Abstract

This paper presents a method of using femtosecond laser inscribed nanograting as low-loss– and high-temperature–stable in-fiber reflectors. By introducing a pair of nanograting inside the core of a single-mode optical fiber, an intrinsic Fabry-Perot interferometer can be created for high-temperature sensing applications. The morphology of the nanograting inscribed in fiber cores was engineered by tuning the fabrication conditions to achieve a high fringe visibility of 0.49 and low insertion loss of 0.002 dB per sensor. Using a white light interferometry demodulation algorithm, we demonstrate the temperature sensitivity, cross-talk, and spatial multiplexability of sensor arrays. Both the sensor performance and stability were studied from room temperature to 1000°C with cyclic heating and cooling. Our results demonstrate a femtosecond direct laser writing technique capable of producing highly multiplexable in-fiber intrinsic Fabry-Perot interferometer sensor devices with high fringe contrast, high sensitivity, and low-loss for application in harsh environmental conditions.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors 12(2), 1898–1918 (2012).
    [Crossref]
  2. S. J. Mihailov, D. Grobnic, C. Hnatovsky, R. B. Walker, P. Lu, D. Coulas, and H. Ding, “Extreme environment sensing using femtosecond laser-inscribed fiber Bragg gratings,” Sensors 17(12), 2909 (2017).
    [Crossref]
  3. P. Calderoni, D. Hurley, J. Daw, A. Fleming, and K. McCary, “Innovative sensing technologies for nuclear instrumentation,” in 2019 IEEE International Instrumentation and Measurement Technology Conference (IEEE, 2019), pp. 1–6.
  4. B. J. Soller, D. K. Gifford, M. S. Wolfe, and M. E. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13(2), 666–674 (2005).
    [Crossref]
  5. H. Y. Choi, K. S. Park, S. J. Park, U. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry–Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008).
    [Crossref]
  6. J. Wang, B. Dong, E. Lally, J. Gong, M. Han, and A. Wang, “Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry–Perot interferometers,” Opt. Lett. 35(5), 619–621 (2010).
    [Crossref]
  7. Y. Rao, “Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
    [Crossref]
  8. Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry–Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photonics Technol. Lett. 19(8), 622–624 (2007).
    [Crossref]
  9. Z. Chen, L. Yuan, G. Hefferman, and T. Wei, “Ultraweak intrinsic Fabry–Perot cavity array for distributed sensing,” Opt. Lett. 40(3), 320–323 (2015).
    [Crossref]
  10. T. Wang, L. Shao, J. Canning, and K. Cook, “Temperature and strain characterization of regenerated gratings,” Opt. Lett. 38(3), 247–249 (2013).
    [Crossref]
  11. R. Osellame, G. Cerullo, and R. Ramponi (Editors), Femtosecond laser micromachining: photonic and microfluidic devices in transparent materials (Springer Science & Business Media, 2012).
  12. K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(8), 620–625 (2006).
    [Crossref]
  13. Y. Zhang, L. Yuan, X. Lan, A. Kaur, J. Huang, and H. Xiao, “High-temperature fiber-optic Fabry–Perot interferometric pressure sensor fabricated by femtosecond laser,” Opt. Lett. 38(22), 4609–4612 (2013).
    [Crossref]
  14. C. R. Liao, T. Y. Hu, and D. N. Wang, “Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing,” Opt. Express 20(20), 22813–22818 (2012).
    [Crossref]
  15. T. Wei, Y. Han, Y. Li, H. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16(8), 5764–5769 (2008).
    [Crossref]
  16. Y. Rao, M. Deng, D. Duan, X. Yang, T. Zhu, and G. Cheng, “Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser,” Opt. Express 15(21), 14123–14128 (2007).
    [Crossref]
  17. P. Chen and X. Shu, “Refractive-index-modified-dot Fabry-Perot fiber probe fabricated by femtosecond laser for high-temperature sensing,” Opt. Express 26(5), 5292–5299 (2018).
    [Crossref]
  18. J. Deng and D. N. Wang, “Construction of cascaded Fabry–Perot interferometers by four in-fiber mirrors for high-temperature sensing,” Opt. Lett. 44(5), 1289–1292 (2019).
    [Crossref]
  19. J. Deng, D. N. Wang, and H. Zhang, “Femtosecond Laser Inscribed Multiple In-Fiber Reflection Mirrors for High-Temperature Sensing,” J. Lightwave Technol. 37(21), 5537–5541 (2019).
    [Crossref]
  20. X. L. Cui, H. Zhang, and D. N. Wang, “Parallel structured optical fiber in-line Fabry–Perot interferometers for high temperature sensing,” Opt. Lett. 45(3), 726–729 (2020).
    [Crossref]
  21. W. Wang, D. Ding, N. Chen, F. Pang, and T. Wang, “Quasi-distributed IFPI sensing system demultiplexed with FFT-based wavelength tracking method,” IEEE Sens. J. 12(9), 2875–2880 (2012).
    [Crossref]
  22. Q. Wang, H. Zhang, and D. N. Wang, “Cascaded multiple Fabry–Perot interferometers fabricated in no-core fiber with a waveguide for high-temperature sensing,” Opt. Lett. 44(21), 5145–5148 (2019).
    [Crossref]
  23. T. Paixão, F. Araújo, and P. Antunes, “Highly sensitive fiber optic temperature and strain sensor based on an intrinsic Fabry–Perot interferometer fabricated by a femtosecond laser,” Opt. Lett. 44(19), 4833–4836 (2019).
    [Crossref]
  24. M. Wang, M. Yang, J. Cheng, G. Zhang, C. R. Liao, and D. N. Wang, “Fabry–Perot interferometer sensor fabricated by femtosecond laser for hydrogen sensing,” IEEE Photonics Technol. Lett. 25(8), 713–716 (2013).
    [Crossref]
  25. P. Zhou, C. Liao, Z. Li, S. Liu, and Y. Wang, “In-Fiber Cascaded FPI Fabricated by Chemical-Assisted Femtosecond Laser Micromachining for Micro-Fluidic Sensing Applications,” J. Lightwave Technol. 37(13), 3214–3221 (2019).
    [Crossref]
  26. T. Wei, Y. Han, H. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33(6), 536–538 (2008).
    [Crossref]
  27. E. Bricchi and P. G. Kazansky, “Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass,” Appl. Phys. Lett. 88(11), 111119 (2006).
    [Crossref]
  28. D. Grobnic, C. Smelser, S. Mihailov, and R. Walker, “Long-term thermal stability tests at 1000° C of silica fibre Bragg gratings made with ultrafast laser radiation,” Proc. SPIE 5855, 106 (2006).
    [Crossref]
  29. M. Haque, K. Lee, S. Ho, L. A. Fernandes, and P. R. Herman, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
    [Crossref]
  30. C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005).
    [Crossref]
  31. C. Hnatovsky, D. Grobnic, D. Coulas, M. Barnes, and S. J. Mihailov, “Self-organized nanostructure formation during femtosecond-laser inscription of fiber Bragg gratings,” Opt. Lett. 42(3), 399–402 (2017).
    [Crossref]
  32. A. Yan, S. Huang, S. Li, R. Chen, P. Ohodnicki, M. Buric, S. Lee, M. Li, and K. P. Chen, “Distributed Optical Fiber Sensors with Ultrafast Laser Enhanced Rayleigh Backscattering Profiles for Real-Time Monitoring of Solid Oxide Fuel Cell Operations,” Sci. Rep. 7(1), 1–9 (2017).
    [Crossref]
  33. M. Wang, M. A. S. Zaghloul, S. Huang, A. Yan, S. Li, R. Zou, P. Ohodnicki, M. Buric, M. Li, D. Carpenter, J. Daw, and K. P. Chen, “Ultrafast Laser Enhanced Rayleigh Backscattering on Silica Fiber for Distributed Sensing under Harsh Environment,” in CLEO: Applications and Technology (Optical Society of America, 2018), paper ATh3P.4.
  34. A. Othonos, “Fiber bragg gratings,” Rev. Sci. Instrum. 68(12), 4309–4341 (1997).
    [Crossref]
  35. Z. Yu and A. Wang, “Fast white light interferometry demodulation algorithm for low-finesse Fabry–Pérot sensors,” IEEE Photonics Technol. Lett. 27(8), 817–820 (2015).
    [Crossref]
  36. Z. Yu and A. Wang, “Fast demodulation algorithm for multiplexed low-finesse Fabry–Perot interferometers,” J. Lightwave Technol. 34(3), 1015–1019 (2016).
    [Crossref]
  37. Y. Yang, E. Wang, K. Chen, Z. Yu, and Q. Yu, “Fiber-optic Fabry–Perot sensor for simultaneous measurement of tilt angle and vibration acceleration,” IEEE Sens. J. 19(6), 2162–2169 (2019).
    [Crossref]
  38. M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
    [Crossref]
  39. L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A 100(1), 1–6 (2010).
    [Crossref]
  40. S. Loranger, F. Parent, V. Lambin-Iezzi, and R. Kashyap, “Enhancement of Rayleigh scatter in optical fiber by simple UV treatment: an order of magnitude increase in distributed sensing sensitivity,” Proc. SPIE 9744, 97440E (2016).
    [Crossref]
  41. P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
    [Crossref]
  42. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
    [Crossref]
  43. C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
    [Crossref]
  44. S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A 104(2), 503–507 (2011).
    [Crossref]
  45. S. Rajesh and Y. Bellouard, “Towards fast femtosecond laser micromachining of fused silica: The effect of deposited energy,” Opt. Express 18(20), 21490–21497 (2010).
    [Crossref]
  46. A. Champion and Y. Bellouard, “Direct volume variation measurements in fused silica specimens exposed to femtosecond laser,” Opt. Mater. Express 2(6), 789–798 (2012).
    [Crossref]
  47. Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry–Perot interferometer using a graded index fiber collimator,” IEEE Photonics J. 2(3), 469–481 (2010).
    [Crossref]
  48. R. Chen, A. Yan, M. Li, T. Chen, Q. Wang, J. Canning, K. Cook, and K. P. Chen, “Regenerated distributed Bragg reflector fiber lasers for high-temperature operation,” Opt. Lett. 38(14), 2490–2492 (2013).
    [Crossref]
  49. T. Wang, L. Shao, J. Canning, and K. Cook, “Temperature and strain characterization of regenerated gratings,” Opt. Lett. 38(3), 247–249 (2013).
    [Crossref]

