Abstract

The atmospheric influence on picosecond laser-induced filamentation in sapphires was investigated under Ar, N2 and O2 conditions provided by a coaxial nozzle. The spatial and temporal evolution of the whole plasma was analyzed on a nanosecond time scale by a time-resolved intensified charge-coupled device (ICCD). The regulation of the filamentation in sapphires by the atmosphere can be attributed to the modulation of the laser energy by surface ablation plasma. The thermal conductivity of the ambient gas is found to be the key factor affecting the surface plasma through a physical model. Ambient gas with higher thermal conductivity can effectively reduce the surface plasma temperature and expansion volume due to higher heat exchange efficiency. It is helpful for reducing the scattering and absorption of the laser energy. Therefore, the longest filamentary track and plasma lifetime were obtained in O2, which has higher thermal conductivity than Ar and N2. It is essential to understand the influence mechanism of ambient gas on filamentation, especially by providing a reliable method to regulate the filamentation induced in solid media.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. G. Ji, J. S. Liu, Z. X. Wang, J. Ju, X. M. Lu, Y. H. Jiang, Y. X. Leng, X. Y. Liang, W. Liu, S. L. Chin, R. X. Li, and Z. Z. Xu, “Femtosecond laser filamentation with a 4 J/60 fs Ti:Sapphire laser beam: Multiple filaments and intensity clamping,” Laser Phys. 20(4), 886–890 (2010).
    [Crossref]
  2. C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5(1), 8914 (2015).
    [Crossref]
  3. F. Wang, C. Pan, J. Sun, Q. Wang, Y. Lu, and L. Jiang, “Direct observation of structure-assisted filament splitting during ultrafast multiple-pulse laser ablation,” Opt. Express 27(7), 10050 (2019).
    [Crossref]
  4. L. A. Finney, P. J. Skrodzki, M. Burger, X. Xiao, J. Nees, and I. Jovanovic, “Optical emission from ultrafast laser filament-produced air plasmas in the multiple filament regime,” Opt. Express 26(22), 29110 (2018).
    [Crossref]
  5. S. Y. Li, F. M. Guo, Y. Song, A. M. Chen, Y. J. Yang, and M. X. Jin, “Influence of group-velocity-dispersion effects on the propagation of femtosecond laser pulses in air at different pressures,” Phys. Rev. A 89(2), 023809 (2014).
    [Crossref]
  6. A. Houard, V. Jukna, G. Point, Y.-B. André, S. Klingebiel, M. Schultze, K. Michel, T. Metzger, and A. Mysyrowicz, “Study of filamentation with a high power high repetition rate ps laser at 1.03 µm,” Opt. Express 24(7), 7437–7448 (2016).
    [Crossref]
  7. R. Nuter, S. Skupin, and L. Bergé, “Chirp-induced dynamics of femtosecond filaments in air,” Opt. Lett. 30(8), 917–919 (2005).
    [Crossref]
  8. Z. Feng, W. Li, C. Yu, X. Liu, Y. Liu, J. Liu, and L. Fu, “Influence of the external focusing and the pulse parameters on the propagation of femtosecond annular Gaussian filaments in air,” Opt. Express 24(6), 6381 (2016).
    [Crossref]
  9. X. Qi, C. Ma, and W. Lin, “Pressure effects on the femtosecond laser filamentation,” Opt. Commun. 358, 126–131 (2016).
    [Crossref]
  10. Y. J. Yoo, D. Jang, and K. Y. Kim, “Highly enhanced terahertz conversion by two-color laser filamentation at low gas pressures,” Opt. Express 27(16), 22663 (2019).
    [Crossref]
  11. D. A. Romanov, X. Gao, A. L. Gaeta, and R. J. Levis, “Intrapulse impact processes in dense-gas femtosecond laser filamentation,” Phys. Rev. A 97(6), 063411 (2018).
    [Crossref]
  12. X. Gao, G. Patwardhan, S. Schrauth, D. Zhu, T. Popmintchev, H. C. Kapteyn, M. M. Murnane, D. A. Romanov, R. J. Levis, and A. L. Gaeta, “Picosecond ionization dynamics in femtosecond filaments at high pressures,” Phys. Rev. A 95(1), 013412 (2017).
    [Crossref]
  13. L. Amina, T. Ji, Y. Yan, L. Wang, and Li, “Characteristics of 1064 nm picosecond laser induced filamentary tracks and damages in sapphire,” Opt. Laser Technol. 116, 232–238 (2019).
    [Crossref]
  14. L. Amina, T. Ji, R. Yan, and Ma, “Ionization behavior and dynamics of picosecond laser filamentation in sapphire,” Opto-Electron. Adv. 2(6), 19000301–19000307 (2019).
    [Crossref]
  15. B. Xia, L. Jiang, X. Li, X. Yan, and Y. Lu, “Mechanism and elimination of bending effect in femtosecond laser deep-hole drilling,” Opt. Express 23(21), 27853–27864 (2015).
    [Crossref]
  16. Y. Ding, L. J. Yang, and M. H. Hong, “Enhancement of pulsed laser ablation assisted with continuous wave laser irradiation,” Sci. China: Phys., Mech. Astron. 62(3), 34211 (2019).
    [Crossref]
  17. Z. Zhai, W. Wang, X. Mei, K. Wang, and H. Yang, “Influence of plasma shock wave on the morphology of laser drilling in different environments,” Opt. Commun. 390, 49–56 (2017).
    [Crossref]
  18. M. Momcilovic, S. Zivkovic, M. Kuzmanovic, J. Ciganovic, D. Rankovic, M. Trtica, and J. Savovic, “The Effect of Background Gas on the Excitation Temperature and Electron Number Density of Basalt Plasma Induced by 10.6 Micron Laser Radiation,” Plasma Chem. Plasma Process. 39(4), 985–1000 (2019).
    [Crossref]
  19. S. S. Harilal, J. Yeak, B. E. Brumfield, and M. C. Phillips, “Consequences of femtosecond laser filament generation conditions in standoff laser induced breakdown spectroscopy,” Opt. Express 24(16), 17941–17949 (2016).
    [Crossref]
  20. M. A. Tarasova, K. S. Khorkov, D. A. Kochuev, A. V. Ivaschenko, and V. G. Prokoshev, “Formation of channels with changed refractive index at the filamentation of femtosecond laser radiation in quartz glass,” J. Phys.: Conf. Ser. 1164(1), 012023 (2019).
    [Crossref]
  21. P. J. Skrodzki, M. Burger, and I. Jovanovic, “Transition of Femtosecond-Filament-Solid Interactions from Single to Multiple Filament Regime,” Sci. Rep. 7(1), 12740 (2017).
    [Crossref]
  22. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7(5), 196 (1982).
    [Crossref]
  23. A. V. Shutov, N. N. Ustinovskii, I. V. Smetanin, D. V. Mokrousova, S. A. Goncharov, S. V. Ryabchuk, E. S. Sunchugasheva, L. V. Seleznev, A. A. Ionin, and V. D. Zvorykin, “Major pathway for multiphoton air ionization at 248 nm laser wavelength,” Appl. Phys. Lett. 111(22), 224104 (2017).
    [Crossref]
  24. Y. Wu, J. C. Sawyer, L. Su, and Z. Zhang, “Quantitative measurement of electron number in nanosecond and picosecond laser-induced air breakdown,” J. Appl. Phys. 119(17), 173303 (2016).
    [Crossref]
  25. N. Y. Babaeva, J. K. Lee, J. W. Shon, and E. A. Hudson, “Oxygen ion energy distribution: Role of ionization, resonant, and nonresonant charge-exchange collisions,” J. Vac. Sci. Technol., A 23(4), 699–704 (2005).
    [Crossref]
  26. R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
    [Crossref]
  27. D. A. Cooke, D. J. Murtagh, and G. Laricchia, “Ionization cross-sections for positron collisions with N2,” Eur. Phys. J. D 68(3), 66 (2014).
    [Crossref]
  28. N. M. Shaikh, M. S. Kalhoro, A. Hussain, and M. A. Baig, “Spectroscopic study of a lead plasma produced by the 1064 nm, 532nm and 355 nm of a Nd:YAG laser,” Spectrochim. Acta, Part B 88, 198–202 (2013).
    [Crossref]
  29. Z. Ghorbani, P. Parvin, A. Reyhani, S. Z. Mortazavi, A. Moosakhani, M. Maleki, and S. Kiani, “Methane decomposition using metal-assisted nanosecond laser-induced plasma at atmospheric pressure,” J. Phys. Chem. C 118(51), 29822–29835 (2014).
    [Crossref]
  30. S. Wieneke, S. Brückner, and W. Viöl, “Simulating the heating of z-pinch plasmas with short laser pulses,” J. Plasma Phys. 74(3), 361–369 (2008).
    [Crossref]
  31. Z. H. Jiang, Y. He, X. W. Hu, J. H. Lv, and Y. M. Hu, “Structures of strong shock waves in dense plasmas,” Chin. Phys. Lett. 24(8), 2316–2318 (2007).
    [Crossref]
  32. W. Zhang, Z. Wei, Y. B. Wang, and G. Y. Jin, “Numerical simulation of laser-supported combustion wave induced by millisecond-pulsed laser on aluminum alloy,” Laser Phys. 26(1), 015001 (2016).
    [Crossref]
  33. E. Asamoah and Y. Hongbing, “Influence of laser energy on the electron temperature of a laser-induced Mg plasma,” Appl. Phys. B: Lasers Opt. 123(1), 22 (2017).
    [Crossref]
  34. Z. Gao, P. Jiang, X. Shao, L. Cao, G. Mi, and Y. Wang, “Numerical analysis of hybrid plasma in fiber laser-arc welding,” J. Phys. D: Appl. Phys. 52(2), 025206 (2019).
    [Crossref]
  35. S. Z. Shoursheini, P. Parvin, B. Sajad, and M. A. Bassam, “Dual-laser-beam-induced breakdown spectroscopy of copper using simultaneous continuous wave co2 and q-switched nd:yag lasers,” Appl. Spectrosc. 63(4), 423–429 (2009).
    [Crossref]
  36. K. Swimm, S. Vidi, G. Reichenauer, and H. P. Ebert, “Coupling of gaseous and solid thermal conduction in porous solids,” J. Non-Cryst. Solids 456, 114–124 (2017).
    [Crossref]
  37. A. Badarlis, S. Stingelin, A. Pfau, and A. Kalfas, “Measurement of Gas Thermal Properties Using the Parametric Reduced-Order Modeling Approach,” IEEE Sens. J. 16(12), 4704–4714 (2016).
    [Crossref]
  38. T. Yan, L. Ji, R. Ma, Z. Amina, and Lin, “Modification characteristics of filamentary traces induced by loosely focused picosecond laser in sapphire,” Ceram. Int. 46(10), 16074–16079 (2020).
    [Crossref]

