Abstract

Control of the properties of speckle patterns produced by mutual interference of light waves is important for various applications of multimode optical fibers. It has been shown previously that a high signal-to-noise ratio in a multimode fiber can be achieved by preferential excitation of lower order spatial eigenmodes in optical fiber communication. Here we demonstrate that signal spatial coherence can be tailored by changing relative contributions of the lower and higher order multimode fiber eigenmodes for the research of speckle formation and spatial coherence. It is found that higher order spatial eigenmodes are more conducive to the final speckle formation. The minimum speckle contrast occurs in the lower order spatial eigenmodes dominated regime. This work paves the way for control and manipulation of the spatial coherence of light in a multimode fiber varying from partially coherent or totally incoherent light.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, “Speckle Phenomena in Optics: Theory and Applications,” Roberts & Company, Englewood (2007).
  2. J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R35–R66 (2001).
    [Crossref]
  3. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
    [Crossref]
  4. Y. C. Shih, A. Davis, S. W. Hasinoff, F. Durand, and W. T. Freeman, “Laser speckle photography for surface tampering detection,” Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, 33–40 (2012).
  5. B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
    [Crossref]
  6. F. Wang, X. Liu, Y. Yuan, and Y. Cai, “Experimental generation of partially coherent beams with different complex degrees of coherence,” Opt. Lett. 38(11), 1814–1816 (2013).
    [Crossref]
  7. M. Nixon, B. Redding, A. A. Friesem, H. Cao, and N. Davidson, “Efficient method for controlling the spatial coherence of a laser,” Opt. Lett. 38(19), 3858–3861 (2013).
    [Crossref]
  8. H. Farrokhi, T. M. Rohith, J. Boonruangkan, S. Han, H. Kim, S. W. Kim, and Y. J. Kim, “High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers,” Sci. Rep. 7(1), 15318 (2017).
    [Crossref]
  9. D. S. Mehta, D. N. Naik, R. K. Singh, and M. Takeda, “Laser speckle reduction by multimode optical fiber bundle with combined temporal, spatial, and angular diversity,” Appl. Opt. 51(12), 1894–1904 (2012).
    [Crossref]
  10. J. G. Manni and J. W. Goodman, “Versatile method for achieving 1% speckle contrast in large-venue laser projection displays using a stationary multimode optical fiber,” Opt. Express 20(10), 11288–11315 (2012).
    [Crossref]
  11. B. Redding, P. Ahmadi, V. Mokan, M. Seifert, M. A. Choma, and H. Cao, “Low-spatial-coherence high-radiance broadband fiber source for speckle free imaging,” Opt. Lett. 40(20), 4607–4610 (2015).
    [Crossref]
  12. J. Carpenter, B. J. Eggleton, and J. Schröder, “Observation of Eisenbud–Wigner–Smith states as principal modes in multimode fibre,” Nat. Photonics 9(11), 751–757 (2015).
    [Crossref]
  13. M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
    [Crossref]
  14. L. G. Wright, Z. Liu, D. A. Nolan, M. Li, D. N. Christodoulides, and F. W. Wise, “Self-organized instability in graded-index multimode fibres,” Nat. Photonics 10(12), 771–776 (2016).
    [Crossref]
  15. K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibres,” Nat. Photonics 11(4), 237–241 (2017).
    [Crossref]
  16. E. V. Podivilov, D. S. Kharenko, V. A. Gonta, K. Krupa, O. S. Sidelnikov, S. Turitsyn, M. P. Fedoruk, S. A. Babin, and S. Wabnitz, “Hydrodynamic 2D Turbulence and Spatial Beam Condensation in Multimode Optical Fibers,” Phys. Rev. Lett. 122(10), 103902 (2019).
    [Crossref]
  17. A. Efimov, “Spatial coherence at the output of multimode optical fibers,” Opt. Express 22(13), 15577–15588 (2014).
    [Crossref]
  18. A. Efimov, “Coherence and speckle contrast at the output of a stationary multimode optical fiber,” Opt. Lett. 43(19), 4767–4770 (2018).
    [Crossref]
  19. R. Ma, Y. J. Rao, W. L. Zhang, and B. Hu, “Multimode random fiber laser for speckle-free imaging,” IEEE J. Sel. Top. Quantum Electron. 25, 1 (2019).
    [Crossref]
  20. R. Ma, W. L. Zhang, J. Y. Guo, and Y. J. Rao, “Decoherence of fiber supercontinuum light source for speckle-free imaging,” Opt. Express 26(20), 26758–26765 (2018).
    [Crossref]
  21. T. H. Wood, “Actual modal power distributions in multimode optical fibers and their effect on modal noise,” Opt. Lett. 9(3), 102–104 (1984).
    [Crossref]
  22. T. H. Wood and L. A. Ewell, “Increased received power and decreased modal noise by preferential excitation of low-order modes in multimode optical-fiber transmission systems,” J. Lightwave Technol. 4(4), 391–395 (1986).
    [Crossref]
  23. J. Saijonmaa and S. J. Halme, “Reduction of modal noise by using reduced spot excitation,” Appl. Opt. 20(24), 4302–4306 (1981).
    [Crossref]
  24. T. Kaiser, D. Flamm, and M. Duparré, “Complete modal decomposition for optical fibers using CGH-based correlation filters,” Opt. Express 17(11), 9347–9356 (2009).
    [Crossref]
  25. A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Technol. 26(11), 1423–1431 (2008).
    [Crossref]
  26. [Online]. Available: https://photonics.umd.edu/software/wgmodes/
  27. L. Pan, X. Chao, Z.-C. Ren, H.-T. Wang, and J. Ding, “Measuring spatial coherence by using a lateral shearing interferometry,” Appl. Opt. 58(1), 56–61 (2019).
    [Crossref]
  28. C. Koebele, M. Salsi, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Astruc, L. Provost, F. Cerou, and G. Charlet, “Two mode transmission at 2 ( 100Gb/s, over 40km-long prototype few-mode fiber, using LCOS-based programmable mode multiplexer and demultiplexer,” Opt. Express 19(17), 16593–16600 (2011).
    [Crossref]
  29. R. Ma, J. Q. Li, J. Y. Guo, H. Wu, H. H. Zhang, B. Hu, Y. J. Rao, and W. L. Zhang, “High-power low spatial coherence random fiber laser,” Opt. Express 27(6), 8738–8744 (2019).
    [Crossref]