2020 (1)

2019 (6)

2018 (1)

2017 (3)

S. J. Mihailov, D. Grobnic, C. Hnatovsky, R. B. Walker, P. Lu, D. Coulas, and H. Ding, “Extreme environment sensing using femtosecond laser-inscribed fiber Bragg gratings,” Sensors 17(12), 2909 (2017).
[Crossref]

C. Hnatovsky, D. Grobnic, D. Coulas, M. Barnes, and S. J. Mihailov, “Self-organized nanostructure formation during femtosecond-laser inscription of fiber Bragg gratings,” Opt. Lett. 42(3), 399–402 (2017).
[Crossref]

A. Yan, S. Huang, S. Li, R. Chen, P. Ohodnicki, M. Buric, S. Lee, M. Li, and K. P. Chen, “Distributed Optical Fiber Sensors with Ultrafast Laser Enhanced Rayleigh Backscattering Profiles for Real-Time Monitoring of Solid Oxide Fuel Cell Operations,” Sci. Rep. 7(1), 1–9 (2017).
[Crossref]

2016 (2)

Z. Yu and A. Wang, “Fast demodulation algorithm for multiplexed low-finesse Fabry–Perot interferometers,” J. Lightwave Technol. 34(3), 1015–1019 (2016).
[Crossref]

S. Loranger, F. Parent, V. Lambin-Iezzi, and R. Kashyap, “Enhancement of Rayleigh scatter in optical fiber by simple UV treatment: an order of magnitude increase in distributed sensing sensitivity,” Proc. SPIE 9744, 97440E (2016).
[Crossref]

2015 (2)

Z. Yu and A. Wang, “Fast white light interferometry demodulation algorithm for low-finesse Fabry–Pérot sensors,” IEEE Photonics Technol. Lett. 27(8), 817–820 (2015).
[Crossref]

Z. Chen, L. Yuan, G. Hefferman, and T. Wei, “Ultraweak intrinsic Fabry–Perot cavity array for distributed sensing,” Opt. Lett. 40(3), 320–323 (2015).
[Crossref]

2014 (2)

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
[Crossref]

M. Haque, K. Lee, S. Ho, L. A. Fernandes, and P. R. Herman, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref]

2013 (5)

2012 (4)

A. Champion and Y. Bellouard, “Direct volume variation measurements in fused silica specimens exposed to femtosecond laser,” Opt. Mater. Express 2(6), 789–798 (2012).
[Crossref]

C. R. Liao, T. Y. Hu, and D. N. Wang, “Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing,” Opt. Express 20(20), 22813–22818 (2012).
[Crossref]

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors 12(2), 1898–1918 (2012).
[Crossref]

W. Wang, D. Ding, N. Chen, F. Pang, and T. Wang, “Quasi-distributed IFPI sensing system demultiplexed with FFT-based wavelength tracking method,” IEEE Sens. J. 12(9), 2875–2880 (2012).
[Crossref]

2011 (1)

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A 104(2), 503–507 (2011).
[Crossref]

2010 (4)

S. Rajesh and Y. Bellouard, “Towards fast femtosecond laser micromachining of fused silica: The effect of deposited energy,” Opt. Express 18(20), 21490–21497 (2010).
[Crossref]

Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry–Perot interferometer using a graded index fiber collimator,” IEEE Photonics J. 2(3), 469–481 (2010).
[Crossref]

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A 100(1), 1–6 (2010).
[Crossref]

J. Wang, B. Dong, E. Lally, J. Gong, M. Han, and A. Wang, “Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry–Perot interferometers,” Opt. Lett. 35(5), 619–621 (2010).
[Crossref]

2008 (3)

2007 (2)

Y. Rao, M. Deng, D. Duan, X. Yang, T. Zhu, and G. Cheng, “Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser,” Opt. Express 15(21), 14123–14128 (2007).
[Crossref]

Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry–Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photonics Technol. Lett. 19(8), 622–624 (2007).
[Crossref]

2006 (4)

Y. Rao, “Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[Crossref]

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(8), 620–625 (2006).
[Crossref]

E. Bricchi and P. G. Kazansky, “Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass,” Appl. Phys. Lett. 88(11), 111119 (2006).
[Crossref]

D. Grobnic, C. Smelser, S. Mihailov, and R. Walker, “Long-term thermal stability tests at 1000° C of silica fibre Bragg gratings made with ultrafast laser radiation,” Proc. SPIE 5855, 106 (2006).
[Crossref]

2005 (3)

2003 (1)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref]

1999 (1)

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

1997 (1)

A. Othonos, “Fiber bragg gratings,” Rev. Sci. Instrum. 68(12), 4309–4341 (1997).
[Crossref]

Antunes, P.

Araújo, F.

Barnes, M.

Bellouard, Y.

Beresna, M.

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
[Crossref]

Bhardwaj, V. R.

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

Bricchi, E.

E. Bricchi and P. G. Kazansky, “Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass,” Appl. Phys. Lett. 88(11), 111119 (2006).
[Crossref]

Buric, M.

A. Yan, S. Huang, S. Li, R. Chen, P. Ohodnicki, M. Buric, S. Lee, M. Li, and K. P. Chen, “Distributed Optical Fiber Sensors with Ultrafast Laser Enhanced Rayleigh Backscattering Profiles for Real-Time Monitoring of Solid Oxide Fuel Cell Operations,” Sci. Rep. 7(1), 1–9 (2017).
[Crossref]

M. Wang, M. A. S. Zaghloul, S. Huang, A. Yan, S. Li, R. Zou, P. Ohodnicki, M. Buric, M. Li, D. Carpenter, J. Daw, and K. P. Chen, “Ultrafast Laser Enhanced Rayleigh Backscattering on Silica Fiber for Distributed Sensing under Harsh Environment,” in CLEO: Applications and Technology (Optical Society of America, 2018), paper ATh3P.4.

Calderoni, P.

P. Calderoni, D. Hurley, J. Daw, A. Fleming, and K. McCary, “Innovative sensing technologies for nuclear instrumentation,” in 2019 IEEE International Instrumentation and Measurement Technology Conference (IEEE, 2019), pp. 1–6.

Canning, J.

Carpenter, D.

M. Wang, M. A. S. Zaghloul, S. Huang, A. Yan, S. Li, R. Zou, P. Ohodnicki, M. Buric, M. Li, D. Carpenter, J. Daw, and K. P. Chen, “Ultrafast Laser Enhanced Rayleigh Backscattering on Silica Fiber for Distributed Sensing under Harsh Environment,” in CLEO: Applications and Technology (Optical Society of America, 2018), paper ATh3P.4.

Cerullo, G.

R. Osellame, G. Cerullo, and R. Ramponi (Editors), Femtosecond laser micromachining: photonic and microfluidic devices in transparent materials (Springer Science & Business Media, 2012).

Champion, A.

Chen, G.

Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry–Perot interferometer using a graded index fiber collimator,” IEEE Photonics J. 2(3), 469–481 (2010).
[Crossref]

Chen, K.

Y. Yang, E. Wang, K. Chen, Z. Yu, and Q. Yu, “Fiber-optic Fabry–Perot sensor for simultaneous measurement of tilt angle and vibration acceleration,” IEEE Sens. J. 19(6), 2162–2169 (2019).
[Crossref]

Chen, K. P.

A. Yan, S. Huang, S. Li, R. Chen, P. Ohodnicki, M. Buric, S. Lee, M. Li, and K. P. Chen, “Distributed Optical Fiber Sensors with Ultrafast Laser Enhanced Rayleigh Backscattering Profiles for Real-Time Monitoring of Solid Oxide Fuel Cell Operations,” Sci. Rep. 7(1), 1–9 (2017).
[Crossref]

R. Chen, A. Yan, M. Li, T. Chen, Q. Wang, J. Canning, K. Cook, and K. P. Chen, “Regenerated distributed Bragg reflector fiber lasers for high-temperature operation,” Opt. Lett. 38(14), 2490–2492 (2013).
[Crossref]

M. Wang, M. A. S. Zaghloul, S. Huang, A. Yan, S. Li, R. Zou, P. Ohodnicki, M. Buric, M. Li, D. Carpenter, J. Daw, and K. P. Chen, “Ultrafast Laser Enhanced Rayleigh Backscattering on Silica Fiber for Distributed Sensing under Harsh Environment,” in CLEO: Applications and Technology (Optical Society of America, 2018), paper ATh3P.4.

Chen, N.

W. Wang, D. Ding, N. Chen, F. Pang, and T. Wang, “Quasi-distributed IFPI sensing system demultiplexed with FFT-based wavelength tracking method,” IEEE Sens. J. 12(9), 2875–2880 (2012).
[Crossref]

Chen, P.

Chen, R.

A. Yan, S. Huang, S. Li, R. Chen, P. Ohodnicki, M. Buric, S. Lee, M. Li, and K. P. Chen, “Distributed Optical Fiber Sensors with Ultrafast Laser Enhanced Rayleigh Backscattering Profiles for Real-Time Monitoring of Solid Oxide Fuel Cell Operations,” Sci. Rep. 7(1), 1–9 (2017).
[Crossref]

R. Chen, A. Yan, M. Li, T. Chen, Q. Wang, J. Canning, K. Cook, and K. P. Chen, “Regenerated distributed Bragg reflector fiber lasers for high-temperature operation,” Opt. Lett. 38(14), 2490–2492 (2013).
[Crossref]

Chen, T.

Chen, Z.

Cheng, G.

Cheng, J.

M. Wang, M. Yang, J. Cheng, G. Zhang, C. R. Liao, and D. N. Wang, “Fabry–Perot interferometer sensor fabricated by femtosecond laser for hydrogen sensing,” IEEE Photonics Technol. Lett. 25(8), 713–716 (2013).
[Crossref]

Choi, E. S.

Choi, H. Y.

Cook, K.

Corkum, P. B.

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

Coulas, D.

