Abstract

Displays with different primary sets were found to introduce perceived color mismatch between stimuli that are computationally metameric and to affect the variations of the perceived color difference of metameric stimuli among observers (i.e., observer metamerism). In this study, computational analyses and psychophysical experiments were carried out to investigate the possibilities of increasing the color gamut area of a commercially available liquid crystal display (LCD) system using 16 three-primary sets, so that the perceived color difference of the white point between the system and the reference display and observer metamerism can be minimized. It was found the primary set with the peak wavelengths of 450, 525, and 665 nm was able to increase the sRGB color gamut by 72.1% in the CIE 1931 chromaticity diagram, which was found to have a strong correlation to the color volume of wide color gamut displays, while introducing the minimal color mismatch to the white point of the reference display and observer metamerism. The small white point color mismatch could be due to the similar wavelengths of the blue and green primaries in comparison to the reference display. In addition, the experiment results suggested that the CIE 2006 2° Color Matching Functions (CMFs) had better performance in characterizing the color match of the white point than the CIE 1931 2°, 1964 10°, and 2006 10° CMFs, which could be due to the fact that the stimulus used in the experiment only had a field of view (FOV) around 3.8°.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. ITU-R Recommendation BT.709-5, “Parameter values for the HDTV standards for production and international programme exchange,” 2002.
  2. Adobe Systems Inc., “Adobe RGB (1998) color image encoding,” 2005.
  3. SMPTE RP 431-2, “D-cinema quality – reference projector and environment,” 2011.
  4. ITU-R Recommendation BT.2020, “Parameter values for ultra-high definition television systems for production and international programme exchange,” 2012.
  5. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition (Wiley1982).
  6. J. Schanda, Colorimetry: Understanding the CIE System (Wiley2007).
  7. J. Fang and Y. J. Kim, “A Matrix-based method of color correction for metamerism failure between LCD and OLED,” SID Int. Symp. Dig. Tech. Pap. 49(1), 1044–1047 (2018).
    [Crossref]
  8. J. Li, P Hanselaer, and K. A. G. Smet, “The impact of color matching primary peak wavelength on color matching accuracy and observer variability,” in Proceedings of the 27th Color and Imaging Conference (2019), pp. 220–224.
  9. B. Bodner, N. Robinson, R. Atkins, and S. Daly, “Correcting metameric failure of wide color gamut displays,” SID Int. Symp. Dig. Tech. Pap. 49(1), 1040–1043 (2018).
    [Crossref]
  10. K. W. Houser and X. Hu, “Visually matching daylight fluorescent lamplight with two primary sets,” Color Res. Appl. 29(6), 428–437 (2004).
    [Crossref]
  11. A. David, D. Sahlhoff, and M. Wisser, “Human perception of light chromaticity: short-wavelength effects in spectra with low circadian stimulation, and broader implications for general LED sources,” Opt. Express 27(22), 31553–31566 (2019).
    [Crossref]
  12. B. Oicherman, M. R. Luo, B. Rigg, and A. R. Robertson, “Adaptation and color matching of display and surface colors,” Color Res. Appl. 34(3), 182–193 (2009).
    [Crossref]
  13. A. Sarkar, L. Blonde, P. L. Callet, F. Autrusseau, P. Morvan, and J. Stauder, “A color matching experiment using two displays: design considerations and pilot test results,” In Proceedings of the 5th European Conference on Color in Graphics, Imaging and Vision (2010), pp. 414–422.
