Abstract

We have constructed a chirped amplitude modulation heterodyne ghost imaging (CAM-HGI) experimental system that demonstrates a robust ability against background light in experiments. In the experiments, the background light is simulated by irradiating a spatiotemporal random modulated light field onto the target. The effects of background light, modulation depth and modulation duration of the signal light source on CAM-HGI are investigated experimentally. The results show that the quality of CAM-HGI can be improved by increasing the modulation depth and the modulation duration of the signal light source, and more importantly, an image with a good signal-to-noise ratio (SNR) can be achieved even when the irradiation SNR is lower than −30 dB. This technique of CAM-HGI has an important application prospect for laser imaging in strong background light environments.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92(3), 033601 (2004).
    [Crossref]
  2. J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in x-ray diffraction,” Phys. Rev. Lett. 92(9), 093903 (2004).
    [Crossref]
  3. D.-Z. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71(1), 013801 (2005).
    [Crossref]
  4. D. Zhang, Y.-H. Zhai, L.-A. Wu, and X.-H. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett. 30(18), 2354–2356 (2005).
    [Crossref]
  5. M. D’Angelo and Y. Shih, “Quantum imaging,” Laser Phys. Lett. 2(12), 567–596 (2005).
    [Crossref]
  6. J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inf. Process. 11(4), 949–993 (2012).
    [Crossref]
  7. H. Guo, R. He, C. Wei, Z. Lin, L. Wang, and S. Zhao, “Compressed ghost edge imaging,” Chin. Opt. Lett. 17(7), 071101 (2019).
    [Crossref]
  8. C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101(14), 141123 (2012).
    [Crossref]
  9. M. Chen, E. Li, W. Gong, Z. Bo, X. Xu, C. Zhao, X. Shen, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints in real atmosphere,” Opt. Photonics J. 03(02), 83–85 (2013).
    [Crossref]
  10. B. I. Erkmen, “Computational ghost imaging for remote sensing,” J. Opt. Soc. Am. A 29(5), 782–789 (2012).
    [Crossref]
  11. W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6(1), 26133 (2016).
    [Crossref]
  12. C. Wang, X. Mei, L. Pan, P. Wang, W. Li, X. Gao, Z. Bo, M. Chen, W. Gong, and S. Han, “Airborne near infrared three-dimensional ghost imaging lidar via sparsity constraint,” Remote Sens. 10(5), 732 (2018).
    [Crossref]
  13. W. Gong and S. Han, “Correlated imaging in scattering media,” Opt. Lett. 36(3), 394–396 (2011).
    [Crossref]
  14. M. Bina, D. Magatti, M. Molteni, A. Gatti, L. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110(8), 083901 (2013).
    [Crossref]
  15. C. Allen and S. Gogineni, “A fiber-optic-based 1550-nm laser radar altimeter with rf pulse compression,” in IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS’99 (Cat. No. 99CH36293), vol. 3 (IEEE, 1999), pp. 1740–1742.
  16. C. Allen, Y. Cobanoglu, S. K. Chong, and S. Gogineni, “Performance of a 1319 nm laser radar using rf pulse compression,” in IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No. 01CH37217), vol. 3 (IEEE, 2001), pp. 997–999.
  17. X. Yang, Y. Zhang, C. Yang, L. Xu, Q. Wang, and Y. Zhao, “Heterodyne 3d ghost imaging,” Opt. Commun. 368, 1–6 (2016).
    [Crossref]
  18. C. Deng, W. Gong, and S. Han, “Pulse-compression ghost imaging lidar via coherent detection,” Opt. Express 24(23), 25983–25994 (2016).
    [Crossref]
  19. C. Deng, L. Pan, C. Wang, X. Gao, W. Gong, and S. Han, “Performance analysis of ghost imaging lidar in background light environment,” Photonics Res. 5(5), 431–435 (2017).
    [Crossref]
  20. A. Yariv and P. Yeh, Photonics: optical electronics in modern communications (the oxford series in electrical and computer engineering) (Oxford University Press, Inc., 2006).
  21. J. Yang, B. Zhao, and B. Liu, “Distance and velocity measurement of coherent lidar based on chirp pulse compression,” Sensors 19(10), 2313 (2019).
    [Crossref]
  22. C. Wang, W. Gong, X. Shao, and S. Han, “Influence of receiving numerical aperture and rough target size on ghost imaging via sparsity constraint,” Chin. J. Lasers 46(8), 0810002 (2019).
  23. F. Ferri, D. Magatti, L. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
    [Crossref]
  24. C. Jing and H. Shen-Sheng, “Theoretical analysis of quantum noise in ghost imaging,” Chin. Phys. Lett. 22(7), 1676–1679 (2005).
    [Crossref]
  25. A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53(5-6), 739–760 (2006).
    [Crossref]
  26. B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20(15), 16892–16901 (2012).
    [Crossref]
  27. D. F. Walls and G. J. Milburn, Quantum optics (Springer Science & Business Media, 2007).
  28. W. Gong, Z. Bo, E. Li, and S. Han, “Experimental investigation of the quality of ghost imaging via sparsity constraints,” Appl. Opt. 52(15), 3510–3515 (2013).
    [Crossref]
  29. W. Gong and S. Han, “High-resolution far-field ghost imaging via sparsity constraint,” Sci. Rep. 5(1), 9280 (2015).
    [Crossref]
  30. L. Huang, P. Ma, D. Meng, L. Li, R. Tao, R. Su, Y. Ma, and P. Zhou, “Monolithic high-average-power linearly polarized nanosecond pulsed fiber laser with near-diffraction-limited beam quality,” High Power Laser Sci. Eng. 6, e42 (2018).
    [Crossref]
  31. Y. Zhang, C. Gao, Q. Wang, Q. Na, M. Zhang, M. Gao, and S. Huang, “1 khz single-frequency, injection-seeded er: Yag laser with an optical feedback,” Chin. Opt. Lett. 17(3), 031402 (2019).
    [Crossref]
  32. C. J. Karlsson and F. Å. Olsson, “Linearization of the frequency sweep of a frequency-modulated continuous-wave semiconductor laser radar and the resulting ranging performance,” Appl. Opt. 38(15), 3376–3386 (1999).
    [Crossref]
  33. C. Allen, Y. Cobanoglu, S. Chong, and S. Gogineni, “Development of a 1310-nm, coherent laser radar with rf pulse compression,” in IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No. 00CH37120), vol. 4 (IEEE, 2000), pp. 1784–1786.
  34. L. E. Y. Herrera, R. M. Ribeiro, V. B. Jabulka, P. Tovar, and J. P. von der Weid, “Photonic generation and transmission of linearly chirped microwave pulses with high tbwp by self-heterodyne technique,” J. Lightwave Technol. 36(19), 4408–4415 (2018).
    [Crossref]