S. J. Mihailov, D. Grobnic, C. Hnatovsky, R. B. Walker, P. Lu, D. Coulas, and H. Ding, “Extreme environment sensing using femtosecond laser-inscribed fiber Bragg gratings,” Sensors 17(12), 2909 (2017).
[Crossref]

C. Hnatovsky, D. Grobnic, D. Coulas, M. Barnes, and S. J. Mihailov, “Self-organized nanostructure formation during femtosecond-laser inscription of fiber Bragg gratings,” Opt. Lett. 42(3), 399–402 (2017).
[Crossref]

Cui, X. L.

Daw, J.

P. Calderoni, D. Hurley, J. Daw, A. Fleming, and K. McCary, “Innovative sensing technologies for nuclear instrumentation,” in 2019 IEEE International Instrumentation and Measurement Technology Conference (IEEE, 2019), pp. 1–6.

M. Wang, M. A. S. Zaghloul, S. Huang, A. Yan, S. Li, R. Zou, P. Ohodnicki, M. Buric, M. Li, D. Carpenter, J. Daw, and K. P. Chen, “Ultrafast Laser Enhanced Rayleigh Backscattering on Silica Fiber for Distributed Sensing under Harsh Environment,” in CLEO: Applications and Technology (Optical Society of America, 2018), paper ATh3P.4.

Deng, J.

Deng, M.

Ding, D.

W. Wang, D. Ding, N. Chen, F. Pang, and T. Wang, “Quasi-distributed IFPI sensing system demultiplexed with FFT-based wavelength tracking method,” IEEE Sens. J. 12(9), 2875–2880 (2012).
[Crossref]

Ding, H.

S. J. Mihailov, D. Grobnic, C. Hnatovsky, R. B. Walker, P. Lu, D. Coulas, and H. Ding, “Extreme environment sensing using femtosecond laser-inscribed fiber Bragg gratings,” Sensors 17(12), 2909 (2017).
[Crossref]

Dong, B.

Döring, S.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A 104(2), 503–507 (2011).
[Crossref]

Dreisow, F.

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A 100(1), 1–6 (2010).
[Crossref]

Duan, D.

Fernandes, L. A.

M. Haque, K. Lee, S. Ho, L. A. Fernandes, and P. R. Herman, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref]

Fleming, A.

P. Calderoni, D. Hurley, J. Daw, A. Fleming, and K. McCary, “Innovative sensing technologies for nuclear instrumentation,” in 2019 IEEE International Instrumentation and Measurement Technology Conference (IEEE, 2019), pp. 1–6.

Froggatt, M. E.

Gecevicius, M.

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
[Crossref]

Gifford, D. K.

Gong, J.

Grobnic, D.

C. Hnatovsky, D. Grobnic, D. Coulas, M. Barnes, and S. J. Mihailov, “Self-organized nanostructure formation during femtosecond-laser inscription of fiber Bragg gratings,” Opt. Lett. 42(3), 399–402 (2017).
[Crossref]

S. J. Mihailov, D. Grobnic, C. Hnatovsky, R. B. Walker, P. Lu, D. Coulas, and H. Ding, “Extreme environment sensing using femtosecond laser-inscribed fiber Bragg gratings,” Sensors 17(12), 2909 (2017).
[Crossref]

D. Grobnic, C. Smelser, S. Mihailov, and R. Walker, “Long-term thermal stability tests at 1000° C of silica fibre Bragg gratings made with ultrafast laser radiation,” Proc. SPIE 5855, 106 (2006).
[Crossref]

C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005).
[Crossref]

Han, M.

Han, Y.

Haque, M.

M. Haque, K. Lee, S. Ho, L. A. Fernandes, and P. R. Herman, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref]

Hefferman, G.

Heinrich, M.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A 104(2), 503–507 (2011).
[Crossref]

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A 100(1), 1–6 (2010).
[Crossref]

Herman, P. R.

M. Haque, K. Lee, S. Ho, L. A. Fernandes, and P. R. Herman, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref]

Hirao, K.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref]

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

Hnatovsky, C.

S. J. Mihailov, D. Grobnic, C. Hnatovsky, R. B. Walker, P. Lu, D. Coulas, and H. Ding, “Extreme environment sensing using femtosecond laser-inscribed fiber Bragg gratings,” Sensors 17(12), 2909 (2017).
[Crossref]

C. Hnatovsky, D. Grobnic, D. Coulas, M. Barnes, and S. J. Mihailov, “Self-organized nanostructure formation during femtosecond-laser inscription of fiber Bragg gratings,” Opt. Lett. 42(3), 399–402 (2017).
[Crossref]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

Ho, S.

M. Haque, K. Lee, S. Ho, L. A. Fernandes, and P. R. Herman, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref]

Hu, T. Y.

Huang, J.

Huang, S.

A. Yan, S. Huang, S. Li, R. Chen, P. Ohodnicki, M. Buric, S. Lee, M. Li, and K. P. Chen, “Distributed Optical Fiber Sensors with Ultrafast Laser Enhanced Rayleigh Backscattering Profiles for Real-Time Monitoring of Solid Oxide Fuel Cell Operations,” Sci. Rep. 7(1), 1–9 (2017).
[Crossref]

M. Wang, M. A. S. Zaghloul, S. Huang, A. Yan, S. Li, R. Zou, P. Ohodnicki, M. Buric, M. Li, D. Carpenter, J. Daw, and K. P. Chen, “Ultrafast Laser Enhanced Rayleigh Backscattering on Silica Fiber for Distributed Sensing under Harsh Environment,” in CLEO: Applications and Technology (Optical Society of America, 2018), paper ATh3P.4.

Huang, Y.

Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry–Perot interferometer using a graded index fiber collimator,” IEEE Photonics J. 2(3), 469–481 (2010).
[Crossref]

Hurley, D.

P. Calderoni, D. Hurley, J. Daw, A. Fleming, and K. McCary, “Innovative sensing technologies for nuclear instrumentation,” in 2019 IEEE International Instrumentation and Measurement Technology Conference (IEEE, 2019), pp. 1–6.

Inouye, H.

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

Itoh, K.

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(8), 620–625 (2006).
[Crossref]

Kashyap, R.

S. Loranger, F. Parent, V. Lambin-Iezzi, and R. Kashyap, “Enhancement of Rayleigh scatter in optical fiber by simple UV treatment: an order of magnitude increase in distributed sensing sensitivity,” Proc. SPIE 9744, 97440E (2016).
[Crossref]

Kaur, A.

Kazansky, P. G.

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
[Crossref]

E. Bricchi and P. G. Kazansky, “Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass,” Appl. Phys. Lett. 88(11), 111119 (2006).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref]

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

Keil, R.

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A 100(1), 1–6 (2010).
[Crossref]

Korovin, A. V.

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A 100(1), 1–6 (2010).
[Crossref]

Lally, E.

Lambin-Iezzi, V.

