Abstract

We develop a stress-released stoichiometric silicon nitride (Si3N4) fabrication process for dispersion-engineered integrated silicon photonics. To relax the high tensile stress of a thick Si3N4 film grown by low-pressure chemical vapor deposition (LPCVD) process, we grow the film in two steps and introduce a conventional dense stress-release pattern onto a ∼400nm-thick Si3N4 film in between the two steps. Our pattern helps minimize crack formation by releasing the stress of the film along high-symmetry periodic modulation directions and helps stop cracks from propagating. We demonstrate a nearly crack-free ∼830nm-thick Si3N4 film on a 4” silicon wafer. Our Si3N4 photonic platform enables dispersion-engineered, waveguide-coupled microring and microdisk resonators, with cavity sizes of up to a millimeter. Specifically, our 115µm-radius microring exhibits an intrinsic quality (Q)-factor of ∼2.0×106 for the TM00 mode and our 575µm-radius microdisk demonstrates an intrinsic Q of ∼4.0×106 for TM modes in 1550nm wavelengths.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562(7727), 401–405 (2018).
    [Crossref]
  2. T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361(6402), eaan8083 (2018).
    [Crossref]
  3. X. Xue, P. H. Wang, Y. Xuan, M. Qi, and A. M. Weiner, “Microresonator Kerr frequency combs with high conversion efficiency,” Laser Photonics Rev. 11(1), 1600276 (2017).
    [Crossref]
  4. B. Yao, S. W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D. L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature 558(7710), 410–414 (2018).
    [Crossref]
  5. F. Samara, A. Martin, C. Autebert, M. Karpov, T. J. Kippenberg, H. Zbinden, and R. Thew, “High-rate photon pairs and sequential Time-Bin entanglement with Si3N4 microring resonators,” Opt. Express 27(14), 19309 (2019).
    [Crossref]
  6. P. Imany, J. A. Jaramillo-Villegas, O. D. Odele, K. Han, D. E. Leaird, J. M. Lukens, P. Lougovski, M. Qi, and A. M. Weiner, “50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator,” Opt. Express 26(2), 1825 (2018).
    [Crossref]
  7. Q. Li, M. Davanço, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photonics 10(6), 406–414 (2016).
    [Crossref]
  8. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
    [Crossref]
  9. J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
    [Crossref]
  10. X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4(6), 619 (2017).
    [Crossref]
  11. Y. Xuan, Y. Liu, L. T. Varghese, A. J. Metcalf, X. Xue, P.-H. Wang, K. Han, J. A. Jaramillo-Villegas, A. Al Noman, C. Wang, S. Kim, M. Teng, Y. J. Lee, B. Niu, L. Fan, J. Wang, D. E. Leaird, A. M. Weiner, and M. Qi, “High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation,” Optica 3(11), 1171 (2016).
    [Crossref]
  12. Z. Ye, K. Twayana, P. A. Andrekson, and V. Torres-Company, “High-Q Si3N4 microresonators based on a subtractive processing for Kerr nonlinear optics,” Opt. Express 27(24), 35719 (2019).
    [Crossref]
  13. T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
    [Crossref]
  14. Y. Okawachi, M. R. E. Lamont, K. Luke, D. O. Carvalho, M. Yu, M. Lipson, and A. L. Gaeta, “Bandwidth shaping of microresonator-based frequency combs via dispersion engineering,” Opt. Lett. 39(12), 3535–3538 (2014).
    [Crossref]
  15. K. Wu and A. W. Poon, “Dispersion Engineering of High-Q Si3N4 Microdisk Resonators,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper SW4B.4.
  16. Z. Yao, K. Wu, B. X. Tan, J. Wang, Y. Li, Y. Zhang, and A. W. Poon, “Integrated silicon photonic microresonators: Emerging technologies,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1 (2018).
    [Crossref]
  17. K. Luke, A. Dutt, C. B. Poitras, and M. Lipson, “Overcoming Si3N4 film stress limitations for high quality factor ring resonators,” Opt. Express 21(19), 22829 (2013).
    [Crossref]
  18. H. El Dirani, L. Youssef, C. Petit-Etienne, S. Kerdiles, P. Grosse, C. Monat, E. Pargon, and C. Sciancalepore, “Ultralow-loss tightly confining Si3N4 waveguides and high-Q microresonators,” Opt. Express 27(21), 30726 (2019).
    [Crossref]
  19. M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics,” Optica 3(1), 20 (2016).
    [Crossref]
  20. M. H. P. Pfeiffer, C. Herkommer, J. Liu, H. Guo, M. Karpov, E. Lucas, M. Zervas, and T. J. Kippenberg, “Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators,” Optica 4(7), 684 (2017).
    [Crossref]
  21. M. Hubert, P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Photonic Damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–11 (2018).
    [Crossref]
  22. K. H. Nam, I. H. Park, and S. H. Ko, “Patterning by controlled cracking,” Nature 485(7397), 221–224 (2012).
    [Crossref]
  23. M. R. Ardigo, M. Ahmed, and A. Besnard, “Stoney Formula: Investigation of Curvature Measurements by Optical Profilometer,” Adv. Mater. Res. 996, 361–366 (2014).
    [Crossref]
  24. D. R. França and A. Blouin, “All-optical measurement of in-plane and out-of-plane Young's modulus and Poisson's ratio in silicon wafers by means of vibration modes,” Meas. Sci. Technol. 15(5), 859–868 (2004).
    [Crossref]
  25. J. Li, H. Lee, K. Y. Yang, and K. Vahala, “Sideband spectroscopy and dispersion measurement in microcavities,” Opt. Express 20(24), 26337 (2012).
    [Crossref]
  26. M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B 17(6), 1051 (2000).
    [Crossref]
  27. H. A. Haus, Waves and Fields in Optoelectronics (Prentice Hall, 1984).
  28. Z. Ruan and S. Fan, “Temporal coupled-mode theory for fano resonance in light scattering by a single obstacle,” J. Phys. Chem. C 114(16), 7324–7329 (2010).
    [Crossref]
  29. M. H. P. Pfeiffer, J. Liu, A. S. Raja, T. Morais, B. Ghadiani, and T. J. Kippenberg, “Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins,” Optica 5(7), 884 (2018).
    [Crossref]
  30. Y. Liu, Y. Xuan, X. Xue, P.-H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation,” Optica 1(3), 137 (2014).
    [Crossref]
  31. G. Agrawal, Nonlinear Fiber Optics (Academic, 2006).
  32. M. H. P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Photonic damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–11 (2018).
    [Crossref]
  33. K. Wu and A. W. Poon, “Si3N4 waveguide-coupled microdisk resonators with a quality factor of 107,” in Proceedings of IEEE 16th International Conference on Group IV Photonics (GFP), (IEEE, 2019), pp. 1–2.
  34. K. Wu and A. W. Poon, “Method for fabricating thick dielectric films using stress control,” US Provisional Application 62/973(277) (2019).

