Abstract

Selective slicing on a 100 nm thick ZnO film deposited on a Si substrate is achieved by an interference femtosecond (fs) laser stamping. A micro-grating structure with a period of ∼5 µm is completely ablated by an energy-optimized single pulse in one step. The elemental mappings demonstrate complete slice removals of the irradiated areas from the substrate without impurities mixed into the thin film. A calculation of the energy transmitted to the substrate and the characterization of the ablated Si channels infer that the irradiated slices are detached from the substrate by the selective ablation of the thin film and the counterforce of the Si substrate. The temporal and spatial evolution of the grating formation is investigated through a pump-probe microscope using the white light continuum (WLC) as the illumination probe. It is found that the extinctive constructive fringes occur at a delay of 8 picosecond (ps) caused by the increase of electron density. The irradiated slices initially bulge at the delay of 10-12 ps, then subsequently swell until strong material ejections at 800 ps. This study provides an opportunity to advance the understanding of micro-grating fabrications and thin film removals on heterostructures using fs lasers.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent progress in processing and properties of ZnO,” Prog. Mater. Sci. 50(3), 293–340 (2005).
    [Crossref]
  2. Y. Q. Fu, J. K. Luo, X. Y. Du, A. J. Flewitt, Y. Li, G. H. Markx, A. J. Walton, and W. I. Milne, “Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review,” Sens. Actuators, B 143(2), 606–619 (2010).
    [Crossref]
  3. B. Hussain, A. Ebong, and I. Ferguson, “Zinc oxide as an active n-layer and antireflection coating for silicon based heterojunction solar cell,” Sol. Energy Mater. Sol. Cells 139, 95–100 (2015).
    [Crossref]
  4. M. Purica, E. Budianu, and E. Rusu, “Heterojunction with ZnO polycrystalline thin films for optoelectronic devices applications,” Microelectron. Eng. 51-52, 425–431 (2000).
    [Crossref]
  5. P. V. Lambeck, “Integrated optical sensors for the chemical domain,” Meas. Sci. Technol. 17(8), R93–R116 (2006).
    [Crossref]
  6. C. Haase and H. Stiebig, “Optical properties of thin-film silicon solar cells with grating couplers,” Prog. Photovoltaics 14(7), 629–641 (2006).
    [Crossref]
  7. P. Struk, T. Pustelny, K. Gołaszewska, E. Kamińska, M. Borysiewicz, M. Ekielski, and A. Piotrowska, “Photonic structures with grating couplers based on ZnO,” Opto-Electron. Rev. 19(4), 462–467 (2011).
    [Crossref]
  8. C. Park, J. Lee, H.-M. So, and W. S. Chang, “An ultrafast response grating structural ZnO photodetector with back-to-back Schottky barriers produced by hydrothermal growth,” J. Mater. Chem. C 3(12), 2737–2743 (2015).
    [Crossref]
  9. W. Lukosz, “Integrated optical chemical and direct biochemical sensors,” Sens. Actuators, B 29(1-3), 37–50 (1995).
    [Crossref]
  10. Y. L. Yao, H. Chen, and W. Zhang, “Time scale effects in laser material removal: a review,” Int. J. Adv. Manuf. Technol. 26(5-6), 598–608 (2005).
    [Crossref]
  11. S. Lee, D. Yang, and S. Nikumb, “Femtosecond laser patterning of Ta0.1W0.9Ox/ITO thin film stack,” Appl. Surf. Sci. 253(10), 4740–4747 (2007).
    [Crossref]
  12. S. Zoppel, H. Huber, and G. A. Reider, “Selective ablation of thin Mo and TCO films with femtosecond laser pulses for structuring thin film solar cells,” Appl. Phys. A 89(1), 161–163 (2007).
    [Crossref]
  13. H. W. Choi, D. F. Farson, J. Bovatsek, A. Arai, and D. Ashkenasi, “Direct-write patterning of indium-tin-oxide film by high pulse repetition frequency femtosecond laser ablation,” Appl. Opt. 46(23), 5792–5799 (2007).
    [Crossref]
  14. S. Krause, P. Miclea, F. Steudel, S. Schweizer, and G. Seifert, “Precise microstructuring of indium-tin oxide thin films on glass by selective femtosecond laser ablation,” EPJ Photovoltaics 4, 40601 (2013).
    [Crossref]
  15. P. Balling and J. Schou, “Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films,” Rep. Prog. Phys. 76(3), 036502 (2013).
    [Crossref]
  16. K. C. Phillips, H. H. Gandhi, E. Mazur, and S. K. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–712 (2015).
    [Crossref]
  17. B. Voisiat, S. Alamri, and A. F. Lasagni, “One-step fabrication of asymmetric saw-tooth-like surface structures on stainless steel using Direct Laser Interference Patterning,” Mater. Lett. 245, 183–187 (2019).
    [Crossref]
  18. Q.-Z. Zhao, J.-R. Qiu, C.-J. Zhao, X.-W. Jiang, and C.-S. Zhu, “Formation of array microstructures on silicon by multibeam interfered femtosecond laser pulses,” Appl. Surf. Sci. 241(3-4), 416–419 (2005).
    [Crossref]
  19. A. Pan, J. Si, T. Chen, C. Li, and X. Hou, “Fabrication of two-dimensional periodic structures on silicon after scanning irradiation with femtosecond laser multi-beams,” Appl. Surf. Sci. 368, 443–448 (2016).
    [Crossref]
  20. K.-i. Kawamura, N. Sarukura, M. Hirano, and H. Hosono, “Holographic encoding of fine-pitched micrograting structures in amorphous SiO2 thin films on silicon by a single femtosecond laser pulse,” Appl. Phys. Lett. 78(8), 1038–1040 (2001).
    [Crossref]
  21. M. Hirano, K.-i. Kawamura, and H. Hosono, “Encoding of holographic grating and periodic nano-structure by femtosecond laser pulse,” Appl. Surf. Sci. 197-198, 688–698 (2002).
    [Crossref]
  22. V. Oliveira, R. Vilar, R. Serra, J. C. Oliveira, N. I. Polushkin, and O. Conde, “Sub-micron structuring of silicon using femtosecond laser interferometry,” Opt. Laser Technol. 54, 428–431 (2013).
    [Crossref]
  23. V. Oliveira, N. I. Polushkin, O. Conde, and R. Vilar, “Laser surface patterning using a Michelson interferometer and femtosecond laser radiation,” Opt. Laser Technol. 44(7), 2072–2075 (2012).
    [Crossref]
  24. K. Venkatakrishnan, N. R. Sivakumar, C. W. Hee, B. Tan, W. L. Liang, and G. K. Gan, “Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser,” Appl. Phys. A 77(7), 959–963 (2003).
    [Crossref]
  25. K. Venkatakrishnan, N. R. Sivakumar, and B. Tan, “Fabrication of planar gratings by direct ablation using an ultrashort pulse laser in a common optical path configuration,” Appl. Phys. A 76(2), 143–146 (2003).
    [Crossref]
  26. B. Tan, N. R. Sivakumar, and K. Venkatakrishnan, “Direct grating writing using femtosecond laser interference fringes formed at the focal point,” J. Opt. A: Pure Appl. Opt. 7(4), 169–174 (2005).
    [Crossref]
  27. T. Jia, M. Baba, M. Suzuki, R. A. Ganeev, H. Kuroda, J. Qiu, X. Wang, R. Li, and Z. Xu, “Fabrication of two-dimensional periodic nanostructures by two-beam interference of femtosecond pulses,” Opt. Express 16(3), 1874–1878 (2008).
    [Crossref]
  28. S. Qu, C. Zhao, Q. Zhao, J. Qiu, C. Zhu, and K. Hirao, “One-off writing of multimicrogratings on glass by two interfered femtosecond laser pulses,” Opt. Lett. 29(17), 2058–2060 (2004).
    [Crossref]
  29. V. Oliveira, R. D. F. Moreira, M. F. S. F. de Moura, and R. Vilar, “Surface patterning of CRFP composites using femtosecond laser interferometry,” Appl. Phys. A 124(3), 231 (2018).
    [Crossref]
  30. K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, and Z. Sun, “The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging,” J. Appl. Phys. 121(10), 104301 (2017).
    [Crossref]
  31. M. C. Downer, R. L. Fork, and C. V. Shank, “Femtosecond imaging of melting and evaporation at a photoexcited silicon surface,” J. Opt. Soc. Am. B 2(4), 595–599 (1985).
    [Crossref]
  32. L. Jiang and H.-L. Tsai, “Repeatable nanostructures in dielectrics by femtosecond laser pulse trains,” Appl. Phys. Lett. 87(15), 151104 (2005).
    [Crossref]
  33. L. Jiang and H. L. Tsai, “Energy transport and material removal in wide bandgap materials by a femtosecond laser pulse,” Int. J. Heat Mass Transfer 48(3-4), 487–499 (2005).
    [Crossref]
  34. J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys. A 74(1), 19–25 (2002).
    [Crossref]
  35. J. Bonse, K. W. Brzezinka, and A. J. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221(1-4), 215–230 (2004).
    [Crossref]
  36. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7(5), 196–198 (1982).
    [Crossref]
  37. X. Wang, F. Chen, H. Liu, W. Liang, Q. Yang, J. Si, and X. Hou, “Fabrication of micro-gratings on Au–Cr thin film by femtosecond laser interference with different pulse durations,” Appl. Surf. Sci. 255(20), 8483–8487 (2009).
    [Crossref]
  38. S. Beke, K. Sugioka, K. Midorikawa, Á Péter, L. Nánai, and J. Bonse, “Characterization of the ablation of TeO2crystals in air with femtosecond laser pulses,” J. Phys. D: Appl. Phys. 43(2), 025401 (2010).
    [Crossref]
  39. S. Rapp, M. Schmidt, and H. P. Huber, “Selective femtosecond laser structuring of dielectric thin films with different band gaps: a time-resolved study of ablation mechanisms,” Appl. Phys. A 122(12), 1035 (2016).
    [Crossref]
  40. B. Wu, S. Tao, and S. Lei, “Numerical modeling of laser shock peening with femtosecond laser pulses and comparisons to experiments,” Appl. Surf. Sci. 256(13), 4376–4382 (2010).
    [Crossref]
  41. M. Garcia-Lechuga, J. Solis, and J. Siegel, “Key stages of material expansion in dielectrics upon femtosecond laser ablation revealed by double-color illumination time-resolved microscopy,” Appl. Phys. A 124(3), 221 (2018).
    [Crossref]
  42. B. Gu, J. He, W. Ji, and H.-T. Wang, “Three-photon absorption saturation in ZnO and ZnS crystals,” J. Appl. Phys. 103(7), 073105 (2008).
    [Crossref]
  43. L. Jiang and H. L. Tsai, “Plasma modeling for ultrashort pulse laser ablation of dielectrics,” J. Appl. Phys. 100(2), 023116 (2006).
    [Crossref]
  44. D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, and J. Solis, “Dynamics of plasma formation, relaxation, and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics,” J. Opt. Soc. Am. B 27(5), 1065–1076 (2010).
    [Crossref]
  45. M. Garcia-Lechuga, J. Siegel, J. Hernandez-Rueda, and J. Solis, “Femtosecond laser ablation of dielectric materials in the optical breakdown regime: Expansion of a transparent shell,” Appl. Phys. Lett. 105(11), 112902 (2014).
    [Crossref]
  46. M. Domke, S. Rapp, M. Schmidt, and H. P. Huber, “Ultra-fast movies of thin-film laser ablation,” Appl. Phys. A 109(2), 409–420 (2012).
    [Crossref]