2019 (4)

E. V. Podivilov, D. S. Kharenko, V. A. Gonta, K. Krupa, O. S. Sidelnikov, S. Turitsyn, M. P. Fedoruk, S. A. Babin, and S. Wabnitz, “Hydrodynamic 2D Turbulence and Spatial Beam Condensation in Multimode Optical Fibers,” Phys. Rev. Lett. 122(10), 103902 (2019).
[Crossref]

R. Ma, Y. J. Rao, W. L. Zhang, and B. Hu, “Multimode random fiber laser for speckle-free imaging,” IEEE J. Sel. Top. Quantum Electron. 25, 1 (2019).
[Crossref]

L. Pan, X. Chao, Z.-C. Ren, H.-T. Wang, and J. Ding, “Measuring spatial coherence by using a lateral shearing interferometry,” Appl. Opt. 58(1), 56–61 (2019).
[Crossref]

R. Ma, J. Q. Li, J. Y. Guo, H. Wu, H. H. Zhang, B. Hu, Y. J. Rao, and W. L. Zhang, “High-power low spatial coherence random fiber laser,” Opt. Express 27(6), 8738–8744 (2019).
[Crossref]

2018 (2)

2017 (2)

K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibres,” Nat. Photonics 11(4), 237–241 (2017).
[Crossref]