2019 (3)

2018 (8)

Z. Yao, K. Wu, B. X. Tan, J. Wang, Y. Li, Y. Zhang, and A. W. Poon, “Integrated silicon photonic microresonators: Emerging technologies,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1 (2018).
[Crossref]

P. Imany, J. A. Jaramillo-Villegas, O. D. Odele, K. Han, D. E. Leaird, J. M. Lukens, P. Lougovski, M. Qi, and A. M. Weiner, “50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator,” Opt. Express 26(2), 1825 (2018).
[Crossref]

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562(7727), 401–405 (2018).
[Crossref]

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361(6402), eaan8083 (2018).
[Crossref]

B. Yao, S. W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D. L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature 558(7710), 410–414 (2018).
[Crossref]

M. Hubert, P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Photonic Damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–11 (2018).
[Crossref]

M. H. P. Pfeiffer, J. Liu, A. S. Raja, T. Morais, B. Ghadiani, and T. J. Kippenberg, “Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins,” Optica 5(7), 884 (2018).
[Crossref]

M. H. P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Photonic damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–11 (2018).
[Crossref]

2017 (3)

2016 (3)

2014 (3)

2013 (1)

2012 (3)

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

J. Li, H. Lee, K. Y. Yang, and K. Vahala, “Sideband spectroscopy and dispersion measurement in microcavities,” Opt. Express 20(24), 26337 (2012).
[Crossref]

K. H. Nam, I. H. Park, and S. H. Ko, “Patterning by controlled cracking,” Nature 485(7397), 221–224 (2012).
[Crossref]

2011 (1)

2010 (2)

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Z. Ruan and S. Fan, “Temporal coupled-mode theory for fano resonance in light scattering by a single obstacle,” J. Phys. Chem. C 114(16), 7324–7329 (2010).
[Crossref]

2004 (1)

D. R. França and A. Blouin, “All-optical measurement of in-plane and out-of-plane Young's modulus and Poisson's ratio in silicon wafers by means of vibration modes,” Meas. Sci. Technol. 15(5), 859–868 (2004).
[Crossref]

2000 (1)

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics (Academic, 2006).