2019 (4)

H. Guo, R. He, C. Wei, Z. Lin, L. Wang, and S. Zhao, “Compressed ghost edge imaging,” Chin. Opt. Lett. 17(7), 071101 (2019).
[Crossref]

J. Yang, B. Zhao, and B. Liu, “Distance and velocity measurement of coherent lidar based on chirp pulse compression,” Sensors 19(10), 2313 (2019).
[Crossref]

C. Wang, W. Gong, X. Shao, and S. Han, “Influence of receiving numerical aperture and rough target size on ghost imaging via sparsity constraint,” Chin. J. Lasers 46(8), 0810002 (2019).

Y. Zhang, C. Gao, Q. Wang, Q. Na, M. Zhang, M. Gao, and S. Huang, “1 khz single-frequency, injection-seeded er: Yag laser with an optical feedback,” Chin. Opt. Lett. 17(3), 031402 (2019).
[Crossref]

2018 (3)

L. Huang, P. Ma, D. Meng, L. Li, R. Tao, R. Su, Y. Ma, and P. Zhou, “Monolithic high-average-power linearly polarized nanosecond pulsed fiber laser with near-diffraction-limited beam quality,” High Power Laser Sci. Eng. 6, e42 (2018).
[Crossref]

L. E. Y. Herrera, R. M. Ribeiro, V. B. Jabulka, P. Tovar, and J. P. von der Weid, “Photonic generation and transmission of linearly chirped microwave pulses with high tbwp by self-heterodyne technique,” J. Lightwave Technol. 36(19), 4408–4415 (2018).
[Crossref]

C. Wang, X. Mei, L. Pan, P. Wang, W. Li, X. Gao, Z. Bo, M. Chen, W. Gong, and S. Han, “Airborne near infrared three-dimensional ghost imaging lidar via sparsity constraint,” Remote Sens. 10(5), 732 (2018).
[Crossref]

2017 (1)

C. Deng, L. Pan, C. Wang, X. Gao, W. Gong, and S. Han, “Performance analysis of ghost imaging lidar in background light environment,” Photonics Res. 5(5), 431–435 (2017).
[Crossref]

2016 (3)

X. Yang, Y. Zhang, C. Yang, L. Xu, Q. Wang, and Y. Zhao, “Heterodyne 3d ghost imaging,” Opt. Commun. 368, 1–6 (2016).
[Crossref]

C. Deng, W. Gong, and S. Han, “Pulse-compression ghost imaging lidar via coherent detection,” Opt. Express 24(23), 25983–25994 (2016).
[Crossref]

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6(1), 26133 (2016).
[Crossref]

2015 (1)

W. Gong and S. Han, “High-resolution far-field ghost imaging via sparsity constraint,” Sci. Rep. 5(1), 9280 (2015).
[Crossref]

2013 (3)

W. Gong, Z. Bo, E. Li, and S. Han, “Experimental investigation of the quality of ghost imaging via sparsity constraints,” Appl. Opt. 52(15), 3510–3515 (2013).
[Crossref]

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110(8), 083901 (2013).
[Crossref]

M. Chen, E. Li, W. Gong, Z. Bo, X. Xu, C. Zhao, X. Shen, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints in real atmosphere,” Opt. Photonics J. 03(02), 83–85 (2013).
[Crossref]

2012 (4)

B. I. Erkmen, “Computational ghost imaging for remote sensing,” J. Opt. Soc. Am. A 29(5), 782–789 (2012).
[Crossref]

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101(14), 141123 (2012).
[Crossref]