H. Farrokhi, T. M. Rohith, J. Boonruangkan, S. Han, H. Kim, S. W. Kim, and Y. J. Kim, “High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers,” Sci. Rep. 7(1), 15318 (2017).
[Crossref]

2016 (1)

L. G. Wright, Z. Liu, D. A. Nolan, M. Li, D. N. Christodoulides, and F. W. Wise, “Self-organized instability in graded-index multimode fibres,” Nat. Photonics 10(12), 771–776 (2016).
[Crossref]

2015 (3)

B. Redding, P. Ahmadi, V. Mokan, M. Seifert, M. A. Choma, and H. Cao, “Low-spatial-coherence high-radiance broadband fiber source for speckle free imaging,” Opt. Lett. 40(20), 4607–4610 (2015).
[Crossref]

J. Carpenter, B. J. Eggleton, and J. Schröder, “Observation of Eisenbud–Wigner–Smith states as principal modes in multimode fibre,” Nat. Photonics 9(11), 751–757 (2015).
[Crossref]

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

2014 (1)

2013 (2)

2012 (3)

2011 (1)

2010 (1)

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref]

2009 (1)

2008 (1)

2001 (1)

J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R35–R66 (2001).
[Crossref]

1986 (1)

T. H. Wood and L. A. Ewell, “Increased received power and decreased modal noise by preferential excitation of low-order modes in multimode optical-fiber transmission systems,” J. Lightwave Technol. 4(4), 391–395 (1986).
[Crossref]

1984 (1)

1981 (1)

Ahmadi, P.

Astruc, M.

Babin, S. A.

E. V. Podivilov, D. S. Kharenko, V. A. Gonta, K. Krupa, O. S. Sidelnikov, S. Turitsyn, M. P. Fedoruk, S. A. Babin, and S. Wabnitz, “Hydrodynamic 2D Turbulence and Spatial Beam Condensation in Multimode Optical Fibers,” Phys. Rev. Lett. 122(10), 103902 (2019).
[Crossref]

Barthélémy, A.

K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibres,” Nat. Photonics 11(4), 237–241 (2017).
[Crossref]

Bigo, S.

Boas, D. A.

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref]

Boonruangkan, J.

H. Farrokhi, T. M. Rohith, J. Boonruangkan, S. Han, H. Kim, S. W. Kim, and Y. J. Kim, “High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers,” Sci. Rep. 7(1), 15318 (2017).
[Crossref]

Boutin, A.

Briers, J. D.

J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R35–R66 (2001).
[Crossref]

Brindel, P.

Cai, Y.

Cao, H.

Carpenter, J.

J. Carpenter, B. J. Eggleton, and J. Schröder, “Observation of Eisenbud–Wigner–Smith states as principal modes in multimode fibre,” Nat. Photonics 9(11), 751–757 (2015).
[Crossref]

Cerou, F.

Chao, X.

Charlet, G.

Choma, M. A.

Christodoulides, D. N.

L. G. Wright, Z. Liu, D. A. Nolan, M. Li, D. N. Christodoulides, and F. W. Wise, “Self-organized instability in graded-index multimode fibres,” Nat. Photonics 10(12), 771–776 (2016).
[Crossref]

Cižmár, T.

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

Couderc, V.

K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibres,” Nat. Photonics 11(4), 237–241 (2017).
[Crossref]

Davidson, N.

Davis, A.

Y. C. Shih, A. Davis, S. W. Hasinoff, F. Durand, and W. T. Freeman, “Laser speckle photography for surface tampering detection,” Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, 33–40 (2012).

Ding, J.

Dunn, A. K.

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref]

Duparré, M.

Durand, F.

Y. C. Shih, A. Davis, S. W. Hasinoff, F. Durand, and W. T. Freeman, “Laser speckle photography for surface tampering detection,” Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, 33–40 (2012).

Efimov, A.

Eggleton, B. J.

