Abstract

We demonstrate a 2D radar system for the THz region using a leaky parallel-plate waveguide, which can support real-time object tracking. The system can track a target within 200 ms with an accuracy of 1 mm in range and 1.4° in angle. Because the system is based on broadband excitation, it can locate multiple objects simultaneously. The broadband excitation also enables sensing of objects for which there is no direct line-of-sight path to the waveguide, via detection of a non-line-of-sight path.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Jasteh, E. G. Hoare, M. Cherniakov, and M. Gashinova, “Experimental low-terahertz radar image analysis for automotive terrain sensing,” IEEE Geosci. Remote Sens. Lett. 13(4), 490–494 (2016).
    [Crossref]
  2. A. Al-Khalidi, K. Alharbi, J. Wang, and E. Wasige, “A compact terahertz source technology for automotive radar and other applications,” in 19th International Radar Symposium (IRS), Bonn, 2018.
  3. R. Appleby and R. N. Anderton, “Millimeter-wave and submillimeter-wave imaging for security and surveillance,” Proc. IEEE 95(8), 1683–1690 (2007).
    [Crossref]
  4. K. B. Cooper, R. J. Dengler, N. Llombart, B. Thomas, G. Chattopadhyay, and P. H. Siegel, “THz imaging radar for standoff personnel screening,” IEEE Trans. Terahertz Sci. Technol. 1(1), 169–182 (2011).
    [Crossref]
  5. A. Arbabian, S. Callender, S. Kang, M. Rangwala, and A. M. Niknejad, “A 94 GHz mm-wave-to-baseband pulsed-radar transceiver with applications in imaging and gesture recognition,” IEEE J. Solid-State Circuits 48(4), 1055–1071 (2013).
    [Crossref]
  6. C. Li, V. M. Lubecke, O. Boric-Lubecke, and J. Lin, “A review on recent advances in Doppler radar sensors for noncontact healthcare monitoring,” IEEE Trans. Microwave Theory Tech. 61(5), 2046–2060 (2013).
    [Crossref]
  7. B. St. Peter, S. Yngvesson, P. Siqueira, P. Kelly, A. Khan, S. Glick, and A. Karellas, “Development and testing of a single frequency terahertz imaging system for breast cancer detection,” IEEE J. Biomed. Health Inform. 17(4), 785–797 (2013).
    [Crossref]
  8. Y. Zhu, Y. Zhu, B. Y. Zhao, and H. Zheng, “Reusing 60 GHz radios for mobile radar imaging,” in 21st Annual International Conference on Mobile Computing and Networking (MobiCom), 2015, pp. 103–116.
  9. J. Lien, N. E. Gillian, M. E. Karagozler, P. Amihood, C. Schwesig, E. Olson, H. Raja, and I. Poupyrev, “Soli: ubiquitous gesture sensing with millimeter wave radar,” ACM Trans. Graph. 35(4), 1–19 (2016).
    [Crossref]
  10. M. Pauli, B. Göttel, S. Scherr, A. Bhutani, S. Ayhan, W. Winkler, and T. Zwick, “Miniaturized millimeter-wave radar sensor for high-accuracy applications,” IEEE Trans. Microwave Theory Tech. 65(5), 1707–1715 (2017).
    [Crossref]
  11. Z. Zhou, Z. Cao, and Y. Pi, “Dynamic gesture recognition with a terahertz radar based on range profile sequences and Doppler signatures,” Sensors 18(2), 10 (2017).
    [Crossref]
  12. P. Huegler, F. Roos, M. Schartel, M. Geiger, and C. Waldschmidt, “Radar taking off: New capabilities for UAVs,” IEEE Microw. Mag. 19(7), 43–53 (2018).
    [Crossref]
  13. K. Murata, K. Murano, I. Watanabe, A. Kasamatsu, T. Tanaka, and Y. Monnai, “See-through detection and 3D reconstruction using terahertz leaky-wave radar based on sparse signal processing,” J. Infrared, Millimeter, Terahertz Waves 39(2), 210–221 (2018).
    [Crossref]
  14. N. J. Karl, R. W. McKinney, Y. Monnai, R. Mendis, and D. M. Mittleman, “Frequency division multiplexing in the terahertz range using a leaky wave antenna,” Nat. Photonics 9(11), 717–720 (2015).
    [Crossref]
  15. J. Ma, N. J. Karl, S. Bretin, G. Ducournau, and D. M. Mittleman, “Frequency-division multiplexer and demultiplexer for terahertz wireless links,” Nat. Commun. 8(1), 729 (2017).
    [Crossref]
  16. K. Murano, I. Watanabe, A. Kasamatsu, S. Suzuki, M. Asada, W. Withayachumnankul, T. Tanaka, and Y. Monnai, “Low-profile terahertz radar based on broadband leaky-wave beam steering,” IEEE Trans. Terahertz Sci. Technol. 7(1), 60–69 (2016).
    [Crossref]
  17. H. Matsumoto, I. Watanabe, A. Kasamatsu, and Y. Monnai, “Integrated terahertz radar based on leaky-wave coherence tomography,” Nat. Electron. 3(2), 122–129 (2020).
    [Crossref]
  18. D. M. Mittleman, S. Hunsche, L. Boivin, and M. C. Nuss, “T-ray tomography,” Opt. Lett. 22(12), 904–906 (1997).
    [Crossref]
  19. R. Mendis and D. M. Mittleman, “An investigation of the lowest-order transverse-electric (TE1) mode of the parallel-plate waveguide for THz pulse propagation,” J. Opt. Soc. Am. B 26(9), A6–A13 (2009).
    [Crossref]
  20. R. Mendis and D. M. Mittleman, “A 2D artificial dielectric with 0 < n < 1 for the terahertz region,” IEEE Trans. Microwave Theory Tech. 58(7), 1993–1998 (2010).
    [Crossref]
  21. M. Theuer, S. S. Harsha, and D. Grischkowsky, “Flare coupled metal parallel-plate waveguides for high resolution terahertz time-domain spectroscopy,” J. Appl. Phys. 108(11), 113105 (2010).
    [Crossref]
  22. Y. Ghasempour, R. Shrestha, A. Charous, E. Knightly, and D. M. Mittleman, “Single-shot link discovery for terahertz wireless networks,” Nat. Commun. 11(1), 2017 (2020).
    [Crossref]
  23. A. Sutinjo, M. Okoniewski, and R. H. Johnston, “Radiation from fast and slow traveling waves,” IEEE Antenn. Propag. Mag. 50(4), 175–181 (2008).
    [Crossref]
  24. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17(5), 851–863 (2000).
    [Crossref]
  25. K. Sengupta, T. Nagatsuma, and D. M. Mittleman, “Terahertz integrated electronic and hybrid electronic–photonic systems,” Nat. Electron. 1(12), 622–635 (2018).
    [Crossref]
  26. G. Gariepy, F. Tonolini, R. Henderson, J. Leach, and D. Faccio, “Detection and tracking of moving objects hidden from view,” Nat. Photonics 10(1), 23–26 (2016).
    [Crossref]