J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inf. Process. 11(4), 949–993 (2012).
[Crossref]

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20(15), 16892–16901 (2012).
[Crossref]

2011 (1)

2010 (1)

F. Ferri, D. Magatti, L. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
[Crossref]

2006 (1)

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53(5-6), 739–760 (2006).
[Crossref]

2005 (4)

C. Jing and H. Shen-Sheng, “Theoretical analysis of quantum noise in ghost imaging,” Chin. Phys. Lett. 22(7), 1676–1679 (2005).
[Crossref]

D.-Z. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71(1), 013801 (2005).
[Crossref]

D. Zhang, Y.-H. Zhai, L.-A. Wu, and X.-H. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett. 30(18), 2354–2356 (2005).
[Crossref]

M. D’Angelo and Y. Shih, “Quantum imaging,” Laser Phys. Lett. 2(12), 567–596 (2005).
[Crossref]

2004 (2)

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92(3), 033601 (2004).
[Crossref]

J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in x-ray diffraction,” Phys. Rev. Lett. 92(9), 093903 (2004).
[Crossref]

1999 (1)

Å. Olsson, F.

Allen, C.

C. Allen, Y. Cobanoglu, S. Chong, and S. Gogineni, “Development of a 1310-nm, coherent laser radar with rf pulse compression,” in IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No. 00CH37120), vol. 4 (IEEE, 2000), pp. 1784–1786.

C. Allen, Y. Cobanoglu, S. K. Chong, and S. Gogineni, “Performance of a 1319 nm laser radar using rf pulse compression,” in IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No. 01CH37217), vol. 3 (IEEE, 2001), pp. 997–999.

C. Allen and S. Gogineni, “A fiber-optic-based 1550-nm laser radar altimeter with rf pulse compression,” in IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS’99 (Cat. No. 99CH36293), vol. 3 (IEEE, 1999), pp. 1740–1742.

Bache, M.

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53(5-6), 739–760 (2006).
[Crossref]

Bennink, R. S.

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92(3), 033601 (2004).
[Crossref]

Bentley, S. J.

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92(3), 033601 (2004).
[Crossref]

Bina, M.

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110(8), 083901 (2013).
[Crossref]

Bo, Z.

C. Wang, X. Mei, L. Pan, P. Wang, W. Li, X. Gao, Z. Bo, M. Chen, W. Gong, and S. Han, “Airborne near infrared three-dimensional ghost imaging lidar via sparsity constraint,” Remote Sens. 10(5), 732 (2018).
[Crossref]

M. Chen, E. Li, W. Gong, Z. Bo, X. Xu, C. Zhao, X. Shen, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints in real atmosphere,” Opt. Photonics J. 03(02), 83–85 (2013).
[Crossref]

W. Gong, Z. Bo, E. Li, and S. Han, “Experimental investigation of the quality of ghost imaging via sparsity constraints,” Appl. Opt. 52(15), 3510–3515 (2013).
[Crossref]

Boyd, R. W.

J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inf. Process. 11(4), 949–993 (2012).
[Crossref]

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92(3), 033601 (2004).
[Crossref]

Brambilla, E.

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53(5-6), 739–760 (2006).
[Crossref]

Cao, D.-Z.

D.-Z. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71(1), 013801 (2005).
[Crossref]

Chen, M.

C. Wang, X. Mei, L. Pan, P. Wang, W. Li, X. Gao, Z. Bo, M. Chen, W. Gong, and S. Han, “Airborne near infrared three-dimensional ghost imaging lidar via sparsity constraint,” Remote Sens. 10(5), 732 (2018).
[Crossref]

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6(1), 26133 (2016).
[Crossref]

M. Chen, E. Li, W. Gong, Z. Bo, X. Xu, C. Zhao, X. Shen, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints in real atmosphere,” Opt. Photonics J. 03(02), 83–85 (2013).
[Crossref]

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101(14), 141123 (2012).
[Crossref]

Chen, X.-H.

Cheng, J.

J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in x-ray diffraction,” Phys. Rev. Lett. 92(9), 093903 (2004).
[Crossref]

Chong, S.

C. Allen, Y. Cobanoglu, S. Chong, and S. Gogineni, “Development of a 1310-nm, coherent laser radar with rf pulse compression,” in IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No. 00CH37120), vol. 4 (IEEE, 2000), pp. 1784–1786.

Chong, S. K.

C. Allen, Y. Cobanoglu, S. K. Chong, and S. Gogineni, “Performance of a 1319 nm laser radar using rf pulse compression,” in IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No. 01CH37217), vol. 3 (IEEE, 2001), pp. 997–999.

Cobanoglu, Y.

C. Allen, Y. Cobanoglu, S. Chong, and S. Gogineni, “Development of a 1310-nm, coherent laser radar with rf pulse compression,” in IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No. 00CH37120), vol. 4 (IEEE, 2000), pp. 1784–1786.

C. Allen, Y. Cobanoglu, S. K. Chong, and S. Gogineni, “Performance of a 1319 nm laser radar using rf pulse compression,” in IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No. 01CH37217), vol. 3 (IEEE, 2001), pp. 997–999.