Ahmed, M.

M. R. Ardigo, M. Ahmed, and A. Besnard, “Stoney Formula: Investigation of Curvature Measurements by Optical Profilometer,” Adv. Mater. Res. 996, 361–366 (2014).
[Crossref]

Al Noman, A.

Andrekson, P. A.

Ardigo, M. R.

M. R. Ardigo, M. Ahmed, and A. Besnard, “Stoney Formula: Investigation of Curvature Measurements by Optical Profilometer,” Adv. Mater. Res. 996, 361–366 (2014).
[Crossref]

Autebert, C.

Barbosa, F. A. S.

Barton, J.

Bauters, J. F.

Besnard, A.

M. R. Ardigo, M. Ahmed, and A. Besnard, “Stoney Formula: Investigation of Curvature Measurements by Optical Profilometer,” Adv. Mater. Res. 996, 361–366 (2014).
[Crossref]

Blouin, A.

D. R. França and A. Blouin, “All-optical measurement of in-plane and out-of-plane Young's modulus and Poisson's ratio in silicon wafers by means of vibration modes,” Meas. Sci. Technol. 15(5), 859–868 (2004).
[Crossref]

Blumenthal, D. J.

Bowers, J. E.

Brasch, V.

Bryant, A.

Cardenas, J.

Carvalho, D. O.

Chen, S.

Choi, C.

B. Yao, S. W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D. L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature 558(7710), 410–414 (2018).
[Crossref]

Dai, D.

Davanço, M.

Q. Li, M. Davanço, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photonics 10(6), 406–414 (2016).
[Crossref]

Duan, X.

B. Yao, S. W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D. L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature 558(7710), 410–414 (2018).
[Crossref]

Dutt, A.

El Dirani, H.

Fan, L.

Fan, S.

Z. Ruan and S. Fan, “Temporal coupled-mode theory for fano resonance in light scattering by a single obstacle,” J. Phys. Chem. C 114(16), 7324–7329 (2010).
[Crossref]

Feng, Z.

B. Yao, S. W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D. L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature 558(7710), 410–414 (2018).
[Crossref]

Foster, M. A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

França, D. R.

D. R. França and A. Blouin, “All-optical measurement of in-plane and out-of-plane Young's modulus and Poisson's ratio in silicon wafers by means of vibration modes,” Meas. Sci. Technol. 15(5), 859–868 (2004).
[Crossref]

Gaeta, A. L.

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562(7727), 401–405 (2018).
[Crossref]

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361(6402), eaan8083 (2018).
[Crossref]

X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4(6), 619 (2017).
[Crossref]

Y. Okawachi, M. R. E. Lamont, K. Luke, D. O. Carvalho, M. Yu, M. Lipson, and A. L. Gaeta, “Bandwidth shaping of microresonator-based frequency combs via dispersion engineering,” Opt. Lett. 39(12), 3535–3538 (2014).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Gavartin, E.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Geiselmann, M.

M. Hubert, P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Photonic Damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–11 (2018).
[Crossref]

M. H. P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Photonic damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–11 (2018).
[Crossref]

M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics,” Optica 3(1), 20 (2016).
[Crossref]

Ghadiani, B.

Gondarenko, A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Gorodetsky, M. L.

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361(6402), eaan8083 (2018).
[Crossref]

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B 17(6), 1051 (2000).
[Crossref]

Grosse, P.

Guo, H.

Han, K.

Hartinger, K.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Haus, H. A.

H. A. Haus, Waves and Fields in Optoelectronics (Prentice Hall, 1984).

Heck, M. J. R.

Heideman, R. G.

Herkommer, C.