2020 (2)

H. Matsumoto, I. Watanabe, A. Kasamatsu, and Y. Monnai, “Integrated terahertz radar based on leaky-wave coherence tomography,” Nat. Electron. 3(2), 122–129 (2020).
[Crossref]

Y. Ghasempour, R. Shrestha, A. Charous, E. Knightly, and D. M. Mittleman, “Single-shot link discovery for terahertz wireless networks,” Nat. Commun. 11(1), 2017 (2020).
[Crossref]

2018 (3)

K. Sengupta, T. Nagatsuma, and D. M. Mittleman, “Terahertz integrated electronic and hybrid electronic–photonic systems,” Nat. Electron. 1(12), 622–635 (2018).
[Crossref]

P. Huegler, F. Roos, M. Schartel, M. Geiger, and C. Waldschmidt, “Radar taking off: New capabilities for UAVs,” IEEE Microw. Mag. 19(7), 43–53 (2018).
[Crossref]

K. Murata, K. Murano, I. Watanabe, A. Kasamatsu, T. Tanaka, and Y. Monnai, “See-through detection and 3D reconstruction using terahertz leaky-wave radar based on sparse signal processing,” J. Infrared, Millimeter, Terahertz Waves 39(2), 210–221 (2018).
[Crossref]

2017 (3)

J. Ma, N. J. Karl, S. Bretin, G. Ducournau, and D. M. Mittleman, “Frequency-division multiplexer and demultiplexer for terahertz wireless links,” Nat. Commun. 8(1), 729 (2017).
[Crossref]

M. Pauli, B. Göttel, S. Scherr, A. Bhutani, S. Ayhan, W. Winkler, and T. Zwick, “Miniaturized millimeter-wave radar sensor for high-accuracy applications,” IEEE Trans. Microwave Theory Tech. 65(5), 1707–1715 (2017).
[Crossref]

Z. Zhou, Z. Cao, and Y. Pi, “Dynamic gesture recognition with a terahertz radar based on range profile sequences and Doppler signatures,” Sensors 18(2), 10 (2017).
[Crossref]

2016 (4)

J. Lien, N. E. Gillian, M. E. Karagozler, P. Amihood, C. Schwesig, E. Olson, H. Raja, and I. Poupyrev, “Soli: ubiquitous gesture sensing with millimeter wave radar,” ACM Trans. Graph. 35(4), 1–19 (2016).
[Crossref]

D. Jasteh, E. G. Hoare, M. Cherniakov, and M. Gashinova, “Experimental low-terahertz radar image analysis for automotive terrain sensing,” IEEE Geosci. Remote Sens. Lett. 13(4), 490–494 (2016).
[Crossref]

K. Murano, I. Watanabe, A. Kasamatsu, S. Suzuki, M. Asada, W. Withayachumnankul, T. Tanaka, and Y. Monnai, “Low-profile terahertz radar based on broadband leaky-wave beam steering,” IEEE Trans. Terahertz Sci. Technol. 7(1), 60–69 (2016).
[Crossref]

G. Gariepy, F. Tonolini, R. Henderson, J. Leach, and D. Faccio, “Detection and tracking of moving objects hidden from view,” Nat. Photonics 10(1), 23–26 (2016).
[Crossref]

2015 (1)

N. J. Karl, R. W. McKinney, Y. Monnai, R. Mendis, and D. M. Mittleman, “Frequency division multiplexing in the terahertz range using a leaky wave antenna,” Nat. Photonics 9(11), 717–720 (2015).
[Crossref]

2013 (3)

A. Arbabian, S. Callender, S. Kang, M. Rangwala, and A. M. Niknejad, “A 94 GHz mm-wave-to-baseband pulsed-radar transceiver with applications in imaging and gesture recognition,” IEEE J. Solid-State Circuits 48(4), 1055–1071 (2013).
[Crossref]

C. Li, V. M. Lubecke, O. Boric-Lubecke, and J. Lin, “A review on recent advances in Doppler radar sensors for noncontact healthcare monitoring,” IEEE Trans. Microwave Theory Tech. 61(5), 2046–2060 (2013).
[Crossref]

B. St. Peter, S. Yngvesson, P. Siqueira, P. Kelly, A. Khan, S. Glick, and A. Karellas, “Development and testing of a single frequency terahertz imaging system for breast cancer detection,” IEEE J. Biomed. Health Inform. 17(4), 785–797 (2013).
[Crossref]

2011 (1)

K. B. Cooper, R. J. Dengler, N. Llombart, B. Thomas, G. Chattopadhyay, and P. H. Siegel, “THz imaging radar for standoff personnel screening,” IEEE Trans. Terahertz Sci. Technol. 1(1), 169–182 (2011).
[Crossref]

2010 (2)

R. Mendis and D. M. Mittleman, “A 2D artificial dielectric with 0 < n < 1 for the terahertz region,” IEEE Trans. Microwave Theory Tech. 58(7), 1993–1998 (2010).
[Crossref]

M. Theuer, S. S. Harsha, and D. Grischkowsky, “Flare coupled metal parallel-plate waveguides for high resolution terahertz time-domain spectroscopy,” J. Appl. Phys. 108(11), 113105 (2010).
[Crossref]

2009 (1)

2008 (1)

A. Sutinjo, M. Okoniewski, and R. H. Johnston, “Radiation from fast and slow traveling waves,” IEEE Antenn. Propag. Mag. 50(4), 175–181 (2008).
[Crossref]

2007 (1)

R. Appleby and R. N. Anderton, “Millimeter-wave and submillimeter-wave imaging for security and surveillance,” Proc. IEEE 95(8), 1683–1690 (2007).
[Crossref]

2000 (1)

1997 (1)

Alharbi, K.

A. Al-Khalidi, K. Alharbi, J. Wang, and E. Wasige, “A compact terahertz source technology for automotive radar and other applications,” in 19th International Radar Symposium (IRS), Bonn, 2018.

Al-Khalidi, A.

A. Al-Khalidi, K. Alharbi, J. Wang, and E. Wasige, “A compact terahertz source technology for automotive radar and other applications,” in 19th International Radar Symposium (IRS), Bonn, 2018.

Amihood, P.

