Abstract

We demonstrate a new method to determine the nuclear magnetic field of the spin-exchange optically pumped noble gas in a self-compensated atomic comagnetometer based on the steady-state AC response. The result shows that it has higher resolution and precision than a previous method based on the transient process. Furthermore, a convergence frequency is observed in the low-frequency region and its parameter dependence is studied simulatively, which may inspire further research into its relationship with the strong suppression mechanism of the self-compensation ability for the low-frequency magnetic field. We also prove that this method can be developed for suppression of residual main magnetic field to improve the systematic stability of the comagnetometer.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Kornack and M. V. Romalis, “Dynamics of Two Overlapping Spin Ensembles Interacting by Spin Exchange,” Phys. Rev. Lett. 89(25), 253002 (2002).
    [Crossref]
  2. M. Smiciklas, J. M. Brown, L. W. Cheuk, S. J. Smullin, and M. V. Romalis, “New Test of Local Lorentz Invariance Using a 21Ne-Rb-K Comagnetometer,” Phys. Rev. Lett. 107(17), 171604 (2011).
    [Crossref]
  3. F. Allmendinger, W. Heil, S. Karpuk, W. Kilian, A. Scharth, U. Schmidt, A. Schnabel, Y. Sobolev, and K. Tullney, “New Limit on Lorentz-Invariance- and CPT-Violating Neutron Spin Interactions Using a Free-Spin-Precession 3He-129Xe Comagnetometer,” Phys. Rev. Lett. 112(11), 110801 (2014).
    [Crossref]
  4. M. Bulatowicz, R. Griffith, M. Larsen, J. Mirijanian, C. B. Fu, E. Smith, W. M. Snow, H. Yan, and T. G. Walker, “Laboratory Search for a Long-Range T-Odd, P-Odd Interaction from Axionlike Particles Using Dual-Species Nuclear Magnetic Resonance with Polarized 129Xe and 131Xe Gas,” Phys. Rev. Lett. 111(10), 102001 (2013).
    [Crossref]
  5. W. A. Terrano, E. G. Adelberger, J. G. Lee, and B. R. Heckel, “Short-Range, Spin-Dependent Interactions of Electrons: A Probe for Exotic Pseudo-Goldstone Bosons,” Phys. Rev. Lett. 115(20), 201801 (2015).
    [Crossref]
  6. W. Ji, Y. Chen, C. Fu, M. Ding, J. Fang, Z. Xiao, K. Wei, and H. Yan, “New Experimental Limits on Exotic Spin-Spin-Velocity-Dependent Interactions by Using SmCo5 Spin Sources,” Phys. Rev. Lett. 121(26), 261803 (2018).
    [Crossref]
  7. T. W. Kornack, R. K. Ghosh, and M. V. Romalis, “Nuclear Spin Gyroscope Based on an Atomic Comagnetometer,” Phys. Rev. Lett. 95(23), 230801 (2005).
    [Crossref]
  8. Y. Chen, W. Quan, S. Zou, Y. Lu, L. Duan, Y. Li, H. Zhang, M. Ding, and J. Fang, “Spin exchange broadening of magnetic resonance lines in a high-sensitivity rotating K-Rb-21Ne co-magnetometer,” Sci. Rep. 6(1), 36547 (2016).
    [Crossref]
  9. L. Xing, Y. Zhai, W. Fan, J. Huang, T. Song, W. Ye, and W. Quan, “Miniaturized optical rotation detection system based on liquid crystal variable retarder in a K-Rb-21Ne gyroscope,” Opt. Express 27(26), 38061–38070 (2019).
    [Crossref]
  10. L. Jiang, W. Quan, Y. Liang, J. Liu, L. Duan, and J. Fang, “Effects of pump laser power density on the hybrid optically pumped comagnetometer for rotation sensing,” Opt. Express 27(20), 27420–27430 (2019).
    [Crossref]
  11. T. W. Kornacka, S. J. Smullin, S. K. Lee, and M. V. Romalis, “A low-noise ferrite magnetic shield,” Appl. Phys. Lett. 90(22), 223501 (2007).
    [Crossref]
  12. E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, L. W. Anderson, F. W. Hersman, and T. G. Walker, “Hybrid spin-exchange optical pumping of 3He,” Phys. Rev. Lett. 91(12), 123003 (2003).
    [Crossref]
  13. W. C. Chen, T. R. Gentile, T. G. Walker, and E. Babcock, “Spin-exchange optical pumping of 3He with Rb-K mixtures and pure K,” Phys. Rev. A 75(1), 013416 (2007).
    [Crossref]
  14. S. Appelt, A. B. A. Baranga, C. J. Erickson, M. V. Romalis, A. R. Young, and W. Happer, “Theory of spin-exchange optical pumping of 3He and 129Xe,” Phys. Rev. A: At., Mol., Opt. Phys. 58(2), 1412–1439 (1998).
    [Crossref]
  15. S. R. Schaefer, G. D. Cates, T. R. Chien, D. Gonatas, W. Happer, and T. G. Walker, “Frequency shifts of the magnetic-resonance spectrum of mixtures of nuclear spin-polarized noble gases and vapors of spin-polarized alkali-metal atoms,” Phys. Rev. A 39(11), 5613–5623 (1989).
    [Crossref]
  16. J. Fang, Y. Chen, S. Zou, X. Liu, Z. Hu, W. Quan, H. Yuan, and M Ding, “Low frequency magnetic field suppression in an atomic spin co-magnetometer with a large electron magnetic field,” J. Phys. B: At., Mol. Opt. Phys. 49(6), 065006 (2016).
    [Crossref]
  17. Y. Lu, Y. Zhai, Y. Zhang, W. Fan, L. Xing, and W. Quan, “Spin-exchange relaxation of naturally abundant Rb in a K–Rb–21Ne self-compensated atomic comagnetometer,” Chin. Phys. B 29(4), 043204 (2020).
    [Crossref]
  18. J. M. Brown, “A New Limit on Lorentz- and CPT-Violating Neutron Spin Interactions Using a K-3He Comagnetometer,” Ph.D. thesis, Princeton University (2011).
  19. T. W. Kornack, “A Test of CPT and Lorentz Symmetry Using a K-3He Co-magnetometer,” Ph.D. thesis, Princeton University (2005).
  20. I. M. Savukov and M. V. Romalis, “Effects of spin-exchange collisions in a high-density alkali-metal vapor in low magnetic fields,” Phys. Rev. A 71(2), 023405 (2005).
    [Crossref]
  21. M. V. Romalis, “Hybrid Optical Pumping of Optically Dense Alkali-Metal Vapor without Quenching Gas,” Phys. Rev. Lett. 105(24), 243001 (2010).
    [Crossref]
  22. W. Quan, K. Wei, T. Zhao, H. Li, and Y. Zhai, “Synchronous measurement of inertial rotation and magnetic field using a K-Rb-21Ne comagnetometer,” Phys. Rev. A 100(1), 012118 (2019).
    [Crossref]
  23. F. Bloch, “Nuclear induction,” Phys. Rev. 70(7-8), 460–474 (1946).
    [Crossref]
  24. J. Fang, Y. Chen, Y. Lu, W. Quan, and S. Zou, “Dynamics of Rb and 21Ne spin ensembles interacting by spin exchange with a high Rb magnetic field,” J. Phys. B: At., Mol. Opt. Phys. 49(13), 135002 (2016).
    [Crossref]
  25. F. Bloch, W. W. Hansen, and M. Packard, “The Nuclear Induction Experiment,” Phys. Rev. 70(7-8), 474–485 (1946).
    [Crossref]
  26. G. Vasilakis, “Precision measurements of spin interactions with high density atomic vapors,” Ph.D. thesis, Princeton University (2011).
  27. J. Fang, S. Wan, and H. Yuan, “Dynamics of an all-optical atomic spin gyroscope,” Appl. Opt. 52(30), 7220–7227 (2013).
    [Crossref]
  28. Y. Chen, W. Quan, L. Duan, Y. Lu, L. Jiang, and J. Fang, “Spin-exchange collision mixing of the K and Rb ac Stark shifts,” Phys. Rev. A 94(5), 052705 (2016).
    [Crossref]
  29. W. Quan, K. Wei, and H. Li, “Precision measurement of magnetic field based on the transient process in a K-Rb-21Ne co-magnetometer,” Opt. Express 25(8), 8470–8483 (2017).
    [Crossref]
  30. W. Fan, W. Quan, W. Zhang, L. Xing, and G. Liu, “Analysis on the Magnetic Field Response for Nuclear Spin Co-Magnetometer Operated in Spin-Exchange Relaxation-Free Regime,” IEEE Access 7, 28574–28580 (2019).
    [Crossref]
  31. W. Fan, W. Quan, F. Liu, L. Duan, and G. Liu, “Low drift nuclear spin gyroscope with probe light intensity error suppression,” Chin. Phys. B 28(11), 110701 (2019).
    [Crossref]
  32. L. Duan, J. Fang, R. Li, L. Jiang, M. Ding, and W. Wang, “Light intensity stabilization based on the second harmonic of the photoelastic modulator detection in the atomic magnetometer,” Opt. Express 23(25), 32481 (2015).
    [Crossref]
  33. L. Jiang, W. Quan, F. Liu, W. Fan, L. Xing, L. Duan, W. Liu, and J. Fang, “Closed-Loop Control of Compensation Point in the K-Rb-21Ne Comagnetometer,” Phys. Rev. Appl. 12(2), 024017 (2019).
    [Crossref]
  34. S. J. Seltzer and M. V. Romalis, “Unshielded three-axis vector operation of a spin-exchange-relaxation-free atomic magnetometer,” Appl. Phys. Lett. 85(20), 4804–4806 (2004).
    [Crossref]
  35. W. Fan, G. Liu, R. Li, W. Quan, L. Jiang, and L. Duan, “A three-axis atomic magnetometer for temperature-dependence measurements of fields in a magnetically shielded environment,” Meas. Sci. Technol. 28(9), 095007 (2017).
    [Crossref]
  36. K. Wei, T. Zhao, X. Fang, Y. Zhai, H. Li, and W. Quan, “In-situ measurement of the density ratio of K-Rb hybrid vapor cell using spin-exchange collision mixing of the K and Rb light shifts,” Opt. Express 27(11), 16169–16183 (2019).
    [Crossref]