2019 (1)

B. Voisiat, S. Alamri, and A. F. Lasagni, “One-step fabrication of asymmetric saw-tooth-like surface structures on stainless steel using Direct Laser Interference Patterning,” Mater. Lett. 245, 183–187 (2019).
[Crossref]

2018 (2)

V. Oliveira, R. D. F. Moreira, M. F. S. F. de Moura, and R. Vilar, “Surface patterning of CRFP composites using femtosecond laser interferometry,” Appl. Phys. A 124(3), 231 (2018).
[Crossref]

M. Garcia-Lechuga, J. Solis, and J. Siegel, “Key stages of material expansion in dielectrics upon femtosecond laser ablation revealed by double-color illumination time-resolved microscopy,” Appl. Phys. A 124(3), 221 (2018).
[Crossref]

2017 (1)

K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, and Z. Sun, “The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging,” J. Appl. Phys. 121(10), 104301 (2017).
[Crossref]

2016 (2)

A. Pan, J. Si, T. Chen, C. Li, and X. Hou, “Fabrication of two-dimensional periodic structures on silicon after scanning irradiation with femtosecond laser multi-beams,” Appl. Surf. Sci. 368, 443–448 (2016).
[Crossref]

S. Rapp, M. Schmidt, and H. P. Huber, “Selective femtosecond laser structuring of dielectric thin films with different band gaps: a time-resolved study of ablation mechanisms,” Appl. Phys. A 122(12), 1035 (2016).
[Crossref]

2015 (3)

K. C. Phillips, H. H. Gandhi, E. Mazur, and S. K. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–712 (2015).
[Crossref]

B. Hussain, A. Ebong, and I. Ferguson, “Zinc oxide as an active n-layer and antireflection coating for silicon based heterojunction solar cell,” Sol. Energy Mater. Sol. Cells 139, 95–100 (2015).
[Crossref]

C. Park, J. Lee, H.-M. So, and W. S. Chang, “An ultrafast response grating structural ZnO photodetector with back-to-back Schottky barriers produced by hydrothermal growth,” J. Mater. Chem. C 3(12), 2737–2743 (2015).
[Crossref]

2014 (1)

M. Garcia-Lechuga, J. Siegel, J. Hernandez-Rueda, and J. Solis, “Femtosecond laser ablation of dielectric materials in the optical breakdown regime: Expansion of a transparent shell,” Appl. Phys. Lett. 105(11), 112902 (2014).
[Crossref]

2013 (3)

S. Krause, P. Miclea, F. Steudel, S. Schweizer, and G. Seifert, “Precise microstructuring of indium-tin oxide thin films on glass by selective femtosecond laser ablation,” EPJ Photovoltaics 4, 40601 (2013).
[Crossref]

P. Balling and J. Schou, “Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films,” Rep. Prog. Phys. 76(3), 036502 (2013).
[Crossref]

V. Oliveira, R. Vilar, R. Serra, J. C. Oliveira, N. I. Polushkin, and O. Conde, “Sub-micron structuring of silicon using femtosecond laser interferometry,” Opt. Laser Technol. 54, 428–431 (2013).
[Crossref]

2012 (2)

V. Oliveira, N. I. Polushkin, O. Conde, and R. Vilar, “Laser surface patterning using a Michelson interferometer and femtosecond laser radiation,” Opt. Laser Technol. 44(7), 2072–2075 (2012).
[Crossref]

M. Domke, S. Rapp, M. Schmidt, and H. P. Huber, “Ultra-fast movies of thin-film laser ablation,” Appl. Phys. A 109(2), 409–420 (2012).
[Crossref]

2011 (1)

P. Struk, T. Pustelny, K. Gołaszewska, E. Kamińska, M. Borysiewicz, M. Ekielski, and A. Piotrowska, “Photonic structures with grating couplers based on ZnO,” Opto-Electron. Rev. 19(4), 462–467 (2011).
[Crossref]

2010 (4)

Y. Q. Fu, J. K. Luo, X. Y. Du, A. J. Flewitt, Y. Li, G. H. Markx, A. J. Walton, and W. I. Milne, “Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review,” Sens. Actuators, B 143(2), 606–619 (2010).
[Crossref]

B. Wu, S. Tao, and S. Lei, “Numerical modeling of laser shock peening with femtosecond laser pulses and comparisons to experiments,” Appl. Surf. Sci. 256(13), 4376–4382 (2010).
[Crossref]

S. Beke, K. Sugioka, K. Midorikawa, Á Péter, L. Nánai, and J. Bonse, “Characterization of the ablation of TeO2crystals in air with femtosecond laser pulses,” J. Phys. D: Appl. Phys. 43(2), 025401 (2010).
[Crossref]

D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, and J. Solis, “Dynamics of plasma formation, relaxation, and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics,” J. Opt. Soc. Am. B 27(5), 1065–1076 (2010).
[Crossref]

2009 (1)

X. Wang, F. Chen, H. Liu, W. Liang, Q. Yang, J. Si, and X. Hou, “Fabrication of micro-gratings on Au–Cr thin film by femtosecond laser interference with different pulse durations,” Appl. Surf. Sci. 255(20), 8483–8487 (2009).
[Crossref]

2008 (2)

2007 (3)

S. Lee, D. Yang, and S. Nikumb, “Femtosecond laser patterning of Ta0.1W0.9Ox/ITO thin film stack,” Appl. Surf. Sci. 253(10), 4740–4747 (2007).
[Crossref]

S. Zoppel, H. Huber, and G. A. Reider, “Selective ablation of thin Mo and TCO films with femtosecond laser pulses for structuring thin film solar cells,” Appl. Phys. A 89(1), 161–163 (2007).
[Crossref]

H. W. Choi, D. F. Farson, J. Bovatsek, A. Arai, and D. Ashkenasi, “Direct-write patterning of indium-tin-oxide film by high pulse repetition frequency femtosecond laser ablation,” Appl. Opt. 46(23), 5792–5799 (2007).
[Crossref]

2006 (3)

P. V. Lambeck, “Integrated optical sensors for the chemical domain,” Meas. Sci. Technol. 17(8), R93–R116 (2006).
[Crossref]

C. Haase and H. Stiebig, “Optical properties of thin-film silicon solar cells with grating couplers,” Prog. Photovoltaics 14(7), 629–641 (2006).
[Crossref]

L. Jiang and H. L. Tsai, “Plasma modeling for ultrashort pulse laser ablation of dielectrics,” J. Appl. Phys. 100(2), 023116 (2006).
[Crossref]

2005 (6)

B. Tan, N. R. Sivakumar, and K. Venkatakrishnan, “Direct grating writing using femtosecond laser interference fringes formed at the focal point,” J. Opt. A: Pure Appl. Opt. 7(4), 169–174 (2005).
[Crossref]