J. Lien, N. E. Gillian, M. E. Karagozler, P. Amihood, C. Schwesig, E. Olson, H. Raja, and I. Poupyrev, “Soli: ubiquitous gesture sensing with millimeter wave radar,” ACM Trans. Graph. 35(4), 1–19 (2016).
[Crossref]

Anderton, R. N.

R. Appleby and R. N. Anderton, “Millimeter-wave and submillimeter-wave imaging for security and surveillance,” Proc. IEEE 95(8), 1683–1690 (2007).
[Crossref]

Appleby, R.

R. Appleby and R. N. Anderton, “Millimeter-wave and submillimeter-wave imaging for security and surveillance,” Proc. IEEE 95(8), 1683–1690 (2007).
[Crossref]

Arbabian, A.

A. Arbabian, S. Callender, S. Kang, M. Rangwala, and A. M. Niknejad, “A 94 GHz mm-wave-to-baseband pulsed-radar transceiver with applications in imaging and gesture recognition,” IEEE J. Solid-State Circuits 48(4), 1055–1071 (2013).
[Crossref]

Asada, M.

K. Murano, I. Watanabe, A. Kasamatsu, S. Suzuki, M. Asada, W. Withayachumnankul, T. Tanaka, and Y. Monnai, “Low-profile terahertz radar based on broadband leaky-wave beam steering,” IEEE Trans. Terahertz Sci. Technol. 7(1), 60–69 (2016).
[Crossref]

Ayhan, S.

M. Pauli, B. Göttel, S. Scherr, A. Bhutani, S. Ayhan, W. Winkler, and T. Zwick, “Miniaturized millimeter-wave radar sensor for high-accuracy applications,” IEEE Trans. Microwave Theory Tech. 65(5), 1707–1715 (2017).
[Crossref]

Bhutani, A.

M. Pauli, B. Göttel, S. Scherr, A. Bhutani, S. Ayhan, W. Winkler, and T. Zwick, “Miniaturized millimeter-wave radar sensor for high-accuracy applications,” IEEE Trans. Microwave Theory Tech. 65(5), 1707–1715 (2017).
[Crossref]

Boivin, L.

Boric-Lubecke, O.

C. Li, V. M. Lubecke, O. Boric-Lubecke, and J. Lin, “A review on recent advances in Doppler radar sensors for noncontact healthcare monitoring,” IEEE Trans. Microwave Theory Tech. 61(5), 2046–2060 (2013).
[Crossref]

Bretin, S.

J. Ma, N. J. Karl, S. Bretin, G. Ducournau, and D. M. Mittleman, “Frequency-division multiplexer and demultiplexer for terahertz wireless links,” Nat. Commun. 8(1), 729 (2017).
[Crossref]

Callender, S.

A. Arbabian, S. Callender, S. Kang, M. Rangwala, and A. M. Niknejad, “A 94 GHz mm-wave-to-baseband pulsed-radar transceiver with applications in imaging and gesture recognition,” IEEE J. Solid-State Circuits 48(4), 1055–1071 (2013).
[Crossref]

Cao, Z.

Z. Zhou, Z. Cao, and Y. Pi, “Dynamic gesture recognition with a terahertz radar based on range profile sequences and Doppler signatures,” Sensors 18(2), 10 (2017).
[Crossref]

Charous, A.

Y. Ghasempour, R. Shrestha, A. Charous, E. Knightly, and D. M. Mittleman, “Single-shot link discovery for terahertz wireless networks,” Nat. Commun. 11(1), 2017 (2020).
[Crossref]

Chattopadhyay, G.

K. B. Cooper, R. J. Dengler, N. Llombart, B. Thomas, G. Chattopadhyay, and P. H. Siegel, “THz imaging radar for standoff personnel screening,” IEEE Trans. Terahertz Sci. Technol. 1(1), 169–182 (2011).
[Crossref]

Cherniakov, M.

D. Jasteh, E. G. Hoare, M. Cherniakov, and M. Gashinova, “Experimental low-terahertz radar image analysis for automotive terrain sensing,” IEEE Geosci. Remote Sens. Lett. 13(4), 490–494 (2016).
[Crossref]

Cooper, K. B.

K. B. Cooper, R. J. Dengler, N. Llombart, B. Thomas, G. Chattopadhyay, and P. H. Siegel, “THz imaging radar for standoff personnel screening,” IEEE Trans. Terahertz Sci. Technol. 1(1), 169–182 (2011).
[Crossref]

Dengler, R. J.

K. B. Cooper, R. J. Dengler, N. Llombart, B. Thomas, G. Chattopadhyay, and P. H. Siegel, “THz imaging radar for standoff personnel screening,” IEEE Trans. Terahertz Sci. Technol. 1(1), 169–182 (2011).
[Crossref]

Ducournau, G.

J. Ma, N. J. Karl, S. Bretin, G. Ducournau, and D. M. Mittleman, “Frequency-division multiplexer and demultiplexer for terahertz wireless links,” Nat. Commun. 8(1), 729 (2017).
[Crossref]

Faccio, D.

G. Gariepy, F. Tonolini, R. Henderson, J. Leach, and D. Faccio, “Detection and tracking of moving objects hidden from view,” Nat. Photonics 10(1), 23–26 (2016).
[Crossref]

Gallot, G.

Gariepy, G.

G. Gariepy, F. Tonolini, R. Henderson, J. Leach, and D. Faccio, “Detection and tracking of moving objects hidden from view,” Nat. Photonics 10(1), 23–26 (2016).
[Crossref]

Gashinova, M.

D. Jasteh, E. G. Hoare, M. Cherniakov, and M. Gashinova, “Experimental low-terahertz radar image analysis for automotive terrain sensing,” IEEE Geosci. Remote Sens. Lett. 13(4), 490–494 (2016).
[Crossref]

Geiger, M.

P. Huegler, F. Roos, M. Schartel, M. Geiger, and C. Waldschmidt, “Radar taking off: New capabilities for UAVs,” IEEE Microw. Mag. 19(7), 43–53 (2018).
[Crossref]

Ghasempour, Y.

Y. Ghasempour, R. Shrestha, A. Charous, E. Knightly, and D. M. Mittleman, “Single-shot link discovery for terahertz wireless networks,” Nat. Commun. 11(1), 2017 (2020).
[Crossref]

Gillian, N. E.

J. Lien, N. E. Gillian, M. E. Karagozler, P. Amihood, C. Schwesig, E. Olson, H. Raja, and I. Poupyrev, “Soli: ubiquitous gesture sensing with millimeter wave radar,” ACM Trans. Graph. 35(4), 1–19 (2016).
[Crossref]

Glick, S.