S. Loranger, F. Parent, V. Lambin-Iezzi, and R. Kashyap, “Enhancement of Rayleigh scatter in optical fiber by simple UV treatment: an order of magnitude increase in distributed sensing sensitivity,” Proc. SPIE 9744, 97440E (2016).
[Crossref]

Lan, X.

Y. Zhang, L. Yuan, X. Lan, A. Kaur, J. Huang, and H. Xiao, “High-temperature fiber-optic Fabry–Perot interferometric pressure sensor fabricated by femtosecond laser,” Opt. Lett. 38(22), 4609–4612 (2013).
[Crossref]

Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry–Perot interferometer using a graded index fiber collimator,” IEEE Photonics J. 2(3), 469–481 (2010).
[Crossref]

Lee, B. H.

Lee, K.

M. Haque, K. Lee, S. Ho, L. A. Fernandes, and P. R. Herman, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref]

Lee, S.

A. Yan, S. Huang, S. Li, R. Chen, P. Ohodnicki, M. Buric, S. Lee, M. Li, and K. P. Chen, “Distributed Optical Fiber Sensors with Ultrafast Laser Enhanced Rayleigh Backscattering Profiles for Real-Time Monitoring of Solid Oxide Fuel Cell Operations,” Sci. Rep. 7(1), 1–9 (2017).
[Crossref]

Li, M.

A. Yan, S. Huang, S. Li, R. Chen, P. Ohodnicki, M. Buric, S. Lee, M. Li, and K. P. Chen, “Distributed Optical Fiber Sensors with Ultrafast Laser Enhanced Rayleigh Backscattering Profiles for Real-Time Monitoring of Solid Oxide Fuel Cell Operations,” Sci. Rep. 7(1), 1–9 (2017).
[Crossref]

R. Chen, A. Yan, M. Li, T. Chen, Q. Wang, J. Canning, K. Cook, and K. P. Chen, “Regenerated distributed Bragg reflector fiber lasers for high-temperature operation,” Opt. Lett. 38(14), 2490–2492 (2013).
[Crossref]

M. Wang, M. A. S. Zaghloul, S. Huang, A. Yan, S. Li, R. Zou, P. Ohodnicki, M. Buric, M. Li, D. Carpenter, J. Daw, and K. P. Chen, “Ultrafast Laser Enhanced Rayleigh Backscattering on Silica Fiber for Distributed Sensing under Harsh Environment,” in CLEO: Applications and Technology (Optical Society of America, 2018), paper ATh3P.4.

Li, S.

A. Yan, S. Huang, S. Li, R. Chen, P. Ohodnicki, M. Buric, S. Lee, M. Li, and K. P. Chen, “Distributed Optical Fiber Sensors with Ultrafast Laser Enhanced Rayleigh Backscattering Profiles for Real-Time Monitoring of Solid Oxide Fuel Cell Operations,” Sci. Rep. 7(1), 1–9 (2017).
[Crossref]

M. Wang, M. A. S. Zaghloul, S. Huang, A. Yan, S. Li, R. Zou, P. Ohodnicki, M. Buric, M. Li, D. Carpenter, J. Daw, and K. P. Chen, “Ultrafast Laser Enhanced Rayleigh Backscattering on Silica Fiber for Distributed Sensing under Harsh Environment,” in CLEO: Applications and Technology (Optical Society of America, 2018), paper ATh3P.4.

Li, Y.

Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry–Perot interferometer using a graded index fiber collimator,” IEEE Photonics J. 2(3), 469–481 (2010).
[Crossref]

T. Wei, Y. Han, Y. Li, H. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16(8), 5764–5769 (2008).
[Crossref]

Li, Z.

Liao, C.

Liao, C. R.

M. Wang, M. Yang, J. Cheng, G. Zhang, C. R. Liao, and D. N. Wang, “Fabry–Perot interferometer sensor fabricated by femtosecond laser for hydrogen sensing,” IEEE Photonics Technol. Lett. 25(8), 713–716 (2013).
[Crossref]

C. R. Liao, T. Y. Hu, and D. N. Wang, “Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing,” Opt. Express 20(20), 22813–22818 (2012).
[Crossref]

Liu, S.

Loranger, S.

S. Loranger, F. Parent, V. Lambin-Iezzi, and R. Kashyap, “Enhancement of Rayleigh scatter in optical fiber by simple UV treatment: an order of magnitude increase in distributed sensing sensitivity,” Proc. SPIE 9744, 97440E (2016).
[Crossref]

Lu, P.

S. J. Mihailov, D. Grobnic, C. Hnatovsky, R. B. Walker, P. Lu, D. Coulas, and H. Ding, “Extreme environment sensing using femtosecond laser-inscribed fiber Bragg gratings,” Sensors 17(12), 2909 (2017).
[Crossref]

McCary, K.

P. Calderoni, D. Hurley, J. Daw, A. Fleming, and K. McCary, “Innovative sensing technologies for nuclear instrumentation,” in 2019 IEEE International Instrumentation and Measurement Technology Conference (IEEE, 2019), pp. 1–6.

Mihailov, S.

D. Grobnic, C. Smelser, S. Mihailov, and R. Walker, “Long-term thermal stability tests at 1000° C of silica fibre Bragg gratings made with ultrafast laser radiation,” Proc. SPIE 5855, 106 (2006).
[Crossref]

Mihailov, S. J.

S. J. Mihailov, D. Grobnic, C. Hnatovsky, R. B. Walker, P. Lu, D. Coulas, and H. Ding, “Extreme environment sensing using femtosecond laser-inscribed fiber Bragg gratings,” Sensors 17(12), 2909 (2017).
[Crossref]

C. Hnatovsky, D. Grobnic, D. Coulas, M. Barnes, and S. J. Mihailov, “Self-organized nanostructure formation during femtosecond-laser inscription of fiber Bragg gratings,” Opt. Lett. 42(3), 399–402 (2017).
[Crossref]

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors 12(2), 1898–1918 (2012).
[Crossref]

C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005).
[Crossref]

Mitsuyu, T.

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

Miura, K.

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

Nolte, S.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A 104(2), 503–507 (2011).
[Crossref]

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A 100(1), 1–6 (2010).
[Crossref]

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(8), 620–625 (2006).
[Crossref]

Ohodnicki, P.

A. Yan, S. Huang, S. Li, R. Chen, P. Ohodnicki, M. Buric, S. Lee, M. Li, and K. P. Chen, “Distributed Optical Fiber Sensors with Ultrafast Laser Enhanced Rayleigh Backscattering Profiles for Real-Time Monitoring of Solid Oxide Fuel Cell Operations,” Sci. Rep. 7(1), 1–9 (2017).
[Crossref]

M. Wang, M. A. S. Zaghloul, S. Huang, A. Yan, S. Li, R. Zou, P. Ohodnicki, M. Buric, M. Li, D. Carpenter, J. Daw, and K. P. Chen, “Ultrafast Laser Enhanced Rayleigh Backscattering on Silica Fiber for Distributed Sensing under Harsh Environment,” in CLEO: Applications and Technology (Optical Society of America, 2018), paper ATh3P.4.