S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent progress in processing and properties of ZnO,” Prog. Mater. Sci. 50(3), 293–340 (2005).
[Crossref]

Y. L. Yao, H. Chen, and W. Zhang, “Time scale effects in laser material removal: a review,” Int. J. Adv. Manuf. Technol. 26(5-6), 598–608 (2005).
[Crossref]

Q.-Z. Zhao, J.-R. Qiu, C.-J. Zhao, X.-W. Jiang, and C.-S. Zhu, “Formation of array microstructures on silicon by multibeam interfered femtosecond laser pulses,” Appl. Surf. Sci. 241(3-4), 416–419 (2005).
[Crossref]

L. Jiang and H.-L. Tsai, “Repeatable nanostructures in dielectrics by femtosecond laser pulse trains,” Appl. Phys. Lett. 87(15), 151104 (2005).
[Crossref]

L. Jiang and H. L. Tsai, “Energy transport and material removal in wide bandgap materials by a femtosecond laser pulse,” Int. J. Heat Mass Transfer 48(3-4), 487–499 (2005).
[Crossref]

2004 (2)

J. Bonse, K. W. Brzezinka, and A. J. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221(1-4), 215–230 (2004).
[Crossref]

S. Qu, C. Zhao, Q. Zhao, J. Qiu, C. Zhu, and K. Hirao, “One-off writing of multimicrogratings on glass by two interfered femtosecond laser pulses,” Opt. Lett. 29(17), 2058–2060 (2004).
[Crossref]

2003 (2)

K. Venkatakrishnan, N. R. Sivakumar, C. W. Hee, B. Tan, W. L. Liang, and G. K. Gan, “Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser,” Appl. Phys. A 77(7), 959–963 (2003).
[Crossref]

K. Venkatakrishnan, N. R. Sivakumar, and B. Tan, “Fabrication of planar gratings by direct ablation using an ultrashort pulse laser in a common optical path configuration,” Appl. Phys. A 76(2), 143–146 (2003).
[Crossref]

2002 (2)

M. Hirano, K.-i. Kawamura, and H. Hosono, “Encoding of holographic grating and periodic nano-structure by femtosecond laser pulse,” Appl. Surf. Sci. 197-198, 688–698 (2002).
[Crossref]

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys. A 74(1), 19–25 (2002).
[Crossref]

2001 (1)

K.-i. Kawamura, N. Sarukura, M. Hirano, and H. Hosono, “Holographic encoding of fine-pitched micrograting structures in amorphous SiO2 thin films on silicon by a single femtosecond laser pulse,” Appl. Phys. Lett. 78(8), 1038–1040 (2001).
[Crossref]

2000 (1)

M. Purica, E. Budianu, and E. Rusu, “Heterojunction with ZnO polycrystalline thin films for optoelectronic devices applications,” Microelectron. Eng. 51-52, 425–431 (2000).
[Crossref]

1995 (1)

W. Lukosz, “Integrated optical chemical and direct biochemical sensors,” Sens. Actuators, B 29(1-3), 37–50 (1995).
[Crossref]

1985 (1)

1982 (1)

Alamri, S.

B. Voisiat, S. Alamri, and A. F. Lasagni, “One-step fabrication of asymmetric saw-tooth-like surface structures on stainless steel using Direct Laser Interference Patterning,” Mater. Lett. 245, 183–187 (2019).
[Crossref]

Arai, A.

Ashkenasi, D.

Baba, M.

Balling, P.

P. Balling and J. Schou, “Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films,” Rep. Prog. Phys. 76(3), 036502 (2013).
[Crossref]

Baudach, S.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys. A 74(1), 19–25 (2002).
[Crossref]

Beke, S.

S. Beke, K. Sugioka, K. Midorikawa, Á Péter, L. Nánai, and J. Bonse, “Characterization of the ablation of TeO2crystals in air with femtosecond laser pulses,” J. Phys. D: Appl. Phys. 43(2), 025401 (2010).
[Crossref]

Bonse, J.

S. Beke, K. Sugioka, K. Midorikawa, Á Péter, L. Nánai, and J. Bonse, “Characterization of the ablation of TeO2crystals in air with femtosecond laser pulses,” J. Phys. D: Appl. Phys. 43(2), 025401 (2010).
[Crossref]

D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, and J. Solis, “Dynamics of plasma formation, relaxation, and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics,” J. Opt. Soc. Am. B 27(5), 1065–1076 (2010).
[Crossref]

J. Bonse, K. W. Brzezinka, and A. J. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221(1-4), 215–230 (2004).
[Crossref]

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys. A 74(1), 19–25 (2002).
[Crossref]

Borysiewicz, M.

P. Struk, T. Pustelny, K. Gołaszewska, E. Kamińska, M. Borysiewicz, M. Ekielski, and A. Piotrowska, “Photonic structures with grating couplers based on ZnO,” Opto-Electron. Rev. 19(4), 462–467 (2011).
[Crossref]

Bovatsek, J.

Brzezinka, K. W.

J. Bonse, K. W. Brzezinka, and A. J. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221(1-4), 215–230 (2004).
[Crossref]

Budianu, E.

M. Purica, E. Budianu, and E. Rusu, “Heterojunction with ZnO polycrystalline thin films for optoelectronic devices applications,” Microelectron. Eng. 51-52, 425–431 (2000).
[Crossref]

Cao, K.

K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, and Z. Sun, “The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging,” J. Appl. Phys. 121(10), 104301 (2017).
[Crossref]

Chang, W. S.

C. Park, J. Lee, H.-M. So, and W. S. Chang, “An ultrafast response grating structural ZnO photodetector with back-to-back Schottky barriers produced by hydrothermal growth,” J. Mater. Chem. C 3(12), 2737–2743 (2015).
[Crossref]

Chen, F.

X. Wang, F. Chen, H. Liu, W. Liang, Q. Yang, J. Si, and X. Hou, “Fabrication of micro-gratings on Au–Cr thin film by femtosecond laser interference with different pulse durations,” Appl. Surf. Sci. 255(20), 8483–8487 (2009).
[Crossref]

Chen, H.

Y. L. Yao, H. Chen, and W. Zhang, “Time scale effects in laser material removal: a review,” Int. J. Adv. Manuf. Technol. 26(5-6), 598–608 (2005).
[Crossref]

Chen, T.

A. Pan, J. Si, T. Chen, C. Li, and X. Hou, “Fabrication of two-dimensional periodic structures on silicon after scanning irradiation with femtosecond laser multi-beams,” Appl. Surf. Sci. 368, 443–448 (2016).
[Crossref]

Cheng, K.

K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, and Z. Sun, “The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging,” J. Appl. Phys. 121(10), 104301 (2017).
[Crossref]

Choi, H. W.

Conde, O.

V. Oliveira, R. Vilar, R. Serra, J. C. Oliveira, N. I. Polushkin, and O. Conde, “Sub-micron structuring of silicon using femtosecond laser interferometry,” Opt. Laser Technol. 54, 428–431 (2013).
[Crossref]

V. Oliveira, N. I. Polushkin, O. Conde, and R. Vilar, “Laser surface patterning using a Michelson interferometer and femtosecond laser radiation,” Opt. Laser Technol. 44(7), 2072–2075 (2012).
[Crossref]

de Moura, M. F. S. F.

V. Oliveira, R. D. F. Moreira, M. F. S. F. de Moura, and R. Vilar, “Surface patterning of CRFP composites using femtosecond laser interferometry,” Appl. Phys. A 124(3), 231 (2018).
[Crossref]

Domke, M.

M. Domke, S. Rapp, M. Schmidt, and H. P. Huber, “Ultra-fast movies of thin-film laser ablation,” Appl. Phys. A 109(2), 409–420 (2012).
[Crossref]

Downer, M. C.

Du, X. Y.

Y. Q. Fu, J. K. Luo, X. Y. Du, A. J. Flewitt, Y. Li, G. H. Markx, A. J. Walton, and W. I. Milne, “Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review,” Sens. Actuators, B 143(2), 606–619 (2010).
[Crossref]

Ebong, A.

B. Hussain, A. Ebong, and I. Ferguson, “Zinc oxide as an active n-layer and antireflection coating for silicon based heterojunction solar cell,” Sol. Energy Mater. Sol. Cells 139, 95–100 (2015).
[Crossref]

Ehrentraut, L.

Ekielski, M.

P. Struk, T. Pustelny, K. Gołaszewska, E. Kamińska, M. Borysiewicz, M. Ekielski, and A. Piotrowska, “Photonic structures with grating couplers based on ZnO,” Opto-Electron. Rev. 19(4), 462–467 (2011).
[Crossref]

Farson, D. F.

Feng, D.

K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, and Z. Sun, “The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging,” J. Appl. Phys. 121(10), 104301 (2017).
[Crossref]

Ferguson, I.

B. Hussain, A. Ebong, and I. Ferguson, “Zinc oxide as an active n-layer and antireflection coating for silicon based heterojunction solar cell,” Sol. Energy Mater. Sol. Cells 139, 95–100 (2015).
[Crossref]

Flewitt, A. J.