B. St. Peter, S. Yngvesson, P. Siqueira, P. Kelly, A. Khan, S. Glick, and A. Karellas, “Development and testing of a single frequency terahertz imaging system for breast cancer detection,” IEEE J. Biomed. Health Inform. 17(4), 785–797 (2013).
[Crossref]

Göttel, B.

M. Pauli, B. Göttel, S. Scherr, A. Bhutani, S. Ayhan, W. Winkler, and T. Zwick, “Miniaturized millimeter-wave radar sensor for high-accuracy applications,” IEEE Trans. Microwave Theory Tech. 65(5), 1707–1715 (2017).
[Crossref]

Grischkowsky, D.

M. Theuer, S. S. Harsha, and D. Grischkowsky, “Flare coupled metal parallel-plate waveguides for high resolution terahertz time-domain spectroscopy,” J. Appl. Phys. 108(11), 113105 (2010).
[Crossref]

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17(5), 851–863 (2000).
[Crossref]

Harsha, S. S.

M. Theuer, S. S. Harsha, and D. Grischkowsky, “Flare coupled metal parallel-plate waveguides for high resolution terahertz time-domain spectroscopy,” J. Appl. Phys. 108(11), 113105 (2010).
[Crossref]

Henderson, R.

G. Gariepy, F. Tonolini, R. Henderson, J. Leach, and D. Faccio, “Detection and tracking of moving objects hidden from view,” Nat. Photonics 10(1), 23–26 (2016).
[Crossref]

Hoare, E. G.

D. Jasteh, E. G. Hoare, M. Cherniakov, and M. Gashinova, “Experimental low-terahertz radar image analysis for automotive terrain sensing,” IEEE Geosci. Remote Sens. Lett. 13(4), 490–494 (2016).
[Crossref]

Huegler, P.

P. Huegler, F. Roos, M. Schartel, M. Geiger, and C. Waldschmidt, “Radar taking off: New capabilities for UAVs,” IEEE Microw. Mag. 19(7), 43–53 (2018).
[Crossref]

Hunsche, S.

Jamison, S. P.

Jasteh, D.

D. Jasteh, E. G. Hoare, M. Cherniakov, and M. Gashinova, “Experimental low-terahertz radar image analysis for automotive terrain sensing,” IEEE Geosci. Remote Sens. Lett. 13(4), 490–494 (2016).
[Crossref]

Johnston, R. H.

A. Sutinjo, M. Okoniewski, and R. H. Johnston, “Radiation from fast and slow traveling waves,” IEEE Antenn. Propag. Mag. 50(4), 175–181 (2008).
[Crossref]

Kang, S.

A. Arbabian, S. Callender, S. Kang, M. Rangwala, and A. M. Niknejad, “A 94 GHz mm-wave-to-baseband pulsed-radar transceiver with applications in imaging and gesture recognition,” IEEE J. Solid-State Circuits 48(4), 1055–1071 (2013).
[Crossref]

Karagozler, M. E.

J. Lien, N. E. Gillian, M. E. Karagozler, P. Amihood, C. Schwesig, E. Olson, H. Raja, and I. Poupyrev, “Soli: ubiquitous gesture sensing with millimeter wave radar,” ACM Trans. Graph. 35(4), 1–19 (2016).
[Crossref]

Karellas, A.

B. St. Peter, S. Yngvesson, P. Siqueira, P. Kelly, A. Khan, S. Glick, and A. Karellas, “Development and testing of a single frequency terahertz imaging system for breast cancer detection,” IEEE J. Biomed. Health Inform. 17(4), 785–797 (2013).
[Crossref]

Karl, N. J.

J. Ma, N. J. Karl, S. Bretin, G. Ducournau, and D. M. Mittleman, “Frequency-division multiplexer and demultiplexer for terahertz wireless links,” Nat. Commun. 8(1), 729 (2017).
[Crossref]

N. J. Karl, R. W. McKinney, Y. Monnai, R. Mendis, and D. M. Mittleman, “Frequency division multiplexing in the terahertz range using a leaky wave antenna,” Nat. Photonics 9(11), 717–720 (2015).
[Crossref]

Kasamatsu, A.

H. Matsumoto, I. Watanabe, A. Kasamatsu, and Y. Monnai, “Integrated terahertz radar based on leaky-wave coherence tomography,” Nat. Electron. 3(2), 122–129 (2020).
[Crossref]

K. Murata, K. Murano, I. Watanabe, A. Kasamatsu, T. Tanaka, and Y. Monnai, “See-through detection and 3D reconstruction using terahertz leaky-wave radar based on sparse signal processing,” J. Infrared, Millimeter, Terahertz Waves 39(2), 210–221 (2018).
[Crossref]

K. Murano, I. Watanabe, A. Kasamatsu, S. Suzuki, M. Asada, W. Withayachumnankul, T. Tanaka, and Y. Monnai, “Low-profile terahertz radar based on broadband leaky-wave beam steering,” IEEE Trans. Terahertz Sci. Technol. 7(1), 60–69 (2016).
[Crossref]

Kelly, P.

B. St. Peter, S. Yngvesson, P. Siqueira, P. Kelly, A. Khan, S. Glick, and A. Karellas, “Development and testing of a single frequency terahertz imaging system for breast cancer detection,” IEEE J. Biomed. Health Inform. 17(4), 785–797 (2013).
[Crossref]

Khan, A.

B. St. Peter, S. Yngvesson, P. Siqueira, P. Kelly, A. Khan, S. Glick, and A. Karellas, “Development and testing of a single frequency terahertz imaging system for breast cancer detection,” IEEE J. Biomed. Health Inform. 17(4), 785–797 (2013).
[Crossref]

Knightly, E.

Y. Ghasempour, R. Shrestha, A. Charous, E. Knightly, and D. M. Mittleman, “Single-shot link discovery for terahertz wireless networks,” Nat. Commun. 11(1), 2017 (2020).
[Crossref]

Leach, J.

G. Gariepy, F. Tonolini, R. Henderson, J. Leach, and D. Faccio, “Detection and tracking of moving objects hidden from view,” Nat. Photonics 10(1), 23–26 (2016).
[Crossref]

Li, C.

C. Li, V. M. Lubecke, O. Boric-Lubecke, and J. Lin, “A review on recent advances in Doppler radar sensors for noncontact healthcare monitoring,” IEEE Trans. Microwave Theory Tech. 61(5), 2046–2060 (2013).
[Crossref]

Lien, J.

J. Lien, N. E. Gillian, M. E. Karagozler, P. Amihood, C. Schwesig, E. Olson, H. Raja, and I. Poupyrev, “Soli: ubiquitous gesture sensing with millimeter wave radar,” ACM Trans. Graph. 35(4), 1–19 (2016).
[Crossref]

Lin, J.