  14. D. H. Brainard and A. Stockman, “Colorimetry,” in The Optical Society of America Handbook of Optics3rd edition, Volumne III: Vision and Vision Optics (McGraw Hill, 2010).
  15. Y. Asano, M. D. Fairchild, L. Blonde, and P. Morvan, “Color matching experiment for highlighting interobserver variability,” Color Res. Appl. 41(5), 530–539 (2016).
    [Crossref]
  16. M. D. Fairchild and R. L. Heckaman, “Measuring observer metamerism: the nimeroff approach,” Color Res. Appl. 41(2), 115–124 (2016).
    [Crossref]
  17. H. Xie, S. P. Farnand, and M. J. Murdoch, “Observer metamerism in commercial displays,” J. Opt. Soc. Am. A 37(4), A61–A69 (2020).
    [Crossref]
  18. D. L. Long and M. D. Fairchild, “Modeling observer variability and metamerism failure in electronic color displays,” in Proceedings of the 22nd Color and Imaging Conference (2014), pp. 14–27.
  19. B. Oicherman, M. R. Luo, B. Rigg, and A. R. Robertson, “Effect of observer metamerism on color matching of display and surface colors,” Color Res. Appl. 33(5), 346–359 (2008).
    [Crossref]
  20. S. L. Moan, T. M. Tanksale, R. Byshko, and P. Urban, “An observer-metamerism sensitivity index for electronic displays,” J. Soc. Inf. Disp. 25(9), 554–560 (2017).
    [Crossref]
  21. H. Xie, C. E. Rodrigues-Pardo, and G. Sharma, “Multiobjective optimization for color display primary designs,” J. Electron. Imaging 26(6), 063013 (2017).
    [Crossref]
  22. CIE, “Colorimetry, 4th edition,” in CIE 015:2018 (CIE, 2018).
  23. CIE, “Fundamental chromaticity diagram with physiological axes – part 1,” in CIE 170-1:2006 (CIE, 2006).
  24. CIE, “Fundamental chromaticity diagram with physiological axes – part 2: spectral luminous efficiency functions and chromaticity diagrams,” in CIE 170-2:2015 (CIE, 2015).
  25. W. D. Wright, “A re-determination of the trichromatic coefficients of the spectral colors,” Trans. Opt. Soc., London 30(4), 141–164 (1929).
    [Crossref]
  26. W. D. Wright, “A re-determination of the mixture curves of the spectrum,” Trans. Opt. Soc., London 31(4), 201–218 (1930).
    [Crossref]
  27. J. Guild, “The colorimetric properties of the spectrum,” Phil. Trans. R. Soc. Lond. A 230(681-693), 149–187 (1931).
    [Crossref]
  28. W. S. Stiles and J. M. Burch, “N.P.L. color-matching investigation: Final report,” Opt. Acta 6(1), 1–26 (1959).
    [Crossref]
  29. N. I. Speranskaya, “Determination of spectral color co-ordinates for twenty-seven normal observers,” Optics Spectrosc. 7, 424–428 (1959).
  30. Y. Asano, “Individual colorimetric observers for personalized color imaging,” PhD dissertation at Rochester Institute of Technology (2015).
  31. W. E. Hoover, “NOAA Technical Report NOS 107 C&GS 3: Algorithms for confidence circles and ellipses,” 1984.
  32. M. Wei and S. Chen, “Effects of adapting luminance and CCT on appearance of white and degree of chromatic adaptation,” Opt. Express 27(6), 9276–9286 (2019).
    [Crossref]
  33. S. Ma, P. Hanselaer, K. Teunissen, and K. A. G. Smet, “Effect of adapting field size on chromatic adaptation,” Opt. Express 28(12), 17266–17285 (2020).
    [Crossref]
  34. S. Ma, P. Hanselaer, K. Teunissen, and K. A. G. Smet, “Impact of the starting point chromaticity on memory color matching accuracy,” Opt. Express 27(24), 35308–35324 (2019).
    [Crossref]
  35. W. A. Thornton, “Toward a more accurate and extensible colorimetry. Part I. Introduction. The visual colorimeter-spectroradiometer. Experimental results,” Color Res. Appl. 17(2), 79–122 (1992).
    [Crossref]
  36. W. A. Thornton, “Toward a more accurate and extensible colorimetry. Part II. Discussion,” Color Res. Appl. 17(3), 162–186 (1992).
    [Crossref]
  37. K. Masaoka and Y. Nishida, “Metric of color-space coverage for wide-gamut displays,” Opt. Express 23(6), 7802–7808 (2015).
    [Crossref]