Y. Q. Fu, J. K. Luo, X. Y. Du, A. J. Flewitt, Y. Li, G. H. Markx, A. J. Walton, and W. I. Milne, “Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review,” Sens. Actuators, B 143(2), 606–619 (2010).
[Crossref]

Fork, R. L.

Fu, Y. Q.

Y. Q. Fu, J. K. Luo, X. Y. Du, A. J. Flewitt, Y. Li, G. H. Markx, A. J. Walton, and W. I. Milne, “Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review,” Sens. Actuators, B 143(2), 606–619 (2010).
[Crossref]

Galvan-Sosa, M.

Gan, G. K.

K. Venkatakrishnan, N. R. Sivakumar, C. W. Hee, B. Tan, W. L. Liang, and G. K. Gan, “Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser,” Appl. Phys. A 77(7), 959–963 (2003).
[Crossref]

Gandhi, H. H.

K. C. Phillips, H. H. Gandhi, E. Mazur, and S. K. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–712 (2015).
[Crossref]

Ganeev, R. A.

Garcia-Lechuga, M.

M. Garcia-Lechuga, J. Solis, and J. Siegel, “Key stages of material expansion in dielectrics upon femtosecond laser ablation revealed by double-color illumination time-resolved microscopy,” Appl. Phys. A 124(3), 221 (2018).
[Crossref]

M. Garcia-Lechuga, J. Siegel, J. Hernandez-Rueda, and J. Solis, “Femtosecond laser ablation of dielectric materials in the optical breakdown regime: Expansion of a transparent shell,” Appl. Phys. Lett. 105(11), 112902 (2014).
[Crossref]

Gawelda, W.

Golaszewska, K.

P. Struk, T. Pustelny, K. Gołaszewska, E. Kamińska, M. Borysiewicz, M. Ekielski, and A. Piotrowska, “Photonic structures with grating couplers based on ZnO,” Opto-Electron. Rev. 19(4), 462–467 (2011).
[Crossref]

Gu, B.

B. Gu, J. He, W. Ji, and H.-T. Wang, “Three-photon absorption saturation in ZnO and ZnS crystals,” J. Appl. Phys. 103(7), 073105 (2008).
[Crossref]

Haase, C.

C. Haase and H. Stiebig, “Optical properties of thin-film silicon solar cells with grating couplers,” Prog. Photovoltaics 14(7), 629–641 (2006).
[Crossref]

He, J.

B. Gu, J. He, W. Ji, and H.-T. Wang, “Three-photon absorption saturation in ZnO and ZnS crystals,” J. Appl. Phys. 103(7), 073105 (2008).
[Crossref]

Hee, C. W.

K. Venkatakrishnan, N. R. Sivakumar, C. W. Hee, B. Tan, W. L. Liang, and G. K. Gan, “Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser,” Appl. Phys. A 77(7), 959–963 (2003).
[Crossref]

Heo, Y. W.

S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent progress in processing and properties of ZnO,” Prog. Mater. Sci. 50(3), 293–340 (2005).
[Crossref]

Hernandez-Rueda, J.

M. Garcia-Lechuga, J. Siegel, J. Hernandez-Rueda, and J. Solis, “Femtosecond laser ablation of dielectric materials in the optical breakdown regime: Expansion of a transparent shell,” Appl. Phys. Lett. 105(11), 112902 (2014).
[Crossref]

Hirano, M.

M. Hirano, K.-i. Kawamura, and H. Hosono, “Encoding of holographic grating and periodic nano-structure by femtosecond laser pulse,” Appl. Surf. Sci. 197-198, 688–698 (2002).
[Crossref]

K.-i. Kawamura, N. Sarukura, M. Hirano, and H. Hosono, “Holographic encoding of fine-pitched micrograting structures in amorphous SiO2 thin films on silicon by a single femtosecond laser pulse,” Appl. Phys. Lett. 78(8), 1038–1040 (2001).
[Crossref]

Hirao, K.

Hosono, H.

M. Hirano, K.-i. Kawamura, and H. Hosono, “Encoding of holographic grating and periodic nano-structure by femtosecond laser pulse,” Appl. Surf. Sci. 197-198, 688–698 (2002).
[Crossref]

K.-i. Kawamura, N. Sarukura, M. Hirano, and H. Hosono, “Holographic encoding of fine-pitched micrograting structures in amorphous SiO2 thin films on silicon by a single femtosecond laser pulse,” Appl. Phys. Lett. 78(8), 1038–1040 (2001).
[Crossref]

Hou, X.

A. Pan, J. Si, T. Chen, C. Li, and X. Hou, “Fabrication of two-dimensional periodic structures on silicon after scanning irradiation with femtosecond laser multi-beams,” Appl. Surf. Sci. 368, 443–448 (2016).
[Crossref]

X. Wang, F. Chen, H. Liu, W. Liang, Q. Yang, J. Si, and X. Hou, “Fabrication of micro-gratings on Au–Cr thin film by femtosecond laser interference with different pulse durations,” Appl. Surf. Sci. 255(20), 8483–8487 (2009).
[Crossref]

Huber, H.

S. Zoppel, H. Huber, and G. A. Reider, “Selective ablation of thin Mo and TCO films with femtosecond laser pulses for structuring thin film solar cells,” Appl. Phys. A 89(1), 161–163 (2007).
[Crossref]

Huber, H. P.

S. Rapp, M. Schmidt, and H. P. Huber, “Selective femtosecond laser structuring of dielectric thin films with different band gaps: a time-resolved study of ablation mechanisms,” Appl. Phys. A 122(12), 1035 (2016).
[Crossref]

M. Domke, S. Rapp, M. Schmidt, and H. P. Huber, “Ultra-fast movies of thin-film laser ablation,” Appl. Phys. A 109(2), 409–420 (2012).
[Crossref]

Hussain, B.

B. Hussain, A. Ebong, and I. Ferguson, “Zinc oxide as an active n-layer and antireflection coating for silicon based heterojunction solar cell,” Sol. Energy Mater. Sol. Cells 139, 95–100 (2015).
[Crossref]

Ip, K.

S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent progress in processing and properties of ZnO,” Prog. Mater. Sci. 50(3), 293–340 (2005).
[Crossref]

Ji, W.

B. Gu, J. He, W. Ji, and H.-T. Wang, “Three-photon absorption saturation in ZnO and ZnS crystals,” J. Appl. Phys. 103(7), 073105 (2008).
[Crossref]

Jia, T.

K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, and Z. Sun, “The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging,” J. Appl. Phys. 121(10), 104301 (2017).
[Crossref]

T. Jia, M. Baba, M. Suzuki, R. A. Ganeev, H. Kuroda, J. Qiu, X. Wang, R. Li, and Z. Xu, “Fabrication of two-dimensional periodic nanostructures by two-beam interference of femtosecond pulses,” Opt. Express 16(3), 1874–1878 (2008).
[Crossref]

Jia, X.

K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, and Z. Sun, “The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging,” J. Appl. Phys. 121(10), 104301 (2017).
[Crossref]

Jiang, L.

L. Jiang and H. L. Tsai, “Plasma modeling for ultrashort pulse laser ablation of dielectrics,” J. Appl. Phys. 100(2), 023116 (2006).
[Crossref]

L. Jiang and H.-L. Tsai, “Repeatable nanostructures in dielectrics by femtosecond laser pulse trains,” Appl. Phys. Lett. 87(15), 151104 (2005).
[Crossref]

L. Jiang and H. L. Tsai, “Energy transport and material removal in wide bandgap materials by a femtosecond laser pulse,” Int. J. Heat Mass Transfer 48(3-4), 487–499 (2005).
[Crossref]

Jiang, X.-W.

Q.-Z. Zhao, J.-R. Qiu, C.-J. Zhao, X.-W. Jiang, and C.-S. Zhu, “Formation of array microstructures on silicon by multibeam interfered femtosecond laser pulses,” Appl. Surf. Sci. 241(3-4), 416–419 (2005).
[Crossref]

Kaminska, E.

P. Struk, T. Pustelny, K. Gołaszewska, E. Kamińska, M. Borysiewicz, M. Ekielski, and A. Piotrowska, “Photonic structures with grating couplers based on ZnO,” Opto-Electron. Rev. 19(4), 462–467 (2011).
[Crossref]

Kautek, W.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys. A 74(1), 19–25 (2002).
[Crossref]

Kawamura, K.-i.

M. Hirano, K.-i. Kawamura, and H. Hosono, “Encoding of holographic grating and periodic nano-structure by femtosecond laser pulse,” Appl. Surf. Sci. 197-198, 688–698 (2002).
[Crossref]

K.-i. Kawamura, N. Sarukura, M. Hirano, and H. Hosono, “Holographic encoding of fine-pitched micrograting structures in amorphous SiO2 thin films on silicon by a single femtosecond laser pulse,” Appl. Phys. Lett. 78(8), 1038–1040 (2001).
[Crossref]

Krause, S.

S. Krause, P. Miclea, F. Steudel, S. Schweizer, and G. Seifert, “Precise microstructuring of indium-tin oxide thin films on glass by selective femtosecond laser ablation,” EPJ Photovoltaics 4, 40601 (2013).
[Crossref]

Krüger, J.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys. A 74(1), 19–25 (2002).
[Crossref]

Kuroda, H.