D’Angelo, M.

M. D’Angelo and Y. Shih, “Quantum imaging,” Laser Phys. Lett. 2(12), 567–596 (2005).
[Crossref]

Deng, C.

C. Deng, L. Pan, C. Wang, X. Gao, W. Gong, and S. Han, “Performance analysis of ghost imaging lidar in background light environment,” Photonics Res. 5(5), 431–435 (2017).
[Crossref]

C. Deng, W. Gong, and S. Han, “Pulse-compression ghost imaging lidar via coherent detection,” Opt. Express 24(23), 25983–25994 (2016).
[Crossref]

Edgar, M. P.

Erkmen, B. I.

Ferri, F.

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110(8), 083901 (2013).
[Crossref]

F. Ferri, D. Magatti, L. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
[Crossref]

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53(5-6), 739–760 (2006).
[Crossref]

Gao, C.

Gao, M.

Gao, X.

C. Wang, X. Mei, L. Pan, P. Wang, W. Li, X. Gao, Z. Bo, M. Chen, W. Gong, and S. Han, “Airborne near infrared three-dimensional ghost imaging lidar via sparsity constraint,” Remote Sens. 10(5), 732 (2018).
[Crossref]

C. Deng, L. Pan, C. Wang, X. Gao, W. Gong, and S. Han, “Performance analysis of ghost imaging lidar in background light environment,” Photonics Res. 5(5), 431–435 (2017).
[Crossref]

Gatti, A.

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110(8), 083901 (2013).
[Crossref]

F. Ferri, D. Magatti, L. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
[Crossref]

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53(5-6), 739–760 (2006).
[Crossref]

Gogineni, S.

C. Allen, Y. Cobanoglu, S. Chong, and S. Gogineni, “Development of a 1310-nm, coherent laser radar with rf pulse compression,” in IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No. 00CH37120), vol. 4 (IEEE, 2000), pp. 1784–1786.

C. Allen and S. Gogineni, “A fiber-optic-based 1550-nm laser radar altimeter with rf pulse compression,” in IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS’99 (Cat. No. 99CH36293), vol. 3 (IEEE, 1999), pp. 1740–1742.

C. Allen, Y. Cobanoglu, S. K. Chong, and S. Gogineni, “Performance of a 1319 nm laser radar using rf pulse compression,” in IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No. 01CH37217), vol. 3 (IEEE, 2001), pp. 997–999.

Gong, W.

C. Wang, W. Gong, X. Shao, and S. Han, “Influence of receiving numerical aperture and rough target size on ghost imaging via sparsity constraint,” Chin. J. Lasers 46(8), 0810002 (2019).

C. Wang, X. Mei, L. Pan, P. Wang, W. Li, X. Gao, Z. Bo, M. Chen, W. Gong, and S. Han, “Airborne near infrared three-dimensional ghost imaging lidar via sparsity constraint,” Remote Sens. 10(5), 732 (2018).
[Crossref]

C. Deng, L. Pan, C. Wang, X. Gao, W. Gong, and S. Han, “Performance analysis of ghost imaging lidar in background light environment,” Photonics Res. 5(5), 431–435 (2017).
[Crossref]

C. Deng, W. Gong, and S. Han, “Pulse-compression ghost imaging lidar via coherent detection,” Opt. Express 24(23), 25983–25994 (2016).
[Crossref]

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6(1), 26133 (2016).
[Crossref]

W. Gong and S. Han, “High-resolution far-field ghost imaging via sparsity constraint,” Sci. Rep. 5(1), 9280 (2015).
[Crossref]

W. Gong, Z. Bo, E. Li, and S. Han, “Experimental investigation of the quality of ghost imaging via sparsity constraints,” Appl. Opt. 52(15), 3510–3515 (2013).
[Crossref]

M. Chen, E. Li, W. Gong, Z. Bo, X. Xu, C. Zhao, X. Shen, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints in real atmosphere,” Opt. Photonics J. 03(02), 83–85 (2013).
[Crossref]

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101(14), 141123 (2012).
[Crossref]

W. Gong and S. Han, “Correlated imaging in scattering media,” Opt. Lett. 36(3), 394–396 (2011).
[Crossref]

Guo, H.

Han, S.

C. Wang, W. Gong, X. Shao, and S. Han, “Influence of receiving numerical aperture and rough target size on ghost imaging via sparsity constraint,” Chin. J. Lasers 46(8), 0810002 (2019).