2020 (1)

T. Yan, L. Ji, R. Ma, Z. Amina, and Lin, “Modification characteristics of filamentary traces induced by loosely focused picosecond laser in sapphire,” Ceram. Int. 46(10), 16074–16079 (2020).
[Crossref]

2019 (8)

F. Wang, C. Pan, J. Sun, Q. Wang, Y. Lu, and L. Jiang, “Direct observation of structure-assisted filament splitting during ultrafast multiple-pulse laser ablation,” Opt. Express 27(7), 10050 (2019).
[Crossref]

Y. J. Yoo, D. Jang, and K. Y. Kim, “Highly enhanced terahertz conversion by two-color laser filamentation at low gas pressures,” Opt. Express 27(16), 22663 (2019).
[Crossref]

L. Amina, T. Ji, Y. Yan, L. Wang, and Li, “Characteristics of 1064 nm picosecond laser induced filamentary tracks and damages in sapphire,” Opt. Laser Technol. 116, 232–238 (2019).
[Crossref]

L. Amina, T. Ji, R. Yan, and Ma, “Ionization behavior and dynamics of picosecond laser filamentation in sapphire,” Opto-Electron. Adv. 2(6), 19000301–19000307 (2019).
[Crossref]

Y. Ding, L. J. Yang, and M. H. Hong, “Enhancement of pulsed laser ablation assisted with continuous wave laser irradiation,” Sci. China: Phys., Mech. Astron. 62(3), 34211 (2019).
[Crossref]

M. Momcilovic, S. Zivkovic, M. Kuzmanovic, J. Ciganovic, D. Rankovic, M. Trtica, and J. Savovic, “The Effect of Background Gas on the Excitation Temperature and Electron Number Density of Basalt Plasma Induced by 10.6 Micron Laser Radiation,” Plasma Chem. Plasma Process. 39(4), 985–1000 (2019).
[Crossref]

M. A. Tarasova, K. S. Khorkov, D. A. Kochuev, A. V. Ivaschenko, and V. G. Prokoshev, “Formation of channels with changed refractive index at the filamentation of femtosecond laser radiation in quartz glass,” J. Phys.: Conf. Ser. 1164(1), 012023 (2019).
[Crossref]

Z. Gao, P. Jiang, X. Shao, L. Cao, G. Mi, and Y. Wang, “Numerical analysis of hybrid plasma in fiber laser-arc welding,” J. Phys. D: Appl. Phys. 52(2), 025206 (2019).
[Crossref]

2018 (2)

D. A. Romanov, X. Gao, A. L. Gaeta, and R. J. Levis, “Intrapulse impact processes in dense-gas femtosecond laser filamentation,” Phys. Rev. A 97(6), 063411 (2018).
[Crossref]

L. A. Finney, P. J. Skrodzki, M. Burger, X. Xiao, J. Nees, and I. Jovanovic, “Optical emission from ultrafast laser filament-produced air plasmas in the multiple filament regime,” Opt. Express 26(22), 29110 (2018).
[Crossref]

2017 (6)

X. Gao, G. Patwardhan, S. Schrauth, D. Zhu, T. Popmintchev, H. C. Kapteyn, M. M. Murnane, D. A. Romanov, R. J. Levis, and A. L. Gaeta, “Picosecond ionization dynamics in femtosecond filaments at high pressures,” Phys. Rev. A 95(1), 013412 (2017).
[Crossref]

Z. Zhai, W. Wang, X. Mei, K. Wang, and H. Yang, “Influence of plasma shock wave on the morphology of laser drilling in different environments,” Opt. Commun. 390, 49–56 (2017).
[Crossref]

K. Swimm, S. Vidi, G. Reichenauer, and H. P. Ebert, “Coupling of gaseous and solid thermal conduction in porous solids,” J. Non-Cryst. Solids 456, 114–124 (2017).
[Crossref]

E. Asamoah and Y. Hongbing, “Influence of laser energy on the electron temperature of a laser-induced Mg plasma,” Appl. Phys. B: Lasers Opt. 123(1), 22 (2017).
[Crossref]

P. J. Skrodzki, M. Burger, and I. Jovanovic, “Transition of Femtosecond-Filament-Solid Interactions from Single to Multiple Filament Regime,” Sci. Rep. 7(1), 12740 (2017).
[Crossref]

A. V. Shutov, N. N. Ustinovskii, I. V. Smetanin, D. V. Mokrousova, S. A. Goncharov, S. V. Ryabchuk, E. S. Sunchugasheva, L. V. Seleznev, A. A. Ionin, and V. D. Zvorykin, “Major pathway for multiphoton air ionization at 248 nm laser wavelength,” Appl. Phys. Lett. 111(22), 224104 (2017).
[Crossref]

2016 (7)

Y. Wu, J. C. Sawyer, L. Su, and Z. Zhang, “Quantitative measurement of electron number in nanosecond and picosecond laser-induced air breakdown,” J. Appl. Phys. 119(17), 173303 (2016).
[Crossref]

W. Zhang, Z. Wei, Y. B. Wang, and G. Y. Jin, “Numerical simulation of laser-supported combustion wave induced by millisecond-pulsed laser on aluminum alloy,” Laser Phys. 26(1), 015001 (2016).
[Crossref]

A. Badarlis, S. Stingelin, A. Pfau, and A. Kalfas, “Measurement of Gas Thermal Properties Using the Parametric Reduced-Order Modeling Approach,” IEEE Sens. J. 16(12), 4704–4714 (2016).
[Crossref]

S. S. Harilal, J. Yeak, B. E. Brumfield, and M. C. Phillips, “Consequences of femtosecond laser filament generation conditions in standoff laser induced breakdown spectroscopy,” Opt. Express 24(16), 17941–17949 (2016).
[Crossref]

A. Houard, V. Jukna, G. Point, Y.-B. André, S. Klingebiel, M. Schultze, K. Michel, T. Metzger, and A. Mysyrowicz, “Study of filamentation with a high power high repetition rate ps laser at 1.03 µm,” Opt. Express 24(7), 7437–7448 (2016).
[Crossref]

Z. Feng, W. Li, C. Yu, X. Liu, Y. Liu, J. Liu, and L. Fu, “Influence of the external focusing and the pulse parameters on the propagation of femtosecond annular Gaussian filaments in air,” Opt. Express 24(6), 6381 (2016).
[Crossref]

X. Qi, C. Ma, and W. Lin, “Pressure effects on the femtosecond laser filamentation,” Opt. Commun. 358, 126–131 (2016).
[Crossref]

2015 (2)

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5(1), 8914 (2015).
[Crossref]

B. Xia, L. Jiang, X. Li, X. Yan, and Y. Lu, “Mechanism and elimination of bending effect in femtosecond laser deep-hole drilling,” Opt. Express 23(21), 27853–27864 (2015).
[Crossref]

2014 (3)

S. Y. Li, F. M. Guo, Y. Song, A. M. Chen, Y. J. Yang, and M. X. Jin, “Influence of group-velocity-dispersion effects on the propagation of femtosecond laser pulses in air at different pressures,” Phys. Rev. A 89(2), 023809 (2014).
[Crossref]

Z. Ghorbani, P. Parvin, A. Reyhani, S. Z. Mortazavi, A. Moosakhani, M. Maleki, and S. Kiani, “Methane decomposition using metal-assisted nanosecond laser-induced plasma at atmospheric pressure,” J. Phys. Chem. C 118(51), 29822–29835 (2014).
[Crossref]

D. A. Cooke, D. J. Murtagh, and G. Laricchia, “Ionization cross-sections for positron collisions with N2,” Eur. Phys. J. D 68(3), 66 (2014).
[Crossref]

2013 (1)

N. M. Shaikh, M. S. Kalhoro, A. Hussain, and M. A. Baig, “Spectroscopic study of a lead plasma produced by the 1064 nm, 532nm and 355 nm of a Nd:YAG laser,” Spectrochim. Acta, Part B 88, 198–202 (2013).
[Crossref]

2010 (1)

Z. G. Ji, J. S. Liu, Z. X. Wang, J. Ju, X. M. Lu, Y. H. Jiang, Y. X. Leng, X. Y. Liang, W. Liu, S. L. Chin, R. X. Li, and Z. Z. Xu, “Femtosecond laser filamentation with a 4 J/60 fs Ti:Sapphire laser beam: Multiple filaments and intensity clamping,” Laser Phys. 20(4), 886–890 (2010).
[Crossref]

2009 (1)

2008 (1)

S. Wieneke, S. Brückner, and W. Viöl, “Simulating the heating of z-pinch plasmas with short laser pulses,” J. Plasma Phys. 74(3), 361–369 (2008).
[Crossref]

2007 (1)

Z. H. Jiang, Y. He, X. W. Hu, J. H. Lv, and Y. M. Hu, “Structures of strong shock waves in dense plasmas,” Chin. Phys. Lett. 24(8), 2316–2318 (2007).
[Crossref]

2005 (2)

N. Y. Babaeva, J. K. Lee, J. W. Shon, and E. A. Hudson, “Oxygen ion energy distribution: Role of ionization, resonant, and nonresonant charge-exchange collisions,” J. Vac. Sci. Technol., A 23(4), 699–704 (2005).
[Crossref]

R. Nuter, S. Skupin, and L. Bergé, “Chirp-induced dynamics of femtosecond filaments in air,” Opt. Lett. 30(8), 917–919 (2005).
[Crossref]

1996 (1)

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
[Crossref]

1982 (1)

Amina, L.