Osellame, R.

R. Osellame, G. Cerullo, and R. Ramponi (Editors), Femtosecond laser micromachining: photonic and microfluidic devices in transparent materials (Springer Science & Business Media, 2012).

Othonos, A.

A. Othonos, “Fiber bragg gratings,” Rev. Sci. Instrum. 68(12), 4309–4341 (1997).
[Crossref]

Paek, U.

Paixão, T.

Pang, F.

W. Wang, D. Ding, N. Chen, F. Pang, and T. Wang, “Quasi-distributed IFPI sensing system demultiplexed with FFT-based wavelength tracking method,” IEEE Sens. J. 12(9), 2875–2880 (2012).
[Crossref]

Parent, F.

S. Loranger, F. Parent, V. Lambin-Iezzi, and R. Kashyap, “Enhancement of Rayleigh scatter in optical fiber by simple UV treatment: an order of magnitude increase in distributed sensing sensitivity,” Proc. SPIE 9744, 97440E (2016).
[Crossref]

Park, K. S.

Park, S. J.

Peschel, U.

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A 100(1), 1–6 (2010).
[Crossref]

Qiu, J.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref]

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

Rajeev, P. P.

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

Rajesh, S.

Ramirez, L. P. R.

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A 100(1), 1–6 (2010).
[Crossref]

Ramponi, R.

R. Osellame, G. Cerullo, and R. Ramponi (Editors), Femtosecond laser micromachining: photonic and microfluidic devices in transparent materials (Springer Science & Business Media, 2012).

Rao, Y.

Y. Rao, M. Deng, D. Duan, X. Yang, T. Zhu, and G. Cheng, “Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser,” Opt. Express 15(21), 14123–14128 (2007).
[Crossref]

Y. Rao, “Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[Crossref]

Rayner, D. M.

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

Richter, S.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A 104(2), 503–507 (2011).
[Crossref]

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A 100(1), 1–6 (2010).
[Crossref]

Schaffer, C. B.

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(8), 620–625 (2006).
[Crossref]

Shao, L.

Shen, F.

Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry–Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photonics Technol. Lett. 19(8), 622–624 (2007).
[Crossref]

Shimotsuma, Y.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref]

Shu, X.

Simova, E.

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

Smelser, C.

D. Grobnic, C. Smelser, S. Mihailov, and R. Walker, “Long-term thermal stability tests at 1000° C of silica fibre Bragg gratings made with ultrafast laser radiation,” Proc. SPIE 5855, 106 (2006).
[Crossref]

Smelser, C. W.

Soller, B. J.

Song, L.

Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry–Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photonics Technol. Lett. 19(8), 622–624 (2007).
[Crossref]

Starrost, F.

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

Taylor, R. S.

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

Tsai, H.

Tünnermann, A.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A 104(2), 503–507 (2011).
[Crossref]

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A 100(1), 1–6 (2010).
[Crossref]

Walker, R.

D. Grobnic, C. Smelser, S. Mihailov, and R. Walker, “Long-term thermal stability tests at 1000° C of silica fibre Bragg gratings made with ultrafast laser radiation,” Proc. SPIE 5855, 106 (2006).
[Crossref]

Walker, R. B.

S. J. Mihailov, D. Grobnic, C. Hnatovsky, R. B. Walker, P. Lu, D. Coulas, and H. Ding, “Extreme environment sensing using femtosecond laser-inscribed fiber Bragg gratings,” Sensors 17(12), 2909 (2017).
[Crossref]

Wang, A.

Z. Yu and A. Wang, “Fast demodulation algorithm for multiplexed low-finesse Fabry–Perot interferometers,” J. Lightwave Technol. 34(3), 1015–1019 (2016).
[Crossref]

Z. Yu and A. Wang, “Fast white light interferometry demodulation algorithm for low-finesse Fabry–Pérot sensors,” IEEE Photonics Technol. Lett. 27(8), 817–820 (2015).
[Crossref]

J. Wang, B. Dong, E. Lally, J. Gong, M. Han, and A. Wang, “Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry–Perot interferometers,” Opt. Lett. 35(5), 619–621 (2010).
[Crossref]

Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry–Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photonics Technol. Lett. 19(8), 622–624 (2007).
[Crossref]

Wang, D. N.

Wang, E.

Y. Yang, E. Wang, K. Chen, Z. Yu, and Q. Yu, “Fiber-optic Fabry–Perot sensor for simultaneous measurement of tilt angle and vibration acceleration,” IEEE Sens. J. 19(6), 2162–2169 (2019).
[Crossref]

Wang, J.

Wang, M.

M. Wang, M. Yang, J. Cheng, G. Zhang, C. R. Liao, and D. N. Wang, “Fabry–Perot interferometer sensor fabricated by femtosecond laser for hydrogen sensing,” IEEE Photonics Technol. Lett. 25(8), 713–716 (2013).
[Crossref]

M. Wang, M. A. S. Zaghloul, S. Huang, A. Yan, S. Li, R. Zou, P. Ohodnicki, M. Buric, M. Li, D. Carpenter, J. Daw, and K. P. Chen, “Ultrafast Laser Enhanced Rayleigh Backscattering on Silica Fiber for Distributed Sensing under Harsh Environment,” in CLEO: Applications and Technology (Optical Society of America, 2018), paper ATh3P.4.

Wang, Q.

Wang, T.

Wang, W.

W. Wang, D. Ding, N. Chen, F. Pang, and T. Wang, “Quasi-distributed IFPI sensing system demultiplexed with FFT-based wavelength tracking method,” IEEE Sens. J. 12(9), 2875–2880 (2012).
[Crossref]

Wang, X.

Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry–Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photonics Technol. Lett. 19(8), 622–624 (2007).
[Crossref]

Wang, Y.

Wang, Z.

Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry–Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photonics Technol. Lett. 19(8), 622–624 (2007).
[Crossref]

Watanabe, W.

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(8), 620–625 (2006).
[Crossref]

Wei, T.

Wolfe, M. S.

Xiao, H.

Yan, A.

A. Yan, S. Huang, S. Li, R. Chen, P. Ohodnicki, M. Buric, S. Lee, M. Li, and K. P. Chen, “Distributed Optical Fiber Sensors with Ultrafast Laser Enhanced Rayleigh Backscattering Profiles for Real-Time Monitoring of Solid Oxide Fuel Cell Operations,” Sci. Rep. 7(1), 1–9 (2017).
[Crossref]

R. Chen, A. Yan, M. Li, T. Chen, Q. Wang, J. Canning, K. Cook, and K. P. Chen, “Regenerated distributed Bragg reflector fiber lasers for high-temperature operation,” Opt. Lett. 38(14), 2490–2492 (2013).
[Crossref]

M. Wang, M. A. S. Zaghloul, S. Huang, A. Yan, S. Li, R. Zou, P. Ohodnicki, M. Buric, M. Li, D. Carpenter, J. Daw, and K. P. Chen, “Ultrafast Laser Enhanced Rayleigh Backscattering on Silica Fiber for Distributed Sensing under Harsh Environment,” in CLEO: Applications and Technology (Optical Society of America, 2018), paper ATh3P.4.

