Commun. 10(1), 1–7 (2019).
    [Crossref]
  4. W. Xiong, P. Ambichl, Y. Bromberg, B. Redding, S. Rotter, and H. Cao, “Principal modes in multimode fibers: exploring the crossover from weak to strong mode coupling,” Opt. Express 25(3), 2709–2724 (2017).
    [Crossref]
  5. I. Vellekoop and A. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
    [Crossref]
  6. S. Rotter and S. Gigan, “Light fields in complex media: mesoscopic scattering meets wave control,” Rev. Mod. Phys. 89(1), 015005 (2017).
    [Crossref]
  7. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2007).
  8. I. Vellekoop, “Feedback-based wavefront shaping,” Opt. Express 23(9), 12189–12206 (2015).
    [Crossref]
  9. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
    [Crossref]
  10. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
    [Crossref]
  11. T. Čižmár and K. Dholakia, “Shaping the light transmission through a multimode optical fiber: complex transformation analysis and applications in biophotonics,” Opt. Express 19(20), 18871–18884 (2011).
    [Crossref]
  12. T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fiber-based imaging,” Nat. Commun. 3(1), 1027 (2012).
    [Crossref]
  13. A. Boniface, B. Blochet, J. Dong, and S. Gigan, “Noninvasive light focusing in scattering media using speckle variance optimization,” Optica 6(11), 1381–1385 (2019).
    [Crossref]
  14. A. Dremeau, A. Liutkus, D. Martina, O. Katz, C. Schülke, F. Krzakala, S. Gigan, and L. Daudet, “Reference-less measurement of the transmission matrix of a highly scattering material using a dmd and phase retrieval techniques,” Opt. Express 23(9), 11898–11911 (2015).
    [Crossref]
  15. A. Boniface, M. Mounaix, B. Blochet, R. Piestun, and S. Gigan, “Transmission-matrix-based point-spread-function engineering through a complex medium,” Optica 4(1), 54–59 (2017).
    [Crossref]
  16. R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9(9), 563–571 (2015).
    [Crossref]
  17. D. Wang, E. H. Zhou, J. Brake, H. Ruan, M. Jang, and C. Yang, “Focusing through dynamic tissue with millisecond digital optical phase conjugation,” Optica 2(8), 728–735 (2015).
    [Crossref]
  18. O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
    [Crossref]
  19. U. Weiss and O. Katz, “Two-photon lensless micro-endoscopy with in-situ wavefront correction,” Opt. Express 26(22), 28808–2881722 (2018).
    [Crossref]
  20. P. Lai, L. Wang, J. W. Tay, and L. V. Wang, “Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media,” Nat. Photonics 9(2), 126–132 (2015).
    [Crossref]
  21. Y. Liu, C. Ma, Y. Shen, J. Shi, and L. V. Wang, “Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation,” Optica 4(2), 280–288 (2017).
    [Crossref]
  22. R. Di Leonardo and S. Bianchi, “Hologram transmission through multi-mode optical fibers,” Opt. Express 19(1), 247–254 (2011).
    [Crossref]
  23. D. Kim, J. Moon, M. Kim, T. D. Yang, J. Kim, E. Chung, and W. Choi, “Toward a miniature endomicroscope: pixelation-free and diffraction-limited imaging through a fiber bundle,” Opt. Lett. 39(7), 1921–1924 (2014).
    [Crossref]
  24. D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20(2), 1733–1740 (2012).
    [Crossref]
  25. O. Tzang, E. Niv, S. Singh, S. Labouesse, G. Myatt, and R. Piestun, “Wavefront shaping in complex media with a 350 kHz modulator via a 1D-to-2D transform,” Nat. Photonics 13(11), 788–793 (2019).
    [Crossref]
  26. D. Loterie, S. Farahi, I. Papadopoulos, A. Goy, D. Psaltis, and C. Moser, “Digital confocal microscopy through a multimode fiber,” Opt. Express 23(18), 23845–23858 (2015).
    [Crossref]
  27. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20(10), 10583 (2012).
    [Crossref]
  28. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber,” Biomed. Opt. Express 4(2), 260–270 (2013).
    [Crossref]
  29. S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
    [Crossref]
  30. S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(1), 81 (2010).
    [Crossref]
  31. Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
    [Crossref]
  32. O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
    [Crossref]
  33. S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light: Sci. Appl. 7(1), 92 (2018).
    [Crossref]
  34. N. Borhani, E. Kakkava, C. Moser, and D. Psaltis, “Learning to see through multimode fibers,” Optica 5(8), 960–966 (2018).
    [Crossref]
  35. B. Rahmani, D. Loterie, G. Konstantinou, D. Psaltis, and C. Moser, “Multimode optical fiber transmission with a deep learning network,” Light: Sci. Appl. 7(1), 69 (2018).
    [Crossref]
  36. Y. Li, Y. Xue, and L. Tian, “Deep speckle correlation: a deep learning approach towards callable imaging through scattering media,” Optica 5(10), 1181–1190 (2018).
    [Crossref]
  37. A. Turpin, I. Vishniakou, and J. d Seelig, “Light scattering control in transmission and reflection with neural networks,” Opt. Express 26(23), 30911–30929 (2018).
    [Crossref]
  38. S. Li, M. Deng, J. Lee, A. Sinha, and G. Barbastathis, “Imaging through glass diffusers using densely connected convolutional networks,” Optica 5(7), 803–813 (2018).
    [Crossref]
  39. P. Fan, T. Zhao, and L. Su, “Deep learning the high variability and randomness inside multimode fibers,” Opt. Express 27(15), 20241–20258 (2019).
    [Crossref]
  40. M. Lyu, H. Wang, G. Li, S. Zheng, and G. Situ, “Learning-based lensless imaging through optically thick scattering media,” Adv. Photonics 1(3), 036002 (2019).
    [Crossref]
  41. J. Zhao, Y. Sun, Z. Zhu, J. E. Antonio-Lopez, R. A. Correa, S. Pang, and A. Schülzgen, “Deep learning imaging through fully-flexible glass- air disordered fiber,” ACS Photonics 5(10), 3930–3935 (2018).
    [Crossref]
  42. P. Caramazza, O. Moran, R. Murray-Smith, and D. Faccio, “Transmission of natural scene images through a multimode fiber,” Nat. Commun. 10(1), 2029 (2019).
    [Crossref]
  43. http://yann.lecun.com/exdb/mnist .
  44. https://github.com/apolanco3225/Medical-MNIST-Classification .
  45. M. N’Gom, T. B. Norris, E. Michielssen, and R. R. Nadakuditi, “Mode control in a multimode fiber through acquiring its transmission matrix from a reference-less optical system,” Opt. Lett. 43(3), 419–422 (2018).
    [Crossref]
  46. T. Zhao, L. Deng, W. Wang, D. S. Elson, and L. Su, “Bayes’ theorem-based binary algorithm for fast reference-less calibration of a multimode fiber,” Opt. Express 26(16), 20368–20378 (2018).
    [Crossref]
  47. X. Tao, D. Bodington, M. Reinig, and J. Kubby, “High-speed scanning interferometric focusing by fast measurement of binary transmission matrix for channel demixing,” Opt. Express 23(11), 14168–14187 (2015).
    [Crossref]
  48. G. Huang, D. Wu, J. Luo, Y. Huang, and Y. Shen, “Retrieving the optical transmission matrix of a multimode fiber using the extended Kalman filter,” Opt. Express 28(7), 9487–9500 (2020).
    [Crossref]
  49. G. S. D. Gordon, M. Gataric, C. Williams, J. Yoon, T. Wilkinson, and S. E. Bohndiek, “Characterising optical fibre transmission matrices using metasurface reflector stacks for lensless imaging without distal access,” Phys. Rev. X 9(4), 041050 (2019).
    [Crossref]
  50. K. J. Mitchell, S. Turtaev, M. J. Padgett, T. Čižmár, and D. B. Phillips, “High-speed spatial control of the intensity, phase and polarisation of vector beams using a digital micro-mirror device,” Opt. Express 24(25), 29269–29282 (2016).
    [Crossref]
  51. S. A. Goorden, J. Bertolotti, and A. P. Mosk, “Superpixel-based spatial amplitude and phase modulation using a digital micromirror device,” Opt. Express 22(15), 17999–18009 (2014).
    [Crossref]