C. Li, V. M. Lubecke, O. Boric-Lubecke, and J. Lin, “A review on recent advances in Doppler radar sensors for noncontact healthcare monitoring,” IEEE Trans. Microwave Theory Tech. 61(5), 2046–2060 (2013).
[Crossref]

Llombart, N.

K. B. Cooper, R. J. Dengler, N. Llombart, B. Thomas, G. Chattopadhyay, and P. H. Siegel, “THz imaging radar for standoff personnel screening,” IEEE Trans. Terahertz Sci. Technol. 1(1), 169–182 (2011).
[Crossref]

Lubecke, V. M.

C. Li, V. M. Lubecke, O. Boric-Lubecke, and J. Lin, “A review on recent advances in Doppler radar sensors for noncontact healthcare monitoring,” IEEE Trans. Microwave Theory Tech. 61(5), 2046–2060 (2013).
[Crossref]

Ma, J.

J. Ma, N. J. Karl, S. Bretin, G. Ducournau, and D. M. Mittleman, “Frequency-division multiplexer and demultiplexer for terahertz wireless links,” Nat. Commun. 8(1), 729 (2017).
[Crossref]

Matsumoto, H.

H. Matsumoto, I. Watanabe, A. Kasamatsu, and Y. Monnai, “Integrated terahertz radar based on leaky-wave coherence tomography,” Nat. Electron. 3(2), 122–129 (2020).
[Crossref]

McGowan, R. W.

McKinney, R. W.

N. J. Karl, R. W. McKinney, Y. Monnai, R. Mendis, and D. M. Mittleman, “Frequency division multiplexing in the terahertz range using a leaky wave antenna,” Nat. Photonics 9(11), 717–720 (2015).
[Crossref]

Mendis, R.

N. J. Karl, R. W. McKinney, Y. Monnai, R. Mendis, and D. M. Mittleman, “Frequency division multiplexing in the terahertz range using a leaky wave antenna,” Nat. Photonics 9(11), 717–720 (2015).
[Crossref]

R. Mendis and D. M. Mittleman, “A 2D artificial dielectric with 0 < n < 1 for the terahertz region,” IEEE Trans. Microwave Theory Tech. 58(7), 1993–1998 (2010).
[Crossref]

R. Mendis and D. M. Mittleman, “An investigation of the lowest-order transverse-electric (TE1) mode of the parallel-plate waveguide for THz pulse propagation,” J. Opt. Soc. Am. B 26(9), A6–A13 (2009).
[Crossref]

Mittleman, D. M.

Y. Ghasempour, R. Shrestha, A. Charous, E. Knightly, and D. M. Mittleman, “Single-shot link discovery for terahertz wireless networks,” Nat. Commun. 11(1), 2017 (2020).
[Crossref]

K. Sengupta, T. Nagatsuma, and D. M. Mittleman, “Terahertz integrated electronic and hybrid electronic–photonic systems,” Nat. Electron. 1(12), 622–635 (2018).
[Crossref]

J. Ma, N. J. Karl, S. Bretin, G. Ducournau, and D. M. Mittleman, “Frequency-division multiplexer and demultiplexer for terahertz wireless links,” Nat. Commun. 8(1), 729 (2017).
[Crossref]

N. J. Karl, R. W. McKinney, Y. Monnai, R. Mendis, and D. M. Mittleman, “Frequency division multiplexing in the terahertz range using a leaky wave antenna,” Nat. Photonics 9(11), 717–720 (2015).
[Crossref]

R. Mendis and D. M. Mittleman, “A 2D artificial dielectric with 0 < n < 1 for the terahertz region,” IEEE Trans. Microwave Theory Tech. 58(7), 1993–1998 (2010).
[Crossref]

R. Mendis and D. M. Mittleman, “An investigation of the lowest-order transverse-electric (TE1) mode of the parallel-plate waveguide for THz pulse propagation,” J. Opt. Soc. Am. B 26(9), A6–A13 (2009).
[Crossref]

D. M. Mittleman, S. Hunsche, L. Boivin, and M. C. Nuss, “T-ray tomography,” Opt. Lett. 22(12), 904–906 (1997).
[Crossref]

Monnai, Y.

H. Matsumoto, I. Watanabe, A. Kasamatsu, and Y. Monnai, “Integrated terahertz radar based on leaky-wave coherence tomography,” Nat. Electron. 3(2), 122–129 (2020).
[Crossref]

K. Murata, K. Murano, I. Watanabe, A. Kasamatsu, T. Tanaka, and Y. Monnai, “See-through detection and 3D reconstruction using terahertz leaky-wave radar based on sparse signal processing,” J. Infrared, Millimeter, Terahertz Waves 39(2), 210–221 (2018).
[Crossref]

K. Murano, I. Watanabe, A. Kasamatsu, S. Suzuki, M. Asada, W. Withayachumnankul, T. Tanaka, and Y. Monnai, “Low-profile terahertz radar based on broadband leaky-wave beam steering,” IEEE Trans. Terahertz Sci. Technol. 7(1), 60–69 (2016).
[Crossref]

N. J. Karl, R. W. McKinney, Y. Monnai, R. Mendis, and D. M. Mittleman, “Frequency division multiplexing in the terahertz range using a leaky wave antenna,” Nat. Photonics 9(11), 717–720 (2015).
[Crossref]

Murano, K.

K. Murata, K. Murano, I. Watanabe, A. Kasamatsu, T. Tanaka, and Y. Monnai, “See-through detection and 3D reconstruction using terahertz leaky-wave radar based on sparse signal processing,” J. Infrared, Millimeter, Terahertz Waves 39(2), 210–221 (2018).
[Crossref]

K. Murano, I. Watanabe, A. Kasamatsu, S. Suzuki, M. Asada, W. Withayachumnankul, T. Tanaka, and Y. Monnai, “Low-profile terahertz radar based on broadband leaky-wave beam steering,” IEEE Trans. Terahertz Sci. Technol. 7(1), 60–69 (2016).
[Crossref]

Murata, K.

K. Murata, K. Murano, I. Watanabe, A. Kasamatsu, T. Tanaka, and Y. Monnai, “See-through detection and 3D reconstruction using terahertz leaky-wave radar based on sparse signal processing,” J. Infrared, Millimeter, Terahertz Waves 39(2), 210–221 (2018).
[Crossref]

Nagatsuma, T.

K. Sengupta, T. Nagatsuma, and D. M. Mittleman, “Terahertz integrated electronic and hybrid electronic–photonic systems,” Nat. Electron. 1(12), 622–635 (2018).
[Crossref]

Niknejad, A. M.

