Abstract

In this work, we demonstrate a single frequency, high power fiber-laser system, operating at 1550 nm, generating controllable rectangular-shape μs pulses. In order to control the amplified spontaneous emission content, and overcome the undesirable pulse steepening during the amplification, a new method with two seed sources operating at 1550 nm and 1560 nm are used in this system. The output power is about 35 W in CW mode, and the peak power is around 32 W in the pulsed mode. The repetition rate of the system is tunable between 50 Hz to 10 kHz, and the pulse duration is adjustable from 10 μs to 100 μs, with all on the fly electronically configurable design. The system demonstrates excellent long and short time stability, as well as spectral and spatial beam quality.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Verburg, G. Römer, and A. Huis in ’t Veld, “Two-photon induced internal modification of silicon by erbium-doped fiber laser,” Opt. Express 22(18), 21958–21971 (2014).
    [Crossref]
  2. I. Pavlov, O. Tokel, S. Pavlova, V. Kadan, G. Makey, A. Turnali, Ö. Yavuz, and F. Ö. Ilday, “Femtosecond laser written waveguides deep inside silicon,” Opt. Lett. 42(15), 3028–3031 (2017).
    [Crossref]
  3. M. Dalponte, L. Ene, T. Gobakken, E. Næsset, and D. Gianelle, “Predicting Selected Forest Stand Characteristics with Multispectral ALS Data,” Remote Sens. 10(4), 586 (2018).
    [Crossref]
  4. J. Yun, C. Gao, S. Zhu, C. Sun, H. He, L. Feng, L. Dong, and L. Niu, “High-peak-power, single-mode, nanosecond pulsed, all-fiber laser for high resolution 3D imaging LIDAR system,” Chin. Opt. Lett. 10(12), 121402 (2012).
    [Crossref]
  5. Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. M. B. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:Ytterbium co-doped large core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
    [Crossref]
  6. X. Bai, Q. Sheng, H. Zhang, S. Fu, W. Shi, and J. Yao, “High-Power All-Fiber Single-Frequency Erbium-Ytterbium Co-Doped Fiber Master Oscillator Power Amplifier,” IEEE Photonics J.. 7(6), 7103106 (2015).
    [Crossref]
  7. M. Jebali, J. Maran, and S. LaRochelle, “264 W output power at 1585 nm in Er–Yb codoped fiber laser using in-band pumping,” Opt. Lett. 39(13), 3974–3977 (2014).
    [Crossref]
  8. O. De Varona, W. Fittkau, P. Booker, T. Theeg, M. Steinke, D. Kracht, J. Neumann, and P. Wessels, “Single-frequency fiber amplifier at 1.5 μm with 100W in the linearly-polarized TEM00 mode for next-generation gravitational wave detectors,” Opt. Express 25(21), 24880–24892 (2017).
    [Crossref]
  9. D. Creeden, H. Pretorius, J. Limongelli, and S. D. Setzler, “Single frequency 1560 nm Er:Yb fiber amplifier with 207 W output power and 50.5 slope efficiency,” Proc. SPIE 9728, 97282L (2016).
    [Crossref]
  10. V. V. Dvoyrin, D. Klimentov, J. O. Klepsvik, I. V. Mazaeva, and I. T. Sorokina, “Multi-kilowatt peak power nanosecond Er-doped fiber laser,” IEEE Photonics Technol. Lett. 28(23), 2772–2775 (2016).
    [Crossref]
  11. L. Holmen, G. Rustad, and M. Haakestad, “Robust Eye-safe Pulsed Fiber Laser Source for 3D Ladar Applications,” Appl. Opt. 57(23), 6760–6767 (2018).
    [Crossref]
  12. J. Barria, S. Roux, J. Dherbecourt, M. Raybaut, J. Melkonian, A. Godard, and M. Lefebvre, “Microsecond fiber laser pumped, single-frequency optical parametric oscillator for trace gas detection,” Opt. Lett. 38(13), 2165–2167 (2013).
    [Crossref]
  13. J. Nicholson, A. DeSantolo, M. Yan, P. Wisk, B. Mangan, G. Puc, A. Yu, and M. Stephen, “High energy 1572.3 nm pulses for CO2 LIDAR from a polarization-maintaining very-large-mode-area Er-doped fiber amplifier,” Opt. Express 24(17), 19961–2564 (2016).
    [Crossref]
  14. I. Pavlov, E. Dülgergil, E. Ilbey, and F. Ö. Ilday, “Diffraction-limited, 10-W, 5-ns, 100-kHz, all-fiber laser at 1.55 μm,” Opt. Lett. 39(9), 2695–2698 (2014).
    [Crossref]
  15. M. Karasek, “Optimum design of Er/sup 3+/-Yb/sup 3+/ codoped fibers for large-signal high-pump-power applications,” IEEE J. Quantum Electron. 33(10), 1699–1705 (1997).
    [Crossref]