2020 (1)

2019 (7)

G. S. D. Gordon, M. Gataric, C. Williams, J. Yoon, T. Wilkinson, and S. E. Bohndiek, “Characterising optical fibre transmission matrices using metasurface reflector stacks for lensless imaging without distal access,” Phys. Rev. X 9(4), 041050 (2019).
[Crossref]

P. Caramazza, O. Moran, R. Murray-Smith, and D. Faccio, “Transmission of natural scene images through a multimode fiber,” Nat. Commun. 10(1), 2029 (2019).
[Crossref]

P. Fan, T. Zhao, and L. Su, “Deep learning the high variability and randomness inside multimode fibers,” Opt. Express 27(15), 20241–20258 (2019).
[Crossref]

M. Lyu, H. Wang, G. Li, S. Zheng, and G. Situ, “Learning-based lensless imaging through optically thick scattering media,” Adv. Photonics 1(3), 036002 (2019).
[Crossref]

W. Xiong, C. Hsu, and H. Cao, “Long-range spatio-temporal correlations in multimode fibers for pulse delivery,” Nat. Commun. 10(1), 1–7 (2019).
[Crossref]

A. Boniface, B. Blochet, J. Dong, and S. Gigan, “Noninvasive light focusing in scattering media using speckle variance optimization,” Optica 6(11), 1381–1385 (2019).
[Crossref]

O. Tzang, E. Niv, S. Singh, S. Labouesse, G. Myatt, and R. Piestun, “Wavefront shaping in complex media with a 350 kHz modulator via a 1D-to-2D transform,” Nat. Photonics 13(11), 788–793 (2019).
[Crossref]

2018 (10)

U. Weiss and O. Katz, “Two-photon lensless micro-endoscopy with in-situ wavefront correction,” Opt. Express 26(22), 28808–2881722 (2018).
[Crossref]

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light: Sci. Appl. 7(1), 92 (2018).
[Crossref]

N. Borhani, E. Kakkava, C. Moser, and D. Psaltis, “Learning to see through multimode fibers,” Optica 5(8), 960–966 (2018).
[Crossref]

B. Rahmani, D. Loterie, G. Konstantinou, D. Psaltis, and C. Moser, “Multimode optical fiber transmission with a deep learning network,” Light: Sci. Appl. 7(1), 69 (2018).
[Crossref]

Y. Li, Y. Xue, and L. Tian, “Deep speckle correlation: a deep learning approach towards callable imaging through scattering media,” Optica 5(10), 1181–1190 (2018).
[Crossref]

A. Turpin, I. Vishniakou, and J. d Seelig, “Light scattering control in transmission and reflection with neural networks,” Opt. Express 26(23), 30911–30929 (2018).
[Crossref]

S. Li, M. Deng, J. Lee, A. Sinha, and G. Barbastathis, “Imaging through glass diffusers using densely connected convolutional networks,” Optica 5(7), 803–813 (2018).
[Crossref]

