Abstract

Two-photon polymerization direct laser writing (TPP-DLW) is one of the most versatile technologies to additively manufacture complex parts with nanoscale resolution. However, the wide range of mechanical properties that results from the chosen combination of multiple process parameters imposes an obstacle to its widespread use. Here we introduce a thermal post-curing route as an effective and simple method to increase the mechanical properties of acrylate-based TPP-DLW-derived parts by 20-250% and to largely eliminate the characteristic coupling of processing parameters, material properties and part functionality. We identify the underlying mechanism of the property enhancement as a self-initiated thermal curing reaction, which robustly facilitates the high property reproducibility that is essential for any application of TPP-DLW.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Baldacchini, Three-Dimensional Microfabrication Using Two-Photon Polymerization, 1st ed. (Elsevier, 2015).
  2. K.-S. Lee, R. H. Kim, D.-Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).
    [Crossref]
  3. J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-Dimensional µ-Printing: An Enabling Technology,” Adv. Opt. Mater. 3(11), 1488–1507 (2015).
    [Crossref]
  4. L. H. Nguyen, M. Straub, and M. Gu, “Acrylate-Based Photopolymer for Two-Photon Microfabrication and Photonic Applications,” Adv. Funct. Mater. 15(2), 209–216 (2005).
    [Crossref]
  5. T. Baldacchini, C. N. Lafratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95(11), 6072–6076 (2004).
    [Crossref]
  6. T. Bormann, B. Müller, M. Schinhammer, A. Kessler, P. Thalmann, and M. de Wild, “Microstructure of selective laser melted nickel–titanium,” Mater. Charact. 94, 189–202 (2014).
    [Crossref]
  7. E. Waller, G. von Freymann, E. H. Waller, and G. von Freymann, “Spatio-Temporal Proximity Characteristics in 3D µ-Printing via Multi-Photon Absorption,” Polymers 8(8), 297 (2016).
    [Crossref]
  8. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic–organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301 (2003).
    [Crossref]
  9. S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K.-T. Kim, Y.-K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength Direct Laser Patterning of Conductive Gold Nanostructures by Simultaneous Photopolymerization and Photoreduction,” ACS Nano 5(3), 1947–1957 (2011).
    [Crossref]
  10. L. J. Jiang, Y. S. Zhou, W. Xiong, Y. Gao, X. Huang, L. Jiang, T. Baldacchini, J.-F. Silvain, and Y. F. Lu, “Two-photon polymerization: investigation of chemical and mechanical properties of resins using Raman microspectroscopy,” Opt. Lett. 39(10), 3034–3037 (2014).
    [Crossref]
  11. K. Cicha, Z. Li, K. Stadlmann, A. Ovsianikov, R. Markut-Kohl, R. Liska, and J. Stampfl, “Evaluation of 3D structures fabricated with two-photon-photopolymerization by using FTIR spectroscopy,” J. Appl. Phys. 110(6), 064911 (2011).
    [Crossref]
  12. T. Baldacchini, M. Zimmerley, C.-H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of Microstructures Fabricated by Two-Photon Polymerization Using Coherent Anti-Stokes Raman Scattering Microscopy,” J. Phys. Chem. B 113(38), 12663–12668 (2009).
    [Crossref]
  13. T. Suzuki, J. Morikawa, T. Hashimoto, R. Buividas, G. Gervinskas, D. Paipulas, M. Malinauskas, V. Mizeikis, and S. Juodkazis, “Thermal and optical properties of sol-gel and SU-8 resists,” in Advanced Fabrication Technologies for Micro/Nano Optics and Photonics V, W. V. Schoenfeld, R. C. Rumpf, and G. von Freymann, eds. (SPIE, 2012), 8249, p. 82490 K.
  14. J. Bauer, A. Guell Izard, Y. Zhang, T. Baldacchini, and L. Valdevit, “Programmable Mechanical Properties of Two-Photon Polymerized Materials: From Nanowires to Bulk,” Adv. Mater. Technol. 4(9), 1900146 (2019).
    [Crossref]
  15. T. Baldacchini, C. N. LaFratta, and M. Malinauskas, “Metrology and process control,” in Three-Dimensional Microfabrication Using Two-Photon Polymerization (Elsevier, 2020) pp. 197–228.
    [Crossref]
  16. A. Butkutė, L. Čkanavičius, G. Rimšelis, D. Gailevičius, V. Mizeikis, A. Melninkaitis, T. Baldacchini, L. Jonušauskas, and M. Malinauskas, “Optical damage thresholds of microstructures made by laser three-dimensional nanolithography,” Opt. Lett. 45(1), 13 (2020).
    [Crossref]
  17. M. Schmid, D. Ludescher, and H. Giessen, “Optical properties of photoresists for femtosecond 3D printing: refractive index, extinction, luminescence-dose dependence, aging, heat treatment and comparison between 1-photon and 2-photon exposure,” Opt. Mater. Express 9(12), 4564 (2019).
    [Crossref]
  18. N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 18(17), 1290–1292 (2011).
  19. M. Schumann, T. Bückmann, N. Gruhler, M. Wegener, and W. Pernice, “Hybrid 2D–3D optical devices for integrated optics by direct laser writing,” Light: Sci. Appl. 3(6), e175 (2014).
    [Crossref]
  20. L. Jonušauskas, D. Gailevičius, S. Rekštytė, T. Baldacchini, S. Juodkazis, and M. Malinauskas, “Mesoscale laser 3D printing,” Opt. Express 27(11), 15205 (2019).
    [Crossref]
  21. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).
    [Crossref]
  22. G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
    [Crossref]
  23. J. Bauer, L. R. Meza, T. A. Schaedler, R. Schwaiger, X. Zheng, and L. Valdevit, “Nanolattices: An Emerging Class of Mechanical Metamaterials,” Adv. Mater. 29(40), 1701850 (2017).
    [Crossref]
  24. J. Bauer, A. Schroer, R. Schwaiger, and O. Kraft, “Approaching theoretical strength in glassy carbon nanolattices,” Nat. Mater. 15(4), 438–443 (2016).
    [Crossref]
  25. J. Bauer, S. Hengsbach, I. Tesari, R. Schwaiger, and O. Kraft, “High-strength cellular ceramic composites with 3D microarchitecture,” Proc. Natl. Acad. Sci. U. S. A. 111(7), 2453–2458 (2014).
    [Crossref]
  26. J. Bauer, C. Crook, A. Guell Izard, Z. C. Eckel, N. Ruvalcaba, T. A. Schaedler, and L. Valdevit, “Additive Manufacturing of Ductile, Ultrastrong Polymer-Derived Nanoceramics,” Matter 1(6), 1547–1556 (2019).
    [Crossref]
  27. C. Crook, J. Bauer, A. Guell Izard, C. Santos de Oliveira, J. Martins de Souza e Silva, J. B. Berger, and L. Valdevit, “Plate-nanolattices at the theoretical limit of stiffness and strength,” Nat. Commun. 11(1), 1579 (2020).
    [Crossref]
  28. A. Guell Izard, J. Bauer, C. Crook, V. Turlo, and L. Valdevit, “Ultrahigh Energy Absorption Multifunctional Spinodal Nanoarchitectures,” Small 15(45), 1903834 (2019).
    [Crossref]
  29. A. Marino, O. Tricinci, M. Battaglini, C. Filippeschi, V. Mattoli, E. Sinibaldi, and G. Ciofani, “A 3D Real-Scale, Biomimetic, and Biohybrid Model of the Blood-Brain Barrier Fabricated through Two-Photon Lithography,” Small 14(6), 1702959 (2018).
    [Crossref]
  30. F. Klein, B. Richter, T. Striebel, C. M. Franz, G. Von Freymann, M. Wegener, and M. Bastmeyer, “Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater. 23(11), 1341–1345 (2011).
    [Crossref]
  31. A. Marino, C. Filippeschi, G. G. Genchi, V. Mattoli, B. Mazzolai, and G. Ciofani, “The Osteoprint: A bioinspired two-photon polymerized 3-D structure for the enhancement of bone-like cell differentiation,” Acta Biomater. 10(10), 4304–4313 (2014).
    [Crossref]
  32. P. F. Jacobs, Rapid Prototyping and Manufacturing: Fundamentals of StereoLithography (McGraw-Hill, Inc., 1993).
  33. R. Wang, K. J. Cheng, R. C. Advincula, and Q. Chen, “On the thermal processing and mechanical properties of 3D-printed polyether ether ketone,” MRS Commun. 9(3), 1046–1052 (2019).
    [Crossref]
  34. D. Wu, Z. Zhao, Q. Zhang, H. J. Qi, and D. Fang, “Mechanics of shape distortion of DLP 3D printed structures during UV post-curing,” Soft Matter 15(30), 6151–6159 (2019).
    [Crossref]
  35. J. S. Oakdale, J. Ye, W. L. Smith, and J. Biener, “Post-print UV curing method for improving the mechanical properties of prototypes derived from two-photon lithography,” Opt. Express 24(24), 27077–27086 (2016).
    [Crossref]
  36. C. K. Ober, “Materials systems for 2-photon lithography,” in Three-Dimensional Microfabrication Using Two-Photon Polymerization (Elsevier, 2020), pp. 143–174
  37. Nanoscribe GmbH, Photonic Professional (GT) User Maual (2017).
  38. Nanoscribe GmbH, Material Safety Data Sheet: IP-Dip Photoresist (2017).
  39. ASTM International, Standard Test Method for Compressive Properties of Rigid Plastics (2008), i, pp. 1–8.
  40. ASTM International, Standard Test Method for Tensile Properties of Plastics (2003), 08, pp. 46–58.
  41. A. Ovsianikov, X. Shizhou, M. Farsari, M. Vamvakaki, C. Fotakis, and B. N. Chichkov, “Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials,” Opt. Express 17(4), 2143 (2009).
    [Crossref]
  42. J. T. Fourkas, “Fundamentals of Two-Photon Fabrication,” in Three-Dimensional Microfabrication Using Two-Photon Polymerization, Tommaso Baldacchini, ed. (William Andrew Publishing, 2016), pp. 45–61.
  43. J. B. Mueller, J. Fischer, Y. J. Mange, T. Nann, and M. Wegener, “In-situ local temperature measurement during three-dimensional direct laser writing,” Appl. Phys. Lett. 103(12), 123107 (2013).
    [Crossref]
  44. C. Decker and K. Moussa, “Radical trapping in photopolymerized acrylic networks,” J. Polym. Sci., Part A: Polym. Chem. 25(2), 739–742 (1987).
    [Crossref]
  45. M. Wen and A. V. Mccormick, “A Kinetic Model for Radical Trapping in Photopolymerization of Multifunctional Monomers,” Macromolecules 33(25), 9247–9254 (2000).
    [Crossref]
  46. C. Quan, M. Soroush, M. C. Grady, J. E. Hansen, and W. J. Simonsick, “High-temperature homopolymerization of ethyl acrylate and n-butyl acrylate: Polymer characterization,” Macromolecules 38(18), 7619–7628 (2005).
    [Crossref]
  47. M. C. Grady, W. J. Simonsick, and R. A. Hutchinson, “Studies of higher temperature polymerization of n-butyl methacrylate and n-butyl acrylate,” Macromol. Symp. 182(1), 149–168 (2002).
    [Crossref]
  48. S. Srinivasan and A. M. Rappe, “Theoretical Insights Into Thermal Self-Initiation Reactions of Acrylates,” in Computational Quantum Chemistry (Elsevier, 2019), pp. 99–134.
  49. A. Schroer, J. Bauer, R. Schwaiger, and O. Kraft, “Optimizing the mechanical properties of polymer resists for strong and light-weight micro-truss structures,” Extreme Mech. Lett. 8, 283–291 (2016).
    [Crossref]