L. Amina, T. Ji, Y. Yan, L. Wang, and Li, “Characteristics of 1064 nm picosecond laser induced filamentary tracks and damages in sapphire,” Opt. Laser Technol. 116, 232–238 (2019).
[Crossref]

L. Amina, T. Ji, R. Yan, and Ma, “Ionization behavior and dynamics of picosecond laser filamentation in sapphire,” Opto-Electron. Adv. 2(6), 19000301–19000307 (2019).
[Crossref]

Amina, Z.

T. Yan, L. Ji, R. Ma, Z. Amina, and Lin, “Modification characteristics of filamentary traces induced by loosely focused picosecond laser in sapphire,” Ceram. Int. 46(10), 16074–16079 (2020).
[Crossref]

André, Y.-B.

Asamoah, E.

E. Asamoah and Y. Hongbing, “Influence of laser energy on the electron temperature of a laser-induced Mg plasma,” Appl. Phys. B: Lasers Opt. 123(1), 22 (2017).
[Crossref]

Babaeva, N. Y.

N. Y. Babaeva, J. K. Lee, J. W. Shon, and E. A. Hudson, “Oxygen ion energy distribution: Role of ionization, resonant, and nonresonant charge-exchange collisions,” J. Vac. Sci. Technol., A 23(4), 699–704 (2005).
[Crossref]

Badarlis, A.

A. Badarlis, S. Stingelin, A. Pfau, and A. Kalfas, “Measurement of Gas Thermal Properties Using the Parametric Reduced-Order Modeling Approach,” IEEE Sens. J. 16(12), 4704–4714 (2016).
[Crossref]

Baig, M. A.

N. M. Shaikh, M. S. Kalhoro, A. Hussain, and M. A. Baig, “Spectroscopic study of a lead plasma produced by the 1064 nm, 532nm and 355 nm of a Nd:YAG laser,” Spectrochim. Acta, Part B 88, 198–202 (2013).
[Crossref]

Bassam, M. A.

Bergé, L.

Brückner, S.

S. Wieneke, S. Brückner, and W. Viöl, “Simulating the heating of z-pinch plasmas with short laser pulses,” J. Plasma Phys. 74(3), 361–369 (2008).
[Crossref]

Brumfield, B. E.

Burger, M.

L. A. Finney, P. J. Skrodzki, M. Burger, X. Xiao, J. Nees, and I. Jovanovic, “Optical emission from ultrafast laser filament-produced air plasmas in the multiple filament regime,” Opt. Express 26(22), 29110 (2018).
[Crossref]

P. J. Skrodzki, M. Burger, and I. Jovanovic, “Transition of Femtosecond-Filament-Solid Interactions from Single to Multiple Filament Regime,” Sci. Rep. 7(1), 12740 (2017).
[Crossref]

Cao, L.

Z. Gao, P. Jiang, X. Shao, L. Cao, G. Mi, and Y. Wang, “Numerical analysis of hybrid plasma in fiber laser-arc welding,” J. Phys. D: Appl. Phys. 52(2), 025206 (2019).
[Crossref]

Chen, A. M.

S. Y. Li, F. M. Guo, Y. Song, A. M. Chen, Y. J. Yang, and M. X. Jin, “Influence of group-velocity-dispersion effects on the propagation of femtosecond laser pulses in air at different pressures,” Phys. Rev. A 89(2), 023809 (2014).
[Crossref]

Chin, S. L.

Z. G. Ji, J. S. Liu, Z. X. Wang, J. Ju, X. M. Lu, Y. H. Jiang, Y. X. Leng, X. Y. Liang, W. Liu, S. L. Chin, R. X. Li, and Z. Z. Xu, “Femtosecond laser filamentation with a 4 J/60 fs Ti:Sapphire laser beam: Multiple filaments and intensity clamping,” Laser Phys. 20(4), 886–890 (2010).
[Crossref]

Ciganovic, J.

M. Momcilovic, S. Zivkovic, M. Kuzmanovic, J. Ciganovic, D. Rankovic, M. Trtica, and J. Savovic, “The Effect of Background Gas on the Excitation Temperature and Electron Number Density of Basalt Plasma Induced by 10.6 Micron Laser Radiation,” Plasma Chem. Plasma Process. 39(4), 985–1000 (2019).
[Crossref]

Cooke, D. A.

D. A. Cooke, D. J. Murtagh, and G. Laricchia, “Ionization cross-sections for positron collisions with N2,” Eur. Phys. J. D 68(3), 66 (2014).
[Crossref]

Couairon, A.

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5(1), 8914 (2015).
[Crossref]

Courvoisier, F.

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5(1), 8914 (2015).
[Crossref]

DeSalvo, R.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
[Crossref]

Ding, Y.

Y. Ding, L. J. Yang, and M. H. Hong, “Enhancement of pulsed laser ablation assisted with continuous wave laser irradiation,” Sci. China: Phys., Mech. Astron. 62(3), 34211 (2019).
[Crossref]

Dudley, J. M.

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5(1), 8914 (2015).
[Crossref]

Ebert, H. P.

K. Swimm, S. Vidi, G. Reichenauer, and H. P. Ebert, “Coupling of gaseous and solid thermal conduction in porous solids,” J. Non-Cryst. Solids 456, 114–124 (2017).
[Crossref]

Feng, Z.

Finney, L. A.

Fu, L.

Gaeta, A. L.

D. A. Romanov, X. Gao, A. L. Gaeta, and R. J. Levis, “Intrapulse impact processes in dense-gas femtosecond laser filamentation,” Phys. Rev. A 97(6), 063411 (2018).
[Crossref]

X. Gao, G. Patwardhan, S. Schrauth, D. Zhu, T. Popmintchev, H. C. Kapteyn, M. M. Murnane, D. A. Romanov, R. J. Levis, and A. L. Gaeta, “Picosecond ionization dynamics in femtosecond filaments at high pressures,” Phys. Rev. A 95(1), 013412 (2017).
[Crossref]

Gao, X.

D. A. Romanov, X. Gao, A. L. Gaeta, and R. J. Levis, “Intrapulse impact processes in dense-gas femtosecond laser filamentation,” Phys. Rev. A 97(6), 063411 (2018).
[Crossref]

X. Gao, G. Patwardhan, S. Schrauth, D. Zhu, T. Popmintchev, H. C. Kapteyn, M. M. Murnane, D. A. Romanov, R. J. Levis, and A. L. Gaeta, “Picosecond ionization dynamics in femtosecond filaments at high pressures,” Phys. Rev. A 95(1), 013412 (2017).
[Crossref]

Gao, Z.

Z. Gao, P. Jiang, X. Shao, L. Cao, G. Mi, and Y. Wang, “Numerical analysis of hybrid plasma in fiber laser-arc welding,” J. Phys. D: Appl. Phys. 52(2), 025206 (2019).
[Crossref]

Ghorbani, Z.

Z. Ghorbani, P. Parvin, A. Reyhani, S. Z. Mortazavi, A. Moosakhani, M. Maleki, and S. Kiani, “Methane decomposition using metal-assisted nanosecond laser-induced plasma at atmospheric pressure,” J. Phys. Chem. C 118(51), 29822–29835 (2014).
[Crossref]

Giust, R.

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5(1), 8914 (2015).
[Crossref]

Goncharov, S. A.

A. V. Shutov, N. N. Ustinovskii, I. V. Smetanin, D. V. Mokrousova, S. A. Goncharov, S. V. Ryabchuk, E. S. Sunchugasheva, L. V. Seleznev, A. A. Ionin, and V. D. Zvorykin, “Major pathway for multiphoton air ionization at 248 nm laser wavelength,” Appl. Phys. Lett. 111(22), 224104 (2017).
[Crossref]

Guo, F. M.

S. Y. Li, F. M. Guo, Y. Song, A. M. Chen, Y. J. Yang, and M. X. Jin, “Influence of group-velocity-dispersion effects on the propagation of femtosecond laser pulses in air at different pressures,” Phys. Rev. A 89(2), 023809 (2014).
[Crossref]

Hagan, D. J.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
[Crossref]

Harilal, S. S.

He, Y.

Z. H. Jiang, Y. He, X. W. Hu, J. H. Lv, and Y. M. Hu, “Structures of strong shock waves in dense plasmas,” Chin. Phys. Lett. 24(8), 2316–2318 (2007).
[Crossref]

Hong, M. H.

Y. Ding, L. J. Yang, and M. H. Hong, “Enhancement of pulsed laser ablation assisted with continuous wave laser irradiation,” Sci. China: Phys., Mech. Astron. 62(3), 34211 (2019).
[Crossref]

Hongbing, Y.

E. Asamoah and Y. Hongbing, “Influence of laser energy on the electron temperature of a laser-induced Mg plasma,” Appl. Phys. B: Lasers Opt. 123(1), 22 (2017).
[Crossref]

Houard, A.

Hu, X. W.