2020 (1)

Y. Lu, Y. Zhai, Y. Zhang, W. Fan, L. Xing, and W. Quan, “Spin-exchange relaxation of naturally abundant Rb in a K–Rb–21Ne self-compensated atomic comagnetometer,” Chin. Phys. B 29(4), 043204 (2020).
[Crossref]

2019 (7)

L. Xing, Y. Zhai, W. Fan, J. Huang, T. Song, W. Ye, and W. Quan, “Miniaturized optical rotation detection system based on liquid crystal variable retarder in a K-Rb-21Ne gyroscope,” Opt. Express 27(26), 38061–38070 (2019).
[Crossref]

L. Jiang, W. Quan, Y. Liang, J. Liu, L. Duan, and J. Fang, “Effects of pump laser power density on the hybrid optically pumped comagnetometer for rotation sensing,” Opt. Express 27(20), 27420–27430 (2019).
[Crossref]

W. Quan, K. Wei, T. Zhao, H. Li, and Y. Zhai, “Synchronous measurement of inertial rotation and magnetic field using a K-Rb-21Ne comagnetometer,” Phys. Rev. A 100(1), 012118 (2019).
[Crossref]

W. Fan, W. Quan, W. Zhang, L. Xing, and G. Liu, “Analysis on the Magnetic Field Response for Nuclear Spin Co-Magnetometer Operated in Spin-Exchange Relaxation-Free Regime,” IEEE Access 7, 28574–28580 (2019).
[Crossref]

W. Fan, W. Quan, F. Liu, L. Duan, and G. Liu, “Low drift nuclear spin gyroscope with probe light intensity error suppression,” Chin. Phys. B 28(11), 110701 (2019).
[Crossref]

L. Jiang, W. Quan, F. Liu, W. Fan, L. Xing, L. Duan, W. Liu, and J. Fang, “Closed-Loop Control of Compensation Point in the K-Rb-21Ne Comagnetometer,” Phys. Rev. Appl. 12(2), 024017 (2019).
[Crossref]

K. Wei, T. Zhao, X. Fang, Y. Zhai, H. Li, and W. Quan, “In-situ measurement of the density ratio of K-Rb hybrid vapor cell using spin-exchange collision mixing of the K and Rb light shifts,” Opt. Express 27(11), 16169–16183 (2019).
[Crossref]

2018 (1)

W. Ji, Y. Chen, C. Fu, M. Ding, J. Fang, Z. Xiao, K. Wei, and H. Yan, “New Experimental Limits on Exotic Spin-Spin-Velocity-Dependent Interactions by Using SmCo5 Spin Sources,” Phys. Rev. Lett. 121(26), 261803 (2018).
[Crossref]

2017 (2)