2018 (2)

M. Dalponte, L. Ene, T. Gobakken, E. Næsset, and D. Gianelle, “Predicting Selected Forest Stand Characteristics with Multispectral ALS Data,” Remote Sens. 10(4), 586 (2018).
[Crossref]

L. Holmen, G. Rustad, and M. Haakestad, “Robust Eye-safe Pulsed Fiber Laser Source for 3D Ladar Applications,” Appl. Opt. 57(23), 6760–6767 (2018).
[Crossref]

2017 (2)

2016 (3)

D. Creeden, H. Pretorius, J. Limongelli, and S. D. Setzler, “Single frequency 1560 nm Er:Yb fiber amplifier with 207 W output power and 50.5 slope efficiency,” Proc. SPIE 9728, 97282L (2016).
[Crossref]

V. V. Dvoyrin, D. Klimentov, J. O. Klepsvik, I. V. Mazaeva, and I. T. Sorokina, “Multi-kilowatt peak power nanosecond Er-doped fiber laser,” IEEE Photonics Technol. Lett. 28(23), 2772–2775 (2016).
[Crossref]

J. Nicholson, A. DeSantolo, M. Yan, P. Wisk, B. Mangan, G. Puc, A. Yu, and M. Stephen, “High energy 1572.3 nm pulses for CO2 LIDAR from a polarization-maintaining very-large-mode-area Er-doped fiber amplifier,” Opt. Express 24(17), 19961–2564 (2016).
[Crossref]

2015 (1)

X. Bai, Q. Sheng, H. Zhang, S. Fu, W. Shi, and J. Yao, “High-Power All-Fiber Single-Frequency Erbium-Ytterbium Co-Doped Fiber Master Oscillator Power Amplifier,” IEEE Photonics J.. 7(6), 7103106 (2015).
[Crossref]

2014 (3)

2013 (1)

2012 (1)

2007 (1)

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. M. B. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:Ytterbium co-doped large core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[Crossref]

1997 (1)

M. Karasek, “Optimum design of Er/sup 3+/-Yb/sup 3+/ codoped fibers for large-signal high-pump-power applications,” IEEE J. Quantum Electron. 33(10), 1699–1705 (1997).
[Crossref]

Bai, X.

X. Bai, Q. Sheng, H. Zhang, S. Fu, W. Shi, and J. Yao, “High-Power All-Fiber Single-Frequency Erbium-Ytterbium Co-Doped Fiber Master Oscillator Power Amplifier,” IEEE Photonics J.. 7(6), 7103106 (2015).
[Crossref]

Barria, J.

Booker, P.

Codemard, C. A.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. M. B. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:Ytterbium co-doped large core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[Crossref]

Creeden, D.

D. Creeden, H. Pretorius, J. Limongelli, and S. D. Setzler, “Single frequency 1560 nm Er:Yb fiber amplifier with 207 W output power and 50.5 slope efficiency,” Proc. SPIE 9728, 97282L (2016).
[Crossref]

Dalponte, M.