J. Zhao, Y. Sun, Z. Zhu, J. E. Antonio-Lopez, R. A. Correa, S. Pang, and A. Schülzgen, “Deep learning imaging through fully-flexible glass- air disordered fiber,” ACS Photonics 5(10), 3930–3935 (2018).
[Crossref]

M. N’Gom, T. B. Norris, E. Michielssen, and R. R. Nadakuditi, “Mode control in a multimode fiber through acquiring its transmission matrix from a reference-less optical system,” Opt. Lett. 43(3), 419–422 (2018).
[Crossref]

T. Zhao, L. Deng, W. Wang, D. S. Elson, and L. Su, “Bayes’ theorem-based binary algorithm for fast reference-less calibration of a multimode fiber,” Opt. Express 26(16), 20368–20378 (2018).
[Crossref]

2017 (4)

2016 (2)

E. R. Andresen, S. Sivankutty, V. Tsvirkun, G. Bouwmans, and H. Rigneault, “Ultrathin endoscopes based on multicore fibers and adaptive optics: a status review and perspectives,” J. Biomed. Opt. 21(12), 121506 (2016).
[Crossref]

K. J. Mitchell, S. Turtaev, M. J. Padgett, T. Čižmár, and D. B. Phillips, “High-speed spatial control of the intensity, phase and polarisation of vector beams using a digital micro-mirror device,” Opt. Express 24(25), 29269–29282 (2016).
[Crossref]

2015 (8)

X. Tao, D. Bodington, M. Reinig, and J. Kubby, “High-speed scanning interferometric focusing by fast measurement of binary transmission matrix for channel demixing,” Opt. Express 23(11), 14168–14187 (2015).
[Crossref]

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibers,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

I. Vellekoop, “Feedback-based wavefront shaping,” Opt. Express 23(9), 12189–12206 (2015).
[Crossref]

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9(9), 563–571 (2015).
[Crossref]

D. Wang, E. H. Zhou, J. Brake, H. Ruan, M. Jang, and C. Yang, “Focusing through dynamic tissue with millisecond digital optical phase conjugation,” Optica 2(8), 728–735 (2015).
[Crossref]

A. Dremeau, A. Liutkus, D. Martina, O. Katz, C. Schülke, F. Krzakala, S. Gigan, and L. Daudet, “Reference-less measurement of the transmission matrix of a highly scattering material using a dmd and phase retrieval techniques,” Opt. Express 23(9), 11898–11911 (2015).
[Crossref]

P. Lai, L. Wang, J. W. Tay, and L. V. Wang, “Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media,” Nat. Photonics 9(2), 126–132 (2015).
[Crossref]

D. Loterie, S. Farahi, I. Papadopoulos, A. Goy, D. Psaltis, and C. Moser, “Digital confocal microscopy through a multimode fiber,” Opt. Express 23(18), 23845–23858 (2015).
[Crossref]

2014 (3)

2013 (1)

2012 (5)

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref]

D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20(2), 1733–1740 (2012).
[Crossref]

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20(10), 10583 (2012).
[Crossref]

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fiber-based imaging,” Nat. Commun. 3(1), 1027 (2012).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

2011 (3)

2010 (3)

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref]

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(1), 81 (2010).
[Crossref]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[Crossref]

2007 (1)

Altwegg-Boussac, T.

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light: Sci. Appl. 7(1), 92 (2018).
[Crossref]

Ambichl, P.

Andresen, E. R.

E. R. Andresen, S. Sivankutty, V. Tsvirkun, G. Bouwmans, and H. Rigneault, “Ultrathin endoscopes based on multicore fibers and adaptive optics: a status review and perspectives,” J. Biomed. Opt. 21(12), 121506 (2016).
[Crossref]

Antonio-Lopez, J. E.

J. Zhao, Y. Sun, Z. Zhu, J. E. Antonio-Lopez, R. A. Correa, S. Pang, and A. Schülzgen, “Deep learning imaging through fully-flexible glass- air disordered fiber,” ACS Photonics 5(10), 3930–3935 (2018).
[Crossref]

Barbastathis, G.

Bertolotti, J.

Bianchi, S.

Blochet, B.

Boccara, A.

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref]

Boccara, A. C.

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(1), 81 (2010).
[Crossref]

Bodington, D.

Bohndiek, S. E.

G. S. D. Gordon, M. Gataric, C. Williams, J. Yoon, T. Wilkinson, and S. E. Bohndiek, “Characterising optical fibre transmission matrices using metasurface reflector stacks for lensless imaging without distal access,” Phys. Rev. X 9(4), 041050 (2019).
[Crossref]

Boniface, A.

Borhani, N.

Bouwmans, G.

E. R. Andresen, S. Sivankutty, V. Tsvirkun, G. Bouwmans, and H. Rigneault, “Ultrathin endoscopes based on multicore fibers and adaptive optics: a status review and perspectives,” J. Biomed. Opt. 21(12), 121506 (2016).
[Crossref]

Brake, J.

Bromberg, Y.

W. Xiong, P. Ambichl, Y. Bromberg, B. Redding, S. Rotter, and H. Cao, “Principal modes in multimode fibers: exploring the crossover from weak to strong mode coupling,” Opt. Express 25(3), 2709–2724 (2017).
[Crossref]

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[Crossref]

Cao, H.

Caramazza, P.

P. Caramazza, O. Moran, R. Murray-Smith, and D. Faccio, “Transmission of natural scene images through a multimode fiber,” Nat. Commun. 10(1), 2029 (2019).
[Crossref]

Caravaca-Aguirre, A. M.

Carminati, R.