J. Carpenter, B. J. Eggleton, and J. Schröder, “Observation of Eisenbud–Wigner–Smith states as principal modes in multimode fibre,” Nat. Photonics 9(11), 751–757 (2015).
[Crossref]

Ewell, L. A.

T. H. Wood and L. A. Ewell, “Increased received power and decreased modal noise by preferential excitation of low-order modes in multimode optical-fiber transmission systems,” J. Lightwave Technol. 4(4), 391–395 (1986).
[Crossref]

Fabert, M.

K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibres,” Nat. Photonics 11(4), 237–241 (2017).
[Crossref]

Fallahkhair, A. B.

Farrokhi, H.

H. Farrokhi, T. M. Rohith, J. Boonruangkan, S. Han, H. Kim, S. W. Kim, and Y. J. Kim, “High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers,” Sci. Rep. 7(1), 15318 (2017).
[Crossref]

Fedoruk, M. P.

E. V. Podivilov, D. S. Kharenko, V. A. Gonta, K. Krupa, O. S. Sidelnikov, S. Turitsyn, M. P. Fedoruk, S. A. Babin, and S. Wabnitz, “Hydrodynamic 2D Turbulence and Spatial Beam Condensation in Multimode Optical Fibers,” Phys. Rev. Lett. 122(10), 103902 (2019).
[Crossref]

Flamm, D.

Freeman, W. T.

Y. C. Shih, A. Davis, S. W. Hasinoff, F. Durand, and W. T. Freeman, “Laser speckle photography for surface tampering detection,” Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, 33–40 (2012).

Friesem, A. A.

Gonta, V. A.

E. V. Podivilov, D. S. Kharenko, V. A. Gonta, K. Krupa, O. S. Sidelnikov, S. Turitsyn, M. P. Fedoruk, S. A. Babin, and S. Wabnitz, “Hydrodynamic 2D Turbulence and Spatial Beam Condensation in Multimode Optical Fibers,” Phys. Rev. Lett. 122(10), 103902 (2019).
[Crossref]

Goodman, J. W.

Guo, J. Y.

Halme, S. J.

Han, S.

H. Farrokhi, T. M. Rohith, J. Boonruangkan, S. Han, H. Kim, S. W. Kim, and Y. J. Kim, “High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers,” Sci. Rep. 7(1), 15318 (2017).
[Crossref]

Hasinoff, S. W.

Y. C. Shih, A. Davis, S. W. Hasinoff, F. Durand, and W. T. Freeman, “Laser speckle photography for surface tampering detection,” Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, 33–40 (2012).

Hu, B.

R. Ma, Y. J. Rao, W. L. Zhang, and B. Hu, “Multimode random fiber laser for speckle-free imaging,” IEEE J. Sel. Top. Quantum Electron. 25, 1 (2019).
[Crossref]

R. Ma, J. Q. Li, J. Y. Guo, H. Wu, H. H. Zhang, B. Hu, Y. J. Rao, and W. L. Zhang, “High-power low spatial coherence random fiber laser,” Opt. Express 27(6), 8738–8744 (2019).
[Crossref]

Kaiser, T.

Kharenko, D. S.

E. V. Podivilov, D. S. Kharenko, V. A. Gonta, K. Krupa, O. S. Sidelnikov, S. Turitsyn, M. P. Fedoruk, S. A. Babin, and S. Wabnitz, “Hydrodynamic 2D Turbulence and Spatial Beam Condensation in Multimode Optical Fibers,” Phys. Rev. Lett. 122(10), 103902 (2019).
[Crossref]

Kim, H.

H. Farrokhi, T. M. Rohith, J. Boonruangkan, S. Han, H. Kim, S. W. Kim, and Y. J. Kim, “High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers,” Sci. Rep. 7(1), 15318 (2017).
[Crossref]

Kim, S. W.

H. Farrokhi, T. M. Rohith, J. Boonruangkan, S. Han, H. Kim, S. W. Kim, and Y. J. Kim, “High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers,” Sci. Rep. 7(1), 15318 (2017).
[Crossref]

Kim, Y. J.