2020 (2)

2019 (3)

2018 (2)

J. Fang and Y. J. Kim, “A Matrix-based method of color correction for metamerism failure between LCD and OLED,” SID Int. Symp. Dig. Tech. Pap. 49(1), 1044–1047 (2018).
[Crossref]

B. Bodner, N. Robinson, R. Atkins, and S. Daly, “Correcting metameric failure of wide color gamut displays,” SID Int. Symp. Dig. Tech. Pap. 49(1), 1040–1043 (2018).
[Crossref]

2017 (2)

S. L. Moan, T. M. Tanksale, R. Byshko, and P. Urban, “An observer-metamerism sensitivity index for electronic displays,” J. Soc. Inf. Disp. 25(9), 554–560 (2017).
[Crossref]

H. Xie, C. E. Rodrigues-Pardo, and G. Sharma, “Multiobjective optimization for color display primary designs,” J. Electron. Imaging 26(6), 063013 (2017).
[Crossref]

2016 (2)

Y. Asano, M. D. Fairchild, L. Blonde, and P. Morvan, “Color matching experiment for highlighting interobserver variability,” Color Res. Appl. 41(5), 530–539 (2016).
[Crossref]

M. D. Fairchild and R. L. Heckaman, “Measuring observer metamerism: the nimeroff approach,” Color Res. Appl. 41(2), 115–124 (2016).
[Crossref]

2015 (1)

2009 (1)

B. Oicherman, M. R. Luo, B. Rigg, and A. R. Robertson, “Adaptation and color matching of display and surface colors,” Color Res. Appl. 34(3), 182–193 (2009).
[Crossref]

2008 (1)

B. Oicherman, M. R. Luo, B. Rigg, and A. R. Robertson, “Effect of observer metamerism on color matching of display and surface colors,” Color Res. Appl. 33(5), 346–359 (2008).
[Crossref]

2004 (1)

K. W. Houser and X. Hu, “Visually matching daylight fluorescent lamplight with two primary sets,” Color Res. Appl. 29(6), 428–437 (2004).
[Crossref]

1992 (2)

W. A. Thornton, “Toward a more accurate and extensible colorimetry. Part I. Introduction. The visual colorimeter-spectroradiometer. Experimental results,” Color Res. Appl. 17(2), 79–122 (1992).
[Crossref]

W. A. Thornton, “Toward a more accurate and extensible colorimetry. Part II. Discussion,” Color Res. Appl. 17(3), 162–186 (1992).
[Crossref]

1959 (2)

W. S. Stiles and J. M. Burch, “N.P.L. color-matching investigation: Final report,” Opt. Acta 6(1), 1–26 (1959).
[Crossref]

N. I. Speranskaya, “Determination of spectral color co-ordinates for twenty-seven normal observers,” Optics Spectrosc. 7, 424–428 (1959).

1931 (1)

J. Guild, “The colorimetric properties of the spectrum,” Phil. Trans. R. Soc. Lond. A 230(681-693), 149–187 (1931).
[Crossref]

1930 (1)

W. D. Wright, “A re-determination of the mixture curves of the spectrum,” Trans. Opt. Soc., London 31(4), 201–218 (1930).
[Crossref]

1929 (1)

W. D. Wright, “A re-determination of the trichromatic coefficients of the spectral colors,” Trans. Opt. Soc., London 30(4), 141–164 (1929).
[Crossref]

Asano, Y.

Y. Asano, M. D. Fairchild, L. Blonde, and P. Morvan, “Color matching experiment for highlighting interobserver variability,” Color Res. Appl. 41(5), 530–539 (2016).
[Crossref]

Y. Asano, “Individual colorimetric observers for personalized color imaging,” PhD dissertation at Rochester Institute of Technology (2015).

Atkins, R.

B. Bodner, N. Robinson, R. Atkins, and S. Daly, “Correcting metameric failure of wide color gamut displays,” SID Int. Symp. Dig. Tech. Pap. 49(1), 1040–1043 (2018).
[Crossref]

Autrusseau, F.

A. Sarkar, L. Blonde, P. L. Callet, F. Autrusseau, P. Morvan, and J. Stauder, “A color matching experiment using two displays: design considerations and pilot test results,” In Proceedings of the 5th European Conference on Color in Graphics, Imaging and Vision (2010), pp. 414–422.

Blonde, L.

Y. Asano, M. D. Fairchild, L. Blonde, and P. Morvan, “Color matching experiment for highlighting interobserver variability,” Color Res. Appl. 41(5), 530–539 (2016).
[Crossref]

A. Sarkar, L. Blonde, P. L. Callet, F. Autrusseau, P. Morvan, and J. Stauder, “A color matching experiment using two displays: design considerations and pilot test results,” In Proceedings of the 5th European Conference on Color in Graphics, Imaging and Vision (2010), pp. 414–422.