W. Quan, K. Wei, and H. Li, “Precision measurement of magnetic field based on the transient process in a K-Rb-21Ne co-magnetometer,” Opt. Express 25(8), 8470–8483 (2017).
[Crossref]

W. Fan, G. Liu, R. Li, W. Quan, L. Jiang, and L. Duan, “A three-axis atomic magnetometer for temperature-dependence measurements of fields in a magnetically shielded environment,” Meas. Sci. Technol. 28(9), 095007 (2017).
[Crossref]

2016 (4)

J. Fang, Y. Chen, S. Zou, X. Liu, Z. Hu, W. Quan, H. Yuan, and M Ding, “Low frequency magnetic field suppression in an atomic spin co-magnetometer with a large electron magnetic field,” J. Phys. B: At., Mol. Opt. Phys. 49(6), 065006 (2016).
[Crossref]

J. Fang, Y. Chen, Y. Lu, W. Quan, and S. Zou, “Dynamics of Rb and 21Ne spin ensembles interacting by spin exchange with a high Rb magnetic field,” J. Phys. B: At., Mol. Opt. Phys. 49(13), 135002 (2016).
[Crossref]

Y. Chen, W. Quan, L. Duan, Y. Lu, L. Jiang, and J. Fang, “Spin-exchange collision mixing of the K and Rb ac Stark shifts,” Phys. Rev. A 94(5), 052705 (2016).
[Crossref]

Y. Chen, W. Quan, S. Zou, Y. Lu, L. Duan, Y. Li, H. Zhang, M. Ding, and J. Fang, “Spin exchange broadening of magnetic resonance lines in a high-sensitivity rotating K-Rb-21Ne co-magnetometer,” Sci. Rep. 6(1), 36547 (2016).
[Crossref]

2015 (2)

W. A. Terrano, E. G. Adelberger, J. G. Lee, and B. R. Heckel, “Short-Range, Spin-Dependent Interactions of Electrons: A Probe for Exotic Pseudo-Goldstone Bosons,” Phys. Rev. Lett. 115(20), 201801 (2015).
[Crossref]

L. Duan, J. Fang, R. Li, L. Jiang, M. Ding, and W. Wang, “Light intensity stabilization based on the second harmonic of the photoelastic modulator detection in the atomic magnetometer,” Opt. Express 23(25), 32481 (2015).
[Crossref]

2014 (1)

F. Allmendinger, W. Heil, S. Karpuk, W. Kilian, A. Scharth, U. Schmidt, A. Schnabel, Y. Sobolev, and K. Tullney, “New Limit on Lorentz-Invariance- and CPT-Violating Neutron Spin Interactions Using a Free-Spin-Precession 3He-129Xe Comagnetometer,” Phys. Rev. Lett. 112(11), 110801 (2014).
[Crossref]

2013 (2)

M. Bulatowicz, R. Griffith, M. Larsen, J. Mirijanian, C. B. Fu, E. Smith, W. M. Snow, H. Yan, and T. G. Walker, “Laboratory Search for a Long-Range T-Odd, P-Odd Interaction from Axionlike Particles Using Dual-Species Nuclear Magnetic Resonance with Polarized 129Xe and 131Xe Gas,” Phys. Rev. Lett. 111(10), 102001 (2013).
[Crossref]

J. Fang, S. Wan, and H. Yuan, “Dynamics of an all-optical atomic spin gyroscope,” Appl. Opt. 52(30), 7220–7227 (2013).
[Crossref]

2011 (1)

M. Smiciklas, J. M. Brown, L. W. Cheuk, S. J. Smullin, and M. V. Romalis, “New Test of Local Lorentz Invariance Using a 21Ne-Rb-K Comagnetometer,” Phys. Rev. Lett. 107(17), 171604 (2011).
[Crossref]

2010 (1)

M. V. Romalis, “Hybrid Optical Pumping of Optically Dense Alkali-Metal Vapor without Quenching Gas,” Phys. Rev. Lett. 105(24), 243001 (2010).
[Crossref]

2007 (2)

T. W. Kornacka, S. J. Smullin, S. K. Lee, and M. V. Romalis, “A low-noise ferrite magnetic shield,” Appl. Phys. Lett. 90(22), 223501 (2007).
[Crossref]

W. C. Chen, T. R. Gentile, T. G. Walker, and E. Babcock, “Spin-exchange optical pumping of 3He with Rb-K mixtures and pure K,” Phys. Rev. A 75(1), 013416 (2007).
[Crossref]

2005 (2)

I. M. Savukov and M. V. Romalis, “Effects of spin-exchange collisions in a high-density alkali-metal vapor in low magnetic fields,” Phys. Rev. A 71(2), 023405 (2005).
[Crossref]

T. W. Kornack, R. K. Ghosh, and M. V. Romalis, “Nuclear Spin Gyroscope Based on an Atomic Comagnetometer,” Phys. Rev. Lett. 95(23), 230801 (2005).
[Crossref]

2004 (1)

S. J. Seltzer and M. V. Romalis, “Unshielded three-axis vector operation of a spin-exchange-relaxation-free atomic magnetometer,” Appl. Phys. Lett. 85(20), 4804–4806 (2004).
[Crossref]

2003 (1)

E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, L. W. Anderson, F. W. Hersman, and T. G. Walker, “Hybrid spin-exchange optical pumping of 3He,” Phys. Rev. Lett. 91(12), 123003 (2003).
[Crossref]

2002 (1)

T. W. Kornack and M. V. Romalis, “Dynamics of Two Overlapping Spin Ensembles Interacting by Spin Exchange,” Phys. Rev. Lett. 89(25), 253002 (2002).
[Crossref]

1998 (1)

S. Appelt, A. B. A. Baranga, C. J. Erickson, M. V. Romalis, A. R. Young, and W. Happer, “Theory of spin-exchange optical pumping of 3He and 129Xe,” Phys. Rev. A: At., Mol., Opt. Phys. 58(2), 1412–1439 (1998).
[Crossref]

1989 (1)

S. R. Schaefer, G. D. Cates, T. R. Chien, D. Gonatas, W. Happer, and T. G. Walker, “Frequency shifts of the magnetic-resonance spectrum of mixtures of nuclear spin-polarized noble gases and vapors of spin-polarized alkali-metal atoms,” Phys. Rev. A 39(11), 5613–5623 (1989).
[Crossref]

1946 (2)

F. Bloch, “Nuclear induction,” Phys. Rev. 70(7-8), 460–474 (1946).
[Crossref]

F. Bloch, W. W. Hansen, and M. Packard, “The Nuclear Induction Experiment,” Phys. Rev. 70(7-8), 474–485 (1946).
[Crossref]

Adelberger, E. G.

