Abstract

High-Q Si ring resonators play an important role in the development of widely tunable heterogeneously integrated lasers. However, while a high Q-factor (Q > 1 million) is important for ring resonators in a laser cavity, the parasitic high-power density in a Si resonator can deteriorate the laser performance at high power levels due to nonlinear loss. Here, we experimentally show that this detrimental effect can happen at moderate power levels (a few milliwatts) where typical heterogeneously integrated lasers work. We further compare different ring resonators, including extended Si ring resonators and Si3N4 ring resonators and provide practical approaches to minimize this effect. Our results provide explanations and guidelines for high-Q ring resonator designs in heterogeneously integrated tunable lasers, and they are also applicable for hybrid integrated butt-coupled lasers.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously Integrated InP/Silicon Photonics: Fabricating Fully Functional Transceivers,” IEEE Nanotechnol. Mag. 13(2), 17–26 (2019).
    [Crossref]
  2. K. Zou, Z. Zhang, P. Liao, H. Wang, Y. Cao, A. Almaiman, A. Fallahpour, F. Alishahi, N. Satyan, G. Rakuljic, M. Tur, A. Yariv, and A. Willner, “Higher-order QAM Data Transmission Using a High-Coherence Hybrid Si/III-V Semiconductor Laser,” Opt. Lett. 45(6), 1499–1502 (2020).
    [Crossref]
  3. W. Xie, T. Komljenovic, J. Huang, M. Tran, M. Davenport, A. Torres, P. Pintus, and J. Bowers, “Heterogeneous silicon photonics sensing for autonomous cars [Invited],” Opt. Express 27(3), 3642 (2019).
    [Crossref]
  4. G. M. Brodnik, M. W. Harrington, D. Bose, A. M. Netherton, W. Zhang, L. Stern, P. A. Morton, J. E. Bowers, S. B. Papp, and D. J. Blumenthal, “Chip-Scale, Optical-Frequency-Stabilized PLL for DSP-Free, Low-Power Coherent QAM in the DCI,” in Optical Fiber Communication Conference (OFC) 2020 (OSA, 2020), p. M3A.6.
  5. E. Dale, W. Liang, D. Eliyahu, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, and L. Maleki, “Ultra-narrow line tunable semiconductor lasers for coherent LIDAR applications,” in Imaging and Applied Optics 2014, OSA (Optical Society of American (OSA), 2014), p. JTu2C.3.
  6. C. T. Santis, Y. Vilenchik, N. Satyan, G. Rakuljic, and A. Yariv, “Quantum control of phase fluctuations in semiconductor lasers,” Proc. Natl. Acad. Sci. U. S. A. 115(34), E7896–E7904 (2018).
    [Crossref]
  7. D. Huang, M. A. Tran, J. Guo, J. Peters, T. Komljenovic, A. Malik, P. A. Morton, and J. E. Bowers, “High-power sub-kHz linewidth lasers fully integrated on silicon,” Optica 6(6), 745 (2019).
    [Crossref]
  8. M. A. Tran, D. Huang, J. Guo, T. Komljenovic, P. A. Morton, and J. E. Bowers, “Ring-Resonator Based Widely-Tunable Narrow-Linewidth Si/InP Integrated Lasers,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–14 (2020).
    [Crossref]
  9. M. A. Tran, D. Huang, and J. E. Bowers, “Tutorial on narrow linewidth tunable semiconductor lasers using Si/III-V heterogeneous integration,” APL Photonics 4(11), 111101 (2019).
    [Crossref]
  10. C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. U. S. A. 111(8), 2879–2884 (2014).
    [Crossref]
  11. M. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J. Bowers, “Ultra-Low-Loss Silicon Waveguides for Heterogeneously Integrated Silicon/III-V Photonics,” Appl. Sci. 8(7), 1139 (2018).
    [Crossref]
  12. L. A. Coldren, S. W. Corzine, and M. L. Mašanović, Diode Lasers and Photonic Integrated Circuits (John Wiley & Sons, Inc., 2012).
  13. J. Heebner, R. Grover, and T. Ibrahim, “Optical microresonator theory,” Springer Ser. Opt. Sci. 138, 71–103 (2008).
  14. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
    [Crossref]
  15. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15(25), 16604 (2007).
    [Crossref]
  16. Y. Guo, W. Zhang, N. Lv, Q. Zhou, Y. Huang, and J. Peng, “The impact of nonlinear losses in the silicon micro-ring cavities on CW pumping correlated photon pair generation,” Opt. Express 22(3), 2620 (2014).
    [Crossref]
  17. T. J. Johnson, M. Borselli, and O. Painter, “Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator,” Opt. Express 14(2), 817 (2006).
    [Crossref]
  18. X. Sun, X. Zhang, C. Schuck, and H. X. Tang, “Nonlinear optical effects of ultrahigh-Q silicon photonic nanocavities immersed in superfluid helium,” Sci. Rep. 3(1), 1436 (2013).
    [Crossref]
  19. A. Misra, S. Preußler, L. Zhou, and T. Schneider, “Nonlinearity- and dispersion- less integrated optical time magnifier based on a high-Q SiN microring resonator,” Sci. Rep. 9(1), 1–11 (2019).
    [Crossref]
  20. P. Morton and J. Khurgin, “Low noise, high power, multiple microresonator based laser,” U.S. Patent 9, 559, 484, Jan. 31, 2017.
  21. P. Morton, J. Khurgin, and C. Morton, “Multiple-microresonator based laser,” U.S. Patent 9748726, Aug. 29, 2017.
  22. C. Xiang, P. A. Morton, J. Khurgin, C. Morton, and J. E. Bowers, “Widely tunable Si3N4 triple-ring and quad-ring resonator laser reflectors and filters,” in Proc. IEEE 15th Int. Conf. Group IV Photon., 2018, pp. 1–2.
  23. C. Xiang, W. Jin, J. Guo, J. D. Peters, M. J. Kennedy, J. Selvidge, P. A. Morton, and J. E. Bowers, “Narrow-linewidth III-V/Si/Si 3 N 4 laser using multilayer heterogeneous integration,” Optica 7(1), 20 (2020).
    [Crossref]
  24. C. Xiang, M. L. Davenport, J. B. Khurgin, P. A. Morton, and J. E. Bowers, “Low-Loss Continuously Tunable Optical True Time Delay Based on Si3N4 Ring Resonators,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–9 (2018).
    [Crossref]
  25. T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
    [Crossref]
  26. M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515 (2005).
    [Crossref]
  27. H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85(12), 2196–2198 (2004).
    [Crossref]
  28. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
    [Crossref]
  29. R. Kazarinov and C. Henry, “The relation of line narrowing and chirp reduction resulting from the coupling of a semiconductor laser to passive resonator,” IEEE J. Quantum Electron. 23(9), 1401–1409 (1987).
    [Crossref]
  30. J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. K. Doylend, A. Chen, A. W. Fang, and J. E. Bowers, “Silicon on ultra-low-loss waveguide photonic integration platform,” Opt. Express 21(1), 544 (2013).
    [Crossref]
  31. M. Piels, J. F. Bauters, M. L. Davenport, M. J. R. Heck, and J. E. Bowers, “Low-loss silicon nitride AWG demultiplexer heterogeneously integrated with hybrid III-V/Silicon photodetectors,” J. Lightwave Technol. 32(4), 817–823 (2014).
    [Crossref]
  32. C. Xiang, P. A. Morton, and J. E. Bowers, “Ultra-narrow linewidth laser based on a semiconductor gain chip and extended Si3N4 Bragg grating,” Opt. Lett. 44(15), 3825 (2019).
    [Crossref]
  33. K.-J. Boller, A. van Rees, Y. Fan, J. Mak, R. E. M. Lammerink, C. A. A. Franken, P. J. M. van der Slot, D. A. I. Marpaung, C. Fallnich, J. P. Epping, R. M. Oldenbeuving, D. Geskus, R. Dekker, I. Visscher, R. Grootjans, C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, A. Leinse, and R. G. Heideman, “Hybrid Integrated Semiconductor Lasers with Silicon Nitride Feedback Circuits,” Photonics 7(1), 4 (2020).
    [Crossref]
  34. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
    [Crossref]
  35. L. Chang, A. Boes, P. Pintus, W. Xie, J. D. Peters, M. J. Kennedy, W. Jin, X.-W. Guo, S.-P. Yu, S. B. Papp, and J. E. Bowers, “Low loss (Al)GaAs on an insulator waveguide platform,” Opt. Lett. 44(16), 4075 (2019).
    [Crossref]