H. Farrokhi, T. M. Rohith, J. Boonruangkan, S. Han, H. Kim, S. W. Kim, and Y. J. Kim, “High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers,” Sci. Rep. 7(1), 15318 (2017).
[Crossref]

Koebele, C.

Krupa, K.

E. V. Podivilov, D. S. Kharenko, V. A. Gonta, K. Krupa, O. S. Sidelnikov, S. Turitsyn, M. P. Fedoruk, S. A. Babin, and S. Wabnitz, “Hydrodynamic 2D Turbulence and Spatial Beam Condensation in Multimode Optical Fibers,” Phys. Rev. Lett. 122(10), 103902 (2019).
[Crossref]

K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibres,” Nat. Photonics 11(4), 237–241 (2017).
[Crossref]

Li, J. Q.

Li, K. S.

Li, M.

L. G. Wright, Z. Liu, D. A. Nolan, M. Li, D. N. Christodoulides, and F. W. Wise, “Self-organized instability in graded-index multimode fibres,” Nat. Photonics 10(12), 771–776 (2016).
[Crossref]

Liu, X.

Liu, Z.

L. G. Wright, Z. Liu, D. A. Nolan, M. Li, D. N. Christodoulides, and F. W. Wise, “Self-organized instability in graded-index multimode fibres,” Nat. Photonics 10(12), 771–776 (2016).
[Crossref]

Ma, R.

Manni, J. G.

Mardoyan, H.

Mehta, D. S.

Millot, G.

K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibres,” Nat. Photonics 11(4), 237–241 (2017).
[Crossref]

Mokan, V.

Murphy, T. E.

Naik, D. N.

Nixon, M.

Nolan, D. A.

L. G. Wright, Z. Liu, D. A. Nolan, M. Li, D. N. Christodoulides, and F. W. Wise, “Self-organized instability in graded-index multimode fibres,” Nat. Photonics 10(12), 771–776 (2016).
[Crossref]

Pan, L.

Plöschner, M.

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

Podivilov, E. V.

E. V. Podivilov, D. S. Kharenko, V. A. Gonta, K. Krupa, O. S. Sidelnikov, S. Turitsyn, M. P. Fedoruk, S. A. Babin, and S. Wabnitz, “Hydrodynamic 2D Turbulence and Spatial Beam Condensation in Multimode Optical Fibers,” Phys. Rev. Lett. 122(10), 103902 (2019).
[Crossref]

Provost, L.

Rao, Y. J.

Redding, B.

Ren, Z.-C.

Rohith, T. M.

H. Farrokhi, T. M. Rohith, J. Boonruangkan, S. Han, H. Kim, S. W. Kim, and Y. J. Kim, “High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers,” Sci. Rep. 7(1), 15318 (2017).
[Crossref]

Saijonmaa, J.

Salsi, M.

Schröder, J.

J. Carpenter, B. J. Eggleton, and J. Schröder, “Observation of Eisenbud–Wigner–Smith states as principal modes in multimode fibre,” Nat. Photonics 9(11), 751–757 (2015).
[Crossref]

Seifert, M.

Shalaby, B. M.

K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibres,” Nat. Photonics 11(4), 237–241 (2017).
[Crossref]

Shih, Y. C.

Y. C. Shih, A. Davis, S. W. Hasinoff, F. Durand, and W. T. Freeman, “Laser speckle photography for surface tampering detection,” Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, 33–40 (2012).

Sidelnikov, O. S.

E. V. Podivilov, D. S. Kharenko, V. A. Gonta, K. Krupa, O. S. Sidelnikov, S. Turitsyn, M. P. Fedoruk, S. A. Babin, and S. Wabnitz, “Hydrodynamic 2D Turbulence and Spatial Beam Condensation in Multimode Optical Fibers,” Phys. Rev. Lett. 122(10), 103902 (2019).
[Crossref]

Sillard, P.