M. Hubert, P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Photonic Damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–11 (2018).
[Crossref]

M. H. P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Photonic damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–11 (2018).
[Crossref]

M. H. P. Pfeiffer, C. Herkommer, J. Liu, H. Guo, M. Karpov, E. Lucas, M. Zervas, and T. J. Kippenberg, “Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators,” Optica 4(7), 684 (2017).
[Crossref]

Herr, T.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Hoff, M.

B. Yao, S. W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D. L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature 558(7710), 410–414 (2018).
[Crossref]

Holzwarth, R.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Huang, S. W.

B. Yao, S. W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D. L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature 558(7710), 410–414 (2018).
[Crossref]

Huang, Y.

B. Yao, S. W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D. L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature 558(7710), 410–414 (2018).
[Crossref]

Hubert, M.

M. Hubert, P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Photonic Damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–11 (2018).
[Crossref]

Ilchenko, V. S.

Imany, P.

Jaramillo-Villegas, J. A.

Ji, X.

John, D.

Jost, J. D.

Karpov, M.

Kerdiles, S.

Kim, S.

Kippenberg, T. J.

F. Samara, A. Martin, C. Autebert, M. Karpov, T. J. Kippenberg, H. Zbinden, and R. Thew, “High-rate photon pairs and sequential Time-Bin entanglement with Si3N4 microring resonators,” Opt. Express 27(14), 19309 (2019).
[Crossref]

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361(6402), eaan8083 (2018).
[Crossref]

M. Hubert, P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Photonic Damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–11 (2018).
[Crossref]

M. H. P. Pfeiffer, J. Liu, A. S. Raja, T. Morais, B. Ghadiani, and T. J. Kippenberg, “Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins,” Optica 5(7), 884 (2018).
[Crossref]

M. H. P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Photonic damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–11 (2018).
[Crossref]

M. H. P. Pfeiffer, C. Herkommer, J. Liu, H. Guo, M. Karpov, E. Lucas, M. Zervas, and T. J. Kippenberg, “Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators,” Optica 4(7), 684 (2017).
[Crossref]

M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics,” Optica 3(1), 20 (2016).
[Crossref]

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Ko, S. H.

K. H. Nam, I. H. Park, and S. H. Ko, “Patterning by controlled cracking,” Nature 485(7397), 221–224 (2012).
[Crossref]

Kordts, A.

Kwong, D. L.

B. Yao, S. W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D. L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature 558(7710), 410–414 (2018).
[Crossref]

Lamont, M. R. E.

Leaird, D. E.

Lee, H.

Lee, Y. J.

Leinse, A.

Levy, J. S.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Li, J.

Li, Q.

Q. Li, M. Davanço, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photonics 10(6), 406–414 (2016).
[Crossref]

Li, Y.

B. Yao, S. W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D. L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature 558(7710), 410–414 (2018).
[Crossref]

Z. Yao, K. Wu, B. X. Tan, J. Wang, Y. Li, Y. Zhang, and A. W. Poon, “Integrated silicon photonic microresonators: Emerging technologies,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1 (2018).
[Crossref]

Lipson, M.

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361(6402), eaan8083 (2018).
[Crossref]

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562(7727), 401–405 (2018).
[Crossref]

X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4(6), 619 (2017).
[Crossref]

Y. Okawachi, M. R. E. Lamont, K. Luke, D. O. Carvalho, M. Yu, M. Lipson, and A. L. Gaeta, “Bandwidth shaping of microresonator-based frequency combs via dispersion engineering,” Opt. Lett. 39(12), 3535–3538 (2014).
[Crossref]

K. Luke, A. Dutt, C. B. Poitras, and M. Lipson, “Overcoming Si3N4 film stress limitations for high quality factor ring resonators,” Opt. Express 21(19), 22829 (2013).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Liu, J.

M. Hubert, P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Photonic Damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–11 (2018).
[Crossref]

M. H. P. Pfeiffer, J. Liu, A. S. Raja, T. Morais, B. Ghadiani, and T. J. Kippenberg, “Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins,” Optica 5(7), 884 (2018).
[Crossref]

M. H. P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Photonic damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–11 (2018).
[Crossref]

M. H. P. Pfeiffer, C. Herkommer, J. Liu, H. Guo, M. Karpov, E. Lucas, M. Zervas, and T. J. Kippenberg, “Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators,” Optica 4(7), 684 (2017).
[Crossref]

Liu, Y.