W. A. Terrano, E. G. Adelberger, J. G. Lee, and B. R. Heckel, “Short-Range, Spin-Dependent Interactions of Electrons: A Probe for Exotic Pseudo-Goldstone Bosons,” Phys. Rev. Lett. 115(20), 201801 (2015).
[Crossref]

Allmendinger, F.

F. Allmendinger, W. Heil, S. Karpuk, W. Kilian, A. Scharth, U. Schmidt, A. Schnabel, Y. Sobolev, and K. Tullney, “New Limit on Lorentz-Invariance- and CPT-Violating Neutron Spin Interactions Using a Free-Spin-Precession 3He-129Xe Comagnetometer,” Phys. Rev. Lett. 112(11), 110801 (2014).
[Crossref]

Anderson, L. W.

E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, L. W. Anderson, F. W. Hersman, and T. G. Walker, “Hybrid spin-exchange optical pumping of 3He,” Phys. Rev. Lett. 91(12), 123003 (2003).
[Crossref]

Appelt, S.

S. Appelt, A. B. A. Baranga, C. J. Erickson, M. V. Romalis, A. R. Young, and W. Happer, “Theory of spin-exchange optical pumping of 3He and 129Xe,” Phys. Rev. A: At., Mol., Opt. Phys. 58(2), 1412–1439 (1998).
[Crossref]

Babcock, E.

W. C. Chen, T. R. Gentile, T. G. Walker, and E. Babcock, “Spin-exchange optical pumping of 3He with Rb-K mixtures and pure K,” Phys. Rev. A 75(1), 013416 (2007).
[Crossref]

E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, L. W. Anderson, F. W. Hersman, and T. G. Walker, “Hybrid spin-exchange optical pumping of 3He,” Phys. Rev. Lett. 91(12), 123003 (2003).
[Crossref]

Baranga, A. B. A.

S. Appelt, A. B. A. Baranga, C. J. Erickson, M. V. Romalis, A. R. Young, and W. Happer, “Theory of spin-exchange optical pumping of 3He and 129Xe,” Phys. Rev. A: At., Mol., Opt. Phys. 58(2), 1412–1439 (1998).
[Crossref]

Bloch, F.

F. Bloch, W. W. Hansen, and M. Packard, “The Nuclear Induction Experiment,” Phys. Rev. 70(7-8), 474–485 (1946).
[Crossref]

F. Bloch, “Nuclear induction,” Phys. Rev. 70(7-8), 460–474 (1946).
[Crossref]

Brown, J. M.

M. Smiciklas, J. M. Brown, L. W. Cheuk, S. J. Smullin, and M. V. Romalis, “New Test of Local Lorentz Invariance Using a 21Ne-Rb-K Comagnetometer,” Phys. Rev. Lett. 107(17), 171604 (2011).
[Crossref]

J. M. Brown, “A New Limit on Lorentz- and CPT-Violating Neutron Spin Interactions Using a K-3He Comagnetometer,” Ph.D. thesis, Princeton University (2011).

Bulatowicz, M.

M. Bulatowicz, R. Griffith, M. Larsen, J. Mirijanian, C. B. Fu, E. Smith, W. M. Snow, H. Yan, and T. G. Walker, “Laboratory Search for a Long-Range T-Odd, P-Odd Interaction from Axionlike Particles Using Dual-Species Nuclear Magnetic Resonance with Polarized 129Xe and 131Xe Gas,” Phys. Rev. Lett. 111(10), 102001 (2013).
[Crossref]

Cates, G. D.

S. R. Schaefer, G. D. Cates, T. R. Chien, D. Gonatas, W. Happer, and T. G. Walker, “Frequency shifts of the magnetic-resonance spectrum of mixtures of nuclear spin-polarized noble gases and vapors of spin-polarized alkali-metal atoms,” Phys. Rev. A 39(11), 5613–5623 (1989).
[Crossref]

Chen, W. C.

W. C. Chen, T. R. Gentile, T. G. Walker, and E. Babcock, “Spin-exchange optical pumping of 3He with Rb-K mixtures and pure K,” Phys. Rev. A 75(1), 013416 (2007).
[Crossref]

Chen, Y.

W. Ji, Y. Chen, C. Fu, M. Ding, J. Fang, Z. Xiao, K. Wei, and H. Yan, “New Experimental Limits on Exotic Spin-Spin-Velocity-Dependent Interactions by Using SmCo5 Spin Sources,” Phys. Rev. Lett. 121(26), 261803 (2018).
[Crossref]

Y. Chen, W. Quan, S. Zou, Y. Lu, L. Duan, Y. Li, H. Zhang, M. Ding, and J. Fang, “Spin exchange broadening of magnetic resonance lines in a high-sensitivity rotating K-Rb-21Ne co-magnetometer,” Sci. Rep. 6(1), 36547 (2016).
[Crossref]

J. Fang, Y. Chen, S. Zou, X. Liu, Z. Hu, W. Quan, H. Yuan, and M Ding, “Low frequency magnetic field suppression in an atomic spin co-magnetometer with a large electron magnetic field,” J. Phys. B: At., Mol. Opt. Phys. 49(6), 065006 (2016).
[Crossref]

J. Fang, Y. Chen, Y. Lu, W. Quan, and S. Zou, “Dynamics of Rb and 21Ne spin ensembles interacting by spin exchange with a high Rb magnetic field,” J. Phys. B: At., Mol. Opt. Phys. 49(13), 135002 (2016).
[Crossref]

Y. Chen, W. Quan, L. Duan, Y. Lu, L. Jiang, and J. Fang, “Spin-exchange collision mixing of the K and Rb ac Stark shifts,” Phys. Rev. A 94(5), 052705 (2016).
[Crossref]

Cheuk, L. W.

M. Smiciklas, J. M. Brown, L. W. Cheuk, S. J. Smullin, and M. V. Romalis, “New Test of Local Lorentz Invariance Using a 21Ne-Rb-K Comagnetometer,” Phys. Rev. Lett. 107(17), 171604 (2011).
[Crossref]

Chien, T. R.