2020 (2)

A. Butkutė, L. Čkanavičius, G. Rimšelis, D. Gailevičius, V. Mizeikis, A. Melninkaitis, T. Baldacchini, L. Jonušauskas, and M. Malinauskas, “Optical damage thresholds of microstructures made by laser three-dimensional nanolithography,” Opt. Lett. 45(1), 13 (2020).
[Crossref]

C. Crook, J. Bauer, A. Guell Izard, C. Santos de Oliveira, J. Martins de Souza e Silva, J. B. Berger, and L. Valdevit, “Plate-nanolattices at the theoretical limit of stiffness and strength,” Nat. Commun. 11(1), 1579 (2020).
[Crossref]

2019 (7)

A. Guell Izard, J. Bauer, C. Crook, V. Turlo, and L. Valdevit, “Ultrahigh Energy Absorption Multifunctional Spinodal Nanoarchitectures,” Small 15(45), 1903834 (2019).
[Crossref]

R. Wang, K. J. Cheng, R. C. Advincula, and Q. Chen, “On the thermal processing and mechanical properties of 3D-printed polyether ether ketone,” MRS Commun. 9(3), 1046–1052 (2019).
[Crossref]

D. Wu, Z. Zhao, Q. Zhang, H. J. Qi, and D. Fang, “Mechanics of shape distortion of DLP 3D printed structures during UV post-curing,” Soft Matter 15(30), 6151–6159 (2019).
[Crossref]

J. Bauer, C. Crook, A. Guell Izard, Z. C. Eckel, N. Ruvalcaba, T. A. Schaedler, and L. Valdevit, “Additive Manufacturing of Ductile, Ultrastrong Polymer-Derived Nanoceramics,” Matter 1(6), 1547–1556 (2019).
[Crossref]

M. Schmid, D. Ludescher, and H. Giessen, “Optical properties of photoresists for femtosecond 3D printing: refractive index, extinction, luminescence-dose dependence, aging, heat treatment and comparison between 1-photon and 2-photon exposure,” Opt. Mater. Express 9(12), 4564 (2019).
[Crossref]

J. Bauer, A. Guell Izard, Y. Zhang, T. Baldacchini, and L. Valdevit, “Programmable Mechanical Properties of Two-Photon Polymerized Materials: From Nanowires to Bulk,” Adv. Mater. Technol. 4(9), 1900146 (2019).
[Crossref]

L. Jonušauskas, D. Gailevičius, S. Rekštytė, T. Baldacchini, S. Juodkazis, and M. Malinauskas, “Mesoscale laser 3D printing,” Opt. Express 27(11), 15205 (2019).
[Crossref]

2018 (1)

A. Marino, O. Tricinci, M. Battaglini, C. Filippeschi, V. Mattoli, E. Sinibaldi, and G. Ciofani, “A 3D Real-Scale, Biomimetic, and Biohybrid Model of the Blood-Brain Barrier Fabricated through Two-Photon Lithography,” Small 14(6), 1702959 (2018).
[Crossref]

2017 (1)

J. Bauer, L. R. Meza, T. A. Schaedler, R. Schwaiger, X. Zheng, and L. Valdevit, “Nanolattices: An Emerging Class of Mechanical Metamaterials,” Adv. Mater. 29(40), 1701850 (2017).
[Crossref]

2016 (4)

J. Bauer, A. Schroer, R. Schwaiger, and O. Kraft, “Approaching theoretical strength in glassy carbon nanolattices,” Nat. Mater. 15(4), 438–443 (2016).
[Crossref]

E. Waller, G. von Freymann, E. H. Waller, and G. von Freymann, “Spatio-Temporal Proximity Characteristics in 3D µ-Printing via Multi-Photon Absorption,” Polymers 8(8), 297 (2016).
[Crossref]

J. S. Oakdale, J. Ye, W. L. Smith, and J. Biener, “Post-print UV curing method for improving the mechanical properties of prototypes derived from two-photon lithography,” Opt. Express 24(24), 27077–27086 (2016).
[Crossref]

A. Schroer, J. Bauer, R. Schwaiger, and O. Kraft, “Optimizing the mechanical properties of polymer resists for strong and light-weight micro-truss structures,” Extreme Mech. Lett. 8, 283–291 (2016).
[Crossref]

2015 (1)

J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-Dimensional µ-Printing: An Enabling Technology,” Adv. Opt. Mater. 3(11), 1488–1507 (2015).
[Crossref]

2014 (5)

T. Bormann, B. Müller, M. Schinhammer, A. Kessler, P. Thalmann, and M. de Wild, “Microstructure of selective laser melted nickel–titanium,” Mater. Charact. 94, 189–202 (2014).
[Crossref]

L. J. Jiang, Y. S. Zhou, W. Xiong, Y. Gao, X. Huang, L. Jiang, T. Baldacchini, J.-F. Silvain, and Y. F. Lu, “Two-photon polymerization: investigation of chemical and mechanical properties of resins using Raman microspectroscopy,” Opt. Lett. 39(10), 3034–3037 (2014).
[Crossref]

J. Bauer, S. Hengsbach, I. Tesari, R. Schwaiger, and O. Kraft, “High-strength cellular ceramic composites with 3D microarchitecture,” Proc. Natl. Acad. Sci. U. S. A. 111(7), 2453–2458 (2014).
[Crossref]

M. Schumann, T. Bückmann, N. Gruhler, M. Wegener, and W. Pernice, “Hybrid 2D–3D optical devices for integrated optics by direct laser writing,” Light: Sci. Appl. 3(6), e175 (2014).
[Crossref]

A. Marino, C. Filippeschi, G. G. Genchi, V. Mattoli, B. Mazzolai, and G. Ciofani, “The Osteoprint: A bioinspired two-photon polymerized 3-D structure for the enhancement of bone-like cell differentiation,” Acta Biomater. 10(10), 4304–4313 (2014).
[Crossref]

2013 (1)

J. B. Mueller, J. Fischer, Y. J. Mange, T. Nann, and M. Wegener, “In-situ local temperature measurement during three-dimensional direct laser writing,” Appl. Phys. Lett. 103(12), 123107 (2013).
[Crossref]

2011 (5)

F. Klein, B. Richter, T. Striebel, C. M. Franz, G. Von Freymann, M. Wegener, and M. Bastmeyer, “Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater. 23(11), 1341–1345 (2011).
[Crossref]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).
[Crossref]

S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K.-T. Kim, Y.-K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength Direct Laser Patterning of Conductive Gold Nanostructures by Simultaneous Photopolymerization and Photoreduction,” ACS Nano 5(3), 1947–1957 (2011).
[Crossref]

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 18(17), 1290–1292 (2011).

K. Cicha, Z. Li, K. Stadlmann, A. Ovsianikov, R. Markut-Kohl, R. Liska, and J. Stampfl, “Evaluation of 3D structures fabricated with two-photon-photopolymerization by using FTIR spectroscopy,” J. Appl. Phys. 110(6), 064911 (2011).
[Crossref]

2010 (1)

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

2009 (2)

T. Baldacchini, M. Zimmerley, C.-H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of Microstructures Fabricated by Two-Photon Polymerization Using Coherent Anti-Stokes Raman Scattering Microscopy,” J. Phys. Chem. B 113(38), 12663–12668 (2009).
[Crossref]

A. Ovsianikov, X. Shizhou, M. Farsari, M. Vamvakaki, C. Fotakis, and B. N. Chichkov, “Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials,” Opt. Express 17(4), 2143 (2009).
[Crossref]

2008 (1)

K.-S. Lee, R. H. Kim, D.-Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).
[Crossref]

2005 (2)

L. H. Nguyen, M. Straub, and M. Gu, “Acrylate-Based Photopolymer for Two-Photon Microfabrication and Photonic Applications,” Adv. Funct. Mater. 15(2), 209–216 (2005).
[Crossref]

C. Quan, M. Soroush, M. C. Grady, J. E. Hansen, and W. J. Simonsick, “High-temperature homopolymerization of ethyl acrylate and n-butyl acrylate: Polymer characterization,” Macromolecules 38(18), 7619–7628 (2005).
[Crossref]

2004 (1)

T. Baldacchini, C. N. Lafratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95(11), 6072–6076 (2004).
[Crossref]

2003 (1)

2002 (1)

M. C. Grady, W. J. Simonsick, and R. A. Hutchinson, “Studies of higher temperature polymerization of n-butyl methacrylate and n-butyl acrylate,” Macromol. Symp. 182(1), 149–168 (2002).
[Crossref]

2000 (1)

M. Wen and A. V. Mccormick, “A Kinetic Model for Radical Trapping in Photopolymerization of Multifunctional Monomers,” Macromolecules 33(25), 9247–9254 (2000).
[Crossref]

1987 (1)

C. Decker and K. Moussa, “Radical trapping in photopolymerized acrylic networks,” J. Polym. Sci., Part A: Polym. Chem. 25(2), 739–742 (1987).
[Crossref]

Advincula, R. C.