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref]

Choi, W.

D. Kim, J. Moon, M. Kim, T. D. Yang, J. Kim, E. Chung, and W. Choi, “Toward a miniature endomicroscope: pixelation-free and diffraction-limited imaging through a fiber bundle,” Opt. Lett. 39(7), 1921–1924 (2014).
[Crossref]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref]

Choi, Y.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref]

Chung, E.

Cižmár, T.

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light: Sci. Appl. 7(1), 92 (2018).
[Crossref]

K. J. Mitchell, S. Turtaev, M. J. Padgett, T. Čižmár, and D. B. Phillips, “High-speed spatial control of the intensity, phase and polarisation of vector beams using a digital micro-mirror device,” Opt. Express 24(25), 29269–29282 (2016).
[Crossref]

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibers,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fiber-based imaging,” Nat. Commun. 3(1), 1027 (2012).
[Crossref]

T. Čižmár and K. Dholakia, “Shaping the light transmission through a multimode optical fiber: complex transformation analysis and applications in biophotonics,” Opt. Express 19(20), 18871–18884 (2011).
[Crossref]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[Crossref]

Conkey, D. B.

Correa, R. A.

J. Zhao, Y. Sun, Z. Zhu, J. E. Antonio-Lopez, R. A. Correa, S. Pang, and A. Schülzgen, “Deep learning imaging through fully-flexible glass- air disordered fiber,” ACS Photonics 5(10), 3930–3935 (2018).
[Crossref]

d Seelig, J.

Dasari, R. R.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref]

Daudet, L.

Deng, L.

Deng, M.

Dholakia, K.

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fiber-based imaging,” Nat. Commun. 3(1), 1027 (2012).
[Crossref]

T. Čižmár and K. Dholakia, “Shaping the light transmission through a multimode optical fiber: complex transformation analysis and applications in biophotonics,” Opt. Express 19(20), 18871–18884 (2011).
[Crossref]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[Crossref]

Di Leonardo, R.

Dong, J.

Dremeau, A.

Elson, D. S.

Faccio, D.

P. Caramazza, O. Moran, R. Murray-Smith, and D. Faccio, “Transmission of natural scene images through a multimode fiber,” Nat. Commun. 10(1), 2029 (2019).
[Crossref]

Fan, P.

Fang-Yen, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref]

Farahi, S.

Fink, M.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref]

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(1), 81 (2010).
[Crossref]

Gataric, M.

G. S. D. Gordon, M. Gataric, C. Williams, J. Yoon, T. Wilkinson, and S. E. Bohndiek, “Characterising optical fibre transmission matrices using metasurface reflector stacks for lensless imaging without distal access,” Phys. Rev. X 9(4), 041050 (2019).
[Crossref]

Gigan, S.

A. Boniface, B. Blochet, J. Dong, and S. Gigan, “Noninvasive light focusing in scattering media using speckle variance optimization,” Optica 6(11), 1381–1385 (2019).
[Crossref]

A. Boniface, M. Mounaix, B. Blochet, R. Piestun, and S. Gigan, “Transmission-matrix-based point-spread-function engineering through a complex medium,” Optica 4(1), 54–59 (2017).
[Crossref]

S. Rotter and S. Gigan, “Light fields in complex media: mesoscopic scattering meets wave control,” Rev. Mod. Phys. 89(1), 015005 (2017).
[Crossref]

A. Dremeau, A. Liutkus, D. Martina, O. Katz, C. Schülke, F. Krzakala, S. Gigan, and L. Daudet, “Reference-less measurement of the transmission matrix of a highly scattering material using a dmd and phase retrieval techniques,” Opt. Express 23(9), 11898–11911 (2015).
[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(1), 81 (2010).
[Crossref]

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref]

Goodman, J. W.

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2007).

Goorden, S. A.

Gordon, G. S. D.

G. S. D. Gordon, M. Gataric, C. Williams, J. Yoon, T. Wilkinson, and S. E. Bohndiek, “Characterising optical fibre transmission matrices using metasurface reflector stacks for lensless imaging without distal access,” Phys. Rev. X 9(4), 041050 (2019).
[Crossref]

Goy, A.

Heidmann, P.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

Horstmeyer, R.

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9(9), 563–571 (2015).
[Crossref]

Hsu, C.

W. Xiong, C. Hsu, and H. Cao, “Long-range spatio-temporal correlations in multimode fibers for pulse delivery,” Nat. Commun. 10(1), 1–7 (2019).
[Crossref]

Huang, G.

Huang, Y.

Jang, M.

Kakkava, E.

Katz, O.

U. Weiss and O. Katz, “Two-photon lensless micro-endoscopy with in-situ wavefront correction,” Opt. Express 26(22), 28808–2881722 (2018).
[Crossref]

A. Dremeau, A. Liutkus, D. Martina, O. Katz, C. Schülke, F. Krzakala, S. Gigan, and L. Daudet, “Reference-less measurement of the transmission matrix of a highly scattering material using a dmd and phase retrieval techniques,” Opt. Express 23(9), 11898–11911 (2015).
[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[Crossref]

Kim, D.

Kim, J.

Kim, M.

D. Kim, J. Moon, M. Kim, T. D. Yang, J. Kim, E. Chung, and W. Choi, “Toward a miniature endomicroscope: pixelation-free and diffraction-limited imaging through a fiber bundle,” Opt. Lett. 39(7), 1921–1924 (2014).
[Crossref]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref]

Konstantinou, G.

B. Rahmani, D. Loterie, G. Konstantinou, D. Psaltis, and C. Moser, “Multimode optical fiber transmission with a deep learning network,” Light: Sci. Appl. 7(1), 69 (2018).
[Crossref]

Krzakala, F.