Bodner, B.

B. Bodner, N. Robinson, R. Atkins, and S. Daly, “Correcting metameric failure of wide color gamut displays,” SID Int. Symp. Dig. Tech. Pap. 49(1), 1040–1043 (2018).
[Crossref]

Brainard, D. H.

D. H. Brainard and A. Stockman, “Colorimetry,” in The Optical Society of America Handbook of Optics3rd edition, Volumne III: Vision and Vision Optics (McGraw Hill, 2010).

Burch, J. M.

W. S. Stiles and J. M. Burch, “N.P.L. color-matching investigation: Final report,” Opt. Acta 6(1), 1–26 (1959).
[Crossref]

Byshko, R.

S. L. Moan, T. M. Tanksale, R. Byshko, and P. Urban, “An observer-metamerism sensitivity index for electronic displays,” J. Soc. Inf. Disp. 25(9), 554–560 (2017).
[Crossref]

Callet, P. L.

A. Sarkar, L. Blonde, P. L. Callet, F. Autrusseau, P. Morvan, and J. Stauder, “A color matching experiment using two displays: design considerations and pilot test results,” In Proceedings of the 5th European Conference on Color in Graphics, Imaging and Vision (2010), pp. 414–422.

Chen, S.

Daly, S.

B. Bodner, N. Robinson, R. Atkins, and S. Daly, “Correcting metameric failure of wide color gamut displays,” SID Int. Symp. Dig. Tech. Pap. 49(1), 1040–1043 (2018).
[Crossref]

David, A.

Fairchild, M. D.

M. D. Fairchild and R. L. Heckaman, “Measuring observer metamerism: the nimeroff approach,” Color Res. Appl. 41(2), 115–124 (2016).
[Crossref]

Y. Asano, M. D. Fairchild, L. Blonde, and P. Morvan, “Color matching experiment for highlighting interobserver variability,” Color Res. Appl. 41(5), 530–539 (2016).
[Crossref]

D. L. Long and M. D. Fairchild, “Modeling observer variability and metamerism failure in electronic color displays,” in Proceedings of the 22nd Color and Imaging Conference (2014), pp. 14–27.

Fang, J.

J. Fang and Y. J. Kim, “A Matrix-based method of color correction for metamerism failure between LCD and OLED,” SID Int. Symp. Dig. Tech. Pap. 49(1), 1044–1047 (2018).
[Crossref]

Farnand, S. P.

Guild, J.

J. Guild, “The colorimetric properties of the spectrum,” Phil. Trans. R. Soc. Lond. A 230(681-693), 149–187 (1931).
[Crossref]

Hanselaer, P

J. Li, P Hanselaer, and K. A. G. Smet, “The impact of color matching primary peak wavelength on color matching accuracy and observer variability,” in Proceedings of the 27th Color and Imaging Conference (2019), pp. 220–224.

Hanselaer, P.

Heckaman, R. L.

M. D. Fairchild and R. L. Heckaman, “Measuring observer metamerism: the nimeroff approach,” Color Res. Appl. 41(2), 115–124 (2016).
[Crossref]

Hoover, W. E.

W. E. Hoover, “NOAA Technical Report NOS 107 C&GS 3: Algorithms for confidence circles and ellipses,” 1984.

Houser, K. W.

K. W. Houser and X. Hu, “Visually matching daylight fluorescent lamplight with two primary sets,” Color Res. Appl. 29(6), 428–437 (2004).
[Crossref]

Hu, X.

K. W. Houser and X. Hu, “Visually matching daylight fluorescent lamplight with two primary sets,” Color Res. Appl. 29(6), 428–437 (2004).
[Crossref]

Kim, Y. J.

J. Fang and Y. J. Kim, “A Matrix-based method of color correction for metamerism failure between LCD and OLED,” SID Int. Symp. Dig. Tech. Pap. 49(1), 1044–1047 (2018).
[Crossref]

Li, J.

J. Li, P Hanselaer, and K. A. G. Smet, “The impact of color matching primary peak wavelength on color matching accuracy and observer variability,” in Proceedings of the 27th Color and Imaging Conference (2019), pp. 220–224.