Yang, M.

M. Wang, M. Yang, J. Cheng, G. Zhang, C. R. Liao, and D. N. Wang, “Fabry–Perot interferometer sensor fabricated by femtosecond laser for hydrogen sensing,” IEEE Photonics Technol. Lett. 25(8), 713–716 (2013).
[Crossref]

Yang, X.

Yang, Y.

Y. Yang, E. Wang, K. Chen, Z. Yu, and Q. Yu, “Fiber-optic Fabry–Perot sensor for simultaneous measurement of tilt angle and vibration acceleration,” IEEE Sens. J. 19(6), 2162–2169 (2019).
[Crossref]

Yu, Q.

Y. Yang, E. Wang, K. Chen, Z. Yu, and Q. Yu, “Fiber-optic Fabry–Perot sensor for simultaneous measurement of tilt angle and vibration acceleration,” IEEE Sens. J. 19(6), 2162–2169 (2019).
[Crossref]

Yu, Z.

Y. Yang, E. Wang, K. Chen, Z. Yu, and Q. Yu, “Fiber-optic Fabry–Perot sensor for simultaneous measurement of tilt angle and vibration acceleration,” IEEE Sens. J. 19(6), 2162–2169 (2019).
[Crossref]

Z. Yu and A. Wang, “Fast demodulation algorithm for multiplexed low-finesse Fabry–Perot interferometers,” J. Lightwave Technol. 34(3), 1015–1019 (2016).
[Crossref]

Z. Yu and A. Wang, “Fast white light interferometry demodulation algorithm for low-finesse Fabry–Pérot sensors,” IEEE Photonics Technol. Lett. 27(8), 817–820 (2015).
[Crossref]

Yuan, L.

Zaghloul, M. A. S.

M. Wang, M. A. S. Zaghloul, S. Huang, A. Yan, S. Li, R. Zou, P. Ohodnicki, M. Buric, M. Li, D. Carpenter, J. Daw, and K. P. Chen, “Ultrafast Laser Enhanced Rayleigh Backscattering on Silica Fiber for Distributed Sensing under Harsh Environment,” in CLEO: Applications and Technology (Optical Society of America, 2018), paper ATh3P.4.

Zhang, G.

M. Wang, M. Yang, J. Cheng, G. Zhang, C. R. Liao, and D. N. Wang, “Fabry–Perot interferometer sensor fabricated by femtosecond laser for hydrogen sensing,” IEEE Photonics Technol. Lett. 25(8), 713–716 (2013).
[Crossref]

Zhang, H.

Zhang, Y.

Y. Zhang, L. Yuan, X. Lan, A. Kaur, J. Huang, and H. Xiao, “High-temperature fiber-optic Fabry–Perot interferometric pressure sensor fabricated by femtosecond laser,” Opt. Lett. 38(22), 4609–4612 (2013).
[Crossref]

Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry–Perot interferometer using a graded index fiber collimator,” IEEE Photonics J. 2(3), 469–481 (2010).
[Crossref]

Zhou, P.

Zhu, T.

Zou, R.

M. Wang, M. A. S. Zaghloul, S. Huang, A. Yan, S. Li, R. Zou, P. Ohodnicki, M. Buric, M. Li, D. Carpenter, J. Daw, and K. P. Chen, “Ultrafast Laser Enhanced Rayleigh Backscattering on Silica Fiber for Distributed Sensing under Harsh Environment,” in CLEO: Applications and Technology (Optical Society of America, 2018), paper ATh3P.4.

Adv. Opt. Photonics (1)

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
[Crossref]

Appl. Phys. A (2)

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A 100(1), 1–6 (2010).
[Crossref]

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A 104(2), 503–507 (2011).
[Crossref]

Appl. Phys. Lett. (2)

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

E. Bricchi and P. G. Kazansky, “Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass,” Appl. Phys. Lett. 88(11), 111119 (2006).
[Crossref]

IEEE Photonics J. (1)

Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry–Perot interferometer using a graded index fiber collimator,” IEEE Photonics J. 2(3), 469–481 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (3)

Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry–Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photonics Technol. Lett. 19(8), 622–624 (2007).
[Crossref]

M. Wang, M. Yang, J. Cheng, G. Zhang, C. R. Liao, and D. N. Wang, “Fabry–Perot interferometer sensor fabricated by femtosecond laser for hydrogen sensing,” IEEE Photonics Technol. Lett. 25(8), 713–716 (2013).
[Crossref]

Z. Yu and A. Wang, “Fast white light interferometry demodulation algorithm for low-finesse Fabry–Pérot sensors,” IEEE Photonics Technol. Lett. 27(8), 817–820 (2015).
[Crossref]

IEEE Sens. J. (2)

W. Wang, D. Ding, N. Chen, F. Pang, and T. Wang, “Quasi-distributed IFPI sensing system demultiplexed with FFT-based wavelength tracking method,” IEEE Sens. J. 12(9), 2875–2880 (2012).
[Crossref]

Y. Yang, E. Wang, K. Chen, Z. Yu, and Q. Yu, “Fiber-optic Fabry–Perot sensor for simultaneous measurement of tilt angle and vibration acceleration,” IEEE Sens. J. 19(6), 2162–2169 (2019).
[Crossref]

J. Lightwave Technol. (3)

Lab Chip (1)

M. Haque, K. Lee, S. Ho, L. A. Fernandes, and P. R. Herman, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref]

MRS Bull. (1)

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(8), 620–625 (2006).
[Crossref]

Opt. Express (7)

Opt. Fiber Technol. (1)

Y. Rao, “Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[Crossref]

Opt. Lett. (13)

T. Wang, L. Shao, J. Canning, and K. Cook, “Temperature and strain characterization of regenerated gratings,” Opt. Lett. 38(3), 247–249 (2013).
[Crossref]

T. Wang, L. Shao, J. Canning, and K. Cook, “Temperature and strain characterization of regenerated gratings,” Opt. Lett. 38(3), 247–249 (2013).
[Crossref]

R. Chen, A. Yan, M. Li, T. Chen, Q. Wang, J. Canning, K. Cook, and K. P. Chen, “Regenerated distributed Bragg reflector fiber lasers for high-temperature operation,” Opt. Lett. 38(14), 2490–2492 (2013).
[Crossref]

Y. Zhang, L. Yuan, X. Lan, A. Kaur, J. Huang, and H. Xiao, “High-temperature fiber-optic Fabry–Perot interferometric pressure sensor fabricated by femtosecond laser,” Opt. Lett. 38(22), 4609–4612 (2013).
[Crossref]