Kubby, J.

Labouesse, S.

O. Tzang, E. Niv, S. Singh, S. Labouesse, G. Myatt, and R. Piestun, “Wavefront shaping in complex media with a 350 kHz modulator via a 1D-to-2D transform,” Nat. Photonics 13(11), 788–793 (2019).
[Crossref]

Lagendijk, A.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

Lai, P.

P. Lai, L. Wang, J. W. Tay, and L. V. Wang, “Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media,” Nat. Photonics 9(2), 126–132 (2015).
[Crossref]

Lee, J.

Lee, K. J.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref]

Leite, I. T.

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light: Sci. Appl. 7(1), 92 (2018).
[Crossref]

Lerosey, G.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(1), 81 (2010).
[Crossref]

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref]

Li, G.

M. Lyu, H. Wang, G. Li, S. Zheng, and G. Situ, “Learning-based lensless imaging through optically thick scattering media,” Adv. Photonics 1(3), 036002 (2019).
[Crossref]

Li, S.

Li, Y.

Liu, Y.

Liutkus, A.

Loterie, D.

B. Rahmani, D. Loterie, G. Konstantinou, D. Psaltis, and C. Moser, “Multimode optical fiber transmission with a deep learning network,” Light: Sci. Appl. 7(1), 69 (2018).
[Crossref]

D. Loterie, S. Farahi, I. Papadopoulos, A. Goy, D. Psaltis, and C. Moser, “Digital confocal microscopy through a multimode fiber,” Opt. Express 23(18), 23845–23858 (2015).
[Crossref]

Luo, J.

Lyu, M.

M. Lyu, H. Wang, G. Li, S. Zheng, and G. Situ, “Learning-based lensless imaging through optically thick scattering media,” Adv. Photonics 1(3), 036002 (2019).
[Crossref]

Ma, C.

Martina, D.

Mazilu, M.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[Crossref]

Michielssen, E.

Mitchell, K. J.

Moon, J.

Moran, O.

P. Caramazza, O. Moran, R. Murray-Smith, and D. Faccio, “Transmission of natural scene images through a multimode fiber,” Nat. Commun. 10(1), 2029 (2019).
[Crossref]

Moser, C.

Mosk, A.

Mosk, A. P.

S. A. Goorden, J. Bertolotti, and A. P. Mosk, “Superpixel-based spatial amplitude and phase modulation using a digital micromirror device,” Opt. Express 22(15), 17999–18009 (2014).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

Mounaix, M.

Murray-Smith, R.

P. Caramazza, O. Moran, R. Murray-Smith, and D. Faccio, “Transmission of natural scene images through a multimode fiber,” Nat. Commun. 10(1), 2029 (2019).
[Crossref]

Myatt, G.

O. Tzang, E. Niv, S. Singh, S. Labouesse, G. Myatt, and R. Piestun, “Wavefront shaping in complex media with a 350 kHz modulator via a 1D-to-2D transform,” Nat. Photonics 13(11), 788–793 (2019).
[Crossref]

N’Gom, M.

Nadakuditi, R. R.

Niv, E.

O. Tzang, E. Niv, S. Singh, S. Labouesse, G. Myatt, and R. Piestun, “Wavefront shaping in complex media with a 350 kHz modulator via a 1D-to-2D transform,” Nat. Photonics 13(11), 788–793 (2019).
[Crossref]

Norris, T. B.

Padgett, M. J.

Pakan, J. M. P.

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light: Sci. Appl. 7(1), 92 (2018).
[Crossref]

Pang, S.

J. Zhao, Y. Sun, Z. Zhu, J. E. Antonio-Lopez, R. A. Correa, S. Pang, and A. Schülzgen, “Deep learning imaging through fully-flexible glass- air disordered fiber,” ACS Photonics 5(10), 3930–3935 (2018).
[Crossref]

Papadopoulos, I.

Papadopoulos, I. N.

Phillips, D. B.

Piestun, R.

Plöschner, M.

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibers,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

Popoff, S.

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref]

Popoff, S. M.

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(1), 81 (2010).
[Crossref]

Psaltis, D.

Rahmani, B.

B. Rahmani, D. Loterie, G. Konstantinou, D. Psaltis, and C. Moser, “Multimode optical fiber transmission with a deep learning network,” Light: Sci. Appl. 7(1), 69 (2018).
[Crossref]

Redding, B.

Reinig, M.

Rigneault, H.

E. R. Andresen, S. Sivankutty, V. Tsvirkun, G. Bouwmans, and H. Rigneault, “Ultrathin endoscopes based on multicore fibers and adaptive optics: a status review and perspectives,” J. Biomed. Opt. 21(12), 121506 (2016).
[Crossref]

Rochefort, N. L.

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light: Sci. Appl. 7(1), 92 (2018).
[Crossref]

Rotter, S.

Ruan, H.

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9(9), 563–571 (2015).
[Crossref]

D. Wang, E. H. Zhou, J. Brake, H. Ruan, M. Jang, and C. Yang, “Focusing through dynamic tissue with millisecond digital optical phase conjugation,” Optica 2(8), 728–735 (2015).
[Crossref]

Schülke, C.

Schülzgen, A.

J. Zhao, Y. Sun, Z. Zhu, J. E. Antonio-Lopez, R. A. Correa, S. Pang, and A. Schülzgen, “Deep learning imaging through fully-flexible glass- air disordered fiber,” ACS Photonics 5(10), 3930–3935 (2018).
[Crossref]

Shen, Y.

Shi, J.

Silberberg, Y.

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[Crossref]

Singh, S.