Z. H. Jiang, Y. He, X. W. Hu, J. H. Lv, and Y. M. Hu, “Structures of strong shock waves in dense plasmas,” Chin. Phys. Lett. 24(8), 2316–2318 (2007).
[Crossref]

Hu, Y. M.

Z. H. Jiang, Y. He, X. W. Hu, J. H. Lv, and Y. M. Hu, “Structures of strong shock waves in dense plasmas,” Chin. Phys. Lett. 24(8), 2316–2318 (2007).
[Crossref]

Hudson, E. A.

N. Y. Babaeva, J. K. Lee, J. W. Shon, and E. A. Hudson, “Oxygen ion energy distribution: Role of ionization, resonant, and nonresonant charge-exchange collisions,” J. Vac. Sci. Technol., A 23(4), 699–704 (2005).
[Crossref]

Hussain, A.

N. M. Shaikh, M. S. Kalhoro, A. Hussain, and M. A. Baig, “Spectroscopic study of a lead plasma produced by the 1064 nm, 532nm and 355 nm of a Nd:YAG laser,” Spectrochim. Acta, Part B 88, 198–202 (2013).
[Crossref]

Ionin, A. A.

A. V. Shutov, N. N. Ustinovskii, I. V. Smetanin, D. V. Mokrousova, S. A. Goncharov, S. V. Ryabchuk, E. S. Sunchugasheva, L. V. Seleznev, A. A. Ionin, and V. D. Zvorykin, “Major pathway for multiphoton air ionization at 248 nm laser wavelength,” Appl. Phys. Lett. 111(22), 224104 (2017).
[Crossref]

Itina, T.

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5(1), 8914 (2015).
[Crossref]

Ivaschenko, A. V.

M. A. Tarasova, K. S. Khorkov, D. A. Kochuev, A. V. Ivaschenko, and V. G. Prokoshev, “Formation of channels with changed refractive index at the filamentation of femtosecond laser radiation in quartz glass,” J. Phys.: Conf. Ser. 1164(1), 012023 (2019).
[Crossref]

Jang, D.

Ji, L.

T. Yan, L. Ji, R. Ma, Z. Amina, and Lin, “Modification characteristics of filamentary traces induced by loosely focused picosecond laser in sapphire,” Ceram. Int. 46(10), 16074–16079 (2020).
[Crossref]

Ji, T.

L. Amina, T. Ji, R. Yan, and Ma, “Ionization behavior and dynamics of picosecond laser filamentation in sapphire,” Opto-Electron. Adv. 2(6), 19000301–19000307 (2019).
[Crossref]

L. Amina, T. Ji, Y. Yan, L. Wang, and Li, “Characteristics of 1064 nm picosecond laser induced filamentary tracks and damages in sapphire,” Opt. Laser Technol. 116, 232–238 (2019).
[Crossref]

Ji, Z. G.

Z. G. Ji, J. S. Liu, Z. X. Wang, J. Ju, X. M. Lu, Y. H. Jiang, Y. X. Leng, X. Y. Liang, W. Liu, S. L. Chin, R. X. Li, and Z. Z. Xu, “Femtosecond laser filamentation with a 4 J/60 fs Ti:Sapphire laser beam: Multiple filaments and intensity clamping,” Laser Phys. 20(4), 886–890 (2010).
[Crossref]

Jiang, L.

Jiang, P.

Z. Gao, P. Jiang, X. Shao, L. Cao, G. Mi, and Y. Wang, “Numerical analysis of hybrid plasma in fiber laser-arc welding,” J. Phys. D: Appl. Phys. 52(2), 025206 (2019).
[Crossref]

Jiang, Y. H.

Z. G. Ji, J. S. Liu, Z. X. Wang, J. Ju, X. M. Lu, Y. H. Jiang, Y. X. Leng, X. Y. Liang, W. Liu, S. L. Chin, R. X. Li, and Z. Z. Xu, “Femtosecond laser filamentation with a 4 J/60 fs Ti:Sapphire laser beam: Multiple filaments and intensity clamping,” Laser Phys. 20(4), 886–890 (2010).
[Crossref]

Jiang, Z. H.

Z. H. Jiang, Y. He, X. W. Hu, J. H. Lv, and Y. M. Hu, “Structures of strong shock waves in dense plasmas,” Chin. Phys. Lett. 24(8), 2316–2318 (2007).
[Crossref]

Jin, G. Y.

W. Zhang, Z. Wei, Y. B. Wang, and G. Y. Jin, “Numerical simulation of laser-supported combustion wave induced by millisecond-pulsed laser on aluminum alloy,” Laser Phys. 26(1), 015001 (2016).
[Crossref]

Jin, M. X.

S. Y. Li, F. M. Guo, Y. Song, A. M. Chen, Y. J. Yang, and M. X. Jin, “Influence of group-velocity-dispersion effects on the propagation of femtosecond laser pulses in air at different pressures,” Phys. Rev. A 89(2), 023809 (2014).
[Crossref]

Jovanovic, I.

L. A. Finney, P. J. Skrodzki, M. Burger, X. Xiao, J. Nees, and I. Jovanovic, “Optical emission from ultrafast laser filament-produced air plasmas in the multiple filament regime,” Opt. Express 26(22), 29110 (2018).
[Crossref]

P. J. Skrodzki, M. Burger, and I. Jovanovic, “Transition of Femtosecond-Filament-Solid Interactions from Single to Multiple Filament Regime,” Sci. Rep. 7(1), 12740 (2017).
[Crossref]

Ju, J.

Z. G. Ji, J. S. Liu, Z. X. Wang, J. Ju, X. M. Lu, Y. H. Jiang, Y. X. Leng, X. Y. Liang, W. Liu, S. L. Chin, R. X. Li, and Z. Z. Xu, “Femtosecond laser filamentation with a 4 J/60 fs Ti:Sapphire laser beam: Multiple filaments and intensity clamping,” Laser Phys. 20(4), 886–890 (2010).
[Crossref]

Jukna, V.

A. Houard, V. Jukna, G. Point, Y.-B. André, S. Klingebiel, M. Schultze, K. Michel, T. Metzger, and A. Mysyrowicz, “Study of filamentation with a high power high repetition rate ps laser at 1.03 µm,” Opt. Express 24(7), 7437–7448 (2016).
[Crossref]

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5(1), 8914 (2015).
[Crossref]

Kalfas, A.

A. Badarlis, S. Stingelin, A. Pfau, and A. Kalfas, “Measurement of Gas Thermal Properties Using the Parametric Reduced-Order Modeling Approach,” IEEE Sens. J. 16(12), 4704–4714 (2016).
[Crossref]

Kalhoro, M. S.

N. M. Shaikh, M. S. Kalhoro, A. Hussain, and M. A. Baig, “Spectroscopic study of a lead plasma produced by the 1064 nm, 532nm and 355 nm of a Nd:YAG laser,” Spectrochim. Acta, Part B 88, 198–202 (2013).
[Crossref]

Kapteyn, H. C.

X. Gao, G. Patwardhan, S. Schrauth, D. Zhu, T. Popmintchev, H. C. Kapteyn, M. M. Murnane, D. A. Romanov, R. J. Levis, and A. L. Gaeta, “Picosecond ionization dynamics in femtosecond filaments at high pressures,” Phys. Rev. A 95(1), 013412 (2017).
[Crossref]

Khorkov, K. S.

M. A. Tarasova, K. S. Khorkov, D. A. Kochuev, A. V. Ivaschenko, and V. G. Prokoshev, “Formation of channels with changed refractive index at the filamentation of femtosecond laser radiation in quartz glass,” J. Phys.: Conf. Ser. 1164(1), 012023 (2019).
[Crossref]

Kiani, S.

Z. Ghorbani, P. Parvin, A. Reyhani, S. Z. Mortazavi, A. Moosakhani, M. Maleki, and S. Kiani, “Methane decomposition using metal-assisted nanosecond laser-induced plasma at atmospheric pressure,” J. Phys. Chem. C 118(51), 29822–29835 (2014).
[Crossref]

Kim, K. Y.

Klingebiel, S.

Kochuev, D. A.

M. A. Tarasova, K. S. Khorkov, D. A. Kochuev, A. V. Ivaschenko, and V. G. Prokoshev, “Formation of channels with changed refractive index at the filamentation of femtosecond laser radiation in quartz glass,” J. Phys.: Conf. Ser. 1164(1), 012023 (2019).
[Crossref]

Kuzmanovic, M.

M. Momcilovic, S. Zivkovic, M. Kuzmanovic, J. Ciganovic, D. Rankovic, M. Trtica, and J. Savovic, “The Effect of Background Gas on the Excitation Temperature and Electron Number Density of Basalt Plasma Induced by 10.6 Micron Laser Radiation,” Plasma Chem. Plasma Process. 39(4), 985–1000 (2019).
[Crossref]

Laricchia, G.

D. A. Cooke, D. J. Murtagh, and G. Laricchia, “Ionization cross-sections for positron collisions with N2,” Eur. Phys. J. D 68(3), 66 (2014).
[Crossref]

Lee, J. K.

N. Y. Babaeva, J. K. Lee, J. W. Shon, and E. A. Hudson, “Oxygen ion energy distribution: Role of ionization, resonant, and nonresonant charge-exchange collisions,” J. Vac. Sci. Technol., A 23(4), 699–704 (2005).
[Crossref]

Leng, Y. X.

Z. G. Ji, J. S. Liu, Z. X. Wang, J. Ju, X. M. Lu, Y. H. Jiang, Y. X. Leng, X. Y. Liang, W. Liu, S. L. Chin, R. X. Li, and Z. Z. Xu, “Femtosecond laser filamentation with a 4 J/60 fs Ti:Sapphire laser beam: Multiple filaments and intensity clamping,” Laser Phys. 20(4), 886–890 (2010).
[Crossref]

Levis, R. J.