C. Wang, X. Mei, L. Pan, P. Wang, W. Li, X. Gao, Z. Bo, M. Chen, W. Gong, and S. Han, “Airborne near infrared three-dimensional ghost imaging lidar via sparsity constraint,” Remote Sens. 10(5), 732 (2018).
[Crossref]

C. Deng, L. Pan, C. Wang, X. Gao, W. Gong, and S. Han, “Performance analysis of ghost imaging lidar in background light environment,” Photonics Res. 5(5), 431–435 (2017).
[Crossref]

C. Deng, W. Gong, and S. Han, “Pulse-compression ghost imaging lidar via coherent detection,” Opt. Express 24(23), 25983–25994 (2016).
[Crossref]

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6(1), 26133 (2016).
[Crossref]

W. Gong and S. Han, “High-resolution far-field ghost imaging via sparsity constraint,” Sci. Rep. 5(1), 9280 (2015).
[Crossref]

W. Gong, Z. Bo, E. Li, and S. Han, “Experimental investigation of the quality of ghost imaging via sparsity constraints,” Appl. Opt. 52(15), 3510–3515 (2013).
[Crossref]

M. Chen, E. Li, W. Gong, Z. Bo, X. Xu, C. Zhao, X. Shen, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints in real atmosphere,” Opt. Photonics J. 03(02), 83–85 (2013).
[Crossref]

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101(14), 141123 (2012).
[Crossref]

W. Gong and S. Han, “Correlated imaging in scattering media,” Opt. Lett. 36(3), 394–396 (2011).
[Crossref]

J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in x-ray diffraction,” Phys. Rev. Lett. 92(9), 093903 (2004).
[Crossref]

He, R.

Herrera, L. E. Y.

Howell, J. C.

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92(3), 033601 (2004).
[Crossref]

Huang, L.

L. Huang, P. Ma, D. Meng, L. Li, R. Tao, R. Su, Y. Ma, and P. Zhou, “Monolithic high-average-power linearly polarized nanosecond pulsed fiber laser with near-diffraction-limited beam quality,” High Power Laser Sci. Eng. 6, e42 (2018).
[Crossref]

Huang, S.

Jabulka, V. B.

Jing, C.

C. Jing and H. Shen-Sheng, “Theoretical analysis of quantum noise in ghost imaging,” Chin. Phys. Lett. 22(7), 1676–1679 (2005).
[Crossref]

Karlsson, C. J.

Li, E.

W. Gong, Z. Bo, E. Li, and S. Han, “Experimental investigation of the quality of ghost imaging via sparsity constraints,” Appl. Opt. 52(15), 3510–3515 (2013).
[Crossref]

M. Chen, E. Li, W. Gong, Z. Bo, X. Xu, C. Zhao, X. Shen, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints in real atmosphere,” Opt. Photonics J. 03(02), 83–85 (2013).
[Crossref]

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101(14), 141123 (2012).
[Crossref]

Li, L.

L. Huang, P. Ma, D. Meng, L. Li, R. Tao, R. Su, Y. Ma, and P. Zhou, “Monolithic high-average-power linearly polarized nanosecond pulsed fiber laser with near-diffraction-limited beam quality,” High Power Laser Sci. Eng. 6, e42 (2018).
[Crossref]

Li, W.

C. Wang, X. Mei, L. Pan, P. Wang, W. Li, X. Gao, Z. Bo, M. Chen, W. Gong, and S. Han, “Airborne near infrared three-dimensional ghost imaging lidar via sparsity constraint,” Remote Sens. 10(5), 732 (2018).
[Crossref]

Lin, Z.

Liu, B.

J. Yang, B. Zhao, and B. Liu, “Distance and velocity measurement of coherent lidar based on chirp pulse compression,” Sensors 19(10), 2313 (2019).
[Crossref]

Lugiato, L.

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110(8), 083901 (2013).
[Crossref]

F. Ferri, D. Magatti, L. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
[Crossref]

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53(5-6), 739–760 (2006).
[Crossref]

Ma, P.

L. Huang, P. Ma, D. Meng, L. Li, R. Tao, R. Su, Y. Ma, and P. Zhou, “Monolithic high-average-power linearly polarized nanosecond pulsed fiber laser with near-diffraction-limited beam quality,” High Power Laser Sci. Eng. 6, e42 (2018).
[Crossref]

Ma, Y.

L. Huang, P. Ma, D. Meng, L. Li, R. Tao, R. Su, Y. Ma, and P. Zhou, “Monolithic high-average-power linearly polarized nanosecond pulsed fiber laser with near-diffraction-limited beam quality,” High Power Laser Sci. Eng. 6, e42 (2018).
[Crossref]

Magatti, D.

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110(8), 083901 (2013).
[Crossref]

F. Ferri, D. Magatti, L. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
[Crossref]

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53(5-6), 739–760 (2006).
[Crossref]

Mei, X.

C. Wang, X. Mei, L. Pan, P. Wang, W. Li, X. Gao, Z. Bo, M. Chen, W. Gong, and S. Han, “Airborne near infrared three-dimensional ghost imaging lidar via sparsity constraint,” Remote Sens. 10(5), 732 (2018).
[Crossref]

Meng, D.

L. Huang, P. Ma, D. Meng, L. Li, R. Tao, R. Su, Y. Ma, and P. Zhou, “Monolithic high-average-power linearly polarized nanosecond pulsed fiber laser with near-diffraction-limited beam quality,” High Power Laser Sci. Eng. 6, e42 (2018).
[Crossref]

Milburn, G. J.

D. F. Walls and G. J. Milburn, Quantum optics (Springer Science & Business Media, 2007).

Molteni, M.

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110(8), 083901 (2013).
[Crossref]

Na, Q.