O. Tzang, E. Niv, S. Singh, S. Labouesse, G. Myatt, and R. Piestun, “Wavefront shaping in complex media with a 350 kHz modulator via a 1D-to-2D transform,” Nat. Photonics 13(11), 788–793 (2019).
[Crossref]

Sinha, A.

Situ, G.

M. Lyu, H. Wang, G. Li, S. Zheng, and G. Situ, “Learning-based lensless imaging through optically thick scattering media,” Adv. Photonics 1(3), 036002 (2019).
[Crossref]

Sivankutty, S.

E. R. Andresen, S. Sivankutty, V. Tsvirkun, G. Bouwmans, and H. Rigneault, “Ultrathin endoscopes based on multicore fibers and adaptive optics: a status review and perspectives,” J. Biomed. Opt. 21(12), 121506 (2016).
[Crossref]

Small, E.

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[Crossref]

Su, L.

Sun, Y.

J. Zhao, Y. Sun, Z. Zhu, J. E. Antonio-Lopez, R. A. Correa, S. Pang, and A. Schülzgen, “Deep learning imaging through fully-flexible glass- air disordered fiber,” ACS Photonics 5(10), 3930–3935 (2018).
[Crossref]

Tao, X.

Tay, J. W.

P. Lai, L. Wang, J. W. Tay, and L. V. Wang, “Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media,” Nat. Photonics 9(2), 126–132 (2015).
[Crossref]

Tian, L.

Tsvirkun, V.

E. R. Andresen, S. Sivankutty, V. Tsvirkun, G. Bouwmans, and H. Rigneault, “Ultrathin endoscopes based on multicore fibers and adaptive optics: a status review and perspectives,” J. Biomed. Opt. 21(12), 121506 (2016).
[Crossref]

Turpin, A.

Turtaev, S.

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light: Sci. Appl. 7(1), 92 (2018).
[Crossref]

K. J. Mitchell, S. Turtaev, M. J. Padgett, T. Čižmár, and D. B. Phillips, “High-speed spatial control of the intensity, phase and polarisation of vector beams using a digital micro-mirror device,” Opt. Express 24(25), 29269–29282 (2016).
[Crossref]

Tyc, T.

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibers,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

Tzang, O.

O. Tzang, E. Niv, S. Singh, S. Labouesse, G. Myatt, and R. Piestun, “Wavefront shaping in complex media with a 350 kHz modulator via a 1D-to-2D transform,” Nat. Photonics 13(11), 788–793 (2019).
[Crossref]

Vellekoop, I.

Vishniakou, I.

Wang, D.

Wang, H.

M. Lyu, H. Wang, G. Li, S. Zheng, and G. Situ, “Learning-based lensless imaging through optically thick scattering media,” Adv. Photonics 1(3), 036002 (2019).
[Crossref]

Wang, L.

P. Lai, L. Wang, J. W. Tay, and L. V. Wang, “Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media,” Nat. Photonics 9(2), 126–132 (2015).
[Crossref]

Wang, L. V.

Y. Liu, C. Ma, Y. Shen, J. Shi, and L. V. Wang, “Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation,” Optica 4(2), 280–288 (2017).
[Crossref]

P. Lai, L. Wang, J. W. Tay, and L. V. Wang, “Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media,” Nat. Photonics 9(2), 126–132 (2015).
[Crossref]

Wang, W.

Weiss, U.

Wilkinson, T.

G. S. D. Gordon, M. Gataric, C. Williams, J. Yoon, T. Wilkinson, and S. E. Bohndiek, “Characterising optical fibre transmission matrices using metasurface reflector stacks for lensless imaging without distal access,” Phys. Rev. X 9(4), 041050 (2019).
[Crossref]

Williams, C.

G. S. D. Gordon, M. Gataric, C. Williams, J. Yoon, T. Wilkinson, and S. E. Bohndiek, “Characterising optical fibre transmission matrices using metasurface reflector stacks for lensless imaging without distal access,” Phys. Rev. X 9(4), 041050 (2019).
[Crossref]

Wu, D.

Xiong, W.

Xue, Y.

Yang, C.

D. Wang, E. H. Zhou, J. Brake, H. Ruan, M. Jang, and C. Yang, “Focusing through dynamic tissue with millisecond digital optical phase conjugation,” Optica 2(8), 728–735 (2015).
[Crossref]

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9(9), 563–571 (2015).
[Crossref]

Yang, T. D.

D. Kim, J. Moon, M. Kim, T. D. Yang, J. Kim, E. Chung, and W. Choi, “Toward a miniature endomicroscope: pixelation-free and diffraction-limited imaging through a fiber bundle,” Opt. Lett. 39(7), 1921–1924 (2014).
[Crossref]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref]

Yoon, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref]

Yoon, J.

G. S. D. Gordon, M. Gataric, C. Williams, J. Yoon, T. Wilkinson, and S. E. Bohndiek, “Characterising optical fibre transmission matrices using metasurface reflector stacks for lensless imaging without distal access,” Phys. Rev. X 9(4), 041050 (2019).
[Crossref]

Zhao, J.

J. Zhao, Y. Sun, Z. Zhu, J. E. Antonio-Lopez, R. A. Correa, S. Pang, and A. Schülzgen, “Deep learning imaging through fully-flexible glass- air disordered fiber,” ACS Photonics 5(10), 3930–3935 (2018).
[Crossref]

Zhao, T.

Zheng, S.

M. Lyu, H. Wang, G. Li, S. Zheng, and G. Situ, “Learning-based lensless imaging through optically thick scattering media,” Adv. Photonics 1(3), 036002 (2019).
[Crossref]

Zhou, E. H.