R. Wang, K. J. Cheng, R. C. Advincula, and Q. Chen, “On the thermal processing and mechanical properties of 3D-printed polyether ether ketone,” MRS Commun. 9(3), 1046–1052 (2019).
[Crossref]

Baldacchini, T.

A. Butkutė, L. Čkanavičius, G. Rimšelis, D. Gailevičius, V. Mizeikis, A. Melninkaitis, T. Baldacchini, L. Jonušauskas, and M. Malinauskas, “Optical damage thresholds of microstructures made by laser three-dimensional nanolithography,” Opt. Lett. 45(1), 13 (2020).
[Crossref]

L. Jonušauskas, D. Gailevičius, S. Rekštytė, T. Baldacchini, S. Juodkazis, and M. Malinauskas, “Mesoscale laser 3D printing,” Opt. Express 27(11), 15205 (2019).
[Crossref]

J. Bauer, A. Guell Izard, Y. Zhang, T. Baldacchini, and L. Valdevit, “Programmable Mechanical Properties of Two-Photon Polymerized Materials: From Nanowires to Bulk,” Adv. Mater. Technol. 4(9), 1900146 (2019).
[Crossref]

L. J. Jiang, Y. S. Zhou, W. Xiong, Y. Gao, X. Huang, L. Jiang, T. Baldacchini, J.-F. Silvain, and Y. F. Lu, “Two-photon polymerization: investigation of chemical and mechanical properties of resins using Raman microspectroscopy,” Opt. Lett. 39(10), 3034–3037 (2014).
[Crossref]

T. Baldacchini, M. Zimmerley, C.-H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of Microstructures Fabricated by Two-Photon Polymerization Using Coherent Anti-Stokes Raman Scattering Microscopy,” J. Phys. Chem. B 113(38), 12663–12668 (2009).
[Crossref]

T. Baldacchini, C. N. Lafratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95(11), 6072–6076 (2004).
[Crossref]

T. Baldacchini, Three-Dimensional Microfabrication Using Two-Photon Polymerization, 1st ed. (Elsevier, 2015).

T. Baldacchini, C. N. LaFratta, and M. Malinauskas, “Metrology and process control,” in Three-Dimensional Microfabrication Using Two-Photon Polymerization (Elsevier, 2020) pp. 197–228.
[Crossref]

Balthasar, G.

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 18(17), 1290–1292 (2011).

Bastmeyer, M.

F. Klein, B. Richter, T. Striebel, C. M. Franz, G. Von Freymann, M. Wegener, and M. Bastmeyer, “Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater. 23(11), 1341–1345 (2011).
[Crossref]

Battaglini, M.

A. Marino, O. Tricinci, M. Battaglini, C. Filippeschi, V. Mattoli, E. Sinibaldi, and G. Ciofani, “A 3D Real-Scale, Biomimetic, and Biohybrid Model of the Blood-Brain Barrier Fabricated through Two-Photon Lithography,” Small 14(6), 1702959 (2018).
[Crossref]

Bauer, J.

C. Crook, J. Bauer, A. Guell Izard, C. Santos de Oliveira, J. Martins de Souza e Silva, J. B. Berger, and L. Valdevit, “Plate-nanolattices at the theoretical limit of stiffness and strength,” Nat. Commun. 11(1), 1579 (2020).
[Crossref]

J. Bauer, C. Crook, A. Guell Izard, Z. C. Eckel, N. Ruvalcaba, T. A. Schaedler, and L. Valdevit, “Additive Manufacturing of Ductile, Ultrastrong Polymer-Derived Nanoceramics,” Matter 1(6), 1547–1556 (2019).
[Crossref]

A. Guell Izard, J. Bauer, C. Crook, V. Turlo, and L. Valdevit, “Ultrahigh Energy Absorption Multifunctional Spinodal Nanoarchitectures,” Small 15(45), 1903834 (2019).
[Crossref]

J. Bauer, A. Guell Izard, Y. Zhang, T. Baldacchini, and L. Valdevit, “Programmable Mechanical Properties of Two-Photon Polymerized Materials: From Nanowires to Bulk,” Adv. Mater. Technol. 4(9), 1900146 (2019).
[Crossref]

J. Bauer, L. R. Meza, T. A. Schaedler, R. Schwaiger, X. Zheng, and L. Valdevit, “Nanolattices: An Emerging Class of Mechanical Metamaterials,” Adv. Mater. 29(40), 1701850 (2017).
[Crossref]

J. Bauer, A. Schroer, R. Schwaiger, and O. Kraft, “Approaching theoretical strength in glassy carbon nanolattices,” Nat. Mater. 15(4), 438–443 (2016).
[Crossref]

A. Schroer, J. Bauer, R. Schwaiger, and O. Kraft, “Optimizing the mechanical properties of polymer resists for strong and light-weight micro-truss structures,” Extreme Mech. Lett. 8, 283–291 (2016).
[Crossref]

J. Bauer, S. Hengsbach, I. Tesari, R. Schwaiger, and O. Kraft, “High-strength cellular ceramic composites with 3D microarchitecture,” Proc. Natl. Acad. Sci. U. S. A. 111(7), 2453–2458 (2014).
[Crossref]

Berger, J. B.

C. Crook, J. Bauer, A. Guell Izard, C. Santos de Oliveira, J. Martins de Souza e Silva, J. B. Berger, and L. Valdevit, “Plate-nanolattices at the theoretical limit of stiffness and strength,” Nat. Commun. 11(1), 1579 (2020).
[Crossref]

Biener, J.

Bormann, T.

T. Bormann, B. Müller, M. Schinhammer, A. Kessler, P. Thalmann, and M. de Wild, “Microstructure of selective laser melted nickel–titanium,” Mater. Charact. 94, 189–202 (2014).
[Crossref]

Bückmann, T.

M. Schumann, T. Bückmann, N. Gruhler, M. Wegener, and W. Pernice, “Hybrid 2D–3D optical devices for integrated optics by direct laser writing,” Light: Sci. Appl. 3(6), e175 (2014).
[Crossref]

Buividas, R.

T. Suzuki, J. Morikawa, T. Hashimoto, R. Buividas, G. Gervinskas, D. Paipulas, M. Malinauskas, V. Mizeikis, and S. Juodkazis, “Thermal and optical properties of sol-gel and SU-8 resists,” in Advanced Fabrication Technologies for Micro/Nano Optics and Photonics V, W. V. Schoenfeld, R. C. Rumpf, and G. von Freymann, eds. (SPIE, 2012), 8249, p. 82490 K.

Busch, K.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

Butkute, A.

Chen, Q.

R. Wang, K. J. Cheng, R. C. Advincula, and Q. Chen, “On the thermal processing and mechanical properties of 3D-printed polyether ether ketone,” MRS Commun. 9(3), 1046–1052 (2019).
[Crossref]

Cheng, K. J.

R. Wang, K. J. Cheng, R. C. Advincula, and Q. Chen, “On the thermal processing and mechanical properties of 3D-printed polyether ether ketone,” MRS Commun. 9(3), 1046–1052 (2019).
[Crossref]

Chichkov, B. N.

Cicha, K.

K. Cicha, Z. Li, K. Stadlmann, A. Ovsianikov, R. Markut-Kohl, R. Liska, and J. Stampfl, “Evaluation of 3D structures fabricated with two-photon-photopolymerization by using FTIR spectroscopy,” J. Appl. Phys. 110(6), 064911 (2011).
[Crossref]

Ciofani, G.

A. Marino, O. Tricinci, M. Battaglini, C. Filippeschi, V. Mattoli, E. Sinibaldi, and G. Ciofani, “A 3D Real-Scale, Biomimetic, and Biohybrid Model of the Blood-Brain Barrier Fabricated through Two-Photon Lithography,” Small 14(6), 1702959 (2018).
[Crossref]

A. Marino, C. Filippeschi, G. G. Genchi, V. Mattoli, B. Mazzolai, and G. Ciofani, “The Osteoprint: A bioinspired two-photon polymerized 3-D structure for the enhancement of bone-like cell differentiation,” Acta Biomater. 10(10), 4304–4313 (2014).
[Crossref]

Ckanavicius, L.

Cronauer, C.

Crook, C.

C. Crook, J. Bauer, A. Guell Izard, C. Santos de Oliveira, J. Martins de Souza e Silva, J. B. Berger, and L. Valdevit, “Plate-nanolattices at the theoretical limit of stiffness and strength,” Nat. Commun. 11(1), 1579 (2020).
[Crossref]

A. Guell Izard, J. Bauer, C. Crook, V. Turlo, and L. Valdevit, “Ultrahigh Energy Absorption Multifunctional Spinodal Nanoarchitectures,” Small 15(45), 1903834 (2019).
[Crossref]

J. Bauer, C. Crook, A. Guell Izard, Z. C. Eckel, N. Ruvalcaba, T. A. Schaedler, and L. Valdevit, “Additive Manufacturing of Ductile, Ultrastrong Polymer-Derived Nanoceramics,” Matter 1(6), 1547–1556 (2019).
[Crossref]

de Wild, M.

T. Bormann, B. Müller, M. Schinhammer, A. Kessler, P. Thalmann, and M. de Wild, “Microstructure of selective laser melted nickel–titanium,” Mater. Charact. 94, 189–202 (2014).
[Crossref]

Decker, C.

C. Decker and K. Moussa, “Radical trapping in photopolymerized acrylic networks,” J. Polym. Sci., Part A: Polym. Chem. 25(2), 739–742 (1987).
[Crossref]

Domann, G.

Eckel, Z. C.