2020 (4)

K. Zou, Z. Zhang, P. Liao, H. Wang, Y. Cao, A. Almaiman, A. Fallahpour, F. Alishahi, N. Satyan, G. Rakuljic, M. Tur, A. Yariv, and A. Willner, “Higher-order QAM Data Transmission Using a High-Coherence Hybrid Si/III-V Semiconductor Laser,” Opt. Lett. 45(6), 1499–1502 (2020).
[Crossref]

M. A. Tran, D. Huang, J. Guo, T. Komljenovic, P. A. Morton, and J. E. Bowers, “Ring-Resonator Based Widely-Tunable Narrow-Linewidth Si/InP Integrated Lasers,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–14 (2020).
[Crossref]

C. Xiang, W. Jin, J. Guo, J. D. Peters, M. J. Kennedy, J. Selvidge, P. A. Morton, and J. E. Bowers, “Narrow-linewidth III-V/Si/Si 3 N 4 laser using multilayer heterogeneous integration,” Optica 7(1), 20 (2020).
[Crossref]

K.-J. Boller, A. van Rees, Y. Fan, J. Mak, R. E. M. Lammerink, C. A. A. Franken, P. J. M. van der Slot, D. A. I. Marpaung, C. Fallnich, J. P. Epping, R. M. Oldenbeuving, D. Geskus, R. Dekker, I. Visscher, R. Grootjans, C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, A. Leinse, and R. G. Heideman, “Hybrid Integrated Semiconductor Lasers with Silicon Nitride Feedback Circuits,” Photonics 7(1), 4 (2020).
[Crossref]

2019 (7)

C. Xiang, P. A. Morton, and J. E. Bowers, “Ultra-narrow linewidth laser based on a semiconductor gain chip and extended Si3N4 Bragg grating,” Opt. Lett. 44(15), 3825 (2019).
[Crossref]

L. Chang, A. Boes, P. Pintus, W. Xie, J. D. Peters, M. J. Kennedy, W. Jin, X.-W. Guo, S.-P. Yu, S. B. Papp, and J. E. Bowers, “Low loss (Al)GaAs on an insulator waveguide platform,” Opt. Lett. 44(16), 4075 (2019).
[Crossref]

A. Misra, S. Preußler, L. Zhou, and T. Schneider, “Nonlinearity- and dispersion- less integrated optical time magnifier based on a high-Q SiN microring resonator,” Sci. Rep. 9(1), 1–11 (2019).
[Crossref]

M. A. Tran, D. Huang, and J. E. Bowers, “Tutorial on narrow linewidth tunable semiconductor lasers using Si/III-V heterogeneous integration,” APL Photonics 4(11), 111101 (2019).
[Crossref]

W. Xie, T. Komljenovic, J. Huang, M. Tran, M. Davenport, A. Torres, P. Pintus, and J. Bowers, “Heterogeneous silicon photonics sensing for autonomous cars [Invited],” Opt. Express 27(3), 3642 (2019).
[Crossref]

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously Integrated InP/Silicon Photonics: Fabricating Fully Functional Transceivers,” IEEE Nanotechnol. Mag. 13(2), 17–26 (2019).
[Crossref]

D. Huang, M. A. Tran, J. Guo, J. Peters, T. Komljenovic, A. Malik, P. A. Morton, and J. E. Bowers, “High-power sub-kHz linewidth lasers fully integrated on silicon,” Optica 6(6), 745 (2019).
[Crossref]

2018 (3)

C. T. Santis, Y. Vilenchik, N. Satyan, G. Rakuljic, and A. Yariv, “Quantum control of phase fluctuations in semiconductor lasers,” Proc. Natl. Acad. Sci. U. S. A. 115(34), E7896–E7904 (2018).
[Crossref]

M. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J. Bowers, “Ultra-Low-Loss Silicon Waveguides for Heterogeneously Integrated Silicon/III-V Photonics,” Appl. Sci. 8(7), 1139 (2018).
[Crossref]

C. Xiang, M. L. Davenport, J. B. Khurgin, P. A. Morton, and J. E. Bowers, “Low-Loss Continuously Tunable Optical True Time Delay Based on Si3N4 Ring Resonators,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–9 (2018).
[Crossref]

2014 (3)

2013 (2)

J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. K. Doylend, A. Chen, A. W. Fang, and J. E. Bowers, “Silicon on ultra-low-loss waveguide photonic integration platform,” Opt. Express 21(1), 544 (2013).
[Crossref]

X. Sun, X. Zhang, C. Schuck, and H. X. Tang, “Nonlinear optical effects of ultrahigh-Q silicon photonic nanocavities immersed in superfluid helium,” Sci. Rep. 3(1), 1436 (2013).
[Crossref]

2012 (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

2010 (1)

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

2008 (1)

J. Heebner, R. Grover, and T. Ibrahim, “Optical microresonator theory,” Springer Ser. Opt. Sci. 138, 71–103 (2008).

2007 (1)

2006 (1)

2005 (2)

M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515 (2005).
[Crossref]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref]

2004 (2)

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85(12), 2196–2198 (2004).
[Crossref]

T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
[Crossref]

1987 (1)

R. Kazarinov and C. Henry, “The relation of line narrowing and chirp reduction resulting from the coupling of a semiconductor laser to passive resonator,” IEEE J. Quantum Electron. 23(9), 1401–1409 (1987).
[Crossref]

Agrawal, G. P.

Akulova, Y.

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously Integrated InP/Silicon Photonics: Fabricating Fully Functional Transceivers,” IEEE Nanotechnol. Mag. 13(2), 17–26 (2019).
[Crossref]

Alishahi, F.

Almaiman, A.

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bauters, J. F.

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Blumenthal, D. J.

G. M. Brodnik, M. W. Harrington, D. Bose, A. M. Netherton, W. Zhang, L. Stern, P. A. Morton, J. E. Bowers, S. B. Papp, and D. J. Blumenthal, “Chip-Scale, Optical-Frequency-Stabilized PLL for DSP-Free, Low-Power Coherent QAM in the DCI,” in Optical Fiber Communication Conference (OFC) 2020 (OSA, 2020), p. M3A.6.

Boes, A.

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Boller, K.-J.

K.-J. Boller, A. van Rees, Y. Fan, J. Mak, R. E. M. Lammerink, C. A. A. Franken, P. J. M. van der Slot, D. A. I. Marpaung, C. Fallnich, J. P. Epping, R. M. Oldenbeuving, D. Geskus, R. Dekker, I. Visscher, R. Grootjans, C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, A. Leinse, and R. G. Heideman, “Hybrid Integrated Semiconductor Lasers with Silicon Nitride Feedback Circuits,” Photonics 7(1), 4 (2020).
[Crossref]

Borselli, M.