Lambeck, P. V.

P. V. Lambeck, “Integrated optical sensors for the chemical domain,” Meas. Sci. Technol. 17(8), R93–R116 (2006).
[Crossref]

Lasagni, A. F.

B. Voisiat, S. Alamri, and A. F. Lasagni, “One-step fabrication of asymmetric saw-tooth-like surface structures on stainless steel using Direct Laser Interference Patterning,” Mater. Lett. 245, 183–187 (2019).
[Crossref]

Lee, J.

C. Park, J. Lee, H.-M. So, and W. S. Chang, “An ultrafast response grating structural ZnO photodetector with back-to-back Schottky barriers produced by hydrothermal growth,” J. Mater. Chem. C 3(12), 2737–2743 (2015).
[Crossref]

Lee, S.

S. Lee, D. Yang, and S. Nikumb, “Femtosecond laser patterning of Ta0.1W0.9Ox/ITO thin film stack,” Appl. Surf. Sci. 253(10), 4740–4747 (2007).
[Crossref]

Lei, S.

B. Wu, S. Tao, and S. Lei, “Numerical modeling of laser shock peening with femtosecond laser pulses and comparisons to experiments,” Appl. Surf. Sci. 256(13), 4376–4382 (2010).
[Crossref]

Lenzner, M.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys. A 74(1), 19–25 (2002).
[Crossref]

Li, C.

A. Pan, J. Si, T. Chen, C. Li, and X. Hou, “Fabrication of two-dimensional periodic structures on silicon after scanning irradiation with femtosecond laser multi-beams,” Appl. Surf. Sci. 368, 443–448 (2016).
[Crossref]

Li, R.

Li, Y.

Y. Q. Fu, J. K. Luo, X. Y. Du, A. J. Flewitt, Y. Li, G. H. Markx, A. J. Walton, and W. I. Milne, “Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review,” Sens. Actuators, B 143(2), 606–619 (2010).
[Crossref]

Liang, W.

X. Wang, F. Chen, H. Liu, W. Liang, Q. Yang, J. Si, and X. Hou, “Fabrication of micro-gratings on Au–Cr thin film by femtosecond laser interference with different pulse durations,” Appl. Surf. Sci. 255(20), 8483–8487 (2009).
[Crossref]

Liang, W. L.

K. Venkatakrishnan, N. R. Sivakumar, C. W. Hee, B. Tan, W. L. Liang, and G. K. Gan, “Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser,” Appl. Phys. A 77(7), 959–963 (2003).
[Crossref]

Liu, H.

X. Wang, F. Chen, H. Liu, W. Liang, Q. Yang, J. Si, and X. Hou, “Fabrication of micro-gratings on Au–Cr thin film by femtosecond laser interference with different pulse durations,” Appl. Surf. Sci. 255(20), 8483–8487 (2009).
[Crossref]

Liu, J. M.

Lukosz, W.

W. Lukosz, “Integrated optical chemical and direct biochemical sensors,” Sens. Actuators, B 29(1-3), 37–50 (1995).
[Crossref]

Luo, J. K.

Y. Q. Fu, J. K. Luo, X. Y. Du, A. J. Flewitt, Y. Li, G. H. Markx, A. J. Walton, and W. I. Milne, “Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review,” Sens. Actuators, B 143(2), 606–619 (2010).
[Crossref]

Markx, G. H.

Y. Q. Fu, J. K. Luo, X. Y. Du, A. J. Flewitt, Y. Li, G. H. Markx, A. J. Walton, and W. I. Milne, “Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review,” Sens. Actuators, B 143(2), 606–619 (2010).
[Crossref]

Mazur, E.

K. C. Phillips, H. H. Gandhi, E. Mazur, and S. K. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–712 (2015).
[Crossref]

Meixner, A. J.

J. Bonse, K. W. Brzezinka, and A. J. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221(1-4), 215–230 (2004).
[Crossref]

Miclea, P.

S. Krause, P. Miclea, F. Steudel, S. Schweizer, and G. Seifert, “Precise microstructuring of indium-tin oxide thin films on glass by selective femtosecond laser ablation,” EPJ Photovoltaics 4, 40601 (2013).
[Crossref]

Midorikawa, K.

S. Beke, K. Sugioka, K. Midorikawa, Á Péter, L. Nánai, and J. Bonse, “Characterization of the ablation of TeO2crystals in air with femtosecond laser pulses,” J. Phys. D: Appl. Phys. 43(2), 025401 (2010).
[Crossref]

Milne, W. I.

Y. Q. Fu, J. K. Luo, X. Y. Du, A. J. Flewitt, Y. Li, G. H. Markx, A. J. Walton, and W. I. Milne, “Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review,” Sens. Actuators, B 143(2), 606–619 (2010).
[Crossref]

Moreira, R. D. F.

V. Oliveira, R. D. F. Moreira, M. F. S. F. de Moura, and R. Vilar, “Surface patterning of CRFP composites using femtosecond laser interferometry,” Appl. Phys. A 124(3), 231 (2018).
[Crossref]

Nánai, L.

S. Beke, K. Sugioka, K. Midorikawa, Á Péter, L. Nánai, and J. Bonse, “Characterization of the ablation of TeO2crystals in air with femtosecond laser pulses,” J. Phys. D: Appl. Phys. 43(2), 025401 (2010).
[Crossref]

Nikumb, S.

S. Lee, D. Yang, and S. Nikumb, “Femtosecond laser patterning of Ta0.1W0.9Ox/ITO thin film stack,” Appl. Surf. Sci. 253(10), 4740–4747 (2007).
[Crossref]

Norton, D. P.

S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent progress in processing and properties of ZnO,” Prog. Mater. Sci. 50(3), 293–340 (2005).
[Crossref]

Oliveira, J. C.

V. Oliveira, R. Vilar, R. Serra, J. C. Oliveira, N. I. Polushkin, and O. Conde, “Sub-micron structuring of silicon using femtosecond laser interferometry,” Opt. Laser Technol. 54, 428–431 (2013).
[Crossref]

Oliveira, V.

V. Oliveira, R. D. F. Moreira, M. F. S. F. de Moura, and R. Vilar, “Surface patterning of CRFP composites using femtosecond laser interferometry,” Appl. Phys. A 124(3), 231 (2018).
[Crossref]

V. Oliveira, R. Vilar, R. Serra, J. C. Oliveira, N. I. Polushkin, and O. Conde, “Sub-micron structuring of silicon using femtosecond laser interferometry,” Opt. Laser Technol. 54, 428–431 (2013).
[Crossref]

V. Oliveira, N. I. Polushkin, O. Conde, and R. Vilar, “Laser surface patterning using a Michelson interferometer and femtosecond laser radiation,” Opt. Laser Technol. 44(7), 2072–2075 (2012).
[Crossref]

Pan, A.

A. Pan, J. Si, T. Chen, C. Li, and X. Hou, “Fabrication of two-dimensional periodic structures on silicon after scanning irradiation with femtosecond laser multi-beams,” Appl. Surf. Sci. 368, 443–448 (2016).
[Crossref]

Park, C.

C. Park, J. Lee, H.-M. So, and W. S. Chang, “An ultrafast response grating structural ZnO photodetector with back-to-back Schottky barriers produced by hydrothermal growth,” J. Mater. Chem. C 3(12), 2737–2743 (2015).
[Crossref]

Pearton, S. J.

S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent progress in processing and properties of ZnO,” Prog. Mater. Sci. 50(3), 293–340 (2005).
[Crossref]

Péter, Á

S. Beke, K. Sugioka, K. Midorikawa, Á Péter, L. Nánai, and J. Bonse, “Characterization of the ablation of TeO2crystals in air with femtosecond laser pulses,” J. Phys. D: Appl. Phys. 43(2), 025401 (2010).
[Crossref]

Phillips, K. C.

K. C. Phillips, H. H. Gandhi, E. Mazur, and S. K. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–712 (2015).
[Crossref]

Piotrowska, A.

P. Struk, T. Pustelny, K. Gołaszewska, E. Kamińska, M. Borysiewicz, M. Ekielski, and A. Piotrowska, “Photonic structures with grating couplers based on ZnO,” Opto-Electron. Rev. 19(4), 462–467 (2011).
[Crossref]

Polushkin, N. I.

V. Oliveira, R. Vilar, R. Serra, J. C. Oliveira, N. I. Polushkin, and O. Conde, “Sub-micron structuring of silicon using femtosecond laser interferometry,” Opt. Laser Technol. 54, 428–431 (2013).
[Crossref]

V. Oliveira, N. I. Polushkin, O. Conde, and R. Vilar, “Laser surface patterning using a Michelson interferometer and femtosecond laser radiation,” Opt. Laser Technol. 44(7), 2072–2075 (2012).
[Crossref]

Puerto, D.

Purica, M.

M. Purica, E. Budianu, and E. Rusu, “Heterojunction with ZnO polycrystalline thin films for optoelectronic devices applications,” Microelectron. Eng. 51-52, 425–431 (2000).
[Crossref]

Pustelny, T.