S. R. Schaefer, G. D. Cates, T. R. Chien, D. Gonatas, W. Happer, and T. G. Walker, “Frequency shifts of the magnetic-resonance spectrum of mixtures of nuclear spin-polarized noble gases and vapors of spin-polarized alkali-metal atoms,” Phys. Rev. A 39(11), 5613–5623 (1989).
[Crossref]

Ding, M

J. Fang, Y. Chen, S. Zou, X. Liu, Z. Hu, W. Quan, H. Yuan, and M Ding, “Low frequency magnetic field suppression in an atomic spin co-magnetometer with a large electron magnetic field,” J. Phys. B: At., Mol. Opt. Phys. 49(6), 065006 (2016).
[Crossref]

Ding, M.

W. Ji, Y. Chen, C. Fu, M. Ding, J. Fang, Z. Xiao, K. Wei, and H. Yan, “New Experimental Limits on Exotic Spin-Spin-Velocity-Dependent Interactions by Using SmCo5 Spin Sources,” Phys. Rev. Lett. 121(26), 261803 (2018).
[Crossref]

Y. Chen, W. Quan, S. Zou, Y. Lu, L. Duan, Y. Li, H. Zhang, M. Ding, and J. Fang, “Spin exchange broadening of magnetic resonance lines in a high-sensitivity rotating K-Rb-21Ne co-magnetometer,” Sci. Rep. 6(1), 36547 (2016).
[Crossref]

L. Duan, J. Fang, R. Li, L. Jiang, M. Ding, and W. Wang, “Light intensity stabilization based on the second harmonic of the photoelastic modulator detection in the atomic magnetometer,” Opt. Express 23(25), 32481 (2015).
[Crossref]

Driehuys, B.

E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, L. W. Anderson, F. W. Hersman, and T. G. Walker, “Hybrid spin-exchange optical pumping of 3He,” Phys. Rev. Lett. 91(12), 123003 (2003).
[Crossref]

Duan, L.

L. Jiang, W. Quan, Y. Liang, J. Liu, L. Duan, and J. Fang, “Effects of pump laser power density on the hybrid optically pumped comagnetometer for rotation sensing,” Opt. Express 27(20), 27420–27430 (2019).
[Crossref]

W. Fan, W. Quan, F. Liu, L. Duan, and G. Liu, “Low drift nuclear spin gyroscope with probe light intensity error suppression,” Chin. Phys. B 28(11), 110701 (2019).
[Crossref]

L. Jiang, W. Quan, F. Liu, W. Fan, L. Xing, L. Duan, W. Liu, and J. Fang, “Closed-Loop Control of Compensation Point in the K-Rb-21Ne Comagnetometer,” Phys. Rev. Appl. 12(2), 024017 (2019).
[Crossref]

W. Fan, G. Liu, R. Li, W. Quan, L. Jiang, and L. Duan, “A three-axis atomic magnetometer for temperature-dependence measurements of fields in a magnetically shielded environment,” Meas. Sci. Technol. 28(9), 095007 (2017).
[Crossref]

Y. Chen, W. Quan, L. Duan, Y. Lu, L. Jiang, and J. Fang, “Spin-exchange collision mixing of the K and Rb ac Stark shifts,” Phys. Rev. A 94(5), 052705 (2016).
[Crossref]

Y. Chen, W. Quan, S. Zou, Y. Lu, L. Duan, Y. Li, H. Zhang, M. Ding, and J. Fang, “Spin exchange broadening of magnetic resonance lines in a high-sensitivity rotating K-Rb-21Ne co-magnetometer,” Sci. Rep. 6(1), 36547 (2016).
[Crossref]

L. Duan, J. Fang, R. Li, L. Jiang, M. Ding, and W. Wang, “Light intensity stabilization based on the second harmonic of the photoelastic modulator detection in the atomic magnetometer,” Opt. Express 23(25), 32481 (2015).
[Crossref]

Erickson, C. J.

S. Appelt, A. B. A. Baranga, C. J. Erickson, M. V. Romalis, A. R. Young, and W. Happer, “Theory of spin-exchange optical pumping of 3He and 129Xe,” Phys. Rev. A: At., Mol., Opt. Phys. 58(2), 1412–1439 (1998).
[Crossref]

Fan, W.

Y. Lu, Y. Zhai, Y. Zhang, W. Fan, L. Xing, and W. Quan, “Spin-exchange relaxation of naturally abundant Rb in a K–Rb–21Ne self-compensated atomic comagnetometer,” Chin. Phys. B 29(4), 043204 (2020).
[Crossref]

W. Fan, W. Quan, F. Liu, L. Duan, and G. Liu, “Low drift nuclear spin gyroscope with probe light intensity error suppression,” Chin. Phys. B 28(11), 110701 (2019).
[Crossref]

W. Fan, W. Quan, W. Zhang, L. Xing, and G. Liu, “Analysis on the Magnetic Field Response for Nuclear Spin Co-Magnetometer Operated in Spin-Exchange Relaxation-Free Regime,” IEEE Access 7, 28574–28580 (2019).
[Crossref]

L. Xing, Y. Zhai, W. Fan, J. Huang, T. Song, W. Ye, and W. Quan, “Miniaturized optical rotation detection system based on liquid crystal variable retarder in a K-Rb-21Ne gyroscope,” Opt. Express 27(26), 38061–38070 (2019).
[Crossref]

L. Jiang, W. Quan, F. Liu, W. Fan, L. Xing, L. Duan, W. Liu, and J. Fang, “Closed-Loop Control of Compensation Point in the K-Rb-21Ne Comagnetometer,” Phys. Rev. Appl. 12(2), 024017 (2019).
[Crossref]

W. Fan, G. Liu, R. Li, W. Quan, L. Jiang, and L. Duan, “A three-axis atomic magnetometer for temperature-dependence measurements of fields in a magnetically shielded environment,” Meas. Sci. Technol. 28(9), 095007 (2017).
[Crossref]

Fang, J.