Singh, R. K.

Sperti, D.

Takeda, M.

Tonello, A.

K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibres,” Nat. Photonics 11(4), 237–241 (2017).
[Crossref]

Tran, P.

Turitsyn, S.

E. V. Podivilov, D. S. Kharenko, V. A. Gonta, K. Krupa, O. S. Sidelnikov, S. Turitsyn, M. P. Fedoruk, S. A. Babin, and S. Wabnitz, “Hydrodynamic 2D Turbulence and Spatial Beam Condensation in Multimode Optical Fibers,” Phys. Rev. Lett. 122(10), 103902 (2019).
[Crossref]

Tyc, T.

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

Verluise, F.

Wabnitz, S.

E. V. Podivilov, D. S. Kharenko, V. A. Gonta, K. Krupa, O. S. Sidelnikov, S. Turitsyn, M. P. Fedoruk, S. A. Babin, and S. Wabnitz, “Hydrodynamic 2D Turbulence and Spatial Beam Condensation in Multimode Optical Fibers,” Phys. Rev. Lett. 122(10), 103902 (2019).
[Crossref]

K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibres,” Nat. Photonics 11(4), 237–241 (2017).
[Crossref]

Wang, F.

Wang, H.-T.

Wise, F. W.

L. G. Wright, Z. Liu, D. A. Nolan, M. Li, D. N. Christodoulides, and F. W. Wise, “Self-organized instability in graded-index multimode fibres,” Nat. Photonics 10(12), 771–776 (2016).
[Crossref]

Wood, T. H.

T. H. Wood and L. A. Ewell, “Increased received power and decreased modal noise by preferential excitation of low-order modes in multimode optical-fiber transmission systems,” J. Lightwave Technol. 4(4), 391–395 (1986).
[Crossref]

T. H. Wood, “Actual modal power distributions in multimode optical fibers and their effect on modal noise,” Opt. Lett. 9(3), 102–104 (1984).
[Crossref]

Wright, L. G.

L. G. Wright, Z. Liu, D. A. Nolan, M. Li, D. N. Christodoulides, and F. W. Wise, “Self-organized instability in graded-index multimode fibres,” Nat. Photonics 10(12), 771–776 (2016).
[Crossref]

Wu, H.

Yuan, Y.

Zhang, H. H.

Zhang, W. L.

Appl. Opt. (3)

IEEE J. Sel. Top. Quantum Electron. (1)

R. Ma, Y. J. Rao, W. L. Zhang, and B. Hu, “Multimode random fiber laser for speckle-free imaging,” IEEE J. Sel. Top. Quantum Electron. 25, 1 (2019).
[Crossref]

J. Biomed. Opt. (1)

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref]

J. Lightwave Technol. (2)

T. H. Wood and L. A. Ewell, “Increased received power and decreased modal noise by preferential excitation of low-order modes in multimode optical-fiber transmission systems,” J. Lightwave Technol. 4(4), 391–395 (1986).
[Crossref]

A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Technol. 26(11), 1423–1431 (2008).
[Crossref]

Nat. Photonics (5)

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref]

J. Carpenter, B. J. Eggleton, and J. Schröder, “Observation of Eisenbud–Wigner–Smith states as principal modes in multimode fibre,” Nat. Photonics 9(11), 751–757 (2015).
[Crossref]

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

L. G. Wright, Z. Liu, D. A. Nolan, M. Li, D. N. Christodoulides, and F. W. Wise, “Self-organized instability in graded-index multimode fibres,” Nat. Photonics 10(12), 771–776 (2016).
[Crossref]

K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. Couderc, “Spatial beam self-cleaning in multimode fibres,” Nat. Photonics 11(4), 237–241 (2017).
[Crossref]

Opt. Express (6)

Opt. Lett. (5)

Phys. Rev. Lett. (1)