Zhu, Z.

J. Zhao, Y. Sun, Z. Zhu, J. E. Antonio-Lopez, R. A. Correa, S. Pang, and A. Schülzgen, “Deep learning imaging through fully-flexible glass- air disordered fiber,” ACS Photonics 5(10), 3930–3935 (2018).
[Crossref]

ACS Photonics (1)

J. Zhao, Y. Sun, Z. Zhu, J. E. Antonio-Lopez, R. A. Correa, S. Pang, and A. Schülzgen, “Deep learning imaging through fully-flexible glass- air disordered fiber,” ACS Photonics 5(10), 3930–3935 (2018).
[Crossref]

Adv. Photonics (1)

M. Lyu, H. Wang, G. Li, S. Zheng, and G. Situ, “Learning-based lensless imaging through optically thick scattering media,” Adv. Photonics 1(3), 036002 (2019).
[Crossref]

Biomed. Opt. Express (1)

J. Biomed. Opt. (1)

E. R. Andresen, S. Sivankutty, V. Tsvirkun, G. Bouwmans, and H. Rigneault, “Ultrathin endoscopes based on multicore fibers and adaptive optics: a status review and perspectives,” J. Biomed. Opt. 21(12), 121506 (2016).
[Crossref]

Light: Sci. Appl. (2)

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light: Sci. Appl. 7(1), 92 (2018).
[Crossref]

B. Rahmani, D. Loterie, G. Konstantinou, D. Psaltis, and C. Moser, “Multimode optical fiber transmission with a deep learning network,” Light: Sci. Appl. 7(1), 69 (2018).
[Crossref]

Nat. Commun. (4)

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(1), 81 (2010).
[Crossref]

W. Xiong, C. Hsu, and H. Cao, “Long-range spatio-temporal correlations in multimode fibers for pulse delivery,” Nat. Commun. 10(1), 1–7 (2019).
[Crossref]

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fiber-based imaging,” Nat. Commun. 3(1), 1027 (2012).
[Crossref]

P. Caramazza, O. Moran, R. Murray-Smith, and D. Faccio, “Transmission of natural scene images through a multimode fiber,” Nat. Commun. 10(1), 2029 (2019).
[Crossref]

Nat. Photonics (8)

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9(9), 563–571 (2015).
[Crossref]

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[Crossref]

P. Lai, L. Wang, J. W. Tay, and L. V. Wang, “Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media,” Nat. Photonics 9(2), 126–132 (2015).
[Crossref]

O. Tzang, E. Niv, S. Singh, S. Labouesse, G. Myatt, and R. Piestun, “Wavefront shaping in complex media with a 350 kHz modulator via a 1D-to-2D transform,” Nat. Photonics 13(11), 788–793 (2019).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[Crossref]

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibers,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

Opt. Express (16)

R. Di Leonardo and S. Bianchi, “Hologram transmission through multi-mode optical fibers,” Opt. Express 19(1), 247–254 (2011).
[Crossref]

T. Čižmár and K. Dholakia, “Shaping the light transmission through a multimode optical fiber: complex transformation analysis and applications in biophotonics,” Opt. Express 19(20), 18871–18884 (2011).
[Crossref]

D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20(2), 1733–1740 (2012).
[Crossref]

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20(10), 10583 (2012).
[Crossref]

S. A. Goorden, J. Bertolotti, and A. P. Mosk, “Superpixel-based spatial amplitude and phase modulation using a digital micromirror device,” Opt. Express 22(15), 17999–18009 (2014).
[Crossref]

A. Dremeau, A. Liutkus, D. Martina, O. Katz, C. Schülke, F. Krzakala, S. Gigan, and L. Daudet, “Reference-less measurement of the transmission matrix of a highly scattering material using a dmd and phase retrieval techniques,” Opt. Express 23(9), 11898–11911 (2015).
[Crossref]

I. Vellekoop, “Feedback-based wavefront shaping,” Opt. Express 23(9), 12189–12206 (2015).
[Crossref]

X. Tao, D. Bodington, M. Reinig, and J. Kubby, “High-speed scanning interferometric focusing by fast measurement of binary transmission matrix for channel demixing,” Opt. Express 23(11), 14168–14187 (2015).
[Crossref]

D. Loterie, S. Farahi, I. Papadopoulos, A. Goy, D. Psaltis, and C. Moser, “Digital confocal microscopy through a multimode fiber,” Opt. Express 23(18), 23845–23858 (2015).
[Crossref]

K. J. Mitchell, S. Turtaev, M. J. Padgett, T. Čižmár, and D. B. Phillips, “High-speed spatial control of the intensity, phase and polarisation of vector beams using a digital micro-mirror device,” Opt. Express 24(25), 29269–29282 (2016).
[Crossref]

W. Xiong, P. Ambichl, Y. Bromberg, B. Redding, S. Rotter, and H. Cao, “Principal modes in multimode fibers: exploring the crossover from weak to strong mode coupling,” Opt. Express 25(3), 2709–2724 (2017).
[Crossref]

T. Zhao, L. Deng, W. Wang, D. S. Elson, and L. Su, “Bayes’ theorem-based binary algorithm for fast reference-less calibration of a multimode fiber,” Opt. Express 26(16), 20368–20378 (2018).
[Crossref]

U. Weiss and O. Katz, “Two-photon lensless micro-endoscopy with in-situ wavefront correction,” Opt. Express 26(22), 28808–2881722 (2018).
[Crossref]

A. Turpin, I. Vishniakou, and J. d Seelig, “Light scattering control in transmission and reflection with neural networks,” Opt. Express 26(23), 30911–30929 (2018).
[Crossref]