Lougovski, P.

Lucas, E.

Luke, K.

Lukens, J. M.

Martin, A.

Metcalf, A. J.

Monat, C.

Morais, T.

M. H. P. Pfeiffer, J. Liu, A. S. Raja, T. Morais, B. Ghadiani, and T. J. Kippenberg, “Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins,” Optica 5(7), 884 (2018).
[Crossref]

M. H. P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Photonic damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–11 (2018).
[Crossref]

M. Hubert, P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Photonic Damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–11 (2018).
[Crossref]

Nam, K. H.

K. H. Nam, I. H. Park, and S. H. Ko, “Patterning by controlled cracking,” Nature 485(7397), 221–224 (2012).
[Crossref]

Niu, B.

Odele, O. D.

Okawachi, Y.

Pargon, E.

Park, I. H.

K. H. Nam, I. H. Park, and S. H. Ko, “Patterning by controlled cracking,” Nature 485(7397), 221–224 (2012).
[Crossref]

Petit-Etienne, C.

Pfeiffer, M. H. P.

Pfeiffer, P.

M. Hubert, P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Photonic Damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–11 (2018).
[Crossref]

Poitras, C. B.

Poon, A. W.

Z. Yao, K. Wu, B. X. Tan, J. Wang, Y. Li, Y. Zhang, and A. W. Poon, “Integrated silicon photonic microresonators: Emerging technologies,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1 (2018).
[Crossref]

K. Wu and A. W. Poon, “Dispersion Engineering of High-Q Si3N4 Microdisk Resonators,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper SW4B.4.

K. Wu and A. W. Poon, “Si3N4 waveguide-coupled microdisk resonators with a quality factor of 107,” in Proceedings of IEEE 16th International Conference on Group IV Photonics (GFP), (IEEE, 2019), pp. 1–2.

K. Wu and A. W. Poon, “Method for fabricating thick dielectric films using stress control,” US Provisional Application 62/973(277) (2019).

Pryamikov, A. D.

Qi, M.

Raja, A. S.

Rao, Y.

B. Yao, S. W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D. L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature 558(7710), 410–414 (2018).
[Crossref]

Riemensberger, J.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Roberts, S. P.

Ruan, Z.

Z. Ruan and S. Fan, “Temporal coupled-mode theory for fano resonance in light scattering by a single obstacle,” J. Phys. Chem. C 114(16), 7324–7329 (2010).
[Crossref]

Samara, F.

Sciancalepore, C.

Srinivasan, K.

Q. Li, M. Davanço, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photonics 10(6), 406–414 (2016).
[Crossref]

Stern, B.

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562(7727), 401–405 (2018).
[Crossref]

Tan, B. X.

Z. Yao, K. Wu, B. X. Tan, J. Wang, Y. Li, Y. Zhang, and A. W. Poon, “Integrated silicon photonic microresonators: Emerging technologies,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1 (2018).
[Crossref]

Teng, M.

Thew, R.

Tien, M.-C.

Torres-Company, V.

Turner-Foster, A. C.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Twayana, K.

Vahala, K.

Varghese, L. T.

Vinod, A. K.

B. Yao, S. W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D. L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature 558(7710), 410–414 (2018).
[Crossref]

Wang, C.

Wang, C. Y.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Wang, J.

Wang, P. H.

X. Xue, P. H. Wang, Y. Xuan, M. Qi, and A. M. Weiner, “Microresonator Kerr frequency combs with high conversion efficiency,” Laser Photonics Rev. 11(1), 1600276 (2017).
[Crossref]

Wang, P.-H.

Weiner, A. M.

Wong, C. W.

B. Yao, S. W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D. L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature 558(7710), 410–414 (2018).
[Crossref]

Wu, K.

Z. Yao, K. Wu, B. X. Tan, J. Wang, Y. Li, Y. Zhang, and A. W. Poon, “Integrated silicon photonic microresonators: Emerging technologies,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1 (2018).
[Crossref]

K. Wu and A. W. Poon, “Dispersion Engineering of High-Q Si3N4 Microdisk Resonators,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper SW4B.4.