D. A. Romanov, X. Gao, A. L. Gaeta, and R. J. Levis, “Intrapulse impact processes in dense-gas femtosecond laser filamentation,” Phys. Rev. A 97(6), 063411 (2018).
[Crossref]

X. Gao, G. Patwardhan, S. Schrauth, D. Zhu, T. Popmintchev, H. C. Kapteyn, M. M. Murnane, D. A. Romanov, R. J. Levis, and A. L. Gaeta, “Picosecond ionization dynamics in femtosecond filaments at high pressures,” Phys. Rev. A 95(1), 013412 (2017).
[Crossref]

Li,

L. Amina, T. Ji, Y. Yan, L. Wang, and Li, “Characteristics of 1064 nm picosecond laser induced filamentary tracks and damages in sapphire,” Opt. Laser Technol. 116, 232–238 (2019).
[Crossref]

Li, R. X.

Z. G. Ji, J. S. Liu, Z. X. Wang, J. Ju, X. M. Lu, Y. H. Jiang, Y. X. Leng, X. Y. Liang, W. Liu, S. L. Chin, R. X. Li, and Z. Z. Xu, “Femtosecond laser filamentation with a 4 J/60 fs Ti:Sapphire laser beam: Multiple filaments and intensity clamping,” Laser Phys. 20(4), 886–890 (2010).
[Crossref]

Li, S. Y.

S. Y. Li, F. M. Guo, Y. Song, A. M. Chen, Y. J. Yang, and M. X. Jin, “Influence of group-velocity-dispersion effects on the propagation of femtosecond laser pulses in air at different pressures,” Phys. Rev. A 89(2), 023809 (2014).
[Crossref]

Li, W.

Li, X.

Liang, X. Y.

Z. G. Ji, J. S. Liu, Z. X. Wang, J. Ju, X. M. Lu, Y. H. Jiang, Y. X. Leng, X. Y. Liang, W. Liu, S. L. Chin, R. X. Li, and Z. Z. Xu, “Femtosecond laser filamentation with a 4 J/60 fs Ti:Sapphire laser beam: Multiple filaments and intensity clamping,” Laser Phys. 20(4), 886–890 (2010).
[Crossref]

Lin,

T. Yan, L. Ji, R. Ma, Z. Amina, and Lin, “Modification characteristics of filamentary traces induced by loosely focused picosecond laser in sapphire,” Ceram. Int. 46(10), 16074–16079 (2020).
[Crossref]

Lin, W.

X. Qi, C. Ma, and W. Lin, “Pressure effects on the femtosecond laser filamentation,” Opt. Commun. 358, 126–131 (2016).
[Crossref]

Liu, J.

Liu, J. M.

Liu, J. S.

Z. G. Ji, J. S. Liu, Z. X. Wang, J. Ju, X. M. Lu, Y. H. Jiang, Y. X. Leng, X. Y. Liang, W. Liu, S. L. Chin, R. X. Li, and Z. Z. Xu, “Femtosecond laser filamentation with a 4 J/60 fs Ti:Sapphire laser beam: Multiple filaments and intensity clamping,” Laser Phys. 20(4), 886–890 (2010).
[Crossref]

Liu, W.

Z. G. Ji, J. S. Liu, Z. X. Wang, J. Ju, X. M. Lu, Y. H. Jiang, Y. X. Leng, X. Y. Liang, W. Liu, S. L. Chin, R. X. Li, and Z. Z. Xu, “Femtosecond laser filamentation with a 4 J/60 fs Ti:Sapphire laser beam: Multiple filaments and intensity clamping,” Laser Phys. 20(4), 886–890 (2010).
[Crossref]

Liu, X.

Liu, Y.

Lu, X. M.

Z. G. Ji, J. S. Liu, Z. X. Wang, J. Ju, X. M. Lu, Y. H. Jiang, Y. X. Leng, X. Y. Liang, W. Liu, S. L. Chin, R. X. Li, and Z. Z. Xu, “Femtosecond laser filamentation with a 4 J/60 fs Ti:Sapphire laser beam: Multiple filaments and intensity clamping,” Laser Phys. 20(4), 886–890 (2010).
[Crossref]

Lu, Y.

Lv, J. H.

Z. H. Jiang, Y. He, X. W. Hu, J. H. Lv, and Y. M. Hu, “Structures of strong shock waves in dense plasmas,” Chin. Phys. Lett. 24(8), 2316–2318 (2007).
[Crossref]

Ma,

L. Amina, T. Ji, R. Yan, and Ma, “Ionization behavior and dynamics of picosecond laser filamentation in sapphire,” Opto-Electron. Adv. 2(6), 19000301–19000307 (2019).
[Crossref]

Ma, C.

X. Qi, C. Ma, and W. Lin, “Pressure effects on the femtosecond laser filamentation,” Opt. Commun. 358, 126–131 (2016).
[Crossref]

Ma, R.

T. Yan, L. Ji, R. Ma, Z. Amina, and Lin, “Modification characteristics of filamentary traces induced by loosely focused picosecond laser in sapphire,” Ceram. Int. 46(10), 16074–16079 (2020).
[Crossref]

Maleki, M.

Z. Ghorbani, P. Parvin, A. Reyhani, S. Z. Mortazavi, A. Moosakhani, M. Maleki, and S. Kiani, “Methane decomposition using metal-assisted nanosecond laser-induced plasma at atmospheric pressure,” J. Phys. Chem. C 118(51), 29822–29835 (2014).
[Crossref]

Mei, X.

Z. Zhai, W. Wang, X. Mei, K. Wang, and H. Yang, “Influence of plasma shock wave on the morphology of laser drilling in different environments,” Opt. Commun. 390, 49–56 (2017).
[Crossref]

Metzger, T.

Mi, G.

Z. Gao, P. Jiang, X. Shao, L. Cao, G. Mi, and Y. Wang, “Numerical analysis of hybrid plasma in fiber laser-arc welding,” J. Phys. D: Appl. Phys. 52(2), 025206 (2019).
[Crossref]

Michel, K.

Milián, C.

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5(1), 8914 (2015).
[Crossref]

Mokrousova, D. V.

A. V. Shutov, N. N. Ustinovskii, I. V. Smetanin, D. V. Mokrousova, S. A. Goncharov, S. V. Ryabchuk, E. S. Sunchugasheva, L. V. Seleznev, A. A. Ionin, and V. D. Zvorykin, “Major pathway for multiphoton air ionization at 248 nm laser wavelength,” Appl. Phys. Lett. 111(22), 224104 (2017).
[Crossref]

Momcilovic, M.

M. Momcilovic, S. Zivkovic, M. Kuzmanovic, J. Ciganovic, D. Rankovic, M. Trtica, and J. Savovic, “The Effect of Background Gas on the Excitation Temperature and Electron Number Density of Basalt Plasma Induced by 10.6 Micron Laser Radiation,” Plasma Chem. Plasma Process. 39(4), 985–1000 (2019).
[Crossref]

Moosakhani, A.

Z. Ghorbani, P. Parvin, A. Reyhani, S. Z. Mortazavi, A. Moosakhani, M. Maleki, and S. Kiani, “Methane decomposition using metal-assisted nanosecond laser-induced plasma at atmospheric pressure,” J. Phys. Chem. C 118(51), 29822–29835 (2014).
[Crossref]

Mortazavi, S. Z.

Z. Ghorbani, P. Parvin, A. Reyhani, S. Z. Mortazavi, A. Moosakhani, M. Maleki, and S. Kiani, “Methane decomposition using metal-assisted nanosecond laser-induced plasma at atmospheric pressure,” J. Phys. Chem. C 118(51), 29822–29835 (2014).
[Crossref]

Murnane, M. M.

X. Gao, G. Patwardhan, S. Schrauth, D. Zhu, T. Popmintchev, H. C. Kapteyn, M. M. Murnane, D. A. Romanov, R. J. Levis, and A. L. Gaeta, “Picosecond ionization dynamics in femtosecond filaments at high pressures,” Phys. Rev. A 95(1), 013412 (2017).
[Crossref]

Murtagh, D. J.

D. A. Cooke, D. J. Murtagh, and G. Laricchia, “Ionization cross-sections for positron collisions with N2,” Eur. Phys. J. D 68(3), 66 (2014).
[Crossref]

Mysyrowicz, A.

Nees, J.

Nuter, R.

Ouadghiri-Idrissi, I.

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5(1), 8914 (2015).
[Crossref]

Pan, C.

Parvin, P.

Z. Ghorbani, P. Parvin, A. Reyhani, S. Z. Mortazavi, A. Moosakhani, M. Maleki, and S. Kiani, “Methane decomposition using metal-assisted nanosecond laser-induced plasma at atmospheric pressure,” J. Phys. Chem. C 118(51), 29822–29835 (2014).
[Crossref]

S. Z. Shoursheini, P. Parvin, B. Sajad, and M. A. Bassam, “Dual-laser-beam-induced breakdown spectroscopy of copper using simultaneous continuous wave co2 and q-switched nd:yag lasers,” Appl. Spectrosc. 63(4), 423–429 (2009).
[Crossref]

Patwardhan, G.

X. Gao, G. Patwardhan, S. Schrauth, D. Zhu, T. Popmintchev, H. C. Kapteyn, M. M. Murnane, D. A. Romanov, R. J. Levis, and A. L. Gaeta, “Picosecond ionization dynamics in femtosecond filaments at high pressures,” Phys. Rev. A 95(1), 013412 (2017).
[Crossref]

Pfau, A.

A. Badarlis, S. Stingelin, A. Pfau, and A. Kalfas, “Measurement of Gas Thermal Properties Using the Parametric Reduced-Order Modeling Approach,” IEEE Sens. J. 16(12), 4704–4714 (2016).
[Crossref]

Phillips, M. C.