Long, D. L.

D. L. Long and M. D. Fairchild, “Modeling observer variability and metamerism failure in electronic color displays,” in Proceedings of the 22nd Color and Imaging Conference (2014), pp. 14–27.

Luo, M. R.

B. Oicherman, M. R. Luo, B. Rigg, and A. R. Robertson, “Adaptation and color matching of display and surface colors,” Color Res. Appl. 34(3), 182–193 (2009).
[Crossref]

B. Oicherman, M. R. Luo, B. Rigg, and A. R. Robertson, “Effect of observer metamerism on color matching of display and surface colors,” Color Res. Appl. 33(5), 346–359 (2008).
[Crossref]

Ma, S.

Masaoka, K.

Moan, S. L.

S. L. Moan, T. M. Tanksale, R. Byshko, and P. Urban, “An observer-metamerism sensitivity index for electronic displays,” J. Soc. Inf. Disp. 25(9), 554–560 (2017).
[Crossref]

Morvan, P.

Y. Asano, M. D. Fairchild, L. Blonde, and P. Morvan, “Color matching experiment for highlighting interobserver variability,” Color Res. Appl. 41(5), 530–539 (2016).
[Crossref]

A. Sarkar, L. Blonde, P. L. Callet, F. Autrusseau, P. Morvan, and J. Stauder, “A color matching experiment using two displays: design considerations and pilot test results,” In Proceedings of the 5th European Conference on Color in Graphics, Imaging and Vision (2010), pp. 414–422.

Murdoch, M. J.

Nishida, Y.

Oicherman, B.

B. Oicherman, M. R. Luo, B. Rigg, and A. R. Robertson, “Adaptation and color matching of display and surface colors,” Color Res. Appl. 34(3), 182–193 (2009).
[Crossref]

B. Oicherman, M. R. Luo, B. Rigg, and A. R. Robertson, “Effect of observer metamerism on color matching of display and surface colors,” Color Res. Appl. 33(5), 346–359 (2008).
[Crossref]

Rigg, B.

B. Oicherman, M. R. Luo, B. Rigg, and A. R. Robertson, “Adaptation and color matching of display and surface colors,” Color Res. Appl. 34(3), 182–193 (2009).
[Crossref]

B. Oicherman, M. R. Luo, B. Rigg, and A. R. Robertson, “Effect of observer metamerism on color matching of display and surface colors,” Color Res. Appl. 33(5), 346–359 (2008).
[Crossref]

Robertson, A. R.

B. Oicherman, M. R. Luo, B. Rigg, and A. R. Robertson, “Adaptation and color matching of display and surface colors,” Color Res. Appl. 34(3), 182–193 (2009).
[Crossref]

B. Oicherman, M. R. Luo, B. Rigg, and A. R. Robertson, “Effect of observer metamerism on color matching of display and surface colors,” Color Res. Appl. 33(5), 346–359 (2008).
[Crossref]

Robinson, N.

B. Bodner, N. Robinson, R. Atkins, and S. Daly, “Correcting metameric failure of wide color gamut displays,” SID Int. Symp. Dig. Tech. Pap. 49(1), 1040–1043 (2018).
[Crossref]

Rodrigues-Pardo, C. E.

H. Xie, C. E. Rodrigues-Pardo, and G. Sharma, “Multiobjective optimization for color display primary designs,” J. Electron. Imaging 26(6), 063013 (2017).
[Crossref]

Sahlhoff, D.

Sarkar, A.

A. Sarkar, L. Blonde, P. L. Callet, F. Autrusseau, P. Morvan, and J. Stauder, “A color matching experiment using two displays: design considerations and pilot test results,” In Proceedings of the 5th European Conference on Color in Graphics, Imaging and Vision (2010), pp. 414–422.

Schanda, J.

J. Schanda, Colorimetry: Understanding the CIE System (Wiley2007).

Sharma, G.

H. Xie, C. E. Rodrigues-Pardo, and G. Sharma, “Multiobjective optimization for color display primary designs,” J. Electron. Imaging 26(6), 063013 (2017).
[Crossref]

Smet, K. A. G.

Speranskaya, N. I.

N. I. Speranskaya, “Determination of spectral color co-ordinates for twenty-seven normal observers,” Optics Spectrosc. 7, 424–428 (1959).