Bose, D.

G. M. Brodnik, M. W. Harrington, D. Bose, A. M. Netherton, W. Zhang, L. Stern, P. A. Morton, J. E. Bowers, S. B. Papp, and D. J. Blumenthal, “Chip-Scale, Optical-Frequency-Stabilized PLL for DSP-Free, Low-Power Coherent QAM in the DCI,” in Optical Fiber Communication Conference (OFC) 2020 (OSA, 2020), p. M3A.6.

Bowers, J.

W. Xie, T. Komljenovic, J. Huang, M. Tran, M. Davenport, A. Torres, P. Pintus, and J. Bowers, “Heterogeneous silicon photonics sensing for autonomous cars [Invited],” Opt. Express 27(3), 3642 (2019).
[Crossref]

M. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J. Bowers, “Ultra-Low-Loss Silicon Waveguides for Heterogeneously Integrated Silicon/III-V Photonics,” Appl. Sci. 8(7), 1139 (2018).
[Crossref]

Bowers, J. E.

C. Xiang, W. Jin, J. Guo, J. D. Peters, M. J. Kennedy, J. Selvidge, P. A. Morton, and J. E. Bowers, “Narrow-linewidth III-V/Si/Si 3 N 4 laser using multilayer heterogeneous integration,” Optica 7(1), 20 (2020).
[Crossref]

M. A. Tran, D. Huang, J. Guo, T. Komljenovic, P. A. Morton, and J. E. Bowers, “Ring-Resonator Based Widely-Tunable Narrow-Linewidth Si/InP Integrated Lasers,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–14 (2020).
[Crossref]

M. A. Tran, D. Huang, and J. E. Bowers, “Tutorial on narrow linewidth tunable semiconductor lasers using Si/III-V heterogeneous integration,” APL Photonics 4(11), 111101 (2019).
[Crossref]

D. Huang, M. A. Tran, J. Guo, J. Peters, T. Komljenovic, A. Malik, P. A. Morton, and J. E. Bowers, “High-power sub-kHz linewidth lasers fully integrated on silicon,” Optica 6(6), 745 (2019).
[Crossref]

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously Integrated InP/Silicon Photonics: Fabricating Fully Functional Transceivers,” IEEE Nanotechnol. Mag. 13(2), 17–26 (2019).
[Crossref]

C. Xiang, P. A. Morton, and J. E. Bowers, “Ultra-narrow linewidth laser based on a semiconductor gain chip and extended Si3N4 Bragg grating,” Opt. Lett. 44(15), 3825 (2019).
[Crossref]

L. Chang, A. Boes, P. Pintus, W. Xie, J. D. Peters, M. J. Kennedy, W. Jin, X.-W. Guo, S.-P. Yu, S. B. Papp, and J. E. Bowers, “Low loss (Al)GaAs on an insulator waveguide platform,” Opt. Lett. 44(16), 4075 (2019).
[Crossref]

C. Xiang, M. L. Davenport, J. B. Khurgin, P. A. Morton, and J. E. Bowers, “Low-Loss Continuously Tunable Optical True Time Delay Based on Si3N4 Ring Resonators,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–9 (2018).
[Crossref]

M. Piels, J. F. Bauters, M. L. Davenport, M. J. R. Heck, and J. E. Bowers, “Low-loss silicon nitride AWG demultiplexer heterogeneously integrated with hybrid III-V/Silicon photodetectors,” J. Lightwave Technol. 32(4), 817–823 (2014).
[Crossref]

J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. K. Doylend, A. Chen, A. W. Fang, and J. E. Bowers, “Silicon on ultra-low-loss waveguide photonic integration platform,” Opt. Express 21(1), 544 (2013).
[Crossref]

C. Xiang, P. A. Morton, J. Khurgin, C. Morton, and J. E. Bowers, “Widely tunable Si3N4 triple-ring and quad-ring resonator laser reflectors and filters,” in Proc. IEEE 15th Int. Conf. Group IV Photon., 2018, pp. 1–2.

G. M. Brodnik, M. W. Harrington, D. Bose, A. M. Netherton, W. Zhang, L. Stern, P. A. Morton, J. E. Bowers, S. B. Papp, and D. J. Blumenthal, “Chip-Scale, Optical-Frequency-Stabilized PLL for DSP-Free, Low-Power Coherent QAM in the DCI,” in Optical Fiber Communication Conference (OFC) 2020 (OSA, 2020), p. M3A.6.

Brodnik, G. M.

G. M. Brodnik, M. W. Harrington, D. Bose, A. M. Netherton, W. Zhang, L. Stern, P. A. Morton, J. E. Bowers, S. B. Papp, and D. J. Blumenthal, “Chip-Scale, Optical-Frequency-Stabilized PLL for DSP-Free, Low-Power Coherent QAM in the DCI,” in Optical Fiber Communication Conference (OFC) 2020 (OSA, 2020), p. M3A.6.

Cao, Y.

Carmon, T.

Chang, L.

Chen, A.

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Cohen, O.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85(12), 2196–2198 (2004).
[Crossref]

Coldren, L. A.

L. A. Coldren, S. W. Corzine, and M. L. Mašanović, Diode Lasers and Photonic Integrated Circuits (John Wiley & Sons, Inc., 2012).

Corzine, S. W.

L. A. Coldren, S. W. Corzine, and M. L. Mašanović, Diode Lasers and Photonic Integrated Circuits (John Wiley & Sons, Inc., 2012).

Dale, E.

E. Dale, W. Liang, D. Eliyahu, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, and L. Maleki, “Ultra-narrow line tunable semiconductor lasers for coherent LIDAR applications,” in Imaging and Applied Optics 2014, OSA (Optical Society of American (OSA), 2014), p. JTu2C.3.

Davenport, M.

Davenport, M. L.

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Dekker, R.

K.-J. Boller, A. van Rees, Y. Fan, J. Mak, R. E. M. Lammerink, C. A. A. Franken, P. J. M. van der Slot, D. A. I. Marpaung, C. Fallnich, J. P. Epping, R. M. Oldenbeuving, D. Geskus, R. Dekker, I. Visscher, R. Grootjans, C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, A. Leinse, and R. G. Heideman, “Hybrid Integrated Semiconductor Lasers with Silicon Nitride Feedback Circuits,” Photonics 7(1), 4 (2020).
[Crossref]

Doussiere, P.

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously Integrated InP/Silicon Photonics: Fabricating Fully Functional Transceivers,” IEEE Nanotechnol. Mag. 13(2), 17–26 (2019).
[Crossref]

Doylend, J. K.

Driscoll, J. B.

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously Integrated InP/Silicon Photonics: Fabricating Fully Functional Transceivers,” IEEE Nanotechnol. Mag. 13(2), 17–26 (2019).
[Crossref]

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Eliyahu, D.

E. Dale, W. Liang, D. Eliyahu, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, and L. Maleki, “Ultra-narrow line tunable semiconductor lasers for coherent LIDAR applications,” in Imaging and Applied Optics 2014, OSA (Optical Society of American (OSA), 2014), p. JTu2C.3.

Epping, J. P.

K.-J. Boller, A. van Rees, Y. Fan, J. Mak, R. E. M. Lammerink, C. A. A. Franken, P. J. M. van der Slot, D. A. I. Marpaung, C. Fallnich, J. P. Epping, R. M. Oldenbeuving, D. Geskus, R. Dekker, I. Visscher, R. Grootjans, C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, A. Leinse, and R. G. Heideman, “Hybrid Integrated Semiconductor Lasers with Silicon Nitride Feedback Circuits,” Photonics 7(1), 4 (2020).
[Crossref]

Fallahpour, A.