L. Jiang, W. Quan, F. Liu, W. Fan, L. Xing, L. Duan, W. Liu, and J. Fang, “Closed-Loop Control of Compensation Point in the K-Rb-21Ne Comagnetometer,” Phys. Rev. Appl. 12(2), 024017 (2019).
[Crossref]

L. Jiang, W. Quan, Y. Liang, J. Liu, L. Duan, and J. Fang, “Effects of pump laser power density on the hybrid optically pumped comagnetometer for rotation sensing,” Opt. Express 27(20), 27420–27430 (2019).
[Crossref]

W. Ji, Y. Chen, C. Fu, M. Ding, J. Fang, Z. Xiao, K. Wei, and H. Yan, “New Experimental Limits on Exotic Spin-Spin-Velocity-Dependent Interactions by Using SmCo5 Spin Sources,” Phys. Rev. Lett. 121(26), 261803 (2018).
[Crossref]

Y. Chen, W. Quan, S. Zou, Y. Lu, L. Duan, Y. Li, H. Zhang, M. Ding, and J. Fang, “Spin exchange broadening of magnetic resonance lines in a high-sensitivity rotating K-Rb-21Ne co-magnetometer,” Sci. Rep. 6(1), 36547 (2016).
[Crossref]

Y. Chen, W. Quan, L. Duan, Y. Lu, L. Jiang, and J. Fang, “Spin-exchange collision mixing of the K and Rb ac Stark shifts,” Phys. Rev. A 94(5), 052705 (2016).
[Crossref]

J. Fang, Y. Chen, Y. Lu, W. Quan, and S. Zou, “Dynamics of Rb and 21Ne spin ensembles interacting by spin exchange with a high Rb magnetic field,” J. Phys. B: At., Mol. Opt. Phys. 49(13), 135002 (2016).
[Crossref]

J. Fang, Y. Chen, S. Zou, X. Liu, Z. Hu, W. Quan, H. Yuan, and M Ding, “Low frequency magnetic field suppression in an atomic spin co-magnetometer with a large electron magnetic field,” J. Phys. B: At., Mol. Opt. Phys. 49(6), 065006 (2016).
[Crossref]

L. Duan, J. Fang, R. Li, L. Jiang, M. Ding, and W. Wang, “Light intensity stabilization based on the second harmonic of the photoelastic modulator detection in the atomic magnetometer,” Opt. Express 23(25), 32481 (2015).
[Crossref]

J. Fang, S. Wan, and H. Yuan, “Dynamics of an all-optical atomic spin gyroscope,” Appl. Opt. 52(30), 7220–7227 (2013).
[Crossref]

Fang, X.

Fu, C.

W. Ji, Y. Chen, C. Fu, M. Ding, J. Fang, Z. Xiao, K. Wei, and H. Yan, “New Experimental Limits on Exotic Spin-Spin-Velocity-Dependent Interactions by Using SmCo5 Spin Sources,” Phys. Rev. Lett. 121(26), 261803 (2018).
[Crossref]

Fu, C. B.

M. Bulatowicz, R. Griffith, M. Larsen, J. Mirijanian, C. B. Fu, E. Smith, W. M. Snow, H. Yan, and T. G. Walker, “Laboratory Search for a Long-Range T-Odd, P-Odd Interaction from Axionlike Particles Using Dual-Species Nuclear Magnetic Resonance with Polarized 129Xe and 131Xe Gas,” Phys. Rev. Lett. 111(10), 102001 (2013).
[Crossref]

Gentile, T. R.

W. C. Chen, T. R. Gentile, T. G. Walker, and E. Babcock, “Spin-exchange optical pumping of 3He with Rb-K mixtures and pure K,” Phys. Rev. A 75(1), 013416 (2007).
[Crossref]

Ghosh, R. K.

T. W. Kornack, R. K. Ghosh, and M. V. Romalis, “Nuclear Spin Gyroscope Based on an Atomic Comagnetometer,” Phys. Rev. Lett. 95(23), 230801 (2005).
[Crossref]

Gonatas, D.

S. R. Schaefer, G. D. Cates, T. R. Chien, D. Gonatas, W. Happer, and T. G. Walker, “Frequency shifts of the magnetic-resonance spectrum of mixtures of nuclear spin-polarized noble gases and vapors of spin-polarized alkali-metal atoms,” Phys. Rev. A 39(11), 5613–5623 (1989).
[Crossref]

Griffith, R.

M. Bulatowicz, R. Griffith, M. Larsen, J. Mirijanian, C. B. Fu, E. Smith, W. M. Snow, H. Yan, and T. G. Walker, “Laboratory Search for a Long-Range T-Odd, P-Odd Interaction from Axionlike Particles Using Dual-Species Nuclear Magnetic Resonance with Polarized 129Xe and 131Xe Gas,” Phys. Rev. Lett. 111(10), 102001 (2013).
[Crossref]

Hansen, W. W.

F. Bloch, W. W. Hansen, and M. Packard, “The Nuclear Induction Experiment,” Phys. Rev. 70(7-8), 474–485 (1946).
[Crossref]

Happer, W.

S. Appelt, A. B. A. Baranga, C. J. Erickson, M. V. Romalis, A. R. Young, and W. Happer, “Theory of spin-exchange optical pumping of 3He and 129Xe,” Phys. Rev. A: At., Mol., Opt. Phys. 58(2), 1412–1439 (1998).
[Crossref]

S. R. Schaefer, G. D. Cates, T. R. Chien, D. Gonatas, W. Happer, and T. G. Walker, “Frequency shifts of the magnetic-resonance spectrum of mixtures of nuclear spin-polarized noble gases and vapors of spin-polarized alkali-metal atoms,” Phys. Rev. A 39(11), 5613–5623 (1989).
[Crossref]

Heckel, B. R.

W. A. Terrano, E. G. Adelberger, J. G. Lee, and B. R. Heckel, “Short-Range, Spin-Dependent Interactions of Electrons: A Probe for Exotic Pseudo-Goldstone Bosons,” Phys. Rev. Lett. 115(20), 201801 (2015).
[Crossref]

Heil, W.

F. Allmendinger, W. Heil, S. Karpuk, W. Kilian, A. Scharth, U. Schmidt, A. Schnabel, Y. Sobolev, and K. Tullney, “New Limit on Lorentz-Invariance- and CPT-Violating Neutron Spin Interactions Using a Free-Spin-Precession 3He-129Xe Comagnetometer,” Phys. Rev. Lett. 112(11), 110801 (2014).
[Crossref]

Hersman, F. W.

E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, L. W. Anderson, F. W. Hersman, and T. G. Walker, “Hybrid spin-exchange optical pumping of 3He,” Phys. Rev. Lett. 91(12), 123003 (2003).
[Crossref]

Hu, Z.

J. Fang, Y. Chen, S. Zou, X. Liu, Z. Hu, W. Quan, H. Yuan, and M Ding, “Low frequency magnetic field suppression in an atomic spin co-magnetometer with a large electron magnetic field,” J. Phys. B: At., Mol. Opt. Phys. 49(6), 065006 (2016).
[Crossref]

Huang, J.

Ji, W.

W. Ji, Y. Chen, C. Fu, M. Ding, J. Fang, Z. Xiao, K. Wei, and H. Yan, “New Experimental Limits on Exotic Spin-Spin-Velocity-Dependent Interactions by Using SmCo5 Spin Sources,” Phys. Rev. Lett. 121(26), 261803 (2018).
[Crossref]

Jiang, L.