Point, G.

Popmintchev, T.

X. Gao, G. Patwardhan, S. Schrauth, D. Zhu, T. Popmintchev, H. C. Kapteyn, M. M. Murnane, D. A. Romanov, R. J. Levis, and A. L. Gaeta, “Picosecond ionization dynamics in femtosecond filaments at high pressures,” Phys. Rev. A 95(1), 013412 (2017).
[Crossref]

Prokoshev, V. G.

M. A. Tarasova, K. S. Khorkov, D. A. Kochuev, A. V. Ivaschenko, and V. G. Prokoshev, “Formation of channels with changed refractive index at the filamentation of femtosecond laser radiation in quartz glass,” J. Phys.: Conf. Ser. 1164(1), 012023 (2019).
[Crossref]

Qi, X.

X. Qi, C. Ma, and W. Lin, “Pressure effects on the femtosecond laser filamentation,” Opt. Commun. 358, 126–131 (2016).
[Crossref]

Rankovic, D.

M. Momcilovic, S. Zivkovic, M. Kuzmanovic, J. Ciganovic, D. Rankovic, M. Trtica, and J. Savovic, “The Effect of Background Gas on the Excitation Temperature and Electron Number Density of Basalt Plasma Induced by 10.6 Micron Laser Radiation,” Plasma Chem. Plasma Process. 39(4), 985–1000 (2019).
[Crossref]

Reichenauer, G.

K. Swimm, S. Vidi, G. Reichenauer, and H. P. Ebert, “Coupling of gaseous and solid thermal conduction in porous solids,” J. Non-Cryst. Solids 456, 114–124 (2017).
[Crossref]

Reyhani, A.

Z. Ghorbani, P. Parvin, A. Reyhani, S. Z. Mortazavi, A. Moosakhani, M. Maleki, and S. Kiani, “Methane decomposition using metal-assisted nanosecond laser-induced plasma at atmospheric pressure,” J. Phys. Chem. C 118(51), 29822–29835 (2014).
[Crossref]

Romanov, D. A.

D. A. Romanov, X. Gao, A. L. Gaeta, and R. J. Levis, “Intrapulse impact processes in dense-gas femtosecond laser filamentation,” Phys. Rev. A 97(6), 063411 (2018).
[Crossref]

X. Gao, G. Patwardhan, S. Schrauth, D. Zhu, T. Popmintchev, H. C. Kapteyn, M. M. Murnane, D. A. Romanov, R. J. Levis, and A. L. Gaeta, “Picosecond ionization dynamics in femtosecond filaments at high pressures,” Phys. Rev. A 95(1), 013412 (2017).
[Crossref]

Ryabchuk, S. V.

A. V. Shutov, N. N. Ustinovskii, I. V. Smetanin, D. V. Mokrousova, S. A. Goncharov, S. V. Ryabchuk, E. S. Sunchugasheva, L. V. Seleznev, A. A. Ionin, and V. D. Zvorykin, “Major pathway for multiphoton air ionization at 248 nm laser wavelength,” Appl. Phys. Lett. 111(22), 224104 (2017).
[Crossref]

Said, A. A.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
[Crossref]

Sajad, B.

Savovic, J.

M. Momcilovic, S. Zivkovic, M. Kuzmanovic, J. Ciganovic, D. Rankovic, M. Trtica, and J. Savovic, “The Effect of Background Gas on the Excitation Temperature and Electron Number Density of Basalt Plasma Induced by 10.6 Micron Laser Radiation,” Plasma Chem. Plasma Process. 39(4), 985–1000 (2019).
[Crossref]

Sawyer, J. C.

Y. Wu, J. C. Sawyer, L. Su, and Z. Zhang, “Quantitative measurement of electron number in nanosecond and picosecond laser-induced air breakdown,” J. Appl. Phys. 119(17), 173303 (2016).
[Crossref]

Schrauth, S.

X. Gao, G. Patwardhan, S. Schrauth, D. Zhu, T. Popmintchev, H. C. Kapteyn, M. M. Murnane, D. A. Romanov, R. J. Levis, and A. L. Gaeta, “Picosecond ionization dynamics in femtosecond filaments at high pressures,” Phys. Rev. A 95(1), 013412 (2017).
[Crossref]

Schultze, M.

Seleznev, L. V.

A. V. Shutov, N. N. Ustinovskii, I. V. Smetanin, D. V. Mokrousova, S. A. Goncharov, S. V. Ryabchuk, E. S. Sunchugasheva, L. V. Seleznev, A. A. Ionin, and V. D. Zvorykin, “Major pathway for multiphoton air ionization at 248 nm laser wavelength,” Appl. Phys. Lett. 111(22), 224104 (2017).
[Crossref]

Shaikh, N. M.

N. M. Shaikh, M. S. Kalhoro, A. Hussain, and M. A. Baig, “Spectroscopic study of a lead plasma produced by the 1064 nm, 532nm and 355 nm of a Nd:YAG laser,” Spectrochim. Acta, Part B 88, 198–202 (2013).
[Crossref]

Shao, X.

Z. Gao, P. Jiang, X. Shao, L. Cao, G. Mi, and Y. Wang, “Numerical analysis of hybrid plasma in fiber laser-arc welding,” J. Phys. D: Appl. Phys. 52(2), 025206 (2019).
[Crossref]

Sheik-Bahae, M.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
[Crossref]

Shon, J. W.

N. Y. Babaeva, J. K. Lee, J. W. Shon, and E. A. Hudson, “Oxygen ion energy distribution: Role of ionization, resonant, and nonresonant charge-exchange collisions,” J. Vac. Sci. Technol., A 23(4), 699–704 (2005).
[Crossref]

Shoursheini, S. Z.

Shutov, A. V.

A. V. Shutov, N. N. Ustinovskii, I. V. Smetanin, D. V. Mokrousova, S. A. Goncharov, S. V. Ryabchuk, E. S. Sunchugasheva, L. V. Seleznev, A. A. Ionin, and V. D. Zvorykin, “Major pathway for multiphoton air ionization at 248 nm laser wavelength,” Appl. Phys. Lett. 111(22), 224104 (2017).
[Crossref]

Skrodzki, P. J.

L. A. Finney, P. J. Skrodzki, M. Burger, X. Xiao, J. Nees, and I. Jovanovic, “Optical emission from ultrafast laser filament-produced air plasmas in the multiple filament regime,” Opt. Express 26(22), 29110 (2018).
[Crossref]

P. J. Skrodzki, M. Burger, and I. Jovanovic, “Transition of Femtosecond-Filament-Solid Interactions from Single to Multiple Filament Regime,” Sci. Rep. 7(1), 12740 (2017).
[Crossref]

Skupin, S.

Smetanin, I. V.

A. V. Shutov, N. N. Ustinovskii, I. V. Smetanin, D. V. Mokrousova, S. A. Goncharov, S. V. Ryabchuk, E. S. Sunchugasheva, L. V. Seleznev, A. A. Ionin, and V. D. Zvorykin, “Major pathway for multiphoton air ionization at 248 nm laser wavelength,” Appl. Phys. Lett. 111(22), 224104 (2017).
[Crossref]

Song, Y.

S. Y. Li, F. M. Guo, Y. Song, A. M. Chen, Y. J. Yang, and M. X. Jin, “Influence of group-velocity-dispersion effects on the propagation of femtosecond laser pulses in air at different pressures,” Phys. Rev. A 89(2), 023809 (2014).
[Crossref]

Stingelin, S.

A. Badarlis, S. Stingelin, A. Pfau, and A. Kalfas, “Measurement of Gas Thermal Properties Using the Parametric Reduced-Order Modeling Approach,” IEEE Sens. J. 16(12), 4704–4714 (2016).
[Crossref]

Su, L.

Y. Wu, J. C. Sawyer, L. Su, and Z. Zhang, “Quantitative measurement of electron number in nanosecond and picosecond laser-induced air breakdown,” J. Appl. Phys. 119(17), 173303 (2016).
[Crossref]

Sun, J.

Sunchugasheva, E. S.

A. V. Shutov, N. N. Ustinovskii, I. V. Smetanin, D. V. Mokrousova, S. A. Goncharov, S. V. Ryabchuk, E. S. Sunchugasheva, L. V. Seleznev, A. A. Ionin, and V. D. Zvorykin, “Major pathway for multiphoton air ionization at 248 nm laser wavelength,” Appl. Phys. Lett. 111(22), 224104 (2017).
[Crossref]

Swimm, K.

K. Swimm, S. Vidi, G. Reichenauer, and H. P. Ebert, “Coupling of gaseous and solid thermal conduction in porous solids,” J. Non-Cryst. Solids 456, 114–124 (2017).
[Crossref]

Tarasova, M. A.

M. A. Tarasova, K. S. Khorkov, D. A. Kochuev, A. V. Ivaschenko, and V. G. Prokoshev, “Formation of channels with changed refractive index at the filamentation of femtosecond laser radiation in quartz glass,” J. Phys.: Conf. Ser. 1164(1), 012023 (2019).
[Crossref]

Trtica, M.

M. Momcilovic, S. Zivkovic, M. Kuzmanovic, J. Ciganovic, D. Rankovic, M. Trtica, and J. Savovic, “The Effect of Background Gas on the Excitation Temperature and Electron Number Density of Basalt Plasma Induced by 10.6 Micron Laser Radiation,” Plasma Chem. Plasma Process. 39(4), 985–1000 (2019).
[Crossref]

Ustinovskii, N. N.