Fallnich, C.

K.-J. Boller, A. van Rees, Y. Fan, J. Mak, R. E. M. Lammerink, C. A. A. Franken, P. J. M. van der Slot, D. A. I. Marpaung, C. Fallnich, J. P. Epping, R. M. Oldenbeuving, D. Geskus, R. Dekker, I. Visscher, R. Grootjans, C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, A. Leinse, and R. G. Heideman, “Hybrid Integrated Semiconductor Lasers with Silicon Nitride Feedback Circuits,” Photonics 7(1), 4 (2020).
[Crossref]

Fan, Y.

K.-J. Boller, A. van Rees, Y. Fan, J. Mak, R. E. M. Lammerink, C. A. A. Franken, P. J. M. van der Slot, D. A. I. Marpaung, C. Fallnich, J. P. Epping, R. M. Oldenbeuving, D. Geskus, R. Dekker, I. Visscher, R. Grootjans, C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, A. Leinse, and R. G. Heideman, “Hybrid Integrated Semiconductor Lasers with Silicon Nitride Feedback Circuits,” Photonics 7(1), 4 (2020).
[Crossref]

Fang, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref]

Fang, A. W.

Franken, C. A. A.

K.-J. Boller, A. van Rees, Y. Fan, J. Mak, R. E. M. Lammerink, C. A. A. Franken, P. J. M. van der Slot, D. A. I. Marpaung, C. Fallnich, J. P. Epping, R. M. Oldenbeuving, D. Geskus, R. Dekker, I. Visscher, R. Grootjans, C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, A. Leinse, and R. G. Heideman, “Hybrid Integrated Semiconductor Lasers with Silicon Nitride Feedback Circuits,” Photonics 7(1), 4 (2020).
[Crossref]

Freude, W.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

Geskus, D.

K.-J. Boller, A. van Rees, Y. Fan, J. Mak, R. E. M. Lammerink, C. A. A. Franken, P. J. M. van der Slot, D. A. I. Marpaung, C. Fallnich, J. P. Epping, R. M. Oldenbeuving, D. Geskus, R. Dekker, I. Visscher, R. Grootjans, C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, A. Leinse, and R. G. Heideman, “Hybrid Integrated Semiconductor Lasers with Silicon Nitride Feedback Circuits,” Photonics 7(1), 4 (2020).
[Crossref]

Grootjans, R.

K.-J. Boller, A. van Rees, Y. Fan, J. Mak, R. E. M. Lammerink, C. A. A. Franken, P. J. M. van der Slot, D. A. I. Marpaung, C. Fallnich, J. P. Epping, R. M. Oldenbeuving, D. Geskus, R. Dekker, I. Visscher, R. Grootjans, C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, A. Leinse, and R. G. Heideman, “Hybrid Integrated Semiconductor Lasers with Silicon Nitride Feedback Circuits,” Photonics 7(1), 4 (2020).
[Crossref]

Grover, R.

J. Heebner, R. Grover, and T. Ibrahim, “Optical microresonator theory,” Springer Ser. Opt. Sci. 138, 71–103 (2008).

Guo, J.

Guo, X.-W.

Guo, Y.

Hak, D.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85(12), 2196–2198 (2004).
[Crossref]

Harrington, M. W.

G. M. Brodnik, M. W. Harrington, D. Bose, A. M. Netherton, W. Zhang, L. Stern, P. A. Morton, J. E. Bowers, S. B. Papp, and D. J. Blumenthal, “Chip-Scale, Optical-Frequency-Stabilized PLL for DSP-Free, Low-Power Coherent QAM in the DCI,” in Optical Fiber Communication Conference (OFC) 2020 (OSA, 2020), p. M3A.6.

Heck, M. J. R.

Heebner, J.

J. Heebner, R. Grover, and T. Ibrahim, “Optical microresonator theory,” Springer Ser. Opt. Sci. 138, 71–103 (2008).

Heideman, R. G.

K.-J. Boller, A. van Rees, Y. Fan, J. Mak, R. E. M. Lammerink, C. A. A. Franken, P. J. M. van der Slot, D. A. I. Marpaung, C. Fallnich, J. P. Epping, R. M. Oldenbeuving, D. Geskus, R. Dekker, I. Visscher, R. Grootjans, C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, A. Leinse, and R. G. Heideman, “Hybrid Integrated Semiconductor Lasers with Silicon Nitride Feedback Circuits,” Photonics 7(1), 4 (2020).
[Crossref]

Henry, C.

R. Kazarinov and C. Henry, “The relation of line narrowing and chirp reduction resulting from the coupling of a semiconductor laser to passive resonator,” IEEE J. Quantum Electron. 23(9), 1401–1409 (1987).
[Crossref]

Hoekman, M.

K.-J. Boller, A. van Rees, Y. Fan, J. Mak, R. E. M. Lammerink, C. A. A. Franken, P. J. M. van der Slot, D. A. I. Marpaung, C. Fallnich, J. P. Epping, R. M. Oldenbeuving, D. Geskus, R. Dekker, I. Visscher, R. Grootjans, C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, A. Leinse, and R. G. Heideman, “Hybrid Integrated Semiconductor Lasers with Silicon Nitride Feedback Circuits,” Photonics 7(1), 4 (2020).
[Crossref]

Huang, D.

M. A. Tran, D. Huang, J. Guo, T. Komljenovic, P. A. Morton, and J. E. Bowers, “Ring-Resonator Based Widely-Tunable Narrow-Linewidth Si/InP Integrated Lasers,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–14 (2020).
[Crossref]

M. A. Tran, D. Huang, and J. E. Bowers, “Tutorial on narrow linewidth tunable semiconductor lasers using Si/III-V heterogeneous integration,” APL Photonics 4(11), 111101 (2019).
[Crossref]

D. Huang, M. A. Tran, J. Guo, J. Peters, T. Komljenovic, A. Malik, P. A. Morton, and J. E. Bowers, “High-power sub-kHz linewidth lasers fully integrated on silicon,” Optica 6(6), 745 (2019).
[Crossref]

M. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J. Bowers, “Ultra-Low-Loss Silicon Waveguides for Heterogeneously Integrated Silicon/III-V Photonics,” Appl. Sci. 8(7), 1139 (2018).
[Crossref]

Huang, J.

Huang, Y.

Ibrahim, T.

J. Heebner, R. Grover, and T. Ibrahim, “Optical microresonator theory,” Springer Ser. Opt. Sci. 138, 71–103 (2008).

Ilchenko, V. S.

E. Dale, W. Liang, D. Eliyahu, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, and L. Maleki, “Ultra-narrow line tunable semiconductor lasers for coherent LIDAR applications,” in Imaging and Applied Optics 2014, OSA (Optical Society of American (OSA), 2014), p. JTu2C.3.

Jin, W.

Johnson, T. J.

Jones, R.

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously Integrated InP/Silicon Photonics: Fabricating Fully Functional Transceivers,” IEEE Nanotechnol. Mag. 13(2), 17–26 (2019).
[Crossref]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref]

Kazarinov, R.

R. Kazarinov and C. Henry, “The relation of line narrowing and chirp reduction resulting from the coupling of a semiconductor laser to passive resonator,” IEEE J. Quantum Electron. 23(9), 1401–1409 (1987).
[Crossref]

Kennedy, M. J.

Khurgin, J.