Stauder, J.

A. Sarkar, L. Blonde, P. L. Callet, F. Autrusseau, P. Morvan, and J. Stauder, “A color matching experiment using two displays: design considerations and pilot test results,” In Proceedings of the 5th European Conference on Color in Graphics, Imaging and Vision (2010), pp. 414–422.

Stiles, W. S.

W. S. Stiles and J. M. Burch, “N.P.L. color-matching investigation: Final report,” Opt. Acta 6(1), 1–26 (1959).
[Crossref]

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition (Wiley1982).

Stockman, A.

D. H. Brainard and A. Stockman, “Colorimetry,” in The Optical Society of America Handbook of Optics3rd edition, Volumne III: Vision and Vision Optics (McGraw Hill, 2010).

Tanksale, T. M.

S. L. Moan, T. M. Tanksale, R. Byshko, and P. Urban, “An observer-metamerism sensitivity index for electronic displays,” J. Soc. Inf. Disp. 25(9), 554–560 (2017).
[Crossref]

Teunissen, K.

Thornton, W. A.

W. A. Thornton, “Toward a more accurate and extensible colorimetry. Part II. Discussion,” Color Res. Appl. 17(3), 162–186 (1992).
[Crossref]

W. A. Thornton, “Toward a more accurate and extensible colorimetry. Part I. Introduction. The visual colorimeter-spectroradiometer. Experimental results,” Color Res. Appl. 17(2), 79–122 (1992).
[Crossref]

Urban, P.

S. L. Moan, T. M. Tanksale, R. Byshko, and P. Urban, “An observer-metamerism sensitivity index for electronic displays,” J. Soc. Inf. Disp. 25(9), 554–560 (2017).
[Crossref]

Wei, M.

Wisser, M.

Wright, W. D.

W. D. Wright, “A re-determination of the mixture curves of the spectrum,” Trans. Opt. Soc., London 31(4), 201–218 (1930).
[Crossref]

W. D. Wright, “A re-determination of the trichromatic coefficients of the spectral colors,” Trans. Opt. Soc., London 30(4), 141–164 (1929).
[Crossref]

Wyszecki, G.

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition (Wiley1982).

Xie, H.

H. Xie, S. P. Farnand, and M. J. Murdoch, “Observer metamerism in commercial displays,” J. Opt. Soc. Am. A 37(4), A61–A69 (2020).
[Crossref]

H. Xie, C. E. Rodrigues-Pardo, and G. Sharma, “Multiobjective optimization for color display primary designs,” J. Electron. Imaging 26(6), 063013 (2017).
[Crossref]

Color Res. Appl. (7)

B. Oicherman, M. R. Luo, B. Rigg, and A. R. Robertson, “Effect of observer metamerism on color matching of display and surface colors,” Color Res. Appl. 33(5), 346–359 (2008).
[Crossref]

K. W. Houser and X. Hu, “Visually matching daylight fluorescent lamplight with two primary sets,” Color Res. Appl. 29(6), 428–437 (2004).
[Crossref]

B. Oicherman, M. R. Luo, B. Rigg, and A. R. Robertson, “Adaptation and color matching of display and surface colors,” Color Res. Appl. 34(3), 182–193 (2009).
[Crossref]

Y. Asano, M. D. Fairchild, L. Blonde, and P. Morvan, “Color matching experiment for highlighting interobserver variability,” Color Res. Appl. 41(5), 530–539 (2016).
[Crossref]

M. D. Fairchild and R. L. Heckaman, “Measuring observer metamerism: the nimeroff approach,” Color Res. Appl. 41(2), 115–124 (2016).
[Crossref]

W. A. Thornton, “Toward a more accurate and extensible colorimetry. Part I. Introduction. The visual colorimeter-spectroradiometer. Experimental results,” Color Res. Appl. 17(2), 79–122 (1992).
[Crossref]

W. A. Thornton, “Toward a more accurate and extensible colorimetry. Part II. Discussion,” Color Res. Appl. 17(3), 162–186 (1992).
[Crossref]

J. Electron. Imaging (1)

H. Xie, C. E. Rodrigues-Pardo, and G. Sharma, “Multiobjective optimization for color display primary designs,” J. Electron. Imaging 26(6), 063013 (2017).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Soc. Inf. Disp. (1)