A. V. Shutov, N. N. Ustinovskii, I. V. Smetanin, D. V. Mokrousova, S. A. Goncharov, S. V. Ryabchuk, E. S. Sunchugasheva, L. V. Seleznev, A. A. Ionin, and V. D. Zvorykin, “Major pathway for multiphoton air ionization at 248 nm laser wavelength,” Appl. Phys. Lett. 111(22), 224104 (2017).
[Crossref]

Van Stryland, E. W.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
[Crossref]

Vidi, S.

K. Swimm, S. Vidi, G. Reichenauer, and H. P. Ebert, “Coupling of gaseous and solid thermal conduction in porous solids,” J. Non-Cryst. Solids 456, 114–124 (2017).
[Crossref]

Viöl, W.

S. Wieneke, S. Brückner, and W. Viöl, “Simulating the heating of z-pinch plasmas with short laser pulses,” J. Plasma Phys. 74(3), 361–369 (2008).
[Crossref]

Wang, F.

Wang, K.

Z. Zhai, W. Wang, X. Mei, K. Wang, and H. Yang, “Influence of plasma shock wave on the morphology of laser drilling in different environments,” Opt. Commun. 390, 49–56 (2017).
[Crossref]

Wang, L.

L. Amina, T. Ji, Y. Yan, L. Wang, and Li, “Characteristics of 1064 nm picosecond laser induced filamentary tracks and damages in sapphire,” Opt. Laser Technol. 116, 232–238 (2019).
[Crossref]

Wang, Q.

Wang, W.

Z. Zhai, W. Wang, X. Mei, K. Wang, and H. Yang, “Influence of plasma shock wave on the morphology of laser drilling in different environments,” Opt. Commun. 390, 49–56 (2017).
[Crossref]

Wang, Y.

Z. Gao, P. Jiang, X. Shao, L. Cao, G. Mi, and Y. Wang, “Numerical analysis of hybrid plasma in fiber laser-arc welding,” J. Phys. D: Appl. Phys. 52(2), 025206 (2019).
[Crossref]

Wang, Y. B.

W. Zhang, Z. Wei, Y. B. Wang, and G. Y. Jin, “Numerical simulation of laser-supported combustion wave induced by millisecond-pulsed laser on aluminum alloy,” Laser Phys. 26(1), 015001 (2016).
[Crossref]

Wang, Z. X.

Z. G. Ji, J. S. Liu, Z. X. Wang, J. Ju, X. M. Lu, Y. H. Jiang, Y. X. Leng, X. Y. Liang, W. Liu, S. L. Chin, R. X. Li, and Z. Z. Xu, “Femtosecond laser filamentation with a 4 J/60 fs Ti:Sapphire laser beam: Multiple filaments and intensity clamping,” Laser Phys. 20(4), 886–890 (2010).
[Crossref]

Wei, Z.

W. Zhang, Z. Wei, Y. B. Wang, and G. Y. Jin, “Numerical simulation of laser-supported combustion wave induced by millisecond-pulsed laser on aluminum alloy,” Laser Phys. 26(1), 015001 (2016).
[Crossref]

Wieneke, S.

S. Wieneke, S. Brückner, and W. Viöl, “Simulating the heating of z-pinch plasmas with short laser pulses,” J. Plasma Phys. 74(3), 361–369 (2008).
[Crossref]

Wu, Y.

Y. Wu, J. C. Sawyer, L. Su, and Z. Zhang, “Quantitative measurement of electron number in nanosecond and picosecond laser-induced air breakdown,” J. Appl. Phys. 119(17), 173303 (2016).
[Crossref]

Xia, B.

Xiao, X.

Xie, C.

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5(1), 8914 (2015).
[Crossref]

Xu, Z. Z.

Z. G. Ji, J. S. Liu, Z. X. Wang, J. Ju, X. M. Lu, Y. H. Jiang, Y. X. Leng, X. Y. Liang, W. Liu, S. L. Chin, R. X. Li, and Z. Z. Xu, “Femtosecond laser filamentation with a 4 J/60 fs Ti:Sapphire laser beam: Multiple filaments and intensity clamping,” Laser Phys. 20(4), 886–890 (2010).
[Crossref]

Yan, R.

L. Amina, T. Ji, R. Yan, and Ma, “Ionization behavior and dynamics of picosecond laser filamentation in sapphire,” Opto-Electron. Adv. 2(6), 19000301–19000307 (2019).
[Crossref]

Yan, T.

T. Yan, L. Ji, R. Ma, Z. Amina, and Lin, “Modification characteristics of filamentary traces induced by loosely focused picosecond laser in sapphire,” Ceram. Int. 46(10), 16074–16079 (2020).
[Crossref]

Yan, X.

Yan, Y.

L. Amina, T. Ji, Y. Yan, L. Wang, and Li, “Characteristics of 1064 nm picosecond laser induced filamentary tracks and damages in sapphire,” Opt. Laser Technol. 116, 232–238 (2019).
[Crossref]

Yang, H.

Z. Zhai, W. Wang, X. Mei, K. Wang, and H. Yang, “Influence of plasma shock wave on the morphology of laser drilling in different environments,” Opt. Commun. 390, 49–56 (2017).
[Crossref]

Yang, L. J.

Y. Ding, L. J. Yang, and M. H. Hong, “Enhancement of pulsed laser ablation assisted with continuous wave laser irradiation,” Sci. China: Phys., Mech. Astron. 62(3), 34211 (2019).
[Crossref]

Yang, Y. J.

S. Y. Li, F. M. Guo, Y. Song, A. M. Chen, Y. J. Yang, and M. X. Jin, “Influence of group-velocity-dispersion effects on the propagation of femtosecond laser pulses in air at different pressures,” Phys. Rev. A 89(2), 023809 (2014).
[Crossref]

Yeak, J.

Yoo, Y. J.

Yu, C.

Zhai, Z.

Z. Zhai, W. Wang, X. Mei, K. Wang, and H. Yang, “Influence of plasma shock wave on the morphology of laser drilling in different environments,” Opt. Commun. 390, 49–56 (2017).
[Crossref]

Zhang, W.

W. Zhang, Z. Wei, Y. B. Wang, and G. Y. Jin, “Numerical simulation of laser-supported combustion wave induced by millisecond-pulsed laser on aluminum alloy,” Laser Phys. 26(1), 015001 (2016).
[Crossref]

Zhang, Z.

Y. Wu, J. C. Sawyer, L. Su, and Z. Zhang, “Quantitative measurement of electron number in nanosecond and picosecond laser-induced air breakdown,” J. Appl. Phys. 119(17), 173303 (2016).
[Crossref]

Zhu, D.

X. Gao, G. Patwardhan, S. Schrauth, D. Zhu, T. Popmintchev, H. C. Kapteyn, M. M. Murnane, D. A. Romanov, R. J. Levis, and A. L. Gaeta, “Picosecond ionization dynamics in femtosecond filaments at high pressures,” Phys. Rev. A 95(1), 013412 (2017).
[Crossref]

Zivkovic, S.

M. Momcilovic, S. Zivkovic, M. Kuzmanovic, J. Ciganovic, D. Rankovic, M. Trtica, and J. Savovic, “The Effect of Background Gas on the Excitation Temperature and Electron Number Density of Basalt Plasma Induced by 10.6 Micron Laser Radiation,” Plasma Chem. Plasma Process. 39(4), 985–1000 (2019).
[Crossref]

Zvorykin, V. D.

A. V. Shutov, N. N. Ustinovskii, I. V. Smetanin, D. V. Mokrousova, S. A. Goncharov, S. V. Ryabchuk, E. S. Sunchugasheva, L. V. Seleznev, A. A. Ionin, and V. D. Zvorykin, “Major pathway for multiphoton air ionization at 248 nm laser wavelength,” Appl. Phys. Lett. 111(22), 224104 (2017).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

E. Asamoah and Y. Hongbing, “Influence of laser energy on the electron temperature of a laser-induced Mg plasma,” Appl. Phys. B: Lasers Opt. 123(1), 22 (2017).
[Crossref]

Appl. Phys. Lett. (1)

A. V. Shutov, N. N. Ustinovskii, I. V. Smetanin, D. V. Mokrousova, S. A. Goncharov, S. V. Ryabchuk, E. S. Sunchugasheva, L. V. Seleznev, A. A. Ionin, and V. D. Zvorykin, “Major pathway for multiphoton air ionization at 248 nm laser wavelength,” Appl. Phys. Lett. 111(22), 224104 (2017).
[Crossref]

Appl. Spectrosc. (1)

Ceram. Int. (1)

T. Yan, L. Ji, R. Ma, Z. Amina, and Lin, “Modification characteristics of filamentary traces induced by loosely focused picosecond laser in sapphire,” Ceram. Int. 46(10), 16074–16079 (2020).
[Crossref]

Chin. Phys. Lett. (1)

Z. H. Jiang, Y. He, X. W. Hu, J. H. Lv, and Y. M. Hu, “Structures of strong shock waves in dense plasmas,” Chin. Phys. Lett. 24(8), 2316–2318 (2007).
[Crossref]

Eur. Phys. J. D (1)

D. A. Cooke, D. J. Murtagh, and G. Laricchia, “Ionization cross-sections for positron collisions with N2,” Eur. Phys. J. D 68(3), 66 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
[Crossref]

IEEE Sens. J. (1)

A. Badarlis, S. Stingelin, A. Pfau, and A. Kalfas, “Measurement of Gas Thermal Properties Using the Parametric Reduced-Order Modeling Approach,” IEEE Sens. J. 16(12), 4704–4714 (2016).
[Crossref]

J. Appl. Phys. (1)

Y. Wu, J. C. Sawyer, L. Su, and Z. Zhang, “Quantitative measurement of electron number in nanosecond and picosecond laser-induced air breakdown,” J. Appl. Phys. 119(17), 173303 (2016).
[Crossref]