C. Xiang, P. A. Morton, J. Khurgin, C. Morton, and J. E. Bowers, “Widely tunable Si3N4 triple-ring and quad-ring resonator laser reflectors and filters,” in Proc. IEEE 15th Int. Conf. Group IV Photon., 2018, pp. 1–2.

P. Morton and J. Khurgin, “Low noise, high power, multiple microresonator based laser,” U.S. Patent 9, 559, 484, Jan. 31, 2017.

P. Morton, J. Khurgin, and C. Morton, “Multiple-microresonator based laser,” U.S. Patent 9748726, Aug. 29, 2017.

Khurgin, J. B.

C. Xiang, M. L. Davenport, J. B. Khurgin, P. A. Morton, and J. E. Bowers, “Low-Loss Continuously Tunable Optical True Time Delay Based on Si3N4 Ring Resonators,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–9 (2018).
[Crossref]

Klein, E. J.

K.-J. Boller, A. van Rees, Y. Fan, J. Mak, R. E. M. Lammerink, C. A. A. Franken, P. J. M. van der Slot, D. A. I. Marpaung, C. Fallnich, J. P. Epping, R. M. Oldenbeuving, D. Geskus, R. Dekker, I. Visscher, R. Grootjans, C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, A. Leinse, and R. G. Heideman, “Hybrid Integrated Semiconductor Lasers with Silicon Nitride Feedback Circuits,” Photonics 7(1), 4 (2020).
[Crossref]

Komljenovic, T.

M. A. Tran, D. Huang, J. Guo, T. Komljenovic, P. A. Morton, and J. E. Bowers, “Ring-Resonator Based Widely-Tunable Narrow-Linewidth Si/InP Integrated Lasers,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–14 (2020).
[Crossref]

D. Huang, M. A. Tran, J. Guo, J. Peters, T. Komljenovic, A. Malik, P. A. Morton, and J. E. Bowers, “High-power sub-kHz linewidth lasers fully integrated on silicon,” Optica 6(6), 745 (2019).
[Crossref]

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously Integrated InP/Silicon Photonics: Fabricating Fully Functional Transceivers,” IEEE Nanotechnol. Mag. 13(2), 17–26 (2019).
[Crossref]

W. Xie, T. Komljenovic, J. Huang, M. Tran, M. Davenport, A. Torres, P. Pintus, and J. Bowers, “Heterogeneous silicon photonics sensing for autonomous cars [Invited],” Opt. Express 27(3), 3642 (2019).
[Crossref]

M. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J. Bowers, “Ultra-Low-Loss Silicon Waveguides for Heterogeneously Integrated Silicon/III-V Photonics,” Appl. Sci. 8(7), 1139 (2018).
[Crossref]

Koos, C.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

Kumar Selvaraja, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Lammerink, R. E. M.

K.-J. Boller, A. van Rees, Y. Fan, J. Mak, R. E. M. Lammerink, C. A. A. Franken, P. J. M. van der Slot, D. A. I. Marpaung, C. Fallnich, J. P. Epping, R. M. Oldenbeuving, D. Geskus, R. Dekker, I. Visscher, R. Grootjans, C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, A. Leinse, and R. G. Heideman, “Hybrid Integrated Semiconductor Lasers with Silicon Nitride Feedback Circuits,” Photonics 7(1), 4 (2020).
[Crossref]

Leinse, A.

K.-J. Boller, A. van Rees, Y. Fan, J. Mak, R. E. M. Lammerink, C. A. A. Franken, P. J. M. van der Slot, D. A. I. Marpaung, C. Fallnich, J. P. Epping, R. M. Oldenbeuving, D. Geskus, R. Dekker, I. Visscher, R. Grootjans, C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, A. Leinse, and R. G. Heideman, “Hybrid Integrated Semiconductor Lasers with Silicon Nitride Feedback Circuits,” Photonics 7(1), 4 (2020).
[Crossref]

Leuthold, J.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

Liang, W.

E. Dale, W. Liang, D. Eliyahu, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, and L. Maleki, “Ultra-narrow line tunable semiconductor lasers for coherent LIDAR applications,” in Imaging and Applied Optics 2014, OSA (Optical Society of American (OSA), 2014), p. JTu2C.3.

Liao, P.

Lin, Q.

Lin, W.

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously Integrated InP/Silicon Photonics: Fabricating Fully Functional Transceivers,” IEEE Nanotechnol. Mag. 13(2), 17–26 (2019).
[Crossref]

Liu, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85(12), 2196–2198 (2004).
[Crossref]

Lv, N.

Mak, J.

K.-J. Boller, A. van Rees, Y. Fan, J. Mak, R. E. M. Lammerink, C. A. A. Franken, P. J. M. van der Slot, D. A. I. Marpaung, C. Fallnich, J. P. Epping, R. M. Oldenbeuving, D. Geskus, R. Dekker, I. Visscher, R. Grootjans, C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, A. Leinse, and R. G. Heideman, “Hybrid Integrated Semiconductor Lasers with Silicon Nitride Feedback Circuits,” Photonics 7(1), 4 (2020).
[Crossref]

Maleki, L.

E. Dale, W. Liang, D. Eliyahu, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, and L. Maleki, “Ultra-narrow line tunable semiconductor lasers for coherent LIDAR applications,” in Imaging and Applied Optics 2014, OSA (Optical Society of American (OSA), 2014), p. JTu2C.3.

Malik, A.

D. Huang, M. A. Tran, J. Guo, J. Peters, T. Komljenovic, A. Malik, P. A. Morton, and J. E. Bowers, “High-power sub-kHz linewidth lasers fully integrated on silicon,” Optica 6(6), 745 (2019).
[Crossref]

M. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J. Bowers, “Ultra-Low-Loss Silicon Waveguides for Heterogeneously Integrated Silicon/III-V Photonics,” Appl. Sci. 8(7), 1139 (2018).
[Crossref]

Marpaung, D. A. I.

K.-J. Boller, A. van Rees, Y. Fan, J. Mak, R. E. M. Lammerink, C. A. A. Franken, P. J. M. van der Slot, D. A. I. Marpaung, C. Fallnich, J. P. Epping, R. M. Oldenbeuving, D. Geskus, R. Dekker, I. Visscher, R. Grootjans, C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, A. Leinse, and R. G. Heideman, “Hybrid Integrated Semiconductor Lasers with Silicon Nitride Feedback Circuits,” Photonics 7(1), 4 (2020).
[Crossref]

Mašanovic, M. L.

L. A. Coldren, S. W. Corzine, and M. L. Mašanović, Diode Lasers and Photonic Integrated Circuits (John Wiley & Sons, Inc., 2012).

Matsko, A. B.

E. Dale, W. Liang, D. Eliyahu, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, and L. Maleki, “Ultra-narrow line tunable semiconductor lasers for coherent LIDAR applications,” in Imaging and Applied Optics 2014, OSA (Optical Society of American (OSA), 2014), p. JTu2C.3.

Misra, A.

A. Misra, S. Preußler, L. Zhou, and T. Schneider, “Nonlinearity- and dispersion- less integrated optical time magnifier based on a high-Q SiN microring resonator,” Sci. Rep. 9(1), 1–11 (2019).
[Crossref]

Morton, C.

P. Morton, J. Khurgin, and C. Morton, “Multiple-microresonator based laser,” U.S. Patent 9748726, Aug. 29, 2017.

C. Xiang, P. A. Morton, J. Khurgin, C. Morton, and J. E. Bowers, “Widely tunable Si3N4 triple-ring and quad-ring resonator laser reflectors and filters,” in Proc. IEEE 15th Int. Conf. Group IV Photon., 2018, pp. 1–2.