L. Jiang, W. Quan, Y. Liang, J. Liu, L. Duan, and J. Fang, “Effects of pump laser power density on the hybrid optically pumped comagnetometer for rotation sensing,” Opt. Express 27(20), 27420–27430 (2019).
[Crossref]

L. Jiang, W. Quan, F. Liu, W. Fan, L. Xing, L. Duan, W. Liu, and J. Fang, “Closed-Loop Control of Compensation Point in the K-Rb-21Ne Comagnetometer,” Phys. Rev. Appl. 12(2), 024017 (2019).
[Crossref]

W. Fan, G. Liu, R. Li, W. Quan, L. Jiang, and L. Duan, “A three-axis atomic magnetometer for temperature-dependence measurements of fields in a magnetically shielded environment,” Meas. Sci. Technol. 28(9), 095007 (2017).
[Crossref]

Y. Chen, W. Quan, L. Duan, Y. Lu, L. Jiang, and J. Fang, “Spin-exchange collision mixing of the K and Rb ac Stark shifts,” Phys. Rev. A 94(5), 052705 (2016).
[Crossref]

L. Duan, J. Fang, R. Li, L. Jiang, M. Ding, and W. Wang, “Light intensity stabilization based on the second harmonic of the photoelastic modulator detection in the atomic magnetometer,” Opt. Express 23(25), 32481 (2015).
[Crossref]

Kadlecek, S.

E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, L. W. Anderson, F. W. Hersman, and T. G. Walker, “Hybrid spin-exchange optical pumping of 3He,” Phys. Rev. Lett. 91(12), 123003 (2003).
[Crossref]

Karpuk, S.

F. Allmendinger, W. Heil, S. Karpuk, W. Kilian, A. Scharth, U. Schmidt, A. Schnabel, Y. Sobolev, and K. Tullney, “New Limit on Lorentz-Invariance- and CPT-Violating Neutron Spin Interactions Using a Free-Spin-Precession 3He-129Xe Comagnetometer,” Phys. Rev. Lett. 112(11), 110801 (2014).
[Crossref]

Kilian, W.

F. Allmendinger, W. Heil, S. Karpuk, W. Kilian, A. Scharth, U. Schmidt, A. Schnabel, Y. Sobolev, and K. Tullney, “New Limit on Lorentz-Invariance- and CPT-Violating Neutron Spin Interactions Using a Free-Spin-Precession 3He-129Xe Comagnetometer,” Phys. Rev. Lett. 112(11), 110801 (2014).
[Crossref]

Kornack, T. W.

T. W. Kornack, R. K. Ghosh, and M. V. Romalis, “Nuclear Spin Gyroscope Based on an Atomic Comagnetometer,” Phys. Rev. Lett. 95(23), 230801 (2005).
[Crossref]

T. W. Kornack and M. V. Romalis, “Dynamics of Two Overlapping Spin Ensembles Interacting by Spin Exchange,” Phys. Rev. Lett. 89(25), 253002 (2002).
[Crossref]

T. W. Kornack, “A Test of CPT and Lorentz Symmetry Using a K-3He Co-magnetometer,” Ph.D. thesis, Princeton University (2005).

Kornacka, T. W.

T. W. Kornacka, S. J. Smullin, S. K. Lee, and M. V. Romalis, “A low-noise ferrite magnetic shield,” Appl. Phys. Lett. 90(22), 223501 (2007).
[Crossref]

Larsen, M.

M. Bulatowicz, R. Griffith, M. Larsen, J. Mirijanian, C. B. Fu, E. Smith, W. M. Snow, H. Yan, and T. G. Walker, “Laboratory Search for a Long-Range T-Odd, P-Odd Interaction from Axionlike Particles Using Dual-Species Nuclear Magnetic Resonance with Polarized 129Xe and 131Xe Gas,” Phys. Rev. Lett. 111(10), 102001 (2013).
[Crossref]

Lee, J. G.

W. A. Terrano, E. G. Adelberger, J. G. Lee, and B. R. Heckel, “Short-Range, Spin-Dependent Interactions of Electrons: A Probe for Exotic Pseudo-Goldstone Bosons,” Phys. Rev. Lett. 115(20), 201801 (2015).
[Crossref]

Lee, S. K.

T. W. Kornacka, S. J. Smullin, S. K. Lee, and M. V. Romalis, “A low-noise ferrite magnetic shield,” Appl. Phys. Lett. 90(22), 223501 (2007).
[Crossref]

Li, H.

Li, R.

W. Fan, G. Liu, R. Li, W. Quan, L. Jiang, and L. Duan, “A three-axis atomic magnetometer for temperature-dependence measurements of fields in a magnetically shielded environment,” Meas. Sci. Technol. 28(9), 095007 (2017).
[Crossref]

L. Duan, J. Fang, R. Li, L. Jiang, M. Ding, and W. Wang, “Light intensity stabilization based on the second harmonic of the photoelastic modulator detection in the atomic magnetometer,” Opt. Express 23(25), 32481 (2015).
[Crossref]

Li, Y.

Y. Chen, W. Quan, S. Zou, Y. Lu, L. Duan, Y. Li, H. Zhang, M. Ding, and J. Fang, “Spin exchange broadening of magnetic resonance lines in a high-sensitivity rotating K-Rb-21Ne co-magnetometer,” Sci. Rep. 6(1), 36547 (2016).
[Crossref]

Liang, Y.

Liu, F.

W. Fan, W. Quan, F. Liu, L. Duan, and G. Liu, “Low drift nuclear spin gyroscope with probe light intensity error suppression,” Chin. Phys. B 28(11), 110701 (2019).
[Crossref]

L. Jiang, W. Quan, F. Liu, W. Fan, L. Xing, L. Duan, W. Liu, and J. Fang, “Closed-Loop Control of Compensation Point in the K-Rb-21Ne Comagnetometer,” Phys. Rev. Appl. 12(2), 024017 (2019).
[Crossref]

Liu, G.

W. Fan, W. Quan, W. Zhang, L. Xing, and G. Liu, “Analysis on the Magnetic Field Response for Nuclear Spin Co-Magnetometer Operated in Spin-Exchange Relaxation-Free Regime,” IEEE Access 7, 28574–28580 (2019).
[Crossref]

W. Fan, W. Quan, F. Liu, L. Duan, and G. Liu, “Low drift nuclear spin gyroscope with probe light intensity error suppression,” Chin. Phys. B 28(11), 110701 (2019).
[Crossref]

W. Fan, G. Liu, R. Li, W. Quan, L. Jiang, and L. Duan, “A three-axis atomic magnetometer for temperature-dependence measurements of fields in a magnetically shielded environment,” Meas. Sci. Technol. 28(9), 095007 (2017).
[Crossref]

Liu, J.