P. Struk, T. Pustelny, K. Gołaszewska, E. Kamińska, M. Borysiewicz, M. Ekielski, and A. Piotrowska, “Photonic structures with grating couplers based on ZnO,” Opto-Electron. Rev. 19(4), 462–467 (2011).
[Crossref]

Qiu, J.

Qiu, J.-R.

Q.-Z. Zhao, J.-R. Qiu, C.-J. Zhao, X.-W. Jiang, and C.-S. Zhu, “Formation of array microstructures on silicon by multibeam interfered femtosecond laser pulses,” Appl. Surf. Sci. 241(3-4), 416–419 (2005).
[Crossref]

Qu, S.

Rapp, S.

S. Rapp, M. Schmidt, and H. P. Huber, “Selective femtosecond laser structuring of dielectric thin films with different band gaps: a time-resolved study of ablation mechanisms,” Appl. Phys. A 122(12), 1035 (2016).
[Crossref]

M. Domke, S. Rapp, M. Schmidt, and H. P. Huber, “Ultra-fast movies of thin-film laser ablation,” Appl. Phys. A 109(2), 409–420 (2012).
[Crossref]

Reider, G. A.

S. Zoppel, H. Huber, and G. A. Reider, “Selective ablation of thin Mo and TCO films with femtosecond laser pulses for structuring thin film solar cells,” Appl. Phys. A 89(1), 161–163 (2007).
[Crossref]

Rusu, E.

M. Purica, E. Budianu, and E. Rusu, “Heterojunction with ZnO polycrystalline thin films for optoelectronic devices applications,” Microelectron. Eng. 51-52, 425–431 (2000).
[Crossref]

Sarukura, N.

K.-i. Kawamura, N. Sarukura, M. Hirano, and H. Hosono, “Holographic encoding of fine-pitched micrograting structures in amorphous SiO2 thin films on silicon by a single femtosecond laser pulse,” Appl. Phys. Lett. 78(8), 1038–1040 (2001).
[Crossref]

Schmidt, M.

S. Rapp, M. Schmidt, and H. P. Huber, “Selective femtosecond laser structuring of dielectric thin films with different band gaps: a time-resolved study of ablation mechanisms,” Appl. Phys. A 122(12), 1035 (2016).
[Crossref]

M. Domke, S. Rapp, M. Schmidt, and H. P. Huber, “Ultra-fast movies of thin-film laser ablation,” Appl. Phys. A 109(2), 409–420 (2012).
[Crossref]

Schou, J.

P. Balling and J. Schou, “Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films,” Rep. Prog. Phys. 76(3), 036502 (2013).
[Crossref]

Schweizer, S.

S. Krause, P. Miclea, F. Steudel, S. Schweizer, and G. Seifert, “Precise microstructuring of indium-tin oxide thin films on glass by selective femtosecond laser ablation,” EPJ Photovoltaics 4, 40601 (2013).
[Crossref]

Seifert, G.

S. Krause, P. Miclea, F. Steudel, S. Schweizer, and G. Seifert, “Precise microstructuring of indium-tin oxide thin films on glass by selective femtosecond laser ablation,” EPJ Photovoltaics 4, 40601 (2013).
[Crossref]

Serra, R.

V. Oliveira, R. Vilar, R. Serra, J. C. Oliveira, N. I. Polushkin, and O. Conde, “Sub-micron structuring of silicon using femtosecond laser interferometry,” Opt. Laser Technol. 54, 428–431 (2013).
[Crossref]

Shank, C. V.

Si, J.

A. Pan, J. Si, T. Chen, C. Li, and X. Hou, “Fabrication of two-dimensional periodic structures on silicon after scanning irradiation with femtosecond laser multi-beams,” Appl. Surf. Sci. 368, 443–448 (2016).
[Crossref]

X. Wang, F. Chen, H. Liu, W. Liang, Q. Yang, J. Si, and X. Hou, “Fabrication of micro-gratings on Au–Cr thin film by femtosecond laser interference with different pulse durations,” Appl. Surf. Sci. 255(20), 8483–8487 (2009).
[Crossref]

Siegel, J.

M. Garcia-Lechuga, J. Solis, and J. Siegel, “Key stages of material expansion in dielectrics upon femtosecond laser ablation revealed by double-color illumination time-resolved microscopy,” Appl. Phys. A 124(3), 221 (2018).
[Crossref]

M. Garcia-Lechuga, J. Siegel, J. Hernandez-Rueda, and J. Solis, “Femtosecond laser ablation of dielectric materials in the optical breakdown regime: Expansion of a transparent shell,” Appl. Phys. Lett. 105(11), 112902 (2014).
[Crossref]

D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, and J. Solis, “Dynamics of plasma formation, relaxation, and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics,” J. Opt. Soc. Am. B 27(5), 1065–1076 (2010).
[Crossref]

Sivakumar, N. R.

B. Tan, N. R. Sivakumar, and K. Venkatakrishnan, “Direct grating writing using femtosecond laser interference fringes formed at the focal point,” J. Opt. A: Pure Appl. Opt. 7(4), 169–174 (2005).
[Crossref]

K. Venkatakrishnan, N. R. Sivakumar, and B. Tan, “Fabrication of planar gratings by direct ablation using an ultrashort pulse laser in a common optical path configuration,” Appl. Phys. A 76(2), 143–146 (2003).
[Crossref]

K. Venkatakrishnan, N. R. Sivakumar, C. W. Hee, B. Tan, W. L. Liang, and G. K. Gan, “Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser,” Appl. Phys. A 77(7), 959–963 (2003).
[Crossref]

So, H.-M.

C. Park, J. Lee, H.-M. So, and W. S. Chang, “An ultrafast response grating structural ZnO photodetector with back-to-back Schottky barriers produced by hydrothermal growth,” J. Mater. Chem. C 3(12), 2737–2743 (2015).
[Crossref]

Solis, J.

M. Garcia-Lechuga, J. Solis, and J. Siegel, “Key stages of material expansion in dielectrics upon femtosecond laser ablation revealed by double-color illumination time-resolved microscopy,” Appl. Phys. A 124(3), 221 (2018).
[Crossref]

M. Garcia-Lechuga, J. Siegel, J. Hernandez-Rueda, and J. Solis, “Femtosecond laser ablation of dielectric materials in the optical breakdown regime: Expansion of a transparent shell,” Appl. Phys. Lett. 105(11), 112902 (2014).
[Crossref]

D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, and J. Solis, “Dynamics of plasma formation, relaxation, and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics,” J. Opt. Soc. Am. B 27(5), 1065–1076 (2010).
[Crossref]

Steiner, T.

S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent progress in processing and properties of ZnO,” Prog. Mater. Sci. 50(3), 293–340 (2005).
[Crossref]

Steudel, F.

S. Krause, P. Miclea, F. Steudel, S. Schweizer, and G. Seifert, “Precise microstructuring of indium-tin oxide thin films on glass by selective femtosecond laser ablation,” EPJ Photovoltaics 4, 40601 (2013).
[Crossref]

Stiebig, H.

C. Haase and H. Stiebig, “Optical properties of thin-film silicon solar cells with grating couplers,” Prog. Photovoltaics 14(7), 629–641 (2006).
[Crossref]

Struk, P.

P. Struk, T. Pustelny, K. Gołaszewska, E. Kamińska, M. Borysiewicz, M. Ekielski, and A. Piotrowska, “Photonic structures with grating couplers based on ZnO,” Opto-Electron. Rev. 19(4), 462–467 (2011).
[Crossref]

Sugioka, K.

S. Beke, K. Sugioka, K. Midorikawa, Á Péter, L. Nánai, and J. Bonse, “Characterization of the ablation of TeO2crystals in air with femtosecond laser pulses,” J. Phys. D: Appl. Phys. 43(2), 025401 (2010).
[Crossref]

Sun, Z.

K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, and Z. Sun, “The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging,” J. Appl. Phys. 121(10), 104301 (2017).
[Crossref]

Sundaram, S. K.

K. C. Phillips, H. H. Gandhi, E. Mazur, and S. K. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–712 (2015).
[Crossref]

Suzuki, M.

Tan, B.

B. Tan, N. R. Sivakumar, and K. Venkatakrishnan, “Direct grating writing using femtosecond laser interference fringes formed at the focal point,” J. Opt. A: Pure Appl. Opt. 7(4), 169–174 (2005).
[Crossref]

K. Venkatakrishnan, N. R. Sivakumar, and B. Tan, “Fabrication of planar gratings by direct ablation using an ultrashort pulse laser in a common optical path configuration,” Appl. Phys. A 76(2), 143–146 (2003).
[Crossref]

K. Venkatakrishnan, N. R. Sivakumar, C. W. Hee, B. Tan, W. L. Liang, and G. K. Gan, “Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser,” Appl. Phys. A 77(7), 959–963 (2003).
[Crossref]

Tao, S.

B. Wu, S. Tao, and S. Lei, “Numerical modeling of laser shock peening with femtosecond laser pulses and comparisons to experiments,” Appl. Surf. Sci. 256(13), 4376–4382 (2010).
[Crossref]

Tsai, H. L.