M. Dalponte, L. Ene, T. Gobakken, E. Næsset, and D. Gianelle, “Predicting Selected Forest Stand Characteristics with Multispectral ALS Data,” Remote Sens. 10(4), 586 (2018).
[Crossref]

De Varona, O.

DeSantolo, A.

Dherbecourt, J.

Dong, L.

Dülgergil, E.

Dvoyrin, V. V.

V. V. Dvoyrin, D. Klimentov, J. O. Klepsvik, I. V. Mazaeva, and I. T. Sorokina, “Multi-kilowatt peak power nanosecond Er-doped fiber laser,” IEEE Photonics Technol. Lett. 28(23), 2772–2775 (2016).
[Crossref]

Ene, L.

M. Dalponte, L. Ene, T. Gobakken, E. Næsset, and D. Gianelle, “Predicting Selected Forest Stand Characteristics with Multispectral ALS Data,” Remote Sens. 10(4), 586 (2018).
[Crossref]

Feng, L.

Fittkau, W.

Fu, S.

X. Bai, Q. Sheng, H. Zhang, S. Fu, W. Shi, and J. Yao, “High-Power All-Fiber Single-Frequency Erbium-Ytterbium Co-Doped Fiber Master Oscillator Power Amplifier,” IEEE Photonics J.. 7(6), 7103106 (2015).
[Crossref]

Gao, C.

Gianelle, D.

M. Dalponte, L. Ene, T. Gobakken, E. Næsset, and D. Gianelle, “Predicting Selected Forest Stand Characteristics with Multispectral ALS Data,” Remote Sens. 10(4), 586 (2018).
[Crossref]

Gobakken, T.

M. Dalponte, L. Ene, T. Gobakken, E. Næsset, and D. Gianelle, “Predicting Selected Forest Stand Characteristics with Multispectral ALS Data,” Remote Sens. 10(4), 586 (2018).
[Crossref]

Godard, A.

Haakestad, M.

Harker, A.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. M. B. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:Ytterbium co-doped large core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[Crossref]

He, H.

Hickey, L. M. B.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. M. B. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:Ytterbium co-doped large core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[Crossref]

Holmen, L.

Horley, R.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. M. B. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:Ytterbium co-doped large core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[Crossref]

Huis in ’t Veld, A.

Ilbey, E.

Ilday, F. Ö.

Jebali, M.

Jeong, Y.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. M. B. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:Ytterbium co-doped large core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[Crossref]

Kadan, V.

Karasek, M.

M. Karasek, “Optimum design of Er/sup 3+/-Yb/sup 3+/ codoped fibers for large-signal high-pump-power applications,” IEEE J. Quantum Electron. 33(10), 1699–1705 (1997).
[Crossref]

Klepsvik, J. O.

V. V. Dvoyrin, D. Klimentov, J. O. Klepsvik, I. V. Mazaeva, and I. T. Sorokina, “Multi-kilowatt peak power nanosecond Er-doped fiber laser,” IEEE Photonics Technol. Lett. 28(23), 2772–2775 (2016).
[Crossref]

Klimentov, D.

V. V. Dvoyrin, D. Klimentov, J. O. Klepsvik, I. V. Mazaeva, and I. T. Sorokina, “Multi-kilowatt peak power nanosecond Er-doped fiber laser,” IEEE Photonics Technol. Lett. 28(23), 2772–2775 (2016).
[Crossref]

Kracht, D.

LaRochelle, S.

Lefebvre, M.

Limongelli, J.

D. Creeden, H. Pretorius, J. Limongelli, and S. D. Setzler, “Single frequency 1560 nm Er:Yb fiber amplifier with 207 W output power and 50.5 slope efficiency,” Proc. SPIE 9728, 97282L (2016).
[Crossref]

Lovelady, M.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. M. B. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:Ytterbium co-doped large core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[Crossref]

Makey, G.

Mangan, B.

Maran, J.

Mazaeva, I. V.