Morton, P.

P. Morton, J. Khurgin, and C. Morton, “Multiple-microresonator based laser,” U.S. Patent 9748726, Aug. 29, 2017.

P. Morton and J. Khurgin, “Low noise, high power, multiple microresonator based laser,” U.S. Patent 9, 559, 484, Jan. 31, 2017.

Morton, P. A.

M. A. Tran, D. Huang, J. Guo, T. Komljenovic, P. A. Morton, and J. E. Bowers, “Ring-Resonator Based Widely-Tunable Narrow-Linewidth Si/InP Integrated Lasers,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–14 (2020).
[Crossref]

C. Xiang, W. Jin, J. Guo, J. D. Peters, M. J. Kennedy, J. Selvidge, P. A. Morton, and J. E. Bowers, “Narrow-linewidth III-V/Si/Si 3 N 4 laser using multilayer heterogeneous integration,” Optica 7(1), 20 (2020).
[Crossref]

C. Xiang, P. A. Morton, and J. E. Bowers, “Ultra-narrow linewidth laser based on a semiconductor gain chip and extended Si3N4 Bragg grating,” Opt. Lett. 44(15), 3825 (2019).
[Crossref]

D. Huang, M. A. Tran, J. Guo, J. Peters, T. Komljenovic, A. Malik, P. A. Morton, and J. E. Bowers, “High-power sub-kHz linewidth lasers fully integrated on silicon,” Optica 6(6), 745 (2019).
[Crossref]

C. Xiang, M. L. Davenport, J. B. Khurgin, P. A. Morton, and J. E. Bowers, “Low-Loss Continuously Tunable Optical True Time Delay Based on Si3N4 Ring Resonators,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–9 (2018).
[Crossref]

C. Xiang, P. A. Morton, J. Khurgin, C. Morton, and J. E. Bowers, “Widely tunable Si3N4 triple-ring and quad-ring resonator laser reflectors and filters,” in Proc. IEEE 15th Int. Conf. Group IV Photon., 2018, pp. 1–2.

G. M. Brodnik, M. W. Harrington, D. Bose, A. M. Netherton, W. Zhang, L. Stern, P. A. Morton, J. E. Bowers, S. B. Papp, and D. J. Blumenthal, “Chip-Scale, Optical-Frequency-Stabilized PLL for DSP-Free, Low-Power Coherent QAM in the DCI,” in Optical Fiber Communication Conference (OFC) 2020 (OSA, 2020), p. M3A.6.

Netherton, A. M.

G. M. Brodnik, M. W. Harrington, D. Bose, A. M. Netherton, W. Zhang, L. Stern, P. A. Morton, J. E. Bowers, S. B. Papp, and D. J. Blumenthal, “Chip-Scale, Optical-Frequency-Stabilized PLL for DSP-Free, Low-Power Coherent QAM in the DCI,” in Optical Fiber Communication Conference (OFC) 2020 (OSA, 2020), p. M3A.6.

Nicolaescu, R.

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85(12), 2196–2198 (2004).
[Crossref]

Oldenbeuving, R. M.

K.-J. Boller, A. van Rees, Y. Fan, J. Mak, R. E. M. Lammerink, C. A. A. Franken, P. J. M. van der Slot, D. A. I. Marpaung, C. Fallnich, J. P. Epping, R. M. Oldenbeuving, D. Geskus, R. Dekker, I. Visscher, R. Grootjans, C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, A. Leinse, and R. G. Heideman, “Hybrid Integrated Semiconductor Lasers with Silicon Nitride Feedback Circuits,” Photonics 7(1), 4 (2020).
[Crossref]

Painter, O.

Painter, O. J.

Paniccia, M.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85(12), 2196–2198 (2004).
[Crossref]

Papp, S. B.

L. Chang, A. Boes, P. Pintus, W. Xie, J. D. Peters, M. J. Kennedy, W. Jin, X.-W. Guo, S.-P. Yu, S. B. Papp, and J. E. Bowers, “Low loss (Al)GaAs on an insulator waveguide platform,” Opt. Lett. 44(16), 4075 (2019).
[Crossref]

G. M. Brodnik, M. W. Harrington, D. Bose, A. M. Netherton, W. Zhang, L. Stern, P. A. Morton, J. E. Bowers, S. B. Papp, and D. J. Blumenthal, “Chip-Scale, Optical-Frequency-Stabilized PLL for DSP-Free, Low-Power Coherent QAM in the DCI,” in Optical Fiber Communication Conference (OFC) 2020 (OSA, 2020), p. M3A.6.

Peng, J.

Peters, J.

D. Huang, M. A. Tran, J. Guo, J. Peters, T. Komljenovic, A. Malik, P. A. Morton, and J. E. Bowers, “High-power sub-kHz linewidth lasers fully integrated on silicon,” Optica 6(6), 745 (2019).
[Crossref]

M. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J. Bowers, “Ultra-Low-Loss Silicon Waveguides for Heterogeneously Integrated Silicon/III-V Photonics,” Appl. Sci. 8(7), 1139 (2018).
[Crossref]

Peters, J. D.

Piels, M.

Pintus, P.

Preußler, S.

A. Misra, S. Preußler, L. Zhou, and T. Schneider, “Nonlinearity- and dispersion- less integrated optical time magnifier based on a high-Q SiN microring resonator,” Sci. Rep. 9(1), 1–11 (2019).
[Crossref]

Rakuljic, G.

Roeloffzen, C. G. H.

K.-J. Boller, A. van Rees, Y. Fan, J. Mak, R. E. M. Lammerink, C. A. A. Franken, P. J. M. van der Slot, D. A. I. Marpaung, C. Fallnich, J. P. Epping, R. M. Oldenbeuving, D. Geskus, R. Dekker, I. Visscher, R. Grootjans, C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, A. Leinse, and R. G. Heideman, “Hybrid Integrated Semiconductor Lasers with Silicon Nitride Feedback Circuits,” Photonics 7(1), 4 (2020).
[Crossref]

Rong, H.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85(12), 2196–2198 (2004).
[Crossref]

Santis, C. T.

C. T. Santis, Y. Vilenchik, N. Satyan, G. Rakuljic, and A. Yariv, “Quantum control of phase fluctuations in semiconductor lasers,” Proc. Natl. Acad. Sci. U. S. A. 115(34), E7896–E7904 (2018).
[Crossref]

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. U. S. A. 111(8), 2879–2884 (2014).
[Crossref]

Satyan, N.

Savchenkov, A. A.

E. Dale, W. Liang, D. Eliyahu, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, and L. Maleki, “Ultra-narrow line tunable semiconductor lasers for coherent LIDAR applications,” in Imaging and Applied Optics 2014, OSA (Optical Society of American (OSA), 2014), p. JTu2C.3.

Schneider, T.

A. Misra, S. Preußler, L. Zhou, and T. Schneider, “Nonlinearity- and dispersion- less integrated optical time magnifier based on a high-Q SiN microring resonator,” Sci. Rep. 9(1), 1–11 (2019).
[Crossref]

Schuck, C.

X. Sun, X. Zhang, C. Schuck, and H. X. Tang, “Nonlinear optical effects of ultrahigh-Q silicon photonic nanocavities immersed in superfluid helium,” Sci. Rep. 3(1), 1436 (2013).
[Crossref]

Seidel, D.

E. Dale, W. Liang, D. Eliyahu, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, and L. Maleki, “Ultra-narrow line tunable semiconductor lasers for coherent LIDAR applications,” in Imaging and Applied Optics 2014, OSA (Optical Society of American (OSA), 2014), p. JTu2C.3.