Padgett, M. J.

Pan, L.

C. Wang, X. Mei, L. Pan, P. Wang, W. Li, X. Gao, Z. Bo, M. Chen, W. Gong, and S. Han, “Airborne near infrared three-dimensional ghost imaging lidar via sparsity constraint,” Remote Sens. 10(5), 732 (2018).
[Crossref]

C. Deng, L. Pan, C. Wang, X. Gao, W. Gong, and S. Han, “Performance analysis of ghost imaging lidar in background light environment,” Photonics Res. 5(5), 431–435 (2017).
[Crossref]

Ribeiro, R. M.

Shao, X.

C. Wang, W. Gong, X. Shao, and S. Han, “Influence of receiving numerical aperture and rough target size on ghost imaging via sparsity constraint,” Chin. J. Lasers 46(8), 0810002 (2019).

Shapiro, J. H.

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20(15), 16892–16901 (2012).
[Crossref]

J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inf. Process. 11(4), 949–993 (2012).
[Crossref]

Shen, X.

M. Chen, E. Li, W. Gong, Z. Bo, X. Xu, C. Zhao, X. Shen, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints in real atmosphere,” Opt. Photonics J. 03(02), 83–85 (2013).
[Crossref]

Shen-Sheng, H.

C. Jing and H. Shen-Sheng, “Theoretical analysis of quantum noise in ghost imaging,” Chin. Phys. Lett. 22(7), 1676–1679 (2005).
[Crossref]

Shih, Y.

M. D’Angelo and Y. Shih, “Quantum imaging,” Laser Phys. Lett. 2(12), 567–596 (2005).
[Crossref]

Su, R.

L. Huang, P. Ma, D. Meng, L. Li, R. Tao, R. Su, Y. Ma, and P. Zhou, “Monolithic high-average-power linearly polarized nanosecond pulsed fiber laser with near-diffraction-limited beam quality,” High Power Laser Sci. Eng. 6, e42 (2018).
[Crossref]

Sun, B.

Tao, R.

L. Huang, P. Ma, D. Meng, L. Li, R. Tao, R. Su, Y. Ma, and P. Zhou, “Monolithic high-average-power linearly polarized nanosecond pulsed fiber laser with near-diffraction-limited beam quality,” High Power Laser Sci. Eng. 6, e42 (2018).
[Crossref]

Tovar, P.

von der Weid, J. P.

Walls, D. F.

D. F. Walls and G. J. Milburn, Quantum optics (Springer Science & Business Media, 2007).

Wang, C.

C. Wang, W. Gong, X. Shao, and S. Han, “Influence of receiving numerical aperture and rough target size on ghost imaging via sparsity constraint,” Chin. J. Lasers 46(8), 0810002 (2019).

C. Wang, X. Mei, L. Pan, P. Wang, W. Li, X. Gao, Z. Bo, M. Chen, W. Gong, and S. Han, “Airborne near infrared three-dimensional ghost imaging lidar via sparsity constraint,” Remote Sens. 10(5), 732 (2018).
[Crossref]

C. Deng, L. Pan, C. Wang, X. Gao, W. Gong, and S. Han, “Performance analysis of ghost imaging lidar in background light environment,” Photonics Res. 5(5), 431–435 (2017).
[Crossref]

Wang, H.

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101(14), 141123 (2012).
[Crossref]

Wang, K.

D.-Z. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71(1), 013801 (2005).
[Crossref]

Wang, L.

Wang, P.

C. Wang, X. Mei, L. Pan, P. Wang, W. Li, X. Gao, Z. Bo, M. Chen, W. Gong, and S. Han, “Airborne near infrared three-dimensional ghost imaging lidar via sparsity constraint,” Remote Sens. 10(5), 732 (2018).
[Crossref]

Wang, Q.

Wei, C.

Welsh, S. S.

Wu, L.-A.

Xiong, J.

D.-Z. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71(1), 013801 (2005).
[Crossref]

Xu, L.

X. Yang, Y. Zhang, C. Yang, L. Xu, Q. Wang, and Y. Zhao, “Heterodyne 3d ghost imaging,” Opt. Commun. 368, 1–6 (2016).
[Crossref]

Xu, W.

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6(1), 26133 (2016).
[Crossref]

M. Chen, E. Li, W. Gong, Z. Bo, X. Xu, C. Zhao, X. Shen, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints in real atmosphere,” Opt. Photonics J. 03(02), 83–85 (2013).
[Crossref]

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101(14), 141123 (2012).
[Crossref]

Xu, X.

M. Chen, E. Li, W. Gong, Z. Bo, X. Xu, C. Zhao, X. Shen, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints in real atmosphere,” Opt. Photonics J. 03(02), 83–85 (2013).
[Crossref]

Yang, C.

X. Yang, Y. Zhang, C. Yang, L. Xu, Q. Wang, and Y. Zhao, “Heterodyne 3d ghost imaging,” Opt. Commun. 368, 1–6 (2016).
[Crossref]

Yang, J.

J. Yang, B. Zhao, and B. Liu, “Distance and velocity measurement of coherent lidar based on chirp pulse compression,” Sensors 19(10), 2313 (2019).
[Crossref]

Yang, X.