J. Bauer, C. Crook, A. Guell Izard, Z. C. Eckel, N. Ruvalcaba, T. A. Schaedler, and L. Valdevit, “Additive Manufacturing of Ductile, Ultrastrong Polymer-Derived Nanoceramics,” Matter 1(6), 1547–1556 (2019).
[Crossref]

Egbert, A.

Essig, S.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

Fang, D.

D. Wu, Z. Zhao, Q. Zhang, H. J. Qi, and D. Fang, “Mechanics of shape distortion of DLP 3D printed structures during UV post-curing,” Soft Matter 15(30), 6151–6159 (2019).
[Crossref]

Farrer, R. A.

T. Baldacchini, C. N. Lafratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95(11), 6072–6076 (2004).
[Crossref]

Farsari, M.

Filippeschi, C.

A. Marino, O. Tricinci, M. Battaglini, C. Filippeschi, V. Mattoli, E. Sinibaldi, and G. Ciofani, “A 3D Real-Scale, Biomimetic, and Biohybrid Model of the Blood-Brain Barrier Fabricated through Two-Photon Lithography,” Small 14(6), 1702959 (2018).
[Crossref]

A. Marino, C. Filippeschi, G. G. Genchi, V. Mattoli, B. Mazzolai, and G. Ciofani, “The Osteoprint: A bioinspired two-photon polymerized 3-D structure for the enhancement of bone-like cell differentiation,” Acta Biomater. 10(10), 4304–4313 (2014).
[Crossref]

Fischer, J.

J. B. Mueller, J. Fischer, Y. J. Mange, T. Nann, and M. Wegener, “In-situ local temperature measurement during three-dimensional direct laser writing,” Appl. Phys. Lett. 103(12), 123107 (2013).
[Crossref]

Fotakis, C.

Fourkas, J. T.

T. Baldacchini, C. N. Lafratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95(11), 6072–6076 (2004).
[Crossref]

J. T. Fourkas, “Fundamentals of Two-Photon Fabrication,” in Three-Dimensional Microfabrication Using Two-Photon Polymerization, Tommaso Baldacchini, ed. (William Andrew Publishing, 2016), pp. 45–61.

Franz, C. M.

F. Klein, B. Richter, T. Striebel, C. M. Franz, G. Von Freymann, M. Wegener, and M. Bastmeyer, “Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater. 23(11), 1341–1345 (2011).
[Crossref]

Freude, W.

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 18(17), 1290–1292 (2011).

Fröhlich, L.

Furlani, E. P.

S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K.-T. Kim, Y.-K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength Direct Laser Patterning of Conductive Gold Nanostructures by Simultaneous Photopolymerization and Photoreduction,” ACS Nano 5(3), 1947–1957 (2011).
[Crossref]

Gailevicius, D.

Gao, Y.

Genchi, G. G.

A. Marino, C. Filippeschi, G. G. Genchi, V. Mattoli, B. Mazzolai, and G. Ciofani, “The Osteoprint: A bioinspired two-photon polymerized 3-D structure for the enhancement of bone-like cell differentiation,” Acta Biomater. 10(10), 4304–4313 (2014).
[Crossref]

Gervinskas, G.

T. Suzuki, J. Morikawa, T. Hashimoto, R. Buividas, G. Gervinskas, D. Paipulas, M. Malinauskas, V. Mizeikis, and S. Juodkazis, “Thermal and optical properties of sol-gel and SU-8 resists,” in Advanced Fabrication Technologies for Micro/Nano Optics and Photonics V, W. V. Schoenfeld, R. C. Rumpf, and G. von Freymann, eds. (SPIE, 2012), 8249, p. 82490 K.

Giessen, H.

Grady, M. C.

C. Quan, M. Soroush, M. C. Grady, J. E. Hansen, and W. J. Simonsick, “High-temperature homopolymerization of ethyl acrylate and n-butyl acrylate: Polymer characterization,” Macromolecules 38(18), 7619–7628 (2005).
[Crossref]

M. C. Grady, W. J. Simonsick, and R. A. Hutchinson, “Studies of higher temperature polymerization of n-butyl methacrylate and n-butyl acrylate,” Macromol. Symp. 182(1), 149–168 (2002).
[Crossref]

Gruhler, N.

M. Schumann, T. Bückmann, N. Gruhler, M. Wegener, and W. Pernice, “Hybrid 2D–3D optical devices for integrated optics by direct laser writing,” Light: Sci. Appl. 3(6), e175 (2014).
[Crossref]

Gu, M.

L. H. Nguyen, M. Straub, and M. Gu, “Acrylate-Based Photopolymer for Two-Photon Microfabrication and Photonic Applications,” Adv. Funct. Mater. 15(2), 209–216 (2005).
[Crossref]

Guell Izard, A.

C. Crook, J. Bauer, A. Guell Izard, C. Santos de Oliveira, J. Martins de Souza e Silva, J. B. Berger, and L. Valdevit, “Plate-nanolattices at the theoretical limit of stiffness and strength,” Nat. Commun. 11(1), 1579 (2020).
[Crossref]

J. Bauer, C. Crook, A. Guell Izard, Z. C. Eckel, N. Ruvalcaba, T. A. Schaedler, and L. Valdevit, “Additive Manufacturing of Ductile, Ultrastrong Polymer-Derived Nanoceramics,” Matter 1(6), 1547–1556 (2019).
[Crossref]

A. Guell Izard, J. Bauer, C. Crook, V. Turlo, and L. Valdevit, “Ultrahigh Energy Absorption Multifunctional Spinodal Nanoarchitectures,” Small 15(45), 1903834 (2019).
[Crossref]

J. Bauer, A. Guell Izard, Y. Zhang, T. Baldacchini, and L. Valdevit, “Programmable Mechanical Properties of Two-Photon Polymerized Materials: From Nanowires to Bulk,” Adv. Mater. Technol. 4(9), 1900146 (2019).
[Crossref]

Hansen, J. E.

C. Quan, M. Soroush, M. C. Grady, J. E. Hansen, and W. J. Simonsick, “High-temperature homopolymerization of ethyl acrylate and n-butyl acrylate: Polymer characterization,” Macromolecules 38(18), 7619–7628 (2005).
[Crossref]

Hashimoto, T.

T. Suzuki, J. Morikawa, T. Hashimoto, R. Buividas, G. Gervinskas, D. Paipulas, M. Malinauskas, V. Mizeikis, and S. Juodkazis, “Thermal and optical properties of sol-gel and SU-8 resists,” in Advanced Fabrication Technologies for Micro/Nano Optics and Photonics V, W. V. Schoenfeld, R. C. Rumpf, and G. von Freymann, eds. (SPIE, 2012), 8249, p. 82490 K.

Hengsbach, S.

J. Bauer, S. Hengsbach, I. Tesari, R. Schwaiger, and O. Kraft, “High-strength cellular ceramic composites with 3D microarchitecture,” Proc. Natl. Acad. Sci. U. S. A. 111(7), 2453–2458 (2014).
[Crossref]

Hillerkuss, D.

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 18(17), 1290–1292 (2011).

Hohmann, J. K.

J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-Dimensional µ-Printing: An Enabling Technology,” Adv. Opt. Mater. 3(11), 1488–1507 (2015).
[Crossref]

Houbertz, R.

Huang, X.

Hutchinson, R. A.

M. C. Grady, W. J. Simonsick, and R. A. Hutchinson, “Studies of higher temperature polymerization of n-butyl methacrylate and n-butyl acrylate,” Macromol. Symp. 182(1), 149–168 (2002).
[Crossref]

Jacobs, P. F.

P. F. Jacobs, Rapid Prototyping and Manufacturing: Fundamentals of StereoLithography (McGraw-Hill, Inc., 1993).

Jiang, L.

Jiang, L. J.

Jonušauskas, L.

Jordan, M.

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 18(17), 1290–1292 (2011).

Juodkazis, S.

L. Jonušauskas, D. Gailevičius, S. Rekštytė, T. Baldacchini, S. Juodkazis, and M. Malinauskas, “Mesoscale laser 3D printing,” Opt. Express 27(11), 15205 (2019).
[Crossref]

T. Suzuki, J. Morikawa, T. Hashimoto, R. Buividas, G. Gervinskas, D. Paipulas, M. Malinauskas, V. Mizeikis, and S. Juodkazis, “Thermal and optical properties of sol-gel and SU-8 resists,” in Advanced Fabrication Technologies for Micro/Nano Optics and Photonics V, W. V. Schoenfeld, R. C. Rumpf, and G. von Freymann, eds. (SPIE, 2012), 8249, p. 82490 K.

Kessler, A.

T. Bormann, B. Müller, M. Schinhammer, A. Kessler, P. Thalmann, and M. de Wild, “Microstructure of selective laser melted nickel–titanium,” Mater. Charact. 94, 189–202 (2014).
[Crossref]

Kim, K.-T.

S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K.-T. Kim, Y.-K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength Direct Laser Patterning of Conductive Gold Nanostructures by Simultaneous Photopolymerization and Photoreduction,” ACS Nano 5(3), 1947–1957 (2011).
[Crossref]

Kim, R. H.

K.-S. Lee, R. H. Kim, D.-Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).
[Crossref]

Klein, F.

F. Klein, B. Richter, T. Striebel, C. M. Franz, G. Von Freymann, M. Wegener, and M. Bastmeyer, “Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater. 23(11), 1341–1345 (2011).
[Crossref]

Koos, C.

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 18(17), 1290–1292 (2011).

Kraft, O.

A. Schroer, J. Bauer, R. Schwaiger, and O. Kraft, “Optimizing the mechanical properties of polymer resists for strong and light-weight micro-truss structures,” Extreme Mech. Lett. 8, 283–291 (2016).
[Crossref]

J. Bauer, A. Schroer, R. Schwaiger, and O. Kraft, “Approaching theoretical strength in glassy carbon nanolattices,” Nat. Mater. 15(4), 438–443 (2016).
[Crossref]

J. Bauer, S. Hengsbach, I. Tesari, R. Schwaiger, and O. Kraft, “High-strength cellular ceramic composites with 3D microarchitecture,” Proc. Natl. Acad. Sci. U. S. A. 111(7), 2453–2458 (2014).
[Crossref]

Kuo, C.-H.