K. Wu and A. W. Poon, “Method for fabricating thick dielectric films using stress control,” US Provisional Application 62/973(277) (2019).

K. Wu and A. W. Poon, “Si3N4 waveguide-coupled microdisk resonators with a quality factor of 107,” in Proceedings of IEEE 16th International Conference on Group IV Photonics (GFP), (IEEE, 2019), pp. 1–2.

Xuan, Y.

Xue, X.

Yang, K. Y.

Yao, B.

B. Yao, S. W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D. L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature 558(7710), 410–414 (2018).
[Crossref]

Yao, Z.

Z. Yao, K. Wu, B. X. Tan, J. Wang, Y. Li, Y. Zhang, and A. W. Poon, “Integrated silicon photonic microresonators: Emerging technologies,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1 (2018).
[Crossref]

Ye, Z.

Youssef, L.

Yu, M.

B. Yao, S. W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D. L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature 558(7710), 410–414 (2018).
[Crossref]

Y. Okawachi, M. R. E. Lamont, K. Luke, D. O. Carvalho, M. Yu, M. Lipson, and A. L. Gaeta, “Bandwidth shaping of microresonator-based frequency combs via dispersion engineering,” Opt. Lett. 39(12), 3535–3538 (2014).
[Crossref]

Zbinden, H.

Zervas, M.

M. Hubert, P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Photonic Damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–11 (2018).
[Crossref]

M. H. P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Photonic damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–11 (2018).
[Crossref]

M. H. P. Pfeiffer, C. Herkommer, J. Liu, H. Guo, M. Karpov, E. Lucas, M. Zervas, and T. J. Kippenberg, “Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators,” Optica 4(7), 684 (2017).
[Crossref]

M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics,” Optica 3(1), 20 (2016).
[Crossref]

Zhang, Y.

Z. Yao, K. Wu, B. X. Tan, J. Wang, Y. Li, Y. Zhang, and A. W. Poon, “Integrated silicon photonic microresonators: Emerging technologies,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1 (2018).
[Crossref]

Adv. Mater. Res. (1)

M. R. Ardigo, M. Ahmed, and A. Besnard, “Stoney Formula: Investigation of Curvature Measurements by Optical Profilometer,” Adv. Mater. Res. 996, 361–366 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

Z. Yao, K. Wu, B. X. Tan, J. Wang, Y. Li, Y. Zhang, and A. W. Poon, “Integrated silicon photonic microresonators: Emerging technologies,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1 (2018).
[Crossref]

M. Hubert, P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Photonic Damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–11 (2018).
[Crossref]

M. H. P. Pfeiffer, C. Herkommer, J. Liu, T. Morais, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Photonic damascene process for low-loss, high-confinement silicon nitride waveguides,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–11 (2018).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

Z. Ruan and S. Fan, “Temporal coupled-mode theory for fano resonance in light scattering by a single obstacle,” J. Phys. Chem. C 114(16), 7324–7329 (2010).
[Crossref]

Laser Photonics Rev. (1)

X. Xue, P. H. Wang, Y. Xuan, M. Qi, and A. M. Weiner, “Microresonator Kerr frequency combs with high conversion efficiency,” Laser Photonics Rev. 11(1), 1600276 (2017).
[Crossref]

Meas. Sci. Technol. (1)

D. R. França and A. Blouin, “All-optical measurement of in-plane and out-of-plane Young's modulus and Poisson's ratio in silicon wafers by means of vibration modes,” Meas. Sci. Technol. 15(5), 859–868 (2004).
[Crossref]

Nat. Photonics (3)

Q. Li, M. Davanço, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photonics 10(6), 406–414 (2016).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6(7), 480–487 (2012).
[Crossref]

Nature (3)

B. Yao, S. W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D. L. Kwong, Y. Huang, Y. Rao, X. Duan, and C. W. Wong, “Gate-tunable frequency combs in graphene-nitride microresonators,” Nature 558(7710), 410–414 (2018).
[Crossref]

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562(7727), 401–405 (2018).
[Crossref]

K. H. Nam, I. H. Park, and S. H. Ko, “Patterning by controlled cracking,” Nature 485(7397), 221–224 (2012).
[Crossref]

Opt. Express (7)