V. V. Dvoyrin, D. Klimentov, J. O. Klepsvik, I. V. Mazaeva, and I. T. Sorokina, “Multi-kilowatt peak power nanosecond Er-doped fiber laser,” IEEE Photonics Technol. Lett. 28(23), 2772–2775 (2016).
[Crossref]

Melkonian, J.

Næsset, E.

M. Dalponte, L. Ene, T. Gobakken, E. Næsset, and D. Gianelle, “Predicting Selected Forest Stand Characteristics with Multispectral ALS Data,” Remote Sens. 10(4), 586 (2018).
[Crossref]

Neumann, J.

Nicholson, J.

Nilsson, J.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. M. B. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:Ytterbium co-doped large core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[Crossref]

Niu, L.

Ö. Ilday, F.

Pavlov, I.

Pavlova, S.

Payne, D. N.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. M. B. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:Ytterbium co-doped large core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[Crossref]

Piper, A.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. M. B. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:Ytterbium co-doped large core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[Crossref]

Pretorius, H.

D. Creeden, H. Pretorius, J. Limongelli, and S. D. Setzler, “Single frequency 1560 nm Er:Yb fiber amplifier with 207 W output power and 50.5 slope efficiency,” Proc. SPIE 9728, 97282L (2016).
[Crossref]

Puc, G.

Raybaut, M.

Römer, G.

Roux, S.

Rustad, G.

Sahu, J. K.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. M. B. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:Ytterbium co-doped large core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[Crossref]

Setzler, S. D.

D. Creeden, H. Pretorius, J. Limongelli, and S. D. Setzler, “Single frequency 1560 nm Er:Yb fiber amplifier with 207 W output power and 50.5 slope efficiency,” Proc. SPIE 9728, 97282L (2016).
[Crossref]

Sheng, Q.

X. Bai, Q. Sheng, H. Zhang, S. Fu, W. Shi, and J. Yao, “High-Power All-Fiber Single-Frequency Erbium-Ytterbium Co-Doped Fiber Master Oscillator Power Amplifier,” IEEE Photonics J.. 7(6), 7103106 (2015).
[Crossref]

Shi, W.

X. Bai, Q. Sheng, H. Zhang, S. Fu, W. Shi, and J. Yao, “High-Power All-Fiber Single-Frequency Erbium-Ytterbium Co-Doped Fiber Master Oscillator Power Amplifier,” IEEE Photonics J.. 7(6), 7103106 (2015).
[Crossref]

Sorokina, I. T.

V. V. Dvoyrin, D. Klimentov, J. O. Klepsvik, I. V. Mazaeva, and I. T. Sorokina, “Multi-kilowatt peak power nanosecond Er-doped fiber laser,” IEEE Photonics Technol. Lett. 28(23), 2772–2775 (2016).
[Crossref]

Steinke, M.

Stephen, M.

Sun, C.

Theeg, T.

Tokel, O.

Turnali, A.

Turner, P. W.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. M. B. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:Ytterbium co-doped large core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[Crossref]

Verburg, P.

Wessels, P.

Wisk, P.

Yan, M.

Yao, J.

X. Bai, Q. Sheng, H. Zhang, S. Fu, W. Shi, and J. Yao, “High-Power All-Fiber Single-Frequency Erbium-Ytterbium Co-Doped Fiber Master Oscillator Power Amplifier,” IEEE Photonics J.. 7(6), 7103106 (2015).
[Crossref]

Yavuz, Ö.

Yoo, S.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. M. B. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:Ytterbium co-doped large core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[Crossref]

Yu, A.

Yun, J.

Zhang, H.

X. Bai, Q. Sheng, H. Zhang, S. Fu, W. Shi, and J. Yao, “High-Power All-Fiber Single-Frequency Erbium-Ytterbium Co-Doped Fiber Master Oscillator Power Amplifier,” IEEE Photonics J.. 7(6), 7103106 (2015).
[Crossref]

Zhu, S.