Selvidge, J.

Steger, S. T.

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. U. S. A. 111(8), 2879–2884 (2014).
[Crossref]

Stern, L.

G. M. Brodnik, M. W. Harrington, D. Bose, A. M. Netherton, W. Zhang, L. Stern, P. A. Morton, J. E. Bowers, S. B. Papp, and D. J. Blumenthal, “Chip-Scale, Optical-Frequency-Stabilized PLL for DSP-Free, Low-Power Coherent QAM in the DCI,” in Optical Fiber Communication Conference (OFC) 2020 (OSA, 2020), p. M3A.6.

Sun, X.

X. Sun, X. Zhang, C. Schuck, and H. X. Tang, “Nonlinear optical effects of ultrahigh-Q silicon photonic nanocavities immersed in superfluid helium,” Sci. Rep. 3(1), 1436 (2013).
[Crossref]

Tang, H. X.

X. Sun, X. Zhang, C. Schuck, and H. X. Tang, “Nonlinear optical effects of ultrahigh-Q silicon photonic nanocavities immersed in superfluid helium,” Sci. Rep. 3(1), 1436 (2013).
[Crossref]

Torres, A.

Tran, M.

W. Xie, T. Komljenovic, J. Huang, M. Tran, M. Davenport, A. Torres, P. Pintus, and J. Bowers, “Heterogeneous silicon photonics sensing for autonomous cars [Invited],” Opt. Express 27(3), 3642 (2019).
[Crossref]

M. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J. Bowers, “Ultra-Low-Loss Silicon Waveguides for Heterogeneously Integrated Silicon/III-V Photonics,” Appl. Sci. 8(7), 1139 (2018).
[Crossref]

Tran, M. A.

M. A. Tran, D. Huang, J. Guo, T. Komljenovic, P. A. Morton, and J. E. Bowers, “Ring-Resonator Based Widely-Tunable Narrow-Linewidth Si/InP Integrated Lasers,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–14 (2020).
[Crossref]

M. A. Tran, D. Huang, and J. E. Bowers, “Tutorial on narrow linewidth tunable semiconductor lasers using Si/III-V heterogeneous integration,” APL Photonics 4(11), 111101 (2019).
[Crossref]

D. Huang, M. A. Tran, J. Guo, J. Peters, T. Komljenovic, A. Malik, P. A. Morton, and J. E. Bowers, “High-power sub-kHz linewidth lasers fully integrated on silicon,” Optica 6(6), 745 (2019).
[Crossref]

Tur, M.

Vahala, K. J.

van der Slot, P. J. M.

K.-J. Boller, A. van Rees, Y. Fan, J. Mak, R. E. M. Lammerink, C. A. A. Franken, P. J. M. van der Slot, D. A. I. Marpaung, C. Fallnich, J. P. Epping, R. M. Oldenbeuving, D. Geskus, R. Dekker, I. Visscher, R. Grootjans, C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, A. Leinse, and R. G. Heideman, “Hybrid Integrated Semiconductor Lasers with Silicon Nitride Feedback Circuits,” Photonics 7(1), 4 (2020).
[Crossref]

van Rees, A.

K.-J. Boller, A. van Rees, Y. Fan, J. Mak, R. E. M. Lammerink, C. A. A. Franken, P. J. M. van der Slot, D. A. I. Marpaung, C. Fallnich, J. P. Epping, R. M. Oldenbeuving, D. Geskus, R. Dekker, I. Visscher, R. Grootjans, C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, A. Leinse, and R. G. Heideman, “Hybrid Integrated Semiconductor Lasers with Silicon Nitride Feedback Circuits,” Photonics 7(1), 4 (2020).
[Crossref]

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Vasilyev, A.

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. U. S. A. 111(8), 2879–2884 (2014).
[Crossref]

Vilenchik, Y.

C. T. Santis, Y. Vilenchik, N. Satyan, G. Rakuljic, and A. Yariv, “Quantum control of phase fluctuations in semiconductor lasers,” Proc. Natl. Acad. Sci. U. S. A. 115(34), E7896–E7904 (2018).
[Crossref]

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. U. S. A. 111(8), 2879–2884 (2014).
[Crossref]

Visscher, I.

K.-J. Boller, A. van Rees, Y. Fan, J. Mak, R. E. M. Lammerink, C. A. A. Franken, P. J. M. van der Slot, D. A. I. Marpaung, C. Fallnich, J. P. Epping, R. M. Oldenbeuving, D. Geskus, R. Dekker, I. Visscher, R. Grootjans, C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, A. Leinse, and R. G. Heideman, “Hybrid Integrated Semiconductor Lasers with Silicon Nitride Feedback Circuits,” Photonics 7(1), 4 (2020).
[Crossref]

Wang, H.

Willner, A.

Xiang, C.

C. Xiang, W. Jin, J. Guo, J. D. Peters, M. J. Kennedy, J. Selvidge, P. A. Morton, and J. E. Bowers, “Narrow-linewidth III-V/Si/Si 3 N 4 laser using multilayer heterogeneous integration,” Optica 7(1), 20 (2020).
[Crossref]

C. Xiang, P. A. Morton, and J. E. Bowers, “Ultra-narrow linewidth laser based on a semiconductor gain chip and extended Si3N4 Bragg grating,” Opt. Lett. 44(15), 3825 (2019).
[Crossref]

C. Xiang, M. L. Davenport, J. B. Khurgin, P. A. Morton, and J. E. Bowers, “Low-Loss Continuously Tunable Optical True Time Delay Based on Si3N4 Ring Resonators,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–9 (2018).
[Crossref]

C. Xiang, P. A. Morton, J. Khurgin, C. Morton, and J. E. Bowers, “Widely tunable Si3N4 triple-ring and quad-ring resonator laser reflectors and filters,” in Proc. IEEE 15th Int. Conf. Group IV Photon., 2018, pp. 1–2.

Xie, W.

Yang, L.

Yariv, A.

K. Zou, Z. Zhang, P. Liao, H. Wang, Y. Cao, A. Almaiman, A. Fallahpour, F. Alishahi, N. Satyan, G. Rakuljic, M. Tur, A. Yariv, and A. Willner, “Higher-order QAM Data Transmission Using a High-Coherence Hybrid Si/III-V Semiconductor Laser,” Opt. Lett. 45(6), 1499–1502 (2020).
[Crossref]

C. T. Santis, Y. Vilenchik, N. Satyan, G. Rakuljic, and A. Yariv, “Quantum control of phase fluctuations in semiconductor lasers,” Proc. Natl. Acad. Sci. U. S. A. 115(34), E7896–E7904 (2018).
[Crossref]

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. U. S. A. 111(8), 2879–2884 (2014).
[Crossref]

Yu, H.

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously Integrated InP/Silicon Photonics: Fabricating Fully Functional Transceivers,” IEEE Nanotechnol. Mag. 13(2), 17–26 (2019).
[Crossref]

Yu, S.-P.

Zhang, W.

Y. Guo, W. Zhang, N. Lv, Q. Zhou, Y. Huang, and J. Peng, “The impact of nonlinear losses in the silicon micro-ring cavities on CW pumping correlated photon pair generation,” Opt. Express 22(3), 2620 (2014).
[Crossref]

G. M. Brodnik, M. W. Harrington, D. Bose, A. M. Netherton, W. Zhang, L. Stern, P. A. Morton, J. E. Bowers, S. B. Papp, and D. J. Blumenthal, “Chip-Scale, Optical-Frequency-Stabilized PLL for DSP-Free, Low-Power Coherent QAM in the DCI,” in Optical Fiber Communication Conference (OFC) 2020 (OSA, 2020), p. M3A.6.