P. Imany, J. A. Jaramillo-Villegas, O. D. Odele, K. Han, D. E. Leaird, J. M. Lukens, P. Lougovski, M. Qi, and A. M. Weiner, “50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator,” Opt. Express 26(2), 1825 (2018).
[Crossref]

F. Samara, A. Martin, C. Autebert, M. Karpov, T. J. Kippenberg, H. Zbinden, and R. Thew, “High-rate photon pairs and sequential Time-Bin entanglement with Si3N4 microring resonators,” Opt. Express 27(14), 19309 (2019).
[Crossref]

H. El Dirani, L. Youssef, C. Petit-Etienne, S. Kerdiles, P. Grosse, C. Monat, E. Pargon, and C. Sciancalepore, “Ultralow-loss tightly confining Si3N4 waveguides and high-Q microresonators,” Opt. Express 27(21), 30726 (2019).
[Crossref]

Z. Ye, K. Twayana, P. A. Andrekson, and V. Torres-Company, “High-Q Si3N4 microresonators based on a subtractive processing for Kerr nonlinear optics,” Opt. Express 27(24), 35719 (2019).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
[Crossref]

J. Li, H. Lee, K. Y. Yang, and K. Vahala, “Sideband spectroscopy and dispersion measurement in microcavities,” Opt. Express 20(24), 26337 (2012).
[Crossref]

K. Luke, A. Dutt, C. B. Poitras, and M. Lipson, “Overcoming Si3N4 film stress limitations for high quality factor ring resonators,” Opt. Express 21(19), 22829 (2013).
[Crossref]

Opt. Lett. (1)

Optica (6)

Y. Liu, Y. Xuan, X. Xue, P.-H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation,” Optica 1(3), 137 (2014).
[Crossref]

M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics,” Optica 3(1), 20 (2016).
[Crossref]

Y. Xuan, Y. Liu, L. T. Varghese, A. J. Metcalf, X. Xue, P.-H. Wang, K. Han, J. A. Jaramillo-Villegas, A. Al Noman, C. Wang, S. Kim, M. Teng, Y. J. Lee, B. Niu, L. Fan, J. Wang, D. E. Leaird, A. M. Weiner, and M. Qi, “High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation,” Optica 3(11), 1171 (2016).
[Crossref]

X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4(6), 619 (2017).
[Crossref]

M. H. P. Pfeiffer, C. Herkommer, J. Liu, H. Guo, M. Karpov, E. Lucas, M. Zervas, and T. J. Kippenberg, “Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators,” Optica 4(7), 684 (2017).
[Crossref]

M. H. P. Pfeiffer, J. Liu, A. S. Raja, T. Morais, B. Ghadiani, and T. J. Kippenberg, “Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins,” Optica 5(7), 884 (2018).
[Crossref]

Science (1)

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361(6402), eaan8083 (2018).
[Crossref]

Other (5)

K. Wu and A. W. Poon, “Dispersion Engineering of High-Q Si3N4 Microdisk Resonators,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper SW4B.4.

G. Agrawal, Nonlinear Fiber Optics (Academic, 2006).

K. Wu and A. W. Poon, “Si3N4 waveguide-coupled microdisk resonators with a quality factor of 107,” in Proceedings of IEEE 16th International Conference on Group IV Photonics (GFP), (IEEE, 2019), pp. 1–2.

K. Wu and A. W. Poon, “Method for fabricating thick dielectric films using stress control,” US Provisional Application 62/973(277) (2019).