Appl. Opt. (1)

Chin. Opt. Lett. (1)

IEEE J. Quantum Electron. (1)

M. Karasek, “Optimum design of Er/sup 3+/-Yb/sup 3+/ codoped fibers for large-signal high-pump-power applications,” IEEE J. Quantum Electron. 33(10), 1699–1705 (1997).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. M. B. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:Ytterbium co-doped large core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[Crossref]

IEEE Photonics J.. (1)

X. Bai, Q. Sheng, H. Zhang, S. Fu, W. Shi, and J. Yao, “High-Power All-Fiber Single-Frequency Erbium-Ytterbium Co-Doped Fiber Master Oscillator Power Amplifier,” IEEE Photonics J.. 7(6), 7103106 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

V. V. Dvoyrin, D. Klimentov, J. O. Klepsvik, I. V. Mazaeva, and I. T. Sorokina, “Multi-kilowatt peak power nanosecond Er-doped fiber laser,” IEEE Photonics Technol. Lett. 28(23), 2772–2775 (2016).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Proc. SPIE (1)

D. Creeden, H. Pretorius, J. Limongelli, and S. D. Setzler, “Single frequency 1560 nm Er:Yb fiber amplifier with 207 W output power and 50.5 slope efficiency,” Proc. SPIE 9728, 97282L (2016).
[Crossref]

Remote Sens. (1)

M. Dalponte, L. Ene, T. Gobakken, E. Næsset, and D. Gianelle, “Predicting Selected Forest Stand Characteristics with Multispectral ALS Data,” Remote Sens. 10(4), 586 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic of Er-Yb microsecond laser system.
Fig. 2.
Fig. 2. Output spectra in CW mode: a) first pre-amplifier b) second pre-amplifier c) final amplifier without filter d) final amplifier with filter.
Fig. 3.
Fig. 3. Energy level diagram of the Er-Yb system.
Fig. 4.
Fig. 4. The experimental (a,c) and simulation (b,d) performances of amplifiers ((a,b) - PA1, (c,d) - MA) at continuous seed and pulsed pump with duration 10 $\mu$s - green line, 50 $\mu$s (red), 100 $\mu$s (yellow), 300 $\mu$s (blue) and black line - laser operating in CW mode.
Fig. 5.
Fig. 5. The output pulses after MA at 1 kHz with pulsed seed (a) pulse steepening at different duration of the seed pulses: 10 $\mu$s (green line), 50 $\mu$s (red), 100 $\mu$s (blue), black line - laser operating in CW mode. (b,c) laser output (yelow line) for pre-shaped for seed pulse (purple line), blu and green lines are the pump pulses. All result (except of CW) the pump was pulsed.
Fig. 6.
Fig. 6. The oscilloscope traces: green trace - 1550 nm seed, red trace - 1560 nm seed, blue trace - optical output pulse for, a) - 10 $\mu$s, b) - 50 $\mu$s, c) 100 $\mu$s.
Fig. 7.
Fig. 7. Output spectra in pulsed mode after the filter: a) 20 $\mu$s at 50 Hz b) 50 $\mu$s at 1.5 kHz c) 90 $\mu$s at 10 kHz.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d N 6 d t = W 46 p ( N 4 N 6 ) ρ 65 N 6 K t r ( N 6 N 1 N 3 N 4 )
d N 5 d t = ρ 65 N 6 W 54 s N 5 + W 45 s N 4 σ 54 N 5 K t r ( N 5 N 1 N 3 N 4 )
d N 3 d t = W 13 p ( N 1 N 3 ) ρ 32 N 3 + K t r ( N 5 N 1 N 3 N 4 ) + K t r ( N 6 N 1 N 3 N 4 )
d N 2 d t = ρ 32 N 3 W 21 s N 2 + W 12 s N 1 σ 21 N 2
N E r = N 1 + N 2 + N 3 ; N Y b = N 4 + N 5 + N 6

Metrics