L. Jiang and H. L. Tsai, “Plasma modeling for ultrashort pulse laser ablation of dielectrics,” J. Appl. Phys. 100(2), 023116 (2006).
[Crossref]

L. Jiang and H. L. Tsai, “Energy transport and material removal in wide bandgap materials by a femtosecond laser pulse,” Int. J. Heat Mass Transfer 48(3-4), 487–499 (2005).
[Crossref]

Tsai, H.-L.

L. Jiang and H.-L. Tsai, “Repeatable nanostructures in dielectrics by femtosecond laser pulse trains,” Appl. Phys. Lett. 87(15), 151104 (2005).
[Crossref]

Venkatakrishnan, K.

B. Tan, N. R. Sivakumar, and K. Venkatakrishnan, “Direct grating writing using femtosecond laser interference fringes formed at the focal point,” J. Opt. A: Pure Appl. Opt. 7(4), 169–174 (2005).
[Crossref]

K. Venkatakrishnan, N. R. Sivakumar, and B. Tan, “Fabrication of planar gratings by direct ablation using an ultrashort pulse laser in a common optical path configuration,” Appl. Phys. A 76(2), 143–146 (2003).
[Crossref]

K. Venkatakrishnan, N. R. Sivakumar, C. W. Hee, B. Tan, W. L. Liang, and G. K. Gan, “Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser,” Appl. Phys. A 77(7), 959–963 (2003).
[Crossref]

Vilar, R.

V. Oliveira, R. D. F. Moreira, M. F. S. F. de Moura, and R. Vilar, “Surface patterning of CRFP composites using femtosecond laser interferometry,” Appl. Phys. A 124(3), 231 (2018).
[Crossref]

V. Oliveira, R. Vilar, R. Serra, J. C. Oliveira, N. I. Polushkin, and O. Conde, “Sub-micron structuring of silicon using femtosecond laser interferometry,” Opt. Laser Technol. 54, 428–431 (2013).
[Crossref]

V. Oliveira, N. I. Polushkin, O. Conde, and R. Vilar, “Laser surface patterning using a Michelson interferometer and femtosecond laser radiation,” Opt. Laser Technol. 44(7), 2072–2075 (2012).
[Crossref]

Voisiat, B.

B. Voisiat, S. Alamri, and A. F. Lasagni, “One-step fabrication of asymmetric saw-tooth-like surface structures on stainless steel using Direct Laser Interference Patterning,” Mater. Lett. 245, 183–187 (2019).
[Crossref]

Walton, A. J.

Y. Q. Fu, J. K. Luo, X. Y. Du, A. J. Flewitt, Y. Li, G. H. Markx, A. J. Walton, and W. I. Milne, “Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review,” Sens. Actuators, B 143(2), 606–619 (2010).
[Crossref]

Wang, H.-T.

B. Gu, J. He, W. Ji, and H.-T. Wang, “Three-photon absorption saturation in ZnO and ZnS crystals,” J. Appl. Phys. 103(7), 073105 (2008).
[Crossref]

Wang, X.

X. Wang, F. Chen, H. Liu, W. Liang, Q. Yang, J. Si, and X. Hou, “Fabrication of micro-gratings on Au–Cr thin film by femtosecond laser interference with different pulse durations,” Appl. Surf. Sci. 255(20), 8483–8487 (2009).
[Crossref]

T. Jia, M. Baba, M. Suzuki, R. A. Ganeev, H. Kuroda, J. Qiu, X. Wang, R. Li, and Z. Xu, “Fabrication of two-dimensional periodic nanostructures by two-beam interference of femtosecond pulses,” Opt. Express 16(3), 1874–1878 (2008).
[Crossref]

Wu, B.

B. Wu, S. Tao, and S. Lei, “Numerical modeling of laser shock peening with femtosecond laser pulses and comparisons to experiments,” Appl. Surf. Sci. 256(13), 4376–4382 (2010).
[Crossref]

Xu, Z.

Yang, D.

S. Lee, D. Yang, and S. Nikumb, “Femtosecond laser patterning of Ta0.1W0.9Ox/ITO thin film stack,” Appl. Surf. Sci. 253(10), 4740–4747 (2007).
[Crossref]

Yang, Q.

X. Wang, F. Chen, H. Liu, W. Liang, Q. Yang, J. Si, and X. Hou, “Fabrication of micro-gratings on Au–Cr thin film by femtosecond laser interference with different pulse durations,” Appl. Surf. Sci. 255(20), 8483–8487 (2009).
[Crossref]

Yao, Y. L.

Y. L. Yao, H. Chen, and W. Zhang, “Time scale effects in laser material removal: a review,” Int. J. Adv. Manuf. Technol. 26(5-6), 598–608 (2005).
[Crossref]

Zhang, S.

K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, and Z. Sun, “The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging,” J. Appl. Phys. 121(10), 104301 (2017).
[Crossref]

Zhang, W.

Y. L. Yao, H. Chen, and W. Zhang, “Time scale effects in laser material removal: a review,” Int. J. Adv. Manuf. Technol. 26(5-6), 598–608 (2005).
[Crossref]

Zhao, C.

Zhao, C.-J.

Q.-Z. Zhao, J.-R. Qiu, C.-J. Zhao, X.-W. Jiang, and C.-S. Zhu, “Formation of array microstructures on silicon by multibeam interfered femtosecond laser pulses,” Appl. Surf. Sci. 241(3-4), 416–419 (2005).
[Crossref]

Zhao, Q.

Zhao, Q.-Z.

Q.-Z. Zhao, J.-R. Qiu, C.-J. Zhao, X.-W. Jiang, and C.-S. Zhu, “Formation of array microstructures on silicon by multibeam interfered femtosecond laser pulses,” Appl. Surf. Sci. 241(3-4), 416–419 (2005).
[Crossref]

Zhou, K.

K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, and Z. Sun, “The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging,” J. Appl. Phys. 121(10), 104301 (2017).
[Crossref]

Zhu, C.

Zhu, C.-S.

Q.-Z. Zhao, J.-R. Qiu, C.-J. Zhao, X.-W. Jiang, and C.-S. Zhu, “Formation of array microstructures on silicon by multibeam interfered femtosecond laser pulses,” Appl. Surf. Sci. 241(3-4), 416–419 (2005).
[Crossref]

Zoppel, S.

S. Zoppel, H. Huber, and G. A. Reider, “Selective ablation of thin Mo and TCO films with femtosecond laser pulses for structuring thin film solar cells,” Appl. Phys. A 89(1), 161–163 (2007).
[Crossref]

Adv. Opt. Photonics (1)

K. C. Phillips, H. H. Gandhi, E. Mazur, and S. K. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–712 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. A (8)

K. Venkatakrishnan, N. R. Sivakumar, C. W. Hee, B. Tan, W. L. Liang, and G. K. Gan, “Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser,” Appl. Phys. A 77(7), 959–963 (2003).
[Crossref]

K. Venkatakrishnan, N. R. Sivakumar, and B. Tan, “Fabrication of planar gratings by direct ablation using an ultrashort pulse laser in a common optical path configuration,” Appl. Phys. A 76(2), 143–146 (2003).
[Crossref]

V. Oliveira, R. D. F. Moreira, M. F. S. F. de Moura, and R. Vilar, “Surface patterning of CRFP composites using femtosecond laser interferometry,” Appl. Phys. A 124(3), 231 (2018).
[Crossref]

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds and morphology,” Appl. Phys. A 74(1), 19–25 (2002).
[Crossref]

M. Garcia-Lechuga, J. Solis, and J. Siegel, “Key stages of material expansion in dielectrics upon femtosecond laser ablation revealed by double-color illumination time-resolved microscopy,” Appl. Phys. A 124(3), 221 (2018).
[Crossref]

S. Rapp, M. Schmidt, and H. P. Huber, “Selective femtosecond laser structuring of dielectric thin films with different band gaps: a time-resolved study of ablation mechanisms,” Appl. Phys. A 122(12), 1035 (2016).
[Crossref]

S. Zoppel, H. Huber, and G. A. Reider, “Selective ablation of thin Mo and TCO films with femtosecond laser pulses for structuring thin film solar cells,” Appl. Phys. A 89(1), 161–163 (2007).
[Crossref]

M. Domke, S. Rapp, M. Schmidt, and H. P. Huber, “Ultra-fast movies of thin-film laser ablation,” Appl. Phys. A 109(2), 409–420 (2012).
[Crossref]

Appl. Phys. Lett. (3)

M. Garcia-Lechuga, J. Siegel, J. Hernandez-Rueda, and J. Solis, “Femtosecond laser ablation of dielectric materials in the optical breakdown regime: Expansion of a transparent shell,” Appl. Phys. Lett. 105(11), 112902 (2014).
[Crossref]

L. Jiang and H.-L. Tsai, “Repeatable nanostructures in dielectrics by femtosecond laser pulse trains,” Appl. Phys. Lett. 87(15), 151104 (2005).
[Crossref]

K.-i. Kawamura, N. Sarukura, M. Hirano, and H. Hosono, “Holographic encoding of fine-pitched micrograting structures in amorphous SiO2 thin films on silicon by a single femtosecond laser pulse,” Appl. Phys. Lett. 78(8), 1038–1040 (2001).
[Crossref]