A. Arbabian, S. Callender, S. Kang, M. Rangwala, and A. M. Niknejad, “A 94 GHz mm-wave-to-baseband pulsed-radar transceiver with applications in imaging and gesture recognition,” IEEE J. Solid-State Circuits 48(4), 1055–1071 (2013).
[Crossref]

Nuss, M. C.

Okoniewski, M.

A. Sutinjo, M. Okoniewski, and R. H. Johnston, “Radiation from fast and slow traveling waves,” IEEE Antenn. Propag. Mag. 50(4), 175–181 (2008).
[Crossref]

Olson, E.

J. Lien, N. E. Gillian, M. E. Karagozler, P. Amihood, C. Schwesig, E. Olson, H. Raja, and I. Poupyrev, “Soli: ubiquitous gesture sensing with millimeter wave radar,” ACM Trans. Graph. 35(4), 1–19 (2016).
[Crossref]

Pauli, M.

M. Pauli, B. Göttel, S. Scherr, A. Bhutani, S. Ayhan, W. Winkler, and T. Zwick, “Miniaturized millimeter-wave radar sensor for high-accuracy applications,” IEEE Trans. Microwave Theory Tech. 65(5), 1707–1715 (2017).
[Crossref]

Pi, Y.

Z. Zhou, Z. Cao, and Y. Pi, “Dynamic gesture recognition with a terahertz radar based on range profile sequences and Doppler signatures,” Sensors 18(2), 10 (2017).
[Crossref]

Poupyrev, I.

J. Lien, N. E. Gillian, M. E. Karagozler, P. Amihood, C. Schwesig, E. Olson, H. Raja, and I. Poupyrev, “Soli: ubiquitous gesture sensing with millimeter wave radar,” ACM Trans. Graph. 35(4), 1–19 (2016).
[Crossref]

Raja, H.

J. Lien, N. E. Gillian, M. E. Karagozler, P. Amihood, C. Schwesig, E. Olson, H. Raja, and I. Poupyrev, “Soli: ubiquitous gesture sensing with millimeter wave radar,” ACM Trans. Graph. 35(4), 1–19 (2016).
[Crossref]

Rangwala, M.

A. Arbabian, S. Callender, S. Kang, M. Rangwala, and A. M. Niknejad, “A 94 GHz mm-wave-to-baseband pulsed-radar transceiver with applications in imaging and gesture recognition,” IEEE J. Solid-State Circuits 48(4), 1055–1071 (2013).
[Crossref]

Roos, F.

P. Huegler, F. Roos, M. Schartel, M. Geiger, and C. Waldschmidt, “Radar taking off: New capabilities for UAVs,” IEEE Microw. Mag. 19(7), 43–53 (2018).
[Crossref]

Schartel, M.

P. Huegler, F. Roos, M. Schartel, M. Geiger, and C. Waldschmidt, “Radar taking off: New capabilities for UAVs,” IEEE Microw. Mag. 19(7), 43–53 (2018).
[Crossref]

Scherr, S.

M. Pauli, B. Göttel, S. Scherr, A. Bhutani, S. Ayhan, W. Winkler, and T. Zwick, “Miniaturized millimeter-wave radar sensor for high-accuracy applications,” IEEE Trans. Microwave Theory Tech. 65(5), 1707–1715 (2017).
[Crossref]

Schwesig, C.

J. Lien, N. E. Gillian, M. E. Karagozler, P. Amihood, C. Schwesig, E. Olson, H. Raja, and I. Poupyrev, “Soli: ubiquitous gesture sensing with millimeter wave radar,” ACM Trans. Graph. 35(4), 1–19 (2016).
[Crossref]

Sengupta, K.

K. Sengupta, T. Nagatsuma, and D. M. Mittleman, “Terahertz integrated electronic and hybrid electronic–photonic systems,” Nat. Electron. 1(12), 622–635 (2018).
[Crossref]

Shrestha, R.

Y. Ghasempour, R. Shrestha, A. Charous, E. Knightly, and D. M. Mittleman, “Single-shot link discovery for terahertz wireless networks,” Nat. Commun. 11(1), 2017 (2020).
[Crossref]

Siegel, P. H.

K. B. Cooper, R. J. Dengler, N. Llombart, B. Thomas, G. Chattopadhyay, and P. H. Siegel, “THz imaging radar for standoff personnel screening,” IEEE Trans. Terahertz Sci. Technol. 1(1), 169–182 (2011).
[Crossref]

Siqueira, P.

B. St. Peter, S. Yngvesson, P. Siqueira, P. Kelly, A. Khan, S. Glick, and A. Karellas, “Development and testing of a single frequency terahertz imaging system for breast cancer detection,” IEEE J. Biomed. Health Inform. 17(4), 785–797 (2013).
[Crossref]

St. Peter, B.

B. St. Peter, S. Yngvesson, P. Siqueira, P. Kelly, A. Khan, S. Glick, and A. Karellas, “Development and testing of a single frequency terahertz imaging system for breast cancer detection,” IEEE J. Biomed. Health Inform. 17(4), 785–797 (2013).
[Crossref]

Sutinjo, A.

A. Sutinjo, M. Okoniewski, and R. H. Johnston, “Radiation from fast and slow traveling waves,” IEEE Antenn. Propag. Mag. 50(4), 175–181 (2008).
[Crossref]

Suzuki, S.

K. Murano, I. Watanabe, A. Kasamatsu, S. Suzuki, M. Asada, W. Withayachumnankul, T. Tanaka, and Y. Monnai, “Low-profile terahertz radar based on broadband leaky-wave beam steering,” IEEE Trans. Terahertz Sci. Technol. 7(1), 60–69 (2016).
[Crossref]

Tanaka, T.

K. Murata, K. Murano, I. Watanabe, A. Kasamatsu, T. Tanaka, and Y. Monnai, “See-through detection and 3D reconstruction using terahertz leaky-wave radar based on sparse signal processing,” J. Infrared, Millimeter, Terahertz Waves 39(2), 210–221 (2018).
[Crossref]

K. Murano, I. Watanabe, A. Kasamatsu, S. Suzuki, M. Asada, W. Withayachumnankul, T. Tanaka, and Y. Monnai, “Low-profile terahertz radar based on broadband leaky-wave beam steering,” IEEE Trans. Terahertz Sci. Technol. 7(1), 60–69 (2016).
[Crossref]

Theuer, M.

M. Theuer, S. S. Harsha, and D. Grischkowsky, “Flare coupled metal parallel-plate waveguides for high resolution terahertz time-domain spectroscopy,” J. Appl. Phys. 108(11), 113105 (2010).
[Crossref]

Thomas, B.