Zhang, X.

X. Sun, X. Zhang, C. Schuck, and H. X. Tang, “Nonlinear optical effects of ultrahigh-Q silicon photonic nanocavities immersed in superfluid helium,” Sci. Rep. 3(1), 1436 (2013).
[Crossref]

Zhang, Z.

Zhou, L.

A. Misra, S. Preußler, L. Zhou, and T. Schneider, “Nonlinearity- and dispersion- less integrated optical time magnifier based on a high-Q SiN microring resonator,” Sci. Rep. 9(1), 1–11 (2019).
[Crossref]

Zhou, Q.

Zou, K.

APL Photonics (1)

M. A. Tran, D. Huang, and J. E. Bowers, “Tutorial on narrow linewidth tunable semiconductor lasers using Si/III-V heterogeneous integration,” APL Photonics 4(11), 111101 (2019).
[Crossref]

Appl. Phys. Lett. (1)

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85(12), 2196–2198 (2004).
[Crossref]

Appl. Sci. (1)

M. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J. Bowers, “Ultra-Low-Loss Silicon Waveguides for Heterogeneously Integrated Silicon/III-V Photonics,” Appl. Sci. 8(7), 1139 (2018).
[Crossref]

IEEE J. Quantum Electron. (1)

R. Kazarinov and C. Henry, “The relation of line narrowing and chirp reduction resulting from the coupling of a semiconductor laser to passive resonator,” IEEE J. Quantum Electron. 23(9), 1401–1409 (1987).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

C. Xiang, M. L. Davenport, J. B. Khurgin, P. A. Morton, and J. E. Bowers, “Low-Loss Continuously Tunable Optical True Time Delay Based on Si3N4 Ring Resonators,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–9 (2018).
[Crossref]

M. A. Tran, D. Huang, J. Guo, T. Komljenovic, P. A. Morton, and J. E. Bowers, “Ring-Resonator Based Widely-Tunable Narrow-Linewidth Si/InP Integrated Lasers,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–14 (2020).
[Crossref]

IEEE Nanotechnol. Mag. (1)

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously Integrated InP/Silicon Photonics: Fabricating Fully Functional Transceivers,” IEEE Nanotechnol. Mag. 13(2), 17–26 (2019).
[Crossref]

J. Lightwave Technol. (1)

Laser Photonics Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Nat. Photonics (1)

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

Nature (1)

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref]

Opt. Express (7)

Opt. Lett. (3)

Optica (2)

Photonics (1)

K.-J. Boller, A. van Rees, Y. Fan, J. Mak, R. E. M. Lammerink, C. A. A. Franken, P. J. M. van der Slot, D. A. I. Marpaung, C. Fallnich, J. P. Epping, R. M. Oldenbeuving, D. Geskus, R. Dekker, I. Visscher, R. Grootjans, C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, A. Leinse, and R. G. Heideman, “Hybrid Integrated Semiconductor Lasers with Silicon Nitride Feedback Circuits,” Photonics 7(1), 4 (2020).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (2)

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. U. S. A. 111(8), 2879–2884 (2014).
[Crossref]

C. T. Santis, Y. Vilenchik, N. Satyan, G. Rakuljic, and A. Yariv, “Quantum control of phase fluctuations in semiconductor lasers,” Proc. Natl. Acad. Sci. U. S. A. 115(34), E7896–E7904 (2018).
[Crossref]

Sci. Rep. (2)

X. Sun, X. Zhang, C. Schuck, and H. X. Tang, “Nonlinear optical effects of ultrahigh-Q silicon photonic nanocavities immersed in superfluid helium,” Sci. Rep. 3(1), 1436 (2013).
[Crossref]

A. Misra, S. Preußler, L. Zhou, and T. Schneider, “Nonlinearity- and dispersion- less integrated optical time magnifier based on a high-Q SiN microring resonator,” Sci. Rep. 9(1), 1–11 (2019).
[Crossref]

Springer Ser. Opt. Sci. (1)

J. Heebner, R. Grover, and T. Ibrahim, “Optical microresonator theory,” Springer Ser. Opt. Sci. 138, 71–103 (2008).

Other (6)

G. M. Brodnik, M. W. Harrington, D. Bose, A. M. Netherton, W. Zhang, L. Stern, P. A. Morton, J. E. Bowers, S. B. Papp, and D. J. Blumenthal, “Chip-Scale, Optical-Frequency-Stabilized PLL for DSP-Free, Low-Power Coherent QAM in the DCI,” in Optical Fiber Communication Conference (OFC) 2020 (OSA, 2020), p. M3A.6.

E. Dale, W. Liang, D. Eliyahu, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, and L. Maleki, “Ultra-narrow line tunable semiconductor lasers for coherent LIDAR applications,” in Imaging and Applied Optics 2014, OSA (Optical Society of American (OSA), 2014), p. JTu2C.3.

L. A. Coldren, S. W. Corzine, and M. L. Mašanović, Diode Lasers and Photonic Integrated Circuits (John Wiley & Sons, Inc., 2012).

P. Morton and J. Khurgin, “Low noise, high power, multiple microresonator based laser,” U.S. Patent 9, 559, 484, Jan. 31, 2017.

P. Morton, J. Khurgin, and C. Morton, “Multiple-microresonator based laser,” U.S. Patent 9748726, Aug. 29, 2017.

C. Xiang, P. A. Morton, J. Khurgin, C. Morton, and J. E. Bowers, “Widely tunable Si3N4 triple-ring and quad-ring resonator laser reflectors and filters,” in Proc. IEEE 15th Int. Conf. Group IV Photon., 2018, pp. 1–2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Schematics of cross section of the Si ring resonator at the bus-ring coupling region. (b), (c) Top-view schematics of the pulley-type ring and racetrack-type ring resonators. (d) Simulated effective mode area of the Si waveguide at 100 µm bend radius. Insets show the simulated Si mode profile with two different ring waveguide width. (e) and (f) Fitted TE0 mode resonance of pulley multimode ring resonator and racetrack quasi-single mode ring resonator. Measurements are in blue and Lorentzian fit is in red.
Fig. 2.
Fig. 2. (a) Normalized transmission at different bus waveguide power shown in the legend for a multimode pulley-ring Si resonator with Q0c = 1.7 × 106. (b) Extracted power dependent intrinsic Q-factor from (a).
Fig. 3.
Fig. 3. (a) Schematics of cross-sectional view of the extended Si ring resonator at the bus-ring coupling region. (b) Top view schematics of three extended ring resonators sharing a common bus waveguide. Inset shows the simulated mode profile of Si extended ring with 849 µm radius. (c) Transmission measured from the common bus waveguide. (d) Resonance wavelength separated from (c), grouped by ring radius. (e) Fitted TE0 mode resonance of extended ring resonators with difference ring radius. The bottom row shows normalized transmission aligned at corresponding resonance frequency for bus waveguide power ranging from −7 dBm to 4 dBm for each ring geometry.
Fig. 4.
Fig. 4. (a) Schematics of cross-sectional view of Si3N4 ring resonator at the bus-ring coupling region. (b) Fitted TE0 mode resonance of Si3N4 ring resonator top view schematics of three extended ring resonators sharing a common bus waveguide. Inset shows the simulated mode profile of Si3N4 ring resonator. (c) Normalized transmission at different bus waveguide power shown in the legend for Si3N4 ring resonator.
Fig. 5.
Fig. 5. Dependence of extracted loss in ring for different type of ring resonators on the power in bus waveguide.