E. V. Podivilov, D. S. Kharenko, V. A. Gonta, K. Krupa, O. S. Sidelnikov, S. Turitsyn, M. P. Fedoruk, S. A. Babin, and S. Wabnitz, “Hydrodynamic 2D Turbulence and Spatial Beam Condensation in Multimode Optical Fibers,” Phys. Rev. Lett. 122(10), 103902 (2019).
[Crossref]

Physiol. Meas. (1)

J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R35–R66 (2001).
[Crossref]

Sci. Rep. (1)

H. Farrokhi, T. M. Rohith, J. Boonruangkan, S. Han, H. Kim, S. W. Kim, and Y. J. Kim, “High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers,” Sci. Rep. 7(1), 15318 (2017).
[Crossref]

Other (3)

[Online]. Available: https://photonics.umd.edu/software/wgmodes/

J. W. Goodman, “Speckle Phenomena in Optics: Theory and Applications,” Roberts & Company, Englewood (2007).

Y. C. Shih, A. Davis, S. W. Hasinoff, F. Durand, and W. T. Freeman, “Laser speckle photography for surface tampering detection,” Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, 33–40 (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. (a) Lateral view of the fiber’s refractive index profile. (b) Calculated effective refractive index of the 500 spatial eigenmodes.
Fig. 2.
Fig. 2. Electric field profiles of representative spatial eigenmodes and corresponding effective refractive index. The color bar represents the amplitude of the electric field profiles with arbitrary unit.
Fig. 3.
Fig. 3. Modal weight with different Gaussian distribution for total mode number of 100 (a) and 500 (b).
Fig. 4.
Fig. 4. Calculated spatial intensity profiles with different modal composition defined by σ/M for total mode number of 100 (the upper row) and 500 (the lower row). The modal weights keep transferring from the lower order eigenmodes to higher order eigenmodes from the left case to the right one for each row. The color bar represents intensity with arbitrary unit.
Fig. 5.
Fig. 5. Calculated speckle patterns formed after light beam passing through the same fixed random phase modulation with different modal composition defined by σ/M for total mode number of 100 (the upper row) and 500 (the lower row). The physical scale is the same with that in Fig. 4. The color bar represents intensity with arbitrary unit.
Fig. 6.
Fig. 6. Calculated average speckle contrast and standard deviation for different modal compositions regimes with different total mode number M.
Fig. 7.
Fig. 7. Calculated speckle contrasts for each normalized spatial eigenmode modulated by five different random phases, where each color of the dots represents an individual random phase. Inset, speckle patterns corresponding to the 1st, 50th, 200th and 500th order spatial eigenmodes. The physical scale is the same with that in Fig. 4. The color bar represents intensity with arbitrary unit.
Fig. 8.
Fig. 8. Calculated average speckle contrasts and standard deviations for two spatial eigenmode compositions (the 1st and 2nd, 1st and 50th, 1st and 500th, 50th and 500th order modes) with different modal weights. 1000 different random phases are considered here.
Fig. 9.
Fig. 9. (a) Experimental diagram of stress induced mode transition. NLL, narrow linewidth laser; SMF, single mode fiber; MMF, multimode fiber. The diffuser in the dashed rectangle is removed when measuring the output mode profile of the MMF. The output mode profiles of the MMF without (b), and with 300 g (c), 600 g (d) and 1000 g (e) weights exerted radially at the input part of the 30 cm length MMF. The color bar represents intensity with arbitrary unit. (f) Measured speckle contrast and its standard deviation for different exerted weights.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

U ( u ) = n = 1 n max c n ψ n ( u ) ,
ψ n , ψ m = R 2 d 2 u ψ n ( u ) ψ m ( u ) = δ n m .
c n = ρ n exp ( i ϕ n ) = ψ n , U = R 2 d 2 u ψ n ( u ) U ( u ) ,
| c n | 2  =  | ρ n | 2 = 1.