K. B. Cooper, R. J. Dengler, N. Llombart, B. Thomas, G. Chattopadhyay, and P. H. Siegel, “THz imaging radar for standoff personnel screening,” IEEE Trans. Terahertz Sci. Technol. 1(1), 169–182 (2011).
[Crossref]

Tonolini, F.

G. Gariepy, F. Tonolini, R. Henderson, J. Leach, and D. Faccio, “Detection and tracking of moving objects hidden from view,” Nat. Photonics 10(1), 23–26 (2016).
[Crossref]

Waldschmidt, C.

P. Huegler, F. Roos, M. Schartel, M. Geiger, and C. Waldschmidt, “Radar taking off: New capabilities for UAVs,” IEEE Microw. Mag. 19(7), 43–53 (2018).
[Crossref]

Wang, J.

A. Al-Khalidi, K. Alharbi, J. Wang, and E. Wasige, “A compact terahertz source technology for automotive radar and other applications,” in 19th International Radar Symposium (IRS), Bonn, 2018.

Wasige, E.

A. Al-Khalidi, K. Alharbi, J. Wang, and E. Wasige, “A compact terahertz source technology for automotive radar and other applications,” in 19th International Radar Symposium (IRS), Bonn, 2018.

Watanabe, I.

H. Matsumoto, I. Watanabe, A. Kasamatsu, and Y. Monnai, “Integrated terahertz radar based on leaky-wave coherence tomography,” Nat. Electron. 3(2), 122–129 (2020).
[Crossref]

K. Murata, K. Murano, I. Watanabe, A. Kasamatsu, T. Tanaka, and Y. Monnai, “See-through detection and 3D reconstruction using terahertz leaky-wave radar based on sparse signal processing,” J. Infrared, Millimeter, Terahertz Waves 39(2), 210–221 (2018).
[Crossref]

K. Murano, I. Watanabe, A. Kasamatsu, S. Suzuki, M. Asada, W. Withayachumnankul, T. Tanaka, and Y. Monnai, “Low-profile terahertz radar based on broadband leaky-wave beam steering,” IEEE Trans. Terahertz Sci. Technol. 7(1), 60–69 (2016).
[Crossref]

Winkler, W.

M. Pauli, B. Göttel, S. Scherr, A. Bhutani, S. Ayhan, W. Winkler, and T. Zwick, “Miniaturized millimeter-wave radar sensor for high-accuracy applications,” IEEE Trans. Microwave Theory Tech. 65(5), 1707–1715 (2017).
[Crossref]

Withayachumnankul, W.

K. Murano, I. Watanabe, A. Kasamatsu, S. Suzuki, M. Asada, W. Withayachumnankul, T. Tanaka, and Y. Monnai, “Low-profile terahertz radar based on broadband leaky-wave beam steering,” IEEE Trans. Terahertz Sci. Technol. 7(1), 60–69 (2016).
[Crossref]

Yngvesson, S.

B. St. Peter, S. Yngvesson, P. Siqueira, P. Kelly, A. Khan, S. Glick, and A. Karellas, “Development and testing of a single frequency terahertz imaging system for breast cancer detection,” IEEE J. Biomed. Health Inform. 17(4), 785–797 (2013).
[Crossref]

Zhao, B. Y.

Y. Zhu, Y. Zhu, B. Y. Zhao, and H. Zheng, “Reusing 60 GHz radios for mobile radar imaging,” in 21st Annual International Conference on Mobile Computing and Networking (MobiCom), 2015, pp. 103–116.

Zheng, H.

Y. Zhu, Y. Zhu, B. Y. Zhao, and H. Zheng, “Reusing 60 GHz radios for mobile radar imaging,” in 21st Annual International Conference on Mobile Computing and Networking (MobiCom), 2015, pp. 103–116.

Zhou, Z.

Z. Zhou, Z. Cao, and Y. Pi, “Dynamic gesture recognition with a terahertz radar based on range profile sequences and Doppler signatures,” Sensors 18(2), 10 (2017).
[Crossref]

Zhu, Y.

Y. Zhu, Y. Zhu, B. Y. Zhao, and H. Zheng, “Reusing 60 GHz radios for mobile radar imaging,” in 21st Annual International Conference on Mobile Computing and Networking (MobiCom), 2015, pp. 103–116.

Y. Zhu, Y. Zhu, B. Y. Zhao, and H. Zheng, “Reusing 60 GHz radios for mobile radar imaging,” in 21st Annual International Conference on Mobile Computing and Networking (MobiCom), 2015, pp. 103–116.

Zwick, T.

M. Pauli, B. Göttel, S. Scherr, A. Bhutani, S. Ayhan, W. Winkler, and T. Zwick, “Miniaturized millimeter-wave radar sensor for high-accuracy applications,” IEEE Trans. Microwave Theory Tech. 65(5), 1707–1715 (2017).
[Crossref]

ACM Trans. Graph. (1)

J. Lien, N. E. Gillian, M. E. Karagozler, P. Amihood, C. Schwesig, E. Olson, H. Raja, and I. Poupyrev, “Soli: ubiquitous gesture sensing with millimeter wave radar,” ACM Trans. Graph. 35(4), 1–19 (2016).
[Crossref]

IEEE Antenn. Propag. Mag. (1)

A. Sutinjo, M. Okoniewski, and R. H. Johnston, “Radiation from fast and slow traveling waves,” IEEE Antenn. Propag. Mag. 50(4), 175–181 (2008).
[Crossref]

IEEE Geosci. Remote Sens. Lett. (1)

D. Jasteh, E. G. Hoare, M. Cherniakov, and M. Gashinova, “Experimental low-terahertz radar image analysis for automotive terrain sensing,” IEEE Geosci. Remote Sens. Lett. 13(4), 490–494 (2016).
[Crossref]

IEEE J. Biomed. Health Inform. (1)

B. St. Peter, S. Yngvesson, P. Siqueira, P. Kelly, A. Khan, S. Glick, and A. Karellas, “Development and testing of a single frequency terahertz imaging system for breast cancer detection,” IEEE J. Biomed. Health Inform. 17(4), 785–797 (2013).
[Crossref]

IEEE J. Solid-State Circuits (1)

A. Arbabian, S. Callender, S. Kang, M. Rangwala, and A. M. Niknejad, “A 94 GHz mm-wave-to-baseband pulsed-radar transceiver with applications in imaging and gesture recognition,” IEEE J. Solid-State Circuits 48(4), 1055–1071 (2013).
[Crossref]

IEEE Microw. Mag. (1)