J. Non-Cryst. Solids (1)

K. Swimm, S. Vidi, G. Reichenauer, and H. P. Ebert, “Coupling of gaseous and solid thermal conduction in porous solids,” J. Non-Cryst. Solids 456, 114–124 (2017).
[Crossref]

J. Phys. Chem. C (1)

Z. Ghorbani, P. Parvin, A. Reyhani, S. Z. Mortazavi, A. Moosakhani, M. Maleki, and S. Kiani, “Methane decomposition using metal-assisted nanosecond laser-induced plasma at atmospheric pressure,” J. Phys. Chem. C 118(51), 29822–29835 (2014).
[Crossref]

J. Phys. D: Appl. Phys. (1)

Z. Gao, P. Jiang, X. Shao, L. Cao, G. Mi, and Y. Wang, “Numerical analysis of hybrid plasma in fiber laser-arc welding,” J. Phys. D: Appl. Phys. 52(2), 025206 (2019).
[Crossref]

J. Phys.: Conf. Ser. (1)

M. A. Tarasova, K. S. Khorkov, D. A. Kochuev, A. V. Ivaschenko, and V. G. Prokoshev, “Formation of channels with changed refractive index at the filamentation of femtosecond laser radiation in quartz glass,” J. Phys.: Conf. Ser. 1164(1), 012023 (2019).
[Crossref]

J. Plasma Phys. (1)

S. Wieneke, S. Brückner, and W. Viöl, “Simulating the heating of z-pinch plasmas with short laser pulses,” J. Plasma Phys. 74(3), 361–369 (2008).
[Crossref]

J. Vac. Sci. Technol., A (1)

N. Y. Babaeva, J. K. Lee, J. W. Shon, and E. A. Hudson, “Oxygen ion energy distribution: Role of ionization, resonant, and nonresonant charge-exchange collisions,” J. Vac. Sci. Technol., A 23(4), 699–704 (2005).
[Crossref]

Laser Phys. (2)

Z. G. Ji, J. S. Liu, Z. X. Wang, J. Ju, X. M. Lu, Y. H. Jiang, Y. X. Leng, X. Y. Liang, W. Liu, S. L. Chin, R. X. Li, and Z. Z. Xu, “Femtosecond laser filamentation with a 4 J/60 fs Ti:Sapphire laser beam: Multiple filaments and intensity clamping,” Laser Phys. 20(4), 886–890 (2010).
[Crossref]

W. Zhang, Z. Wei, Y. B. Wang, and G. Y. Jin, “Numerical simulation of laser-supported combustion wave induced by millisecond-pulsed laser on aluminum alloy,” Laser Phys. 26(1), 015001 (2016).
[Crossref]

Opt. Commun. (2)

X. Qi, C. Ma, and W. Lin, “Pressure effects on the femtosecond laser filamentation,” Opt. Commun. 358, 126–131 (2016).
[Crossref]

Z. Zhai, W. Wang, X. Mei, K. Wang, and H. Yang, “Influence of plasma shock wave on the morphology of laser drilling in different environments,” Opt. Commun. 390, 49–56 (2017).
[Crossref]

Opt. Express (7)

B. Xia, L. Jiang, X. Li, X. Yan, and Y. Lu, “Mechanism and elimination of bending effect in femtosecond laser deep-hole drilling,” Opt. Express 23(21), 27853–27864 (2015).
[Crossref]

Z. Feng, W. Li, C. Yu, X. Liu, Y. Liu, J. Liu, and L. Fu, “Influence of the external focusing and the pulse parameters on the propagation of femtosecond annular Gaussian filaments in air,” Opt. Express 24(6), 6381 (2016).
[Crossref]

A. Houard, V. Jukna, G. Point, Y.-B. André, S. Klingebiel, M. Schultze, K. Michel, T. Metzger, and A. Mysyrowicz, “Study of filamentation with a high power high repetition rate ps laser at 1.03 µm,” Opt. Express 24(7), 7437–7448 (2016).
[Crossref]

S. S. Harilal, J. Yeak, B. E. Brumfield, and M. C. Phillips, “Consequences of femtosecond laser filament generation conditions in standoff laser induced breakdown spectroscopy,” Opt. Express 24(16), 17941–17949 (2016).
[Crossref]

L. A. Finney, P. J. Skrodzki, M. Burger, X. Xiao, J. Nees, and I. Jovanovic, “Optical emission from ultrafast laser filament-produced air plasmas in the multiple filament regime,” Opt. Express 26(22), 29110 (2018).
[Crossref]

F. Wang, C. Pan, J. Sun, Q. Wang, Y. Lu, and L. Jiang, “Direct observation of structure-assisted filament splitting during ultrafast multiple-pulse laser ablation,” Opt. Express 27(7), 10050 (2019).
[Crossref]

Y. J. Yoo, D. Jang, and K. Y. Kim, “Highly enhanced terahertz conversion by two-color laser filamentation at low gas pressures,” Opt. Express 27(16), 22663 (2019).
[Crossref]

Opt. Laser Technol. (1)

L. Amina, T. Ji, Y. Yan, L. Wang, and Li, “Characteristics of 1064 nm picosecond laser induced filamentary tracks and damages in sapphire,” Opt. Laser Technol. 116, 232–238 (2019).
[Crossref]

Opt. Lett. (2)

Opto-Electron. Adv. (1)

L. Amina, T. Ji, R. Yan, and Ma, “Ionization behavior and dynamics of picosecond laser filamentation in sapphire,” Opto-Electron. Adv. 2(6), 19000301–19000307 (2019).
[Crossref]

Phys. Rev. A (3)

D. A. Romanov, X. Gao, A. L. Gaeta, and R. J. Levis, “Intrapulse impact processes in dense-gas femtosecond laser filamentation,” Phys. Rev. A 97(6), 063411 (2018).
[Crossref]

X. Gao, G. Patwardhan, S. Schrauth, D. Zhu, T. Popmintchev, H. C. Kapteyn, M. M. Murnane, D. A. Romanov, R. J. Levis, and A. L. Gaeta, “Picosecond ionization dynamics in femtosecond filaments at high pressures,” Phys. Rev. A 95(1), 013412 (2017).
[Crossref]

S. Y. Li, F. M. Guo, Y. Song, A. M. Chen, Y. J. Yang, and M. X. Jin, “Influence of group-velocity-dispersion effects on the propagation of femtosecond laser pulses in air at different pressures,” Phys. Rev. A 89(2), 023809 (2014).
[Crossref]

Plasma Chem. Plasma Process. (1)

M. Momcilovic, S. Zivkovic, M. Kuzmanovic, J. Ciganovic, D. Rankovic, M. Trtica, and J. Savovic, “The Effect of Background Gas on the Excitation Temperature and Electron Number Density of Basalt Plasma Induced by 10.6 Micron Laser Radiation,” Plasma Chem. Plasma Process. 39(4), 985–1000 (2019).
[Crossref]

Sci. China: Phys., Mech. Astron. (1)

Y. Ding, L. J. Yang, and M. H. Hong, “Enhancement of pulsed laser ablation assisted with continuous wave laser irradiation,” Sci. China: Phys., Mech. Astron. 62(3), 34211 (2019).
[Crossref]

Sci. Rep. (2)

C. Xie, V. Jukna, C. Milián, R. Giust, I. Ouadghiri-Idrissi, T. Itina, J. M. Dudley, A. Couairon, and F. Courvoisier, “Tubular filamentation for laser material processing,” Sci. Rep. 5(1), 8914 (2015).
[Crossref]

P. J. Skrodzki, M. Burger, and I. Jovanovic, “Transition of Femtosecond-Filament-Solid Interactions from Single to Multiple Filament Regime,” Sci. Rep. 7(1), 12740 (2017).
[Crossref]

Spectrochim. Acta, Part B (1)

N. M. Shaikh, M. S. Kalhoro, A. Hussain, and M. A. Baig, “Spectroscopic study of a lead plasma produced by the 1064 nm, 532nm and 355 nm of a Nd:YAG laser,” Spectrochim. Acta, Part B 88, 198–202 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Schematic diagram of the experimental setup
Fig. 2.
Fig. 2. The spot size with respect to the focal position. (a) Laser focusing conditions, (b) geometric relation of spot diameter.
Fig. 3.
Fig. 3. Temporal evolution of the whole plasma induced by a single 10 ps pulse measured for three different ambient gases. (a) Ar, (b) N2, (c) O2. The white solid horizontal line indicates the surface of the sapphire sample. The gate width of the ICCD is 2 ns.
Fig. 4.
Fig. 4. ICCD images of the plasma recorded with a 200 ns gate width under different ambient gases. The white solid horizontal line indicates the surface of the sapphire sample. The region between the solid line and the dashed line is defined as region I.
Fig. 5.
Fig. 5. Schematic diagram of the modeling zone
Fig. 6.
Fig. 6. Temperature distributions of surface plasmas in the three gases
Fig. 7.
Fig. 7. The changes in the temperature of the surface plasmas with time
Fig. 8.
Fig. 8. The morphologies of the entrance surface under different gases at 50 laser pulses etched by 25% HF solution by mass. (a) Ar, (b) N2, and (c) O2.
Fig. 9.
Fig. 9. Polarizing microscope images of filamentary tracks inside the sapphire induced by 2000 pulses. The white horizontal solid line indicates the surface of the sapphire sample. The region between the solid line and the dashed line is defined as region II. The upper row is the amplification of region II.

Tables (2)

Tables Icon

Table 1. Ionization energy [2527].

Tables Icon

Table 2. Thermal conductivities of gases [36,37].

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ρ ( V ) V = ( p + 2 3 η V ) + [ η ( V + V ~ ) ] + ( ρ 0 ρ ) g
ρ C P T t = ( λ T ) ρ C P V T + Q L + Q R

Metrics