Z. Chen, L. Yuan, G. Hefferman, and T. Wei, “Ultraweak intrinsic Fabry–Perot cavity array for distributed sensing,” Opt. Lett. 40(3), 320–323 (2015).
[Crossref]

H. Y. Choi, K. S. Park, S. J. Park, U. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry–Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008).
[Crossref]

J. Wang, B. Dong, E. Lally, J. Gong, M. Han, and A. Wang, “Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry–Perot interferometers,” Opt. Lett. 35(5), 619–621 (2010).
[Crossref]

T. Wei, Y. Han, H. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33(6), 536–538 (2008).
[Crossref]

J. Deng and D. N. Wang, “Construction of cascaded Fabry–Perot interferometers by four in-fiber mirrors for high-temperature sensing,” Opt. Lett. 44(5), 1289–1292 (2019).
[Crossref]

C. Hnatovsky, D. Grobnic, D. Coulas, M. Barnes, and S. J. Mihailov, “Self-organized nanostructure formation during femtosecond-laser inscription of fiber Bragg gratings,” Opt. Lett. 42(3), 399–402 (2017).
[Crossref]

X. L. Cui, H. Zhang, and D. N. Wang, “Parallel structured optical fiber in-line Fabry–Perot interferometers for high temperature sensing,” Opt. Lett. 45(3), 726–729 (2020).
[Crossref]

T. Paixão, F. Araújo, and P. Antunes, “Highly sensitive fiber optic temperature and strain sensor based on an intrinsic Fabry–Perot interferometer fabricated by a femtosecond laser,” Opt. Lett. 44(19), 4833–4836 (2019).
[Crossref]

Q. Wang, H. Zhang, and D. N. Wang, “Cascaded multiple Fabry–Perot interferometers fabricated in no-core fiber with a waveguide for high-temperature sensing,” Opt. Lett. 44(21), 5145–5148 (2019).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. Lett. (2)

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref]

Proc. SPIE (2)

S. Loranger, F. Parent, V. Lambin-Iezzi, and R. Kashyap, “Enhancement of Rayleigh scatter in optical fiber by simple UV treatment: an order of magnitude increase in distributed sensing sensitivity,” Proc. SPIE 9744, 97440E (2016).
[Crossref]

D. Grobnic, C. Smelser, S. Mihailov, and R. Walker, “Long-term thermal stability tests at 1000° C of silica fibre Bragg gratings made with ultrafast laser radiation,” Proc. SPIE 5855, 106 (2006).
[Crossref]

Rev. Sci. Instrum. (1)

A. Othonos, “Fiber bragg gratings,” Rev. Sci. Instrum. 68(12), 4309–4341 (1997).
[Crossref]

Sci. Rep. (1)

A. Yan, S. Huang, S. Li, R. Chen, P. Ohodnicki, M. Buric, S. Lee, M. Li, and K. P. Chen, “Distributed Optical Fiber Sensors with Ultrafast Laser Enhanced Rayleigh Backscattering Profiles for Real-Time Monitoring of Solid Oxide Fuel Cell Operations,” Sci. Rep. 7(1), 1–9 (2017).
[Crossref]

Sensors (2)

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors 12(2), 1898–1918 (2012).
[Crossref]

S. J. Mihailov, D. Grobnic, C. Hnatovsky, R. B. Walker, P. Lu, D. Coulas, and H. Ding, “Extreme environment sensing using femtosecond laser-inscribed fiber Bragg gratings,” Sensors 17(12), 2909 (2017).
[Crossref]

Other (3)

P. Calderoni, D. Hurley, J. Daw, A. Fleming, and K. McCary, “Innovative sensing technologies for nuclear instrumentation,” in 2019 IEEE International Instrumentation and Measurement Technology Conference (IEEE, 2019), pp. 1–6.

R. Osellame, G. Cerullo, and R. Ramponi (Editors), Femtosecond laser micromachining: photonic and microfluidic devices in transparent materials (Springer Science & Business Media, 2012).

M. Wang, M. A. S. Zaghloul, S. Huang, A. Yan, S. Li, R. Zou, P. Ohodnicki, M. Buric, M. Li, D. Carpenter, J. Daw, and K. P. Chen, “Ultrafast Laser Enhanced Rayleigh Backscattering on Silica Fiber for Distributed Sensing under Harsh Environment,” in CLEO: Applications and Technology (Optical Society of America, 2018), paper ATh3P.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Schematic of the IFPI fabrication setup, (b) the microscopic photo of the IFPI reflector cross-section, (c) microscopic photo of the IFPI side-view of two nanograting reflectors, and (d) the scattering of red light at the reflectors.
Fig. 2.
Fig. 2. (a) Rayleigh backscattering profile of an IFPI using two nanograting reflectors, (b) setup of the IFPI demodulation system, (c) spectrum of a single IFPI cavity, (d) the FFT spatial domain, and (e) spectrums of IFPIs with different cavity lengths.
Fig. 3.
Fig. 3. (a) SEM photo of the fiber cross-section where the IFPI was inscribed, inset shows the zoomed in fiber core area, (b) dependence of a 1-mm IFPI visibility on pulse energy, (c) dependence of the insertion loss per reflector on the pulse energy, and (d-g) the nanograting morphologies of the IFPI reflector in the fiber core area from overlapping pulses, inscribed with pulse energies of (d) 100-nJ, (e) 120-nJ, (f) 160-nJ, and (g) 200-nJ.
Fig. 4.
Fig. 4. (a) Temperature response and linear fit curve of a single IFPI sensor and (b) FPI measurement results and the thermocouple measurement during three repetitive heating cycles.
Fig. 5.
Fig. 5. (a) Top: spectrum of the two multiplexed IFPIs and Bottom: the FFT of the IFPIs, and (b) the cavity change of the IFPIs during the measurement when both Sensor 1 (black, right axis) and Sensor 2 (red, left axis) were placed at room-temperature (top subplot) and when Sensor 1 stayed at room-temperature while Sensor 2 was kept at 500 °C (bottom subplot).
Fig. 6.
Fig. 6. (a) Rayleigh backscattering profile of the multiplexed IFPIs, (b) spectrum of a multiplexed IFPI cavity, and (c) the FFT spatial domain of the spectrum.
Fig. 7.
Fig. 7. (a-f) Linear fit curves and the demodulated response (g) during the third heating cycle and (h) at furnace temperature of 817°C of the six multiplexed IFPI sensors.

Tables (1)

Tables Icon

Table 1. Linear fit coefficients of the multiplexed IFPIs

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ( k ) = 2 I 0 ( k ) [ 1 + γ cos ( 2 k l O P D + φ 0 ) ]
Δ l O P D = 2 ( d n d T l + d l d T n ) Δ T = l O P D ( α o + α e ) Δ T

Metrics