H. A. Haus, Waves and Fields in Optoelectronics (Prentice Hall, 1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. (a) Schematic illustration of the checkerboard-like stress-release pattern. The dashed lines indicate the symmetry axes for the pattern. (b) Schematic cross-sectional view of a film deposited on a patterned (oxide-coated) Si wafer with surface modulations slightly exceeding the film thickness. (c) Schematics of the devices surrounded by the stress-release pattern. (d) Schematic layout on a 4” wafer. The black dashed-line window indicates the stepper writing region. The red solid-line window indicates the effective (usable) device region. The gray solid-lines indicate the manually scribed trenches. (e) Schematic illustration of the effects of the manually scribed trenches, which can stop most of the cracks from propagating into the device region but can also initiate cracks.
Fig. 2.
Fig. 2. (a)-(g) Fabrication process flow for fabricating Si3N4 devices on a stress-released 4” silicon wafer.
Fig. 3.
Fig. 3. (a) Picture of a 4” test wafer with a 900nm-thick Si3N4 film. The red dashed-line window indicates a unit die. The white dashed-line window indicates the effective (usable) device region with an area of 4725 mm2. Manual trenches are scribed outside the region. (b), (c) Optical micrographs of the waveguide-coupled (b) 115µm-radius microring and (c) 575µm-radius microdisk surrounded by the stress-release pattern from an 830nm-thick Si3N4-film-coated wafer. (d) SEM image of a waveguide-coupled microdisk in the coupling region after Si3N4 patterning.
Fig. 4.
Fig. 4. (a), (b) 2.5-D FEM simulations for (a) the TM00 mode in a 115µm-radius microring and (b) the first-radial-order TM-polarized WGM in a 575µm-radius microdisk.
Fig. 5.
Fig. 5. (a) Histogram of the number of rows/columns of squares for stopping a crack on a 900nm-thick Si3N4 film. (b), (c) Optical micrographs of the cracks being stopped. The numbers 1 and 4 denote the numbers of rows/columns of squares before the cracks are stopped. (d) Histogram of the number of rows/columns of squares for stopping a crack on a 980nm-thick Si3N4 film. (e), (f) Optical micrographs of the cracks being stopped. The numbers 2 and 5 denote the numbers of rows/columns of squares before the cracks are stopped.
Fig. 6.
Fig. 6. (a) Experimental setup for transmission and OPO measurements. PC: polarization controller, PD: photodiode, VOA: variable optical attenuator, BS: beam splitter, PBS: polarizing beam splitter, OSA: optical spectrum analyzer, LWD: long-working distance, SG: signal generator, PM: phase modulator, M: mirror. (b) Calibration for the FSR of the MZI using a phase modulator.
Fig. 7.
Fig. 7. (a) Measured transmission spectra from a 115µm-radius microring in TE and TM polarizations. i, ii: Resonance lineshapes with curve fitting considering i. backward scattering (κ0/2π = 83 MHz, κe/2π = 82 MHz, κbs/2π = 302 + i16 MHz) and ii. Fano interference (κ0/2π = 137 MHz, κe/2π = 43 MHz). (b), (c) Extracted Q factors from the spectra for the (b) TE00 and (c) TM00 modes.
Fig. 8.
Fig. 8. Extracted Q0 distribution from five waveguide-coupled 115µm-radius microrings of the same design from five different dies on the same wafer (R: Row, C: Column).
Fig. 9.
Fig. 9. (a) Extracted FSR values as a function of relative mode number given pumping at ∼1565 nm (µ = 0). (b) Measured OPO spectrum from a 115µm-radius microring when pumping at the TM00 mode with a QL of ∼9.3×105 upon a power of ∼17 dBm in the waveguide.
Fig. 10.
Fig. 10. (a) Measured TM-polarized transmission spectrum from a 575µm-radius disk resonator supporting two distinct radial-order WGMs labeled as M1 and M2. (b) Extracted Q factors for M1 mode. (c) FSR values for M1 mode as a function of relative mode number with a pumping wavelength of ∼1565 nm (µ = 0).
Fig. 11.
Fig. 11. Measured OPO spectrum from a 345µm-radius microdisk resonator upon a pumping power of ∼17 dBm in the waveguide in TM polarization.

Tables (1)

Tables Icon

Table 1. Comparison among fabrication processes

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

{ d a + d t = i ω 0 a + κ 0 + κ e 2 a + + i κ e s i n + i κ b s 2 a d a d t = i ω 0 a κ 0 + κ e 2 a + i κ b s 2 a + s t = s i n + i κ e a + + s b e i ϕ ,
| s t s i n + s b e i ϕ | 2 = | [ 1 2 κ e ( 2 i δ ω + κ 0 + κ e ) ( 2 i δ ω + κ 0 + κ e ) 2 + κ b s 2 ] A + ( 1 A ) | 2 ,
ω μ = 2 π c L ( m 0 + μ ) 1 n ( ω μ ) ω 0 + D 1 μ + 1 2 D 2 μ 2 + 1 6 D 3 μ 3 + ,

Metrics