Appl. Surf. Sci. (7)

M. Hirano, K.-i. Kawamura, and H. Hosono, “Encoding of holographic grating and periodic nano-structure by femtosecond laser pulse,” Appl. Surf. Sci. 197-198, 688–698 (2002).
[Crossref]

J. Bonse, K. W. Brzezinka, and A. J. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221(1-4), 215–230 (2004).
[Crossref]

X. Wang, F. Chen, H. Liu, W. Liang, Q. Yang, J. Si, and X. Hou, “Fabrication of micro-gratings on Au–Cr thin film by femtosecond laser interference with different pulse durations,” Appl. Surf. Sci. 255(20), 8483–8487 (2009).
[Crossref]

S. Lee, D. Yang, and S. Nikumb, “Femtosecond laser patterning of Ta0.1W0.9Ox/ITO thin film stack,” Appl. Surf. Sci. 253(10), 4740–4747 (2007).
[Crossref]

Q.-Z. Zhao, J.-R. Qiu, C.-J. Zhao, X.-W. Jiang, and C.-S. Zhu, “Formation of array microstructures on silicon by multibeam interfered femtosecond laser pulses,” Appl. Surf. Sci. 241(3-4), 416–419 (2005).
[Crossref]

A. Pan, J. Si, T. Chen, C. Li, and X. Hou, “Fabrication of two-dimensional periodic structures on silicon after scanning irradiation with femtosecond laser multi-beams,” Appl. Surf. Sci. 368, 443–448 (2016).
[Crossref]

B. Wu, S. Tao, and S. Lei, “Numerical modeling of laser shock peening with femtosecond laser pulses and comparisons to experiments,” Appl. Surf. Sci. 256(13), 4376–4382 (2010).
[Crossref]

EPJ Photovoltaics (1)

S. Krause, P. Miclea, F. Steudel, S. Schweizer, and G. Seifert, “Precise microstructuring of indium-tin oxide thin films on glass by selective femtosecond laser ablation,” EPJ Photovoltaics 4, 40601 (2013).
[Crossref]

Int. J. Adv. Manuf. Technol. (1)

Y. L. Yao, H. Chen, and W. Zhang, “Time scale effects in laser material removal: a review,” Int. J. Adv. Manuf. Technol. 26(5-6), 598–608 (2005).
[Crossref]

Int. J. Heat Mass Transfer (1)

L. Jiang and H. L. Tsai, “Energy transport and material removal in wide bandgap materials by a femtosecond laser pulse,” Int. J. Heat Mass Transfer 48(3-4), 487–499 (2005).
[Crossref]

J. Appl. Phys. (3)

K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, and Z. Sun, “The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging,” J. Appl. Phys. 121(10), 104301 (2017).
[Crossref]

B. Gu, J. He, W. Ji, and H.-T. Wang, “Three-photon absorption saturation in ZnO and ZnS crystals,” J. Appl. Phys. 103(7), 073105 (2008).
[Crossref]

L. Jiang and H. L. Tsai, “Plasma modeling for ultrashort pulse laser ablation of dielectrics,” J. Appl. Phys. 100(2), 023116 (2006).
[Crossref]

J. Mater. Chem. C (1)

C. Park, J. Lee, H.-M. So, and W. S. Chang, “An ultrafast response grating structural ZnO photodetector with back-to-back Schottky barriers produced by hydrothermal growth,” J. Mater. Chem. C 3(12), 2737–2743 (2015).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

B. Tan, N. R. Sivakumar, and K. Venkatakrishnan, “Direct grating writing using femtosecond laser interference fringes formed at the focal point,” J. Opt. A: Pure Appl. Opt. 7(4), 169–174 (2005).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. D: Appl. Phys. (1)

S. Beke, K. Sugioka, K. Midorikawa, Á Péter, L. Nánai, and J. Bonse, “Characterization of the ablation of TeO2crystals in air with femtosecond laser pulses,” J. Phys. D: Appl. Phys. 43(2), 025401 (2010).
[Crossref]

Mater. Lett. (1)

B. Voisiat, S. Alamri, and A. F. Lasagni, “One-step fabrication of asymmetric saw-tooth-like surface structures on stainless steel using Direct Laser Interference Patterning,” Mater. Lett. 245, 183–187 (2019).
[Crossref]

Meas. Sci. Technol. (1)

P. V. Lambeck, “Integrated optical sensors for the chemical domain,” Meas. Sci. Technol. 17(8), R93–R116 (2006).
[Crossref]

Microelectron. Eng. (1)

M. Purica, E. Budianu, and E. Rusu, “Heterojunction with ZnO polycrystalline thin films for optoelectronic devices applications,” Microelectron. Eng. 51-52, 425–431 (2000).
[Crossref]

Opt. Express (1)

Opt. Laser Technol. (2)

V. Oliveira, R. Vilar, R. Serra, J. C. Oliveira, N. I. Polushkin, and O. Conde, “Sub-micron structuring of silicon using femtosecond laser interferometry,” Opt. Laser Technol. 54, 428–431 (2013).
[Crossref]

V. Oliveira, N. I. Polushkin, O. Conde, and R. Vilar, “Laser surface patterning using a Michelson interferometer and femtosecond laser radiation,” Opt. Laser Technol. 44(7), 2072–2075 (2012).
[Crossref]

Opt. Lett. (2)

Opto-Electron. Rev. (1)

P. Struk, T. Pustelny, K. Gołaszewska, E. Kamińska, M. Borysiewicz, M. Ekielski, and A. Piotrowska, “Photonic structures with grating couplers based on ZnO,” Opto-Electron. Rev. 19(4), 462–467 (2011).
[Crossref]

Prog. Mater. Sci. (1)

S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent progress in processing and properties of ZnO,” Prog. Mater. Sci. 50(3), 293–340 (2005).
[Crossref]

Prog. Photovoltaics (1)

C. Haase and H. Stiebig, “Optical properties of thin-film silicon solar cells with grating couplers,” Prog. Photovoltaics 14(7), 629–641 (2006).
[Crossref]

Rep. Prog. Phys. (1)

P. Balling and J. Schou, “Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films,” Rep. Prog. Phys. 76(3), 036502 (2013).
[Crossref]

Sens. Actuators, B (2)

Y. Q. Fu, J. K. Luo, X. Y. Du, A. J. Flewitt, Y. Li, G. H. Markx, A. J. Walton, and W. I. Milne, “Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review,” Sens. Actuators, B 143(2), 606–619 (2010).
[Crossref]

W. Lukosz, “Integrated optical chemical and direct biochemical sensors,” Sens. Actuators, B 29(1-3), 37–50 (1995).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

B. Hussain, A. Ebong, and I. Ferguson, “Zinc oxide as an active n-layer and antireflection coating for silicon based heterojunction solar cell,” Sol. Energy Mater. Sol. Cells 139, 95–100 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Experimental setup of the direct laser interference ablation and the online pump-(WLC-probe) configuration (M: mirror; BS: beam splitter of fs laser; GP: Glan prism; W-BS: beam splitter of white light); (b) the intensity profile of the interference pattern before the microscope objective, the beam diameter is Φ3 mm; (c) the spectrum of the WLC after the cut-off filter.
Fig. 2.
Fig. 2. Semilog plots of the fluence dependence on the crater diameter and the numerical regression fitting.
Fig. 3.
Fig. 3. Optical morphologies of micro-grating structures at sum peak fluences (onto the constructive fringes) of (a) 4.73, (b) 7.14, and (c) 7.84 J/cm2.
Fig. 4.
Fig. 4. (a) The microscopic image of the ablated slices; (b) the enlarged vision of the marked area by a white square in (a); (c)-(e) further enlarged views marked in (b); the EDX mapping of Zn (f) and Si (g) on the formed structures; (h) the comparison of the spectra on the slice (red dot) and the channel (blue dot) shown in (a).
Fig. 5.
Fig. 5. (a) The thickness mapping of the sliced grooves; (b) the crossing profile of the slices.
Fig. 6.
Fig. 6. The time evolution of the micro-grating formation. The frame size is 28×28 µm2. The white-dashed region and red-dashed region are chosen for reflectivity analysis.
Fig. 7.
Fig. 7. (a) The time evolution of the intensity changes of the white-dashed region (25×5 µm2) shown in Fig. 6; (b) the relative reflectivity changes of the red-dashed central area (5×1.3 µm2) in Fig. 6, and the error bar stands for the standard deviation of the mean value in the red-dashed area.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I ( t , r , z ) = 2 π / ln 2 F t p ( 1 R ( t , r ) ) exp [ r 2 r 0 2 ( 4 ln 2 ) ( t t p ) 2 0 z α ( t , r , z ) d z ]
η = 0 t 0 r 2 π r I ( t , r , z max ) d r d t 0 t 0 r 2 π r I ( t , r , 0 ) d r d t
D 2 = 2 w 0 2 ln ( F F t h )
I s u m  =  4 [ cos ( δ 2 ) ] 2 I o n e
F p , s u m = 4 F p , o n e = 8 E o n e π w 0 2

Metrics