S. L. Moan, T. M. Tanksale, R. Byshko, and P. Urban, “An observer-metamerism sensitivity index for electronic displays,” J. Soc. Inf. Disp. 25(9), 554–560 (2017).
[Crossref]

Opt. Acta (1)

W. S. Stiles and J. M. Burch, “N.P.L. color-matching investigation: Final report,” Opt. Acta 6(1), 1–26 (1959).
[Crossref]

Opt. Express (5)

Optics Spectrosc. (1)

N. I. Speranskaya, “Determination of spectral color co-ordinates for twenty-seven normal observers,” Optics Spectrosc. 7, 424–428 (1959).

Phil. Trans. R. Soc. Lond. A (1)

J. Guild, “The colorimetric properties of the spectrum,” Phil. Trans. R. Soc. Lond. A 230(681-693), 149–187 (1931).
[Crossref]

SID Int. Symp. Dig. Tech. Pap. (2)

J. Fang and Y. J. Kim, “A Matrix-based method of color correction for metamerism failure between LCD and OLED,” SID Int. Symp. Dig. Tech. Pap. 49(1), 1044–1047 (2018).
[Crossref]

B. Bodner, N. Robinson, R. Atkins, and S. Daly, “Correcting metameric failure of wide color gamut displays,” SID Int. Symp. Dig. Tech. Pap. 49(1), 1040–1043 (2018).
[Crossref]

Trans. Opt. Soc., London (2)

W. D. Wright, “A re-determination of the trichromatic coefficients of the spectral colors,” Trans. Opt. Soc., London 30(4), 141–164 (1929).
[Crossref]

W. D. Wright, “A re-determination of the mixture curves of the spectrum,” Trans. Opt. Soc., London 31(4), 201–218 (1930).
[Crossref]

Other (15)

CIE, “Colorimetry, 4th edition,” in CIE 015:2018 (CIE, 2018).

CIE, “Fundamental chromaticity diagram with physiological axes – part 1,” in CIE 170-1:2006 (CIE, 2006).

CIE, “Fundamental chromaticity diagram with physiological axes – part 2: spectral luminous efficiency functions and chromaticity diagrams,” in CIE 170-2:2015 (CIE, 2015).

Y. Asano, “Individual colorimetric observers for personalized color imaging,” PhD dissertation at Rochester Institute of Technology (2015).

W. E. Hoover, “NOAA Technical Report NOS 107 C&GS 3: Algorithms for confidence circles and ellipses,” 1984.

ITU-R Recommendation BT.709-5, “Parameter values for the HDTV standards for production and international programme exchange,” 2002.

Adobe Systems Inc., “Adobe RGB (1998) color image encoding,” 2005.

SMPTE RP 431-2, “D-cinema quality – reference projector and environment,” 2011.

ITU-R Recommendation BT.2020, “Parameter values for ultra-high definition television systems for production and international programme exchange,” 2012.

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition (Wiley1982).

J. Schanda, Colorimetry: Understanding the CIE System (Wiley2007).

J. Li, P Hanselaer, and K. A. G. Smet, “The impact of color matching primary peak wavelength on color matching accuracy and observer variability,” in Proceedings of the 27th Color and Imaging Conference (2019), pp. 220–224.

D. L. Long and M. D. Fairchild, “Modeling observer variability and metamerism failure in electronic color displays,” in Proceedings of the 22nd Color and Imaging Conference (2014), pp. 14–27.

A. Sarkar, L. Blonde, P. L. Callet, F. Autrusseau, P. Morvan, and J. Stauder, “A color matching experiment using two displays: design considerations and pilot test results,” In Proceedings of the 5th European Conference on Color in Graphics, Imaging and Vision (2010), pp. 414–422.