T. Baldacchini, M. Zimmerley, C.-H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of Microstructures Fabricated by Two-Photon Polymerization Using Coherent Anti-Stokes Raman Scattering Microscopy,” J. Phys. Chem. B 113(38), 12663–12668 (2009).
[Crossref]

Lafratta, C. N.

T. Baldacchini, C. N. Lafratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95(11), 6072–6076 (2004).
[Crossref]

T. Baldacchini, C. N. LaFratta, and M. Malinauskas, “Metrology and process control,” in Three-Dimensional Microfabrication Using Two-Photon Polymerization (Elsevier, 2020) pp. 197–228.
[Crossref]

Ledermann, A.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

Lee, K.-S.

K.-S. Lee, R. H. Kim, D.-Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).
[Crossref]

Leuthold, J.

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 18(17), 1290–1292 (2011).

Li, Z.

K. Cicha, Z. Li, K. Stadlmann, A. Ovsianikov, R. Markut-Kohl, R. Liska, and J. Stampfl, “Evaluation of 3D structures fabricated with two-photon-photopolymerization by using FTIR spectroscopy,” J. Appl. Phys. 110(6), 064911 (2011).
[Crossref]

Lindenmann, N.

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 18(17), 1290–1292 (2011).

Liska, R.

K. Cicha, Z. Li, K. Stadlmann, A. Ovsianikov, R. Markut-Kohl, R. Liska, and J. Stampfl, “Evaluation of 3D structures fabricated with two-photon-photopolymerization by using FTIR spectroscopy,” J. Appl. Phys. 110(6), 064911 (2011).
[Crossref]

Lu, Y. F.

Ludescher, D.

Malinauskas, M.

A. Butkutė, L. Čkanavičius, G. Rimšelis, D. Gailevičius, V. Mizeikis, A. Melninkaitis, T. Baldacchini, L. Jonušauskas, and M. Malinauskas, “Optical damage thresholds of microstructures made by laser three-dimensional nanolithography,” Opt. Lett. 45(1), 13 (2020).
[Crossref]

L. Jonušauskas, D. Gailevičius, S. Rekštytė, T. Baldacchini, S. Juodkazis, and M. Malinauskas, “Mesoscale laser 3D printing,” Opt. Express 27(11), 15205 (2019).
[Crossref]

T. Baldacchini, C. N. LaFratta, and M. Malinauskas, “Metrology and process control,” in Three-Dimensional Microfabrication Using Two-Photon Polymerization (Elsevier, 2020) pp. 197–228.
[Crossref]

T. Suzuki, J. Morikawa, T. Hashimoto, R. Buividas, G. Gervinskas, D. Paipulas, M. Malinauskas, V. Mizeikis, and S. Juodkazis, “Thermal and optical properties of sol-gel and SU-8 resists,” in Advanced Fabrication Technologies for Micro/Nano Optics and Photonics V, W. V. Schoenfeld, R. C. Rumpf, and G. von Freymann, eds. (SPIE, 2012), 8249, p. 82490 K.

Mange, Y. J.

J. B. Mueller, J. Fischer, Y. J. Mange, T. Nann, and M. Wegener, “In-situ local temperature measurement during three-dimensional direct laser writing,” Appl. Phys. Lett. 103(12), 123107 (2013).
[Crossref]

Marino, A.

A. Marino, O. Tricinci, M. Battaglini, C. Filippeschi, V. Mattoli, E. Sinibaldi, and G. Ciofani, “A 3D Real-Scale, Biomimetic, and Biohybrid Model of the Blood-Brain Barrier Fabricated through Two-Photon Lithography,” Small 14(6), 1702959 (2018).
[Crossref]

A. Marino, C. Filippeschi, G. G. Genchi, V. Mattoli, B. Mazzolai, and G. Ciofani, “The Osteoprint: A bioinspired two-photon polymerized 3-D structure for the enhancement of bone-like cell differentiation,” Acta Biomater. 10(10), 4304–4313 (2014).
[Crossref]

Markut-Kohl, R.

K. Cicha, Z. Li, K. Stadlmann, A. Ovsianikov, R. Markut-Kohl, R. Liska, and J. Stampfl, “Evaluation of 3D structures fabricated with two-photon-photopolymerization by using FTIR spectroscopy,” J. Appl. Phys. 110(6), 064911 (2011).
[Crossref]

Martins de Souza e Silva, J.

C. Crook, J. Bauer, A. Guell Izard, C. Santos de Oliveira, J. Martins de Souza e Silva, J. B. Berger, and L. Valdevit, “Plate-nanolattices at the theoretical limit of stiffness and strength,” Nat. Commun. 11(1), 1579 (2020).
[Crossref]

Mattoli, V.

A. Marino, O. Tricinci, M. Battaglini, C. Filippeschi, V. Mattoli, E. Sinibaldi, and G. Ciofani, “A 3D Real-Scale, Biomimetic, and Biohybrid Model of the Blood-Brain Barrier Fabricated through Two-Photon Lithography,” Small 14(6), 1702959 (2018).
[Crossref]

A. Marino, C. Filippeschi, G. G. Genchi, V. Mattoli, B. Mazzolai, and G. Ciofani, “The Osteoprint: A bioinspired two-photon polymerized 3-D structure for the enhancement of bone-like cell differentiation,” Acta Biomater. 10(10), 4304–4313 (2014).
[Crossref]

Mazzolai, B.

A. Marino, C. Filippeschi, G. G. Genchi, V. Mattoli, B. Mazzolai, and G. Ciofani, “The Osteoprint: A bioinspired two-photon polymerized 3-D structure for the enhancement of bone-like cell differentiation,” Acta Biomater. 10(10), 4304–4313 (2014).
[Crossref]

Mccormick, A. V.

M. Wen and A. V. Mccormick, “A Kinetic Model for Radical Trapping in Photopolymerization of Multifunctional Monomers,” Macromolecules 33(25), 9247–9254 (2000).
[Crossref]

Melninkaitis, A.

Meza, L. R.

J. Bauer, L. R. Meza, T. A. Schaedler, R. Schwaiger, X. Zheng, and L. Valdevit, “Nanolattices: An Emerging Class of Mechanical Metamaterials,” Adv. Mater. 29(40), 1701850 (2017).
[Crossref]

Mizeikis, V.

A. Butkutė, L. Čkanavičius, G. Rimšelis, D. Gailevičius, V. Mizeikis, A. Melninkaitis, T. Baldacchini, L. Jonušauskas, and M. Malinauskas, “Optical damage thresholds of microstructures made by laser three-dimensional nanolithography,” Opt. Lett. 45(1), 13 (2020).
[Crossref]

T. Suzuki, J. Morikawa, T. Hashimoto, R. Buividas, G. Gervinskas, D. Paipulas, M. Malinauskas, V. Mizeikis, and S. Juodkazis, “Thermal and optical properties of sol-gel and SU-8 resists,” in Advanced Fabrication Technologies for Micro/Nano Optics and Photonics V, W. V. Schoenfeld, R. C. Rumpf, and G. von Freymann, eds. (SPIE, 2012), 8249, p. 82490 K.

Morikawa, J.

T. Suzuki, J. Morikawa, T. Hashimoto, R. Buividas, G. Gervinskas, D. Paipulas, M. Malinauskas, V. Mizeikis, and S. Juodkazis, “Thermal and optical properties of sol-gel and SU-8 resists,” in Advanced Fabrication Technologies for Micro/Nano Optics and Photonics V, W. V. Schoenfeld, R. C. Rumpf, and G. von Freymann, eds. (SPIE, 2012), 8249, p. 82490 K.

Moussa, K.

C. Decker and K. Moussa, “Radical trapping in photopolymerized acrylic networks,” J. Polym. Sci., Part A: Polym. Chem. 25(2), 739–742 (1987).
[Crossref]

Mueller, J. B.

J. B. Mueller, J. Fischer, Y. J. Mange, T. Nann, and M. Wegener, “In-situ local temperature measurement during three-dimensional direct laser writing,” Appl. Phys. Lett. 103(12), 123107 (2013).
[Crossref]

Müller, B.

T. Bormann, B. Müller, M. Schinhammer, A. Kessler, P. Thalmann, and M. de Wild, “Microstructure of selective laser melted nickel–titanium,” Mater. Charact. 94, 189–202 (2014).
[Crossref]

Nann, T.

J. B. Mueller, J. Fischer, Y. J. Mange, T. Nann, and M. Wegener, “In-situ local temperature measurement during three-dimensional direct laser writing,” Appl. Phys. Lett. 103(12), 123107 (2013).
[Crossref]

Naughton, M. J.

T. Baldacchini, C. N. Lafratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95(11), 6072–6076 (2004).
[Crossref]

Nguyen, L. H.

L. H. Nguyen, M. Straub, and M. Gu, “Acrylate-Based Photopolymer for Two-Photon Microfabrication and Photonic Applications,” Adv. Funct. Mater. 15(2), 209–216 (2005).
[Crossref]

Oakdale, J. S.

Ober, C. K.

C. K. Ober, “Materials systems for 2-photon lithography,” in Three-Dimensional Microfabrication Using Two-Photon Polymerization (Elsevier, 2020), pp. 143–174

Ostendorf, A.

Ovsianikov, A.

K. Cicha, Z. Li, K. Stadlmann, A. Ovsianikov, R. Markut-Kohl, R. Liska, and J. Stampfl, “Evaluation of 3D structures fabricated with two-photon-photopolymerization by using FTIR spectroscopy,” J. Appl. Phys. 110(6), 064911 (2011).
[Crossref]

A. Ovsianikov, X. Shizhou, M. Farsari, M. Vamvakaki, C. Fotakis, and B. N. Chichkov, “Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials,” Opt. Express 17(4), 2143 (2009).
[Crossref]

Paipulas, D.