X. Yang, Y. Zhang, C. Yang, L. Xu, Q. Wang, and Y. Zhao, “Heterodyne 3d ghost imaging,” Opt. Commun. 368, 1–6 (2016).
[Crossref]

Yariv, A.

A. Yariv and P. Yeh, Photonics: optical electronics in modern communications (the oxford series in electrical and computer engineering) (Oxford University Press, Inc., 2006).

Yeh, P.

A. Yariv and P. Yeh, Photonics: optical electronics in modern communications (the oxford series in electrical and computer engineering) (Oxford University Press, Inc., 2006).

Yu, H.

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6(1), 26133 (2016).
[Crossref]

Zhai, Y.-H.

Zhang, D.

Zhang, M.

Zhang, Y.

Zhao, B.

J. Yang, B. Zhao, and B. Liu, “Distance and velocity measurement of coherent lidar based on chirp pulse compression,” Sensors 19(10), 2313 (2019).
[Crossref]

Zhao, C.

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6(1), 26133 (2016).
[Crossref]

M. Chen, E. Li, W. Gong, Z. Bo, X. Xu, C. Zhao, X. Shen, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints in real atmosphere,” Opt. Photonics J. 03(02), 83–85 (2013).
[Crossref]

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101(14), 141123 (2012).
[Crossref]

Zhao, S.

Zhao, Y.

X. Yang, Y. Zhang, C. Yang, L. Xu, Q. Wang, and Y. Zhao, “Heterodyne 3d ghost imaging,” Opt. Commun. 368, 1–6 (2016).
[Crossref]

Zhou, P.

L. Huang, P. Ma, D. Meng, L. Li, R. Tao, R. Su, Y. Ma, and P. Zhou, “Monolithic high-average-power linearly polarized nanosecond pulsed fiber laser with near-diffraction-limited beam quality,” High Power Laser Sci. Eng. 6, e42 (2018).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101(14), 141123 (2012).
[Crossref]

Chin. J. Lasers (1)

C. Wang, W. Gong, X. Shao, and S. Han, “Influence of receiving numerical aperture and rough target size on ghost imaging via sparsity constraint,” Chin. J. Lasers 46(8), 0810002 (2019).

Chin. Opt. Lett. (2)

Chin. Phys. Lett. (1)

C. Jing and H. Shen-Sheng, “Theoretical analysis of quantum noise in ghost imaging,” Chin. Phys. Lett. 22(7), 1676–1679 (2005).
[Crossref]

High Power Laser Sci. Eng. (1)

L. Huang, P. Ma, D. Meng, L. Li, R. Tao, R. Su, Y. Ma, and P. Zhou, “Monolithic high-average-power linearly polarized nanosecond pulsed fiber laser with near-diffraction-limited beam quality,” High Power Laser Sci. Eng. 6, e42 (2018).
[Crossref]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53(5-6), 739–760 (2006).
[Crossref]

J. Opt. Soc. Am. A (1)

Laser Phys. Lett. (1)

M. D’Angelo and Y. Shih, “Quantum imaging,” Laser Phys. Lett. 2(12), 567–596 (2005).
[Crossref]

Opt. Commun. (1)

X. Yang, Y. Zhang, C. Yang, L. Xu, Q. Wang, and Y. Zhao, “Heterodyne 3d ghost imaging,” Opt. Commun. 368, 1–6 (2016).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Opt. Photonics J. (1)

M. Chen, E. Li, W. Gong, Z. Bo, X. Xu, C. Zhao, X. Shen, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints in real atmosphere,” Opt. Photonics J. 03(02), 83–85 (2013).
[Crossref]

Photonics Res. (1)

C. Deng, L. Pan, C. Wang, X. Gao, W. Gong, and S. Han, “Performance analysis of ghost imaging lidar in background light environment,” Photonics Res. 5(5), 431–435 (2017).
[Crossref]

Phys. Rev. A (1)

D.-Z. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71(1), 013801 (2005).
[Crossref]

Phys. Rev. Lett. (4)

F. Ferri, D. Magatti, L. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
[Crossref]

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110(8), 083901 (2013).
[Crossref]

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92(3), 033601 (2004).
[Crossref]

J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in x-ray diffraction,” Phys. Rev. Lett. 92(9), 093903 (2004).
[Crossref]

Quantum Inf. Process. (1)

J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inf. Process. 11(4), 949–993 (2012).
[Crossref]

Remote Sens. (1)

C. Wang, X. Mei, L. Pan, P. Wang, W. Li, X. Gao, Z. Bo, M. Chen, W. Gong, and S. Han, “Airborne near infrared three-dimensional ghost imaging lidar via sparsity constraint,” Remote Sens. 10(5), 732 (2018).
[Crossref]

Sci. Rep. (2)

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6(1), 26133 (2016).
[Crossref]

W. Gong and S. Han, “High-resolution far-field ghost imaging via sparsity constraint,” Sci. Rep. 5(1), 9280 (2015).
[Crossref]

Sensors (1)

J. Yang, B. Zhao, and B. Liu, “Distance and velocity measurement of coherent lidar based on chirp pulse compression,” Sensors 19(10), 2313 (2019).
[Crossref]

Other (5)

C. Allen and S. Gogineni, “A fiber-optic-based 1550-nm laser radar altimeter with rf pulse compression,” in IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS’99 (Cat. No. 99CH36293), vol. 3 (IEEE, 1999), pp. 1740–1742.