P. Huegler, F. Roos, M. Schartel, M. Geiger, and C. Waldschmidt, “Radar taking off: New capabilities for UAVs,” IEEE Microw. Mag. 19(7), 43–53 (2018).
[Crossref]

IEEE Trans. Microwave Theory Tech. (3)

M. Pauli, B. Göttel, S. Scherr, A. Bhutani, S. Ayhan, W. Winkler, and T. Zwick, “Miniaturized millimeter-wave radar sensor for high-accuracy applications,” IEEE Trans. Microwave Theory Tech. 65(5), 1707–1715 (2017).
[Crossref]

C. Li, V. M. Lubecke, O. Boric-Lubecke, and J. Lin, “A review on recent advances in Doppler radar sensors for noncontact healthcare monitoring,” IEEE Trans. Microwave Theory Tech. 61(5), 2046–2060 (2013).
[Crossref]

R. Mendis and D. M. Mittleman, “A 2D artificial dielectric with 0 < n < 1 for the terahertz region,” IEEE Trans. Microwave Theory Tech. 58(7), 1993–1998 (2010).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (2)

K. B. Cooper, R. J. Dengler, N. Llombart, B. Thomas, G. Chattopadhyay, and P. H. Siegel, “THz imaging radar for standoff personnel screening,” IEEE Trans. Terahertz Sci. Technol. 1(1), 169–182 (2011).
[Crossref]

K. Murano, I. Watanabe, A. Kasamatsu, S. Suzuki, M. Asada, W. Withayachumnankul, T. Tanaka, and Y. Monnai, “Low-profile terahertz radar based on broadband leaky-wave beam steering,” IEEE Trans. Terahertz Sci. Technol. 7(1), 60–69 (2016).
[Crossref]

J. Appl. Phys. (1)

M. Theuer, S. S. Harsha, and D. Grischkowsky, “Flare coupled metal parallel-plate waveguides for high resolution terahertz time-domain spectroscopy,” J. Appl. Phys. 108(11), 113105 (2010).
[Crossref]

J. Infrared, Millimeter, Terahertz Waves (1)

K. Murata, K. Murano, I. Watanabe, A. Kasamatsu, T. Tanaka, and Y. Monnai, “See-through detection and 3D reconstruction using terahertz leaky-wave radar based on sparse signal processing,” J. Infrared, Millimeter, Terahertz Waves 39(2), 210–221 (2018).
[Crossref]

J. Opt. Soc. Am. B (2)

Nat. Commun. (2)

Y. Ghasempour, R. Shrestha, A. Charous, E. Knightly, and D. M. Mittleman, “Single-shot link discovery for terahertz wireless networks,” Nat. Commun. 11(1), 2017 (2020).
[Crossref]

J. Ma, N. J. Karl, S. Bretin, G. Ducournau, and D. M. Mittleman, “Frequency-division multiplexer and demultiplexer for terahertz wireless links,” Nat. Commun. 8(1), 729 (2017).
[Crossref]

Nat. Electron. (2)

H. Matsumoto, I. Watanabe, A. Kasamatsu, and Y. Monnai, “Integrated terahertz radar based on leaky-wave coherence tomography,” Nat. Electron. 3(2), 122–129 (2020).
[Crossref]

K. Sengupta, T. Nagatsuma, and D. M. Mittleman, “Terahertz integrated electronic and hybrid electronic–photonic systems,” Nat. Electron. 1(12), 622–635 (2018).
[Crossref]

Nat. Photonics (2)

G. Gariepy, F. Tonolini, R. Henderson, J. Leach, and D. Faccio, “Detection and tracking of moving objects hidden from view,” Nat. Photonics 10(1), 23–26 (2016).
[Crossref]

N. J. Karl, R. W. McKinney, Y. Monnai, R. Mendis, and D. M. Mittleman, “Frequency division multiplexing in the terahertz range using a leaky wave antenna,” Nat. Photonics 9(11), 717–720 (2015).
[Crossref]

Opt. Lett. (1)

Proc. IEEE (1)

R. Appleby and R. N. Anderton, “Millimeter-wave and submillimeter-wave imaging for security and surveillance,” Proc. IEEE 95(8), 1683–1690 (2007).
[Crossref]

Sensors (1)

Z. Zhou, Z. Cao, and Y. Pi, “Dynamic gesture recognition with a terahertz radar based on range profile sequences and Doppler signatures,” Sensors 18(2), 10 (2017).
[Crossref]

Other (2)

A. Al-Khalidi, K. Alharbi, J. Wang, and E. Wasige, “A compact terahertz source technology for automotive radar and other applications,” in 19th International Radar Symposium (IRS), Bonn, 2018.

Y. Zhu, Y. Zhu, B. Y. Zhao, and H. Zheng, “Reusing 60 GHz radios for mobile radar imaging,” in 21st Annual International Conference on Mobile Computing and Networking (MobiCom), 2015, pp. 103–116.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Schematic diagram of the experimental arrangement, view from above. (Here, the electric field polarization is normal to the view.) (b) Photograph of the device with the vertical cylindrical lens attached to the tapered end. The horizontal cylindrical lens was detached from the top plate in order so that the slot is visible in the picture.
Fig. 2.
Fig. 2. (a) Received time-domain signal after subtracting the background. (b) Max-FFT value as a function of time delay of the moving window. (c) Frequency spectrum of the windowed signal at the peak shown in Fig. 2(b).
Fig. 3.
Fig. 3. (a) A comparison of the actual path (blue) and estimated path (red) of the target. These measurements require only 200 ms of signal averaging per data point. (b) Histogram of the angular error. (c) Histogram of the range error.
Fig. 4.
Fig. 4. (a) Detected time domain signal with three objects located within the field of view. (b) Actual positions of the three objects. The numbering corresponds to the ordering of the three distinct signals in the time-domain waveform. (c) Frequency spectrum of the blue colored time window. (d) Frequency spectrum of the red colored time window. (e) Frequency spectrum of the green colored time window. (f) Max-FFT value as a function of the time delay of the moving window.
Fig. 5.
Fig. 5. (a) Schematic diagram of the experimental setup. (b) Max-FFT value as a function of the time delay of the moving window (without wave blocker). (c) Max-FFT value as a function of the time delay of the moving window (with blocker). (d) Detected time domain signal with the object and a mirror. (e) Detected time domain signal with the line-of-sight path to object blocked.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

k P P W G = k 0 1 ( c / c 2 b f 2 b f ) 2
f ( φ ) = c 2 b s i n ( φ )
v g ( f ) = c 0 1 ( f c f ) 2 .
R = ( t f t g t l t R ) c 0 / 2 ,

Metrics