D. H. Brainard and A. Stockman, “Colorimetry,” in The Optical Society of America Handbook of Optics3rd edition, Volumne III: Vision and Vision Optics (McGraw Hill, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1. Illustration of the four CIE CMFs.
Fig. 2.
Fig. 2. Schematic illustration of the experimental setup and the photograph taken at the observer’s eye position during the experiment.
Fig. 3.
Fig. 3. SPDs of the reference stimulus and the eight primaries at the full intensity.
Fig. 4.
Fig. 4. Chromaticities of the eight primaries, the reference stimulus, and the starting point, together with the chromaticity ranges of the 16 primary sets with the L10 at 250 cd/m2.
Fig. 5.
Fig. 5. 1000 individual CMFs used in the computational analyses. These CMFs were derived based on the individual colorimetric observer model proposed by Asano [30], with the input age of 25 and the FOV of 4°.
Fig. 6.
Fig. 6. One-standard-deviation ellipses fitted based on the 1000 chromaticities, which were calculated using 1000 SPDs and the four CMFs, under each primary set and the chromaticities of the reference stimulus calculated using the four CMFs. These 1000 SPDs were derived using each of the 1000 individual CMFs to achieve a mathematical color match to the reference stimulus. For illustration purposes, the blackbody loci are plotted using the CIE 1964 10° CMFs.
Fig. 7.
Fig. 7. (a) Areas of the ellipses shown in Fig. 6 for the different primary sets. The larger the ellipse area, the larger the inter-observer variation when using a certain primary set; (b) Chromaticity distances between the center of the ellipses and reference stimulus shown in Fig. 6 for the different primary sets. The smaller the chromaticity distance, the better the performance of a CMF in characterizing the color match. The three primary sets having the smallest areas and distances are highlighted with a red *.
Fig. 8.
Fig. 8. Comparisons of color gamuts enclosed by the three primary sets—R1G2B2, R2G2B2, and R3G2B2—and the sRGB gamut.
Fig. 9.
Fig. 9. Chromaticities of the stimuli adjusted by the observers, together with the fitted one-standard-deviation ellipse, using each primary set to match the color appearance of the reference stimulus whose chromaticities are labeled with +. The chromaticities and ellipses in blue are the repeated adjustments.
Fig. 10.
Fig. 10. Inter-observer variation of each primary set, in terms of the mean color difference from the mean in u10v10 units and the area of the fitted one-standard-deviation ellipse.
Fig. 11.
Fig. 11. One-standard-deviation ellipses fitted based on the chromaticities of the matched stimuli, which were calculated using the SPDs adjusted by the observers and the four CMFs, and the chromaticities of the reference stimulus calculated using the four CMFs. For illustration purposes, the blackbody loci are plotted using the CIE 1964 10° CMFs.
Fig. 12.
Fig. 12. (a) Areas of the ellipses shown in Fig. 11; (b) Chromaticity distances between the center of the ellipses and reference stimulus shown in Fig. 11. The three primary sets having the smallest areas and distances are highlighted with a red *.
Fig. 13.
Fig. 13. Comparisons between the experiment results and computational analyses, as reported in Figs. 6 and 11. (a) Ratio of the ellipse area; (b) Ratio of the chromaticity distance.
Fig. 14.
Fig. 14. Chromaticity shifts of an average observer, as characterized using the four CMFs, due to the shifts of a single primary from a shorter to a longer wavelength, while the other two primaries were fixed. (a) CIE 1931 2° CMFs; (b) CIE 1964 10° CMFs; (c) CIE 2006 2° CMFs; (d) CIE 2006 10° CMFs. (Note: some combinations only had the primary shifts once. For example, when G1 and B1 were fixed, R was switched from R1 to R2 to R3; when G1 and B3 were fixed, R was only switched from R2 to R3).
Fig. 15.
Fig. 15. Shifts from the average chromaticities adjusted by the observers (i.e., an average observer) to the chromaticities of the stimuli adjusted by each observer using the 16 primary sets. The calculations were also performed using four CMFs. In total, there are 64 arrows in each figure, with 16 arrows in each color (i.e., each CMF set).

Tables (3)

Tables Icon

Table 1. Colorimetric and photometric characteristics of the eight primaries based on the measured SPDs

Tables Icon

Table 2. Color gamut areas of the 16 primary sets and the standard color gamuts in the CIE 1931 chromaticity diagram and CIE 1976 UCS chromaticity diagram

Tables Icon

Table 3. Numerical values of the areas of the ellipses and the chromaticity distances between the center of the ellipses and reference stimulus shown in Fig. 7 (computational analyses) and Fig. 12 (psychophysical experiments).