T. Suzuki, J. Morikawa, T. Hashimoto, R. Buividas, G. Gervinskas, D. Paipulas, M. Malinauskas, V. Mizeikis, and S. Juodkazis, “Thermal and optical properties of sol-gel and SU-8 resists,” in Advanced Fabrication Technologies for Micro/Nano Optics and Photonics V, W. V. Schoenfeld, R. C. Rumpf, and G. von Freymann, eds. (SPIE, 2012), 8249, p. 82490 K.

Park, S. H.

K.-S. Lee, R. H. Kim, D.-Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).
[Crossref]

Pernice, W.

M. Schumann, T. Bückmann, N. Gruhler, M. Wegener, and W. Pernice, “Hybrid 2D–3D optical devices for integrated optics by direct laser writing,” Light: Sci. Appl. 3(6), e175 (2014).
[Crossref]

Popall, M.

Potma, E. O.

T. Baldacchini, M. Zimmerley, C.-H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of Microstructures Fabricated by Two-Photon Polymerization Using Coherent Anti-Stokes Raman Scattering Microscopy,” J. Phys. Chem. B 113(38), 12663–12668 (2009).
[Crossref]

Prasad, P. N.

S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K.-T. Kim, Y.-K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength Direct Laser Patterning of Conductive Gold Nanostructures by Simultaneous Photopolymerization and Photoreduction,” ACS Nano 5(3), 1947–1957 (2011).
[Crossref]

Qi, H. J.

D. Wu, Z. Zhao, Q. Zhang, H. J. Qi, and D. Fang, “Mechanics of shape distortion of DLP 3D printed structures during UV post-curing,” Soft Matter 15(30), 6151–6159 (2019).
[Crossref]

Quan, C.

C. Quan, M. Soroush, M. C. Grady, J. E. Hansen, and W. J. Simonsick, “High-temperature homopolymerization of ethyl acrylate and n-butyl acrylate: Polymer characterization,” Macromolecules 38(18), 7619–7628 (2005).
[Crossref]

Rappe, A. M.

S. Srinivasan and A. M. Rappe, “Theoretical Insights Into Thermal Self-Initiation Reactions of Acrylates,” in Computational Quantum Chemistry (Elsevier, 2019), pp. 99–134.

Rekštyte, S.

Renner, M.

J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-Dimensional µ-Printing: An Enabling Technology,” Adv. Opt. Mater. 3(11), 1488–1507 (2015).
[Crossref]

Richter, B.

F. Klein, B. Richter, T. Striebel, C. M. Franz, G. Von Freymann, M. Wegener, and M. Bastmeyer, “Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater. 23(11), 1341–1345 (2011).
[Crossref]

Rimšelis, G.

Ruvalcaba, N.

J. Bauer, C. Crook, A. Guell Izard, Z. C. Eckel, N. Ruvalcaba, T. A. Schaedler, and L. Valdevit, “Additive Manufacturing of Ductile, Ultrastrong Polymer-Derived Nanoceramics,” Matter 1(6), 1547–1556 (2019).
[Crossref]

Saleh, B. E. A.

T. Baldacchini, C. N. Lafratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95(11), 6072–6076 (2004).
[Crossref]

Santos de Oliveira, C.

C. Crook, J. Bauer, A. Guell Izard, C. Santos de Oliveira, J. Martins de Souza e Silva, J. B. Berger, and L. Valdevit, “Plate-nanolattices at the theoretical limit of stiffness and strength,” Nat. Commun. 11(1), 1579 (2020).
[Crossref]

Schaedler, T. A.

J. Bauer, C. Crook, A. Guell Izard, Z. C. Eckel, N. Ruvalcaba, T. A. Schaedler, and L. Valdevit, “Additive Manufacturing of Ductile, Ultrastrong Polymer-Derived Nanoceramics,” Matter 1(6), 1547–1556 (2019).
[Crossref]

J. Bauer, L. R. Meza, T. A. Schaedler, R. Schwaiger, X. Zheng, and L. Valdevit, “Nanolattices: An Emerging Class of Mechanical Metamaterials,” Adv. Mater. 29(40), 1701850 (2017).
[Crossref]

Schinhammer, M.

T. Bormann, B. Müller, M. Schinhammer, A. Kessler, P. Thalmann, and M. de Wild, “Microstructure of selective laser melted nickel–titanium,” Mater. Charact. 94, 189–202 (2014).
[Crossref]

Schmid, M.

Schmogrow, R.

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 18(17), 1290–1292 (2011).

Schroer, A.

J. Bauer, A. Schroer, R. Schwaiger, and O. Kraft, “Approaching theoretical strength in glassy carbon nanolattices,” Nat. Mater. 15(4), 438–443 (2016).
[Crossref]

A. Schroer, J. Bauer, R. Schwaiger, and O. Kraft, “Optimizing the mechanical properties of polymer resists for strong and light-weight micro-truss structures,” Extreme Mech. Lett. 8, 283–291 (2016).
[Crossref]

Schulz, J.

Schumann, M.

M. Schumann, T. Bückmann, N. Gruhler, M. Wegener, and W. Pernice, “Hybrid 2D–3D optical devices for integrated optics by direct laser writing,” Light: Sci. Appl. 3(6), e175 (2014).
[Crossref]

Schwaiger, R.

J. Bauer, L. R. Meza, T. A. Schaedler, R. Schwaiger, X. Zheng, and L. Valdevit, “Nanolattices: An Emerging Class of Mechanical Metamaterials,” Adv. Mater. 29(40), 1701850 (2017).
[Crossref]

J. Bauer, A. Schroer, R. Schwaiger, and O. Kraft, “Approaching theoretical strength in glassy carbon nanolattices,” Nat. Mater. 15(4), 438–443 (2016).
[Crossref]

A. Schroer, J. Bauer, R. Schwaiger, and O. Kraft, “Optimizing the mechanical properties of polymer resists for strong and light-weight micro-truss structures,” Extreme Mech. Lett. 8, 283–291 (2016).
[Crossref]

J. Bauer, S. Hengsbach, I. Tesari, R. Schwaiger, and O. Kraft, “High-strength cellular ceramic composites with 3D microarchitecture,” Proc. Natl. Acad. Sci. U. S. A. 111(7), 2453–2458 (2014).
[Crossref]

Serbin, J.

Shizhou, X.

Shukla, S.

S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K.-T. Kim, Y.-K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength Direct Laser Patterning of Conductive Gold Nanostructures by Simultaneous Photopolymerization and Photoreduction,” ACS Nano 5(3), 1947–1957 (2011).
[Crossref]

Silvain, J.-F.

Simonsick, W. J.

C. Quan, M. Soroush, M. C. Grady, J. E. Hansen, and W. J. Simonsick, “High-temperature homopolymerization of ethyl acrylate and n-butyl acrylate: Polymer characterization,” Macromolecules 38(18), 7619–7628 (2005).
[Crossref]

M. C. Grady, W. J. Simonsick, and R. A. Hutchinson, “Studies of higher temperature polymerization of n-butyl methacrylate and n-butyl acrylate,” Macromol. Symp. 182(1), 149–168 (2002).
[Crossref]

Sinibaldi, E.

A. Marino, O. Tricinci, M. Battaglini, C. Filippeschi, V. Mattoli, E. Sinibaldi, and G. Ciofani, “A 3D Real-Scale, Biomimetic, and Biohybrid Model of the Blood-Brain Barrier Fabricated through Two-Photon Lithography,” Small 14(6), 1702959 (2018).
[Crossref]

Smith, W. L.

Soroush, M.

C. Quan, M. Soroush, M. C. Grady, J. E. Hansen, and W. J. Simonsick, “High-temperature homopolymerization of ethyl acrylate and n-butyl acrylate: Polymer characterization,” Macromolecules 38(18), 7619–7628 (2005).
[Crossref]

Soukoulis, C. M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).
[Crossref]

Srinivasan, S.

S. Srinivasan and A. M. Rappe, “Theoretical Insights Into Thermal Self-Initiation Reactions of Acrylates,” in Computational Quantum Chemistry (Elsevier, 2019), pp. 99–134.

Stadlmann, K.

K. Cicha, Z. Li, K. Stadlmann, A. Ovsianikov, R. Markut-Kohl, R. Liska, and J. Stampfl, “Evaluation of 3D structures fabricated with two-photon-photopolymerization by using FTIR spectroscopy,” J. Appl. Phys. 110(6), 064911 (2011).
[Crossref]

Stampfl, J.

K. Cicha, Z. Li, K. Stadlmann, A. Ovsianikov, R. Markut-Kohl, R. Liska, and J. Stampfl, “Evaluation of 3D structures fabricated with two-photon-photopolymerization by using FTIR spectroscopy,” J. Appl. Phys. 110(6), 064911 (2011).
[Crossref]

Staude, I.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

Straub, M.

L. H. Nguyen, M. Straub, and M. Gu, “Acrylate-Based Photopolymer for Two-Photon Microfabrication and Photonic Applications,” Adv. Funct. Mater. 15(2), 209–216 (2005).
[Crossref]

Striebel, T.

F. Klein, B. Richter, T. Striebel, C. M. Franz, G. Von Freymann, M. Wegener, and M. Bastmeyer, “Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater. 23(11), 1341–1345 (2011).
[Crossref]

Suzuki, T.

T. Suzuki, J. Morikawa, T. Hashimoto, R. Buividas, G. Gervinskas, D. Paipulas, M. Malinauskas, V. Mizeikis, and S. Juodkazis, “Thermal and optical properties of sol-gel and SU-8 resists,” in Advanced Fabrication Technologies for Micro/Nano Optics and Photonics V, W. V. Schoenfeld, R. C. Rumpf, and G. von Freymann, eds. (SPIE, 2012), 8249, p. 82490 K.

Swihart, M. T.

S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K.-T. Kim, Y.-K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength Direct Laser Patterning of Conductive Gold Nanostructures by Simultaneous Photopolymerization and Photoreduction,” ACS Nano 5(3), 1947–1957 (2011).
[Crossref]

Teich, M. C.

T. Baldacchini, C. N. Lafratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95(11), 6072–6076 (2004).
[Crossref]

Tesari, I.

J. Bauer, S. Hengsbach, I. Tesari, R. Schwaiger, and O. Kraft, “High-strength cellular ceramic composites with 3D microarchitecture,” Proc. Natl. Acad. Sci. U. S. A. 111(7), 2453–2458 (2014).
[Crossref]

Thalmann, P.