C. Allen, Y. Cobanoglu, S. K. Chong, and S. Gogineni, “Performance of a 1319 nm laser radar using rf pulse compression,” in IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No. 01CH37217), vol. 3 (IEEE, 2001), pp. 997–999.

A. Yariv and P. Yeh, Photonics: optical electronics in modern communications (the oxford series in electrical and computer engineering) (Oxford University Press, Inc., 2006).

D. F. Walls and G. J. Milburn, Quantum optics (Springer Science & Business Media, 2007).

C. Allen, Y. Cobanoglu, S. Chong, and S. Gogineni, “Development of a 1310-nm, coherent laser radar with rf pulse compression,” in IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No. 00CH37120), vol. 4 (IEEE, 2000), pp. 1784–1786.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. The schematic diagram of CAM-HGI. The experimental system mainly consists of four parts: chirped waveform system, spatial-temporal modulation system of light field, background light simulating system, and post-processing system. EOM: electro-optical modulator, SFAMP: single-frequency fiber amplifier, DMD: digital micromirror device, BSC: beam splitter cube, PD: photodiode, AMP: amplifier, LPF: low-pass filter, WBRG: wideband random generator, EDFA: Erbium-doped optical fiber amplifier.
Fig. 2.
Fig. 2. Experimental results of the influence of irradiation SNR on CAM-HGI. (a) -(g) are the reconstructed images in different irradiation SNR. (a) $10\lg (\sigma ) = - 36.7$ dB; (b) $10\lg (\sigma ) = - 35.2$ dB; (c) $10\lg (\sigma ) = - 29.7$ dB; (d) $10\lg (\sigma ) = - 26.7$ dB; (e) $10\lg (\sigma ) = - 21.5$ dB; (f) $10\lg (\sigma ) = - 16.7$ dB; (g) $10\lg (\sigma ) = 0.2$ dB; (h) the curve of $\rm {SNR}_{\textrm{CAM - HGI}}$-$\sigma$; (i) the curve of PSNR versus $\sigma$.
Fig. 3.
Fig. 3. Experimental results of the effect of modulation depth $m$ on CAM-HGI. (a)-(g) are the imaging results when $m$ = 0.2, 0.25, 0.3, 0.4, 0.5, 0.7 and 1, respectively; (h) the curve of $\rm {SNR}_{\textrm{CAM - HGI}}$-$m$; (i) the curve of PSNR-$m$.
Fig. 4.
Fig. 4. Experimental results of the dependence of the modulation duration $T$ on CAM-HGI. (a)-(e) are the reconstruction results when $T$ = 50 $\mu s$, 100 $\mu s$, 166.7 $\mu s$, 250 $\mu s$ and 500 $\mu s$, respectively. (f) the curve of $\rm {SNR}_{\textrm{CAM - HGI}}$-$T$. (g) the curve of PSNR-$T$.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I ( f ) = F F T { [ s L O ( t ) i ( t ) ] H ( t ) } = m 2 2 T sinc [ T ( f f z ) ] exp [ j ϕ ] d x o | E s ( x o , t ) | 2 O ( x o ) + FFT { s L O ( t ) [ ( d x o | E b g ( x o , t ) | 2 O ( x o ) ) H ( t ) ] } = Δ I s ( f ) + I b g ( f ) ,
G ( x r ) = δ I ( f ) δ I r ( x r ) ,
Δ G 2 ( x r ) = δ I 2 ( f ) δ I r 2 ( x r ) δ I ( f ) δ I r ( x r ) 2 δ I 2 ( f ) δ I r 2 ( x r .
SNR CAM - HGI = [ Δ G ] min 2 Δ G 2 .
G ( x r ) = m 2 2 T A c o h , s I r ( x r ) I s ( f ) O ( x r ) ,
Δ G 2 = m 4 4 T 2 A c o h , s A b e a m I r ( x r ) 2 I s ( f ) 2 O 2 ¯ ( 1 + 2 m 4 τ b g T A c o h , b g A c o h , s 1 σ 2 ) ,
SNR CAM - HGI = N N s p Δ O min 2 [ 1 + 2 m 4 τ b g T A c o h , b g A c o h , s 1 σ 2 ] O 2 ¯ { N N s p Δ O min 2 O 2 ¯ m 4 σ 2 T A c o h , s 2 τ b g A c o h , b g , 2 m 4 τ b g T A c o h , b g A c o h , s 1 σ 2 1 N N s p Δ O min 2 O 2 ¯ , 2 m 4 τ b g T A c o h , b g A c o h , s 1 σ 2 1 ,
PSNR = 10 log 10 [ ( 2 n 1 ) 2 MSE ] .
MSE = 1 N pix i [ O CAM - HGI ( x i ) O ( x i ) ] 2 ,