P. Fan, T. Zhao, and L. Su, “Deep learning the high variability and randomness inside multimode fibers,” Opt. Express 27(15), 20241–20258 (2019).
[Crossref]

G. Huang, D. Wu, J. Luo, Y. Huang, and Y. Shen, “Retrieving the optical transmission matrix of a multimode fiber using the extended Kalman filter,” Opt. Express 28(7), 9487–9500 (2020).
[Crossref]

Opt. Lett. (3)

Optica (7)

Phys. Rev. Lett. (2)

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref]

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref]

Phys. Rev. X (1)

G. S. D. Gordon, M. Gataric, C. Williams, J. Yoon, T. Wilkinson, and S. E. Bohndiek, “Characterising optical fibre transmission matrices using metasurface reflector stacks for lensless imaging without distal access,” Phys. Rev. X 9(4), 041050 (2019).
[Crossref]

Rev. Mod. Phys. (1)

S. Rotter and S. Gigan, “Light fields in complex media: mesoscopic scattering meets wave control,” Rev. Mod. Phys. 89(1), 015005 (2017).
[Crossref]

Other (3)

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2007).

http://yann.lecun.com/exdb/mnist .

https://github.com/apolanco3225/Medical-MNIST-Classification .

Supplementary Material (2)

NameDescription
» Visualization 1       asdd
» Visualization 2       asdd

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Schematic illustrations of the principle and experimental setup of image retrieval through a multimode fiber with a real-valued intensity transmission matrix (RVITM). (a) The method of multimode fiber characterization with RVITM. To obtain the RVITM, a set of binary Hadamard patterns are projected onto the proximal end of a multimode fiber with a DMD, whilst intensity values of the speckles at the other end are captured by a camera. (b) The process of retrieving an input image pattern (letters ‘KCL’) from the corresponding speckle pattern with the calculated RVITM. Notably, RVITM+ represents the pseudo-inverse of RVITM. (c) Schematic diagram of the experimental setup. L1-L4, tube lens; Obj1-Obj2, 20× objectives; DMD, digital micromirrors device; MMF, multimode fiber; CMOS, camera.
Fig. 2.
Fig. 2. Impact of switched ‘ON’ pixels count on the performance of image retrieval. (a) Examples of retrieved 1024-pixel images with varying switched ‘ON’ pixels count from 32 to 160, 288, 416, 544, 672, 800 and 928 (left to right). (b) The correlation coefficients between the retrieved images and their ground truths versus the switched ‘ON’ pixels count. Data represent average values across 64 input patterns with the same J, and error bars represent standard deviations.
Fig. 3.
Fig. 3. Impact of input pixel count and number of supported transverse modes in multimode fibers (MMFs). (a) Retrieved images with the same ground truth and different input pixel counts through an MMF with a core diameter of 200 µm and a numerical aperture of 0.22. Retrieved images with the same ground truth and the other two MMFs can be found in Fig. 7 (Appendix). (b) Evolution of image retrieval performance with different MMFs and input pixel counts. Data represent average values across 64 input patterns with the same input pixel count, and error bars represent standard deviations. Fiber-105-0.22, Ø105 µm, NA=0.22, length = 1 m; Fiber-200-0.22, Ø200 µm, NA=0.22, length = 1 m; Fiber-200-0.50, Ø200 µm, NA=0.50, length = 1 m.
Fig. 4.
Fig. 4. Image retrieval results with different types of inputs with an input pixel count of 32×32. Retrieved images from corresponding output speckle patterns were obtained from a step-index multimode fiber with a diameter of 200 µm, and numerical aperture of 0.22, and compared to their ground truths. The input pixel counts were 32×32. More examples of image retrievals of handwritten digits can be found in Fig. 8 in the Appendix.
Fig. 5.
Fig. 5. Image retrieval results with different types of inputs with an input pixel count of 64×64. Retrieved images from corresponding output speckle patterns were obtained from a step-index multimode fiber with a diameter of 200 µm, and numerical aperture of 0.22, and compared to their ground truths.
Fig. 6.
Fig. 6. Numerical simulations of image retrievals with binary and grayscale images. The grayscale head CT images (ground truths) were adapted from the MedNist dataset [44]. Each input ground truth and retrieved image comprised 64×64 pixels while each speckle pattern comprised 200×200 pixels.
Fig. 7.
Fig. 7. The results of image retrievals through three different fibers with the same ground truth and varying total pixel counts. Top; Ø105 µm, NA=0.22, length = 1 m; Middle; Ø200 µm, NA=0.22, length = 1 m; Bottom; Ø200 µm, NA=0.50, length = 1 m.
Fig. 8.
Fig. 8. Some examples of image retrievals through a multimode fiber with handwritten digits with different total pixel counts. The fiber has a core diameter of 200 µm, a NA of 0.22, and a length of 1 m.
Fig. 9.
Fig. 9. Impact of noise to the performance of the RVITM-based image retrieval method.

Tables (1)

Tables Icon

Table 1. Multimode fibers used for the image retrieval experiments.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

[ I 1 1 I 1 p I m 1 I m p ] = R V I T M [ H 1 , H 2 ] ,
[ 2 I 1 1 I 1 1 2 I 1 p I 1 1 2 I m 1 I m 1 2 I m p I m 1 ] = R V I T M [ 2 H 1 1 , 2 H 2 1 ] = R V I T M [ H , H ] ,
R V I T M = [ 2 I 1 1 I 1 1 2 I 1 p I 1 1 2 I m 1 I m 1 2 I m p I m 1 ] [ H , H ] T ,
I i m a g e = R V I T M + I o u t I i n ,

Metrics