T. Bormann, B. Müller, M. Schinhammer, A. Kessler, P. Thalmann, and M. de Wild, “Microstructure of selective laser melted nickel–titanium,” Mater. Charact. 94, 189–202 (2014).
[Crossref]

Thiel, M.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

Tricinci, O.

A. Marino, O. Tricinci, M. Battaglini, C. Filippeschi, V. Mattoli, E. Sinibaldi, and G. Ciofani, “A 3D Real-Scale, Biomimetic, and Biohybrid Model of the Blood-Brain Barrier Fabricated through Two-Photon Lithography,” Small 14(6), 1702959 (2018).
[Crossref]

Turlo, V.

A. Guell Izard, J. Bauer, C. Crook, V. Turlo, and L. Valdevit, “Ultrahigh Energy Absorption Multifunctional Spinodal Nanoarchitectures,” Small 15(45), 1903834 (2019).
[Crossref]

Urbas, A.

S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K.-T. Kim, Y.-K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength Direct Laser Patterning of Conductive Gold Nanostructures by Simultaneous Photopolymerization and Photoreduction,” ACS Nano 5(3), 1947–1957 (2011).
[Crossref]

Valdevit, L.

C. Crook, J. Bauer, A. Guell Izard, C. Santos de Oliveira, J. Martins de Souza e Silva, J. B. Berger, and L. Valdevit, “Plate-nanolattices at the theoretical limit of stiffness and strength,” Nat. Commun. 11(1), 1579 (2020).
[Crossref]

A. Guell Izard, J. Bauer, C. Crook, V. Turlo, and L. Valdevit, “Ultrahigh Energy Absorption Multifunctional Spinodal Nanoarchitectures,” Small 15(45), 1903834 (2019).
[Crossref]

J. Bauer, C. Crook, A. Guell Izard, Z. C. Eckel, N. Ruvalcaba, T. A. Schaedler, and L. Valdevit, “Additive Manufacturing of Ductile, Ultrastrong Polymer-Derived Nanoceramics,” Matter 1(6), 1547–1556 (2019).
[Crossref]

J. Bauer, A. Guell Izard, Y. Zhang, T. Baldacchini, and L. Valdevit, “Programmable Mechanical Properties of Two-Photon Polymerized Materials: From Nanowires to Bulk,” Adv. Mater. Technol. 4(9), 1900146 (2019).
[Crossref]

J. Bauer, L. R. Meza, T. A. Schaedler, R. Schwaiger, X. Zheng, and L. Valdevit, “Nanolattices: An Emerging Class of Mechanical Metamaterials,” Adv. Mater. 29(40), 1701850 (2017).
[Crossref]

Vamvakaki, M.

Vidal, X.

S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K.-T. Kim, Y.-K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength Direct Laser Patterning of Conductive Gold Nanostructures by Simultaneous Photopolymerization and Photoreduction,” ACS Nano 5(3), 1947–1957 (2011).
[Crossref]

von Freymann, G.

E. Waller, G. von Freymann, E. H. Waller, and G. von Freymann, “Spatio-Temporal Proximity Characteristics in 3D µ-Printing via Multi-Photon Absorption,” Polymers 8(8), 297 (2016).
[Crossref]

E. Waller, G. von Freymann, E. H. Waller, and G. von Freymann, “Spatio-Temporal Proximity Characteristics in 3D µ-Printing via Multi-Photon Absorption,” Polymers 8(8), 297 (2016).
[Crossref]

J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-Dimensional µ-Printing: An Enabling Technology,” Adv. Opt. Mater. 3(11), 1488–1507 (2015).
[Crossref]

F. Klein, B. Richter, T. Striebel, C. M. Franz, G. Von Freymann, M. Wegener, and M. Bastmeyer, “Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater. 23(11), 1341–1345 (2011).
[Crossref]

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

Waller, E.

E. Waller, G. von Freymann, E. H. Waller, and G. von Freymann, “Spatio-Temporal Proximity Characteristics in 3D µ-Printing via Multi-Photon Absorption,” Polymers 8(8), 297 (2016).
[Crossref]

Waller, E. H.

E. Waller, G. von Freymann, E. H. Waller, and G. von Freymann, “Spatio-Temporal Proximity Characteristics in 3D µ-Printing via Multi-Photon Absorption,” Polymers 8(8), 297 (2016).
[Crossref]

J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-Dimensional µ-Printing: An Enabling Technology,” Adv. Opt. Mater. 3(11), 1488–1507 (2015).
[Crossref]

Wang, R.

R. Wang, K. J. Cheng, R. C. Advincula, and Q. Chen, “On the thermal processing and mechanical properties of 3D-printed polyether ether ketone,” MRS Commun. 9(3), 1046–1052 (2019).
[Crossref]

Wegener, M.

M. Schumann, T. Bückmann, N. Gruhler, M. Wegener, and W. Pernice, “Hybrid 2D–3D optical devices for integrated optics by direct laser writing,” Light: Sci. Appl. 3(6), e175 (2014).
[Crossref]

J. B. Mueller, J. Fischer, Y. J. Mange, T. Nann, and M. Wegener, “In-situ local temperature measurement during three-dimensional direct laser writing,” Appl. Phys. Lett. 103(12), 123107 (2013).
[Crossref]

F. Klein, B. Richter, T. Striebel, C. M. Franz, G. Von Freymann, M. Wegener, and M. Bastmeyer, “Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater. 23(11), 1341–1345 (2011).
[Crossref]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).
[Crossref]

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

Wen, M.

M. Wen and A. V. Mccormick, “A Kinetic Model for Radical Trapping in Photopolymerization of Multifunctional Monomers,” Macromolecules 33(25), 9247–9254 (2000).
[Crossref]

Wu, D.

D. Wu, Z. Zhao, Q. Zhang, H. J. Qi, and D. Fang, “Mechanics of shape distortion of DLP 3D printed structures during UV post-curing,” Soft Matter 15(30), 6151–6159 (2019).
[Crossref]

Xiong, W.

Yang, D.-Y.

K.-S. Lee, R. H. Kim, D.-Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).
[Crossref]

Ye, J.

Yoon, Y.-K.

S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K.-T. Kim, Y.-K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength Direct Laser Patterning of Conductive Gold Nanostructures by Simultaneous Photopolymerization and Photoreduction,” ACS Nano 5(3), 1947–1957 (2011).
[Crossref]

Zadoyan, R.

T. Baldacchini, M. Zimmerley, C.-H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of Microstructures Fabricated by Two-Photon Polymerization Using Coherent Anti-Stokes Raman Scattering Microscopy,” J. Phys. Chem. B 113(38), 12663–12668 (2009).
[Crossref]

Zhang, Q.

D. Wu, Z. Zhao, Q. Zhang, H. J. Qi, and D. Fang, “Mechanics of shape distortion of DLP 3D printed structures during UV post-curing,” Soft Matter 15(30), 6151–6159 (2019).
[Crossref]

Zhang, Y.

J. Bauer, A. Guell Izard, Y. Zhang, T. Baldacchini, and L. Valdevit, “Programmable Mechanical Properties of Two-Photon Polymerized Materials: From Nanowires to Bulk,” Adv. Mater. Technol. 4(9), 1900146 (2019).
[Crossref]

Zhao, Z.

D. Wu, Z. Zhao, Q. Zhang, H. J. Qi, and D. Fang, “Mechanics of shape distortion of DLP 3D printed structures during UV post-curing,” Soft Matter 15(30), 6151–6159 (2019).
[Crossref]

Zheng, X.

J. Bauer, L. R. Meza, T. A. Schaedler, R. Schwaiger, X. Zheng, and L. Valdevit, “Nanolattices: An Emerging Class of Mechanical Metamaterials,” Adv. Mater. 29(40), 1701850 (2017).
[Crossref]

Zhou, Y. S.

Zimmerley, M.

T. Baldacchini, M. Zimmerley, C.-H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of Microstructures Fabricated by Two-Photon Polymerization Using Coherent Anti-Stokes Raman Scattering Microscopy,” J. Phys. Chem. B 113(38), 12663–12668 (2009).
[Crossref]

ACS Nano (1)

S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K.-T. Kim, Y.-K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength Direct Laser Patterning of Conductive Gold Nanostructures by Simultaneous Photopolymerization and Photoreduction,” ACS Nano 5(3), 1947–1957 (2011).
[Crossref]

Acta Biomater. (1)

A. Marino, C. Filippeschi, G. G. Genchi, V. Mattoli, B. Mazzolai, and G. Ciofani, “The Osteoprint: A bioinspired two-photon polymerized 3-D structure for the enhancement of bone-like cell differentiation,” Acta Biomater. 10(10), 4304–4313 (2014).
[Crossref]

Adv. Funct. Mater. (2)

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[Crossref]

L. H. Nguyen, M. Straub, and M. Gu, “Acrylate-Based Photopolymer for Two-Photon Microfabrication and Photonic Applications,” Adv. Funct. Mater. 15(2), 209–216 (2005).
[Crossref]

Adv. Mater. (2)

J. Bauer, L. R. Meza, T. A. Schaedler, R. Schwaiger, X. Zheng, and L. Valdevit, “Nanolattices: An Emerging Class of Mechanical Metamaterials,” Adv. Mater. 29(40), 1701850 (2017).
[Crossref]

F. Klein, B. Richter, T. Striebel, C. M. Franz, G. Von Freymann, M. Wegener, and M. Bastmeyer, “Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater. 23(11), 1341–1345 (2011).
[Crossref]

Adv. Mater. Technol. (1)

J. Bauer, A. Guell Izard, Y. Zhang, T. Baldacchini, and L. Valdevit, “Programmable Mechanical Properties of Two-Photon Polymerized Materials: From Nanowires to Bulk,” Adv. Mater. Technol. 4(9), 1900146 (2019).
[Crossref]

Adv. Opt. Mater. (1)

J. K. Hohmann, M. Renner, E. H. Waller, and G. von Freymann, “Three-Dimensional µ-Printing: An Enabling Technology,” Adv. Opt. Mater. 3(11), 1488–1507 (2015).
[Crossref]

Appl. Phys. Lett. (1)

J. B. Mueller, J. Fischer, Y. J. Mange, T. Nann, and M. Wegener, “In-situ local temperature measurement during three-dimensional direct laser writing,” Appl. Phys. Lett. 103(12), 123107 (2013).
[Crossref]

Extreme Mech. Lett. (1)

A. Schroer, J. Bauer, R. Schwaiger, and O. Kraft, “Optimizing the mechanical properties of polymer resists for strong and light-weight micro-truss structures,” Extreme Mech. Lett. 8, 283–291 (2016).
[Crossref]

J. Appl. Phys. (2)

T. Baldacchini, C. N. Lafratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95(11), 6072–6076 (2004).
[Crossref]

K. Cicha, Z. Li, K. Stadlmann, A. Ovsianikov, R. Markut-Kohl, R. Liska, and J. Stampfl, “Evaluation of 3D structures fabricated with two-photon-photopolymerization by using FTIR spectroscopy,” J. Appl. Phys. 110(6), 064911 (2011).
[Crossref]

J. Phys. Chem. B (1)

T. Baldacchini, M. Zimmerley, C.-H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of Microstructures Fabricated by Two-Photon Polymerization Using Coherent Anti-Stokes Raman Scattering Microscopy,” J. Phys. Chem. B 113(38), 12663–12668 (2009).
[Crossref]

J. Polym. Sci., Part A: Polym. Chem. (1)

C. Decker and K. Moussa, “Radical trapping in photopolymerized acrylic networks,” J. Polym. Sci., Part A: Polym. Chem. 25(2), 739–742 (1987).
[Crossref]

Light: Sci. Appl. (1)

M. Schumann, T. Bückmann, N. Gruhler, M. Wegener, and W. Pernice, “Hybrid 2D–3D optical devices for integrated optics by direct laser writing,” Light: Sci. Appl. 3(6), e175 (2014).
[Crossref]

Macromol. Symp. (1)

M. C. Grady, W. J. Simonsick, and R. A. Hutchinson, “Studies of higher temperature polymerization of n-butyl methacrylate and n-butyl acrylate,” Macromol. Symp. 182(1), 149–168 (2002).
[Crossref]

Macromolecules (2)

M. Wen and A. V. Mccormick, “A Kinetic Model for Radical Trapping in Photopolymerization of Multifunctional Monomers,” Macromolecules 33(25), 9247–9254 (2000).
[Crossref]

C. Quan, M. Soroush, M. C. Grady, J. E. Hansen, and W. J. Simonsick, “High-temperature homopolymerization of ethyl acrylate and n-butyl acrylate: Polymer characterization,” Macromolecules 38(18), 7619–7628 (2005).
[Crossref]

Mater. Charact. (1)

T. Bormann, B. Müller, M. Schinhammer, A. Kessler, P. Thalmann, and M. de Wild, “Microstructure of selective laser melted nickel–titanium,” Mater. Charact. 94, 189–202 (2014).
[Crossref]

Matter (1)

J. Bauer, C. Crook, A. Guell Izard, Z. C. Eckel, N. Ruvalcaba, T. A. Schaedler, and L. Valdevit, “Additive Manufacturing of Ductile, Ultrastrong Polymer-Derived Nanoceramics,” Matter 1(6), 1547–1556 (2019).
[Crossref]

MRS Commun. (1)

R. Wang, K. J. Cheng, R. C. Advincula, and Q. Chen, “On the thermal processing and mechanical properties of 3D-printed polyether ether ketone,” MRS Commun. 9(3), 1046–1052 (2019).
[Crossref]

Nat. Commun. (1)

C. Crook, J. Bauer, A. Guell Izard, C. Santos de Oliveira, J. Martins de Souza e Silva, J. B. Berger, and L. Valdevit, “Plate-nanolattices at the theoretical limit of stiffness and strength,” Nat. Commun. 11(1), 1579 (2020).
[Crossref]

Nat. Mater. (1)

J. Bauer, A. Schroer, R. Schwaiger, and O. Kraft, “Approaching theoretical strength in glassy carbon nanolattices,” Nat. Mater. 15(4), 438–443 (2016).
[Crossref]

Nat. Photonics (1)

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Opt. Mater. Express (1)

Polymers (1)

E. Waller, G. von Freymann, E. H. Waller, and G. von Freymann, “Spatio-Temporal Proximity Characteristics in 3D µ-Printing via Multi-Photon Absorption,” Polymers 8(8), 297 (2016).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

J. Bauer, S. Hengsbach, I. Tesari, R. Schwaiger, and O. Kraft, “High-strength cellular ceramic composites with 3D microarchitecture,” Proc. Natl. Acad. Sci. U. S. A. 111(7), 2453–2458 (2014).
[Crossref]

Prog. Polym. Sci. (1)

K.-S. Lee, R. H. Kim, D.-Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).
[Crossref]

Small (2)

A. Guell Izard, J. Bauer, C. Crook, V. Turlo, and L. Valdevit, “Ultrahigh Energy Absorption Multifunctional Spinodal Nanoarchitectures,” Small 15(45), 1903834 (2019).
[Crossref]

A. Marino, O. Tricinci, M. Battaglini, C. Filippeschi, V. Mattoli, E. Sinibaldi, and G. Ciofani, “A 3D Real-Scale, Biomimetic, and Biohybrid Model of the Blood-Brain Barrier Fabricated through Two-Photon Lithography,” Small 14(6), 1702959 (2018).
[Crossref]

Soft Matter (1)

D. Wu, Z. Zhao, Q. Zhang, H. J. Qi, and D. Fang, “Mechanics of shape distortion of DLP 3D printed structures during UV post-curing,” Soft Matter 15(30), 6151–6159 (2019).
[Crossref]

Other (11)

P. F. Jacobs, Rapid Prototyping and Manufacturing: Fundamentals of StereoLithography (McGraw-Hill, Inc., 1993).

T. Baldacchini, Three-Dimensional Microfabrication Using Two-Photon Polymerization, 1st ed. (Elsevier, 2015).

T. Baldacchini, C. N. LaFratta, and M. Malinauskas, “Metrology and process control,” in Three-Dimensional Microfabrication Using Two-Photon Polymerization (Elsevier, 2020) pp. 197–228.
[Crossref]

T. Suzuki, J. Morikawa, T. Hashimoto, R. Buividas, G. Gervinskas, D. Paipulas, M. Malinauskas, V. Mizeikis, and S. Juodkazis, “Thermal and optical properties of sol-gel and SU-8 resists,” in Advanced Fabrication Technologies for Micro/Nano Optics and Photonics V, W. V. Schoenfeld, R. C. Rumpf, and G. von Freymann, eds. (SPIE, 2012), 8249, p. 82490 K.

J. T. Fourkas, “Fundamentals of Two-Photon Fabrication,” in Three-Dimensional Microfabrication Using Two-Photon Polymerization, Tommaso Baldacchini, ed. (William Andrew Publishing, 2016), pp. 45–61.

S. Srinivasan and A. M. Rappe, “Theoretical Insights Into Thermal Self-Initiation Reactions of Acrylates,” in Computational Quantum Chemistry (Elsevier, 2019), pp. 99–134.

C. K. Ober, “Materials systems for 2-photon lithography,” in Three-Dimensional Microfabrication Using Two-Photon Polymerization (Elsevier, 2020), pp. 143–174

Nanoscribe GmbH, Photonic Professional (GT) User Maual (2017).

Nanoscribe GmbH, Material Safety Data Sheet: IP-Dip Photoresist (2017).

ASTM International, Standard Test Method for Compressive Properties of Rigid Plastics (2008), i, pp. 1–8.

ASTM International, Standard Test Method for Tensile Properties of Plastics (2003), 08, pp. 46–58.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Thermal post-curing can drastically increase the mechanical properties of two-photon polymerization (TPP) printed resin parts, without affecting shape and surface quality. (a) Multi-voxel-line, hatched TPP specimens and flood exposure cured bulk part from the triacrylate resin IP-Dip, before and after a 1hr vacuum heat treatment at 200°C (scale bars are 10 µm). Representative (b) compressive stress-strain curves and (c) Raman spectra show strength, stiffness, and degree of conversion ($DC$) increase compared to non-post-cured, green, specimens.
Fig. 2.
Fig. 2. Thermal post-curing nearly eliminates the characteristic process parameter sensitivity in the mechanical properties of TPP-derived micro-bars. (a) Compressive yield strength (${\sigma _y}$), blue data points, Young’s modulus ($E$), red data points, and (b) degree of conversion ($DC$) with and without thermal post-curing, depending on laser average power ($P$), writing speed ($v$) and hatching distance (${d_h}$) (left to right column). (c) Close-up SEM images of selected specimens before and after thermal post-curing.
Fig. 3.
Fig. 3. Combining the data of all specimens from Fig. 2 shows thermal post-curing notably increases the mechanical properties of TPP-derived hatched multi-voxel-line specimens, while retaining linear scaling with the green state degree of conversion ($D{C_g}$), independent from specific process parameters. (a) Compressive yield strength (${\sigma _y}$), (b) Young’s modulus ($E$) and (c) degree of conversion ($DC)$ with and without thermal treatment, and (d) degree of conversion increase upon thermal post-curing ($\mathrm{\Delta }DC$); the dotted line in (d) indicates the $DC$ of PETA, the monomer constituting ∼70% of IP-Dip, after the same thermal treatment as applied to the TPP-specimens.
Fig. 4.
Fig. 4. Linear shrinkage of green state and thermally post-cured TPP-derived micro-bars, with respect to the nominal dimensions, depending on the green state degree of conversion ($D{C_g}$); (a) Absolute values and (b) contribution of the thermal treatment. The shown data comprises all specimens of Fig. 2.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

D C = 1 ( A C = C / A C = O A C = C / A C = O )
σ p = ( 29.5 D C g + 70.5 ) MPa
E p = ( 5.87 D C g + 1.76 ) GPa
D C p = ( 0.55 D C g + 0.48 )

Metrics