Liu, W.

L. Jiang, W. Quan, F. Liu, W. Fan, L. Xing, L. Duan, W. Liu, and J. Fang, “Closed-Loop Control of Compensation Point in the K-Rb-21Ne Comagnetometer,” Phys. Rev. Appl. 12(2), 024017 (2019).
[Crossref]

Liu, X.

J. Fang, Y. Chen, S. Zou, X. Liu, Z. Hu, W. Quan, H. Yuan, and M Ding, “Low frequency magnetic field suppression in an atomic spin co-magnetometer with a large electron magnetic field,” J. Phys. B: At., Mol. Opt. Phys. 49(6), 065006 (2016).
[Crossref]

Lu, Y.

Y. Lu, Y. Zhai, Y. Zhang, W. Fan, L. Xing, and W. Quan, “Spin-exchange relaxation of naturally abundant Rb in a K–Rb–21Ne self-compensated atomic comagnetometer,” Chin. Phys. B 29(4), 043204 (2020).
[Crossref]

Y. Chen, W. Quan, L. Duan, Y. Lu, L. Jiang, and J. Fang, “Spin-exchange collision mixing of the K and Rb ac Stark shifts,” Phys. Rev. A 94(5), 052705 (2016).
[Crossref]

J. Fang, Y. Chen, Y. Lu, W. Quan, and S. Zou, “Dynamics of Rb and 21Ne spin ensembles interacting by spin exchange with a high Rb magnetic field,” J. Phys. B: At., Mol. Opt. Phys. 49(13), 135002 (2016).
[Crossref]

Y. Chen, W. Quan, S. Zou, Y. Lu, L. Duan, Y. Li, H. Zhang, M. Ding, and J. Fang, “Spin exchange broadening of magnetic resonance lines in a high-sensitivity rotating K-Rb-21Ne co-magnetometer,” Sci. Rep. 6(1), 36547 (2016).
[Crossref]

Mirijanian, J.

M. Bulatowicz, R. Griffith, M. Larsen, J. Mirijanian, C. B. Fu, E. Smith, W. M. Snow, H. Yan, and T. G. Walker, “Laboratory Search for a Long-Range T-Odd, P-Odd Interaction from Axionlike Particles Using Dual-Species Nuclear Magnetic Resonance with Polarized 129Xe and 131Xe Gas,” Phys. Rev. Lett. 111(10), 102001 (2013).
[Crossref]

Nelson, I.

E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, L. W. Anderson, F. W. Hersman, and T. G. Walker, “Hybrid spin-exchange optical pumping of 3He,” Phys. Rev. Lett. 91(12), 123003 (2003).
[Crossref]

Packard, M.

F. Bloch, W. W. Hansen, and M. Packard, “The Nuclear Induction Experiment,” Phys. Rev. 70(7-8), 474–485 (1946).
[Crossref]

Quan, W.

Y. Lu, Y. Zhai, Y. Zhang, W. Fan, L. Xing, and W. Quan, “Spin-exchange relaxation of naturally abundant Rb in a K–Rb–21Ne self-compensated atomic comagnetometer,” Chin. Phys. B 29(4), 043204 (2020).
[Crossref]

W. Quan, K. Wei, T. Zhao, H. Li, and Y. Zhai, “Synchronous measurement of inertial rotation and magnetic field using a K-Rb-21Ne comagnetometer,” Phys. Rev. A 100(1), 012118 (2019).
[Crossref]

W. Fan, W. Quan, F. Liu, L. Duan, and G. Liu, “Low drift nuclear spin gyroscope with probe light intensity error suppression,” Chin. Phys. B 28(11), 110701 (2019).
[Crossref]

W. Fan, W. Quan, W. Zhang, L. Xing, and G. Liu, “Analysis on the Magnetic Field Response for Nuclear Spin Co-Magnetometer Operated in Spin-Exchange Relaxation-Free Regime,” IEEE Access 7, 28574–28580 (2019).
[Crossref]

L. Xing, Y. Zhai, W. Fan, J. Huang, T. Song, W. Ye, and W. Quan, “Miniaturized optical rotation detection system based on liquid crystal variable retarder in a K-Rb-21Ne gyroscope,” Opt. Express 27(26), 38061–38070 (2019).
[Crossref]

L. Jiang, W. Quan, Y. Liang, J. Liu, L. Duan, and J. Fang, “Effects of pump laser power density on the hybrid optically pumped comagnetometer for rotation sensing,” Opt. Express 27(20), 27420–27430 (2019).
[Crossref]

L. Jiang, W. Quan, F. Liu, W. Fan, L. Xing, L. Duan, W. Liu, and J. Fang, “Closed-Loop Control of Compensation Point in the K-Rb-21Ne Comagnetometer,” Phys. Rev. Appl. 12(2), 024017 (2019).
[Crossref]

K. Wei, T. Zhao, X. Fang, Y. Zhai, H. Li, and W. Quan, “In-situ measurement of the density ratio of K-Rb hybrid vapor cell using spin-exchange collision mixing of the K and Rb light shifts,” Opt. Express 27(11), 16169–16183 (2019).
[Crossref]

W. Fan, G. Liu, R. Li, W. Quan, L. Jiang, and L. Duan, “A three-axis atomic magnetometer for temperature-dependence measurements of fields in a magnetically shielded environment,” Meas. Sci. Technol. 28(9), 095007 (2017).
[Crossref]

W. Quan, K. Wei, and H. Li, “Precision measurement of magnetic field based on the transient process in a K-Rb-21Ne co-magnetometer,” Opt. Express 25(8), 8470–8483 (2017).
[Crossref]

Y. Chen, W. Quan, L. Duan, Y. Lu, L. Jiang, and J. Fang, “Spin-exchange collision mixing of the K and Rb ac Stark shifts,” Phys. Rev. A 94(5), 052705 (2016).
[Crossref]

J. Fang, Y. Chen, Y. Lu, W. Quan, and S. Zou, “Dynamics of Rb and 21Ne spin ensembles interacting by spin exchange with a high Rb magnetic field,” J. Phys. B: At., Mol. Opt. Phys. 49(13), 135002 (2016).
[Crossref]

J. Fang, Y. Chen, S. Zou, X. Liu, Z. Hu, W. Quan, H. Yuan, and M Ding, “Low frequency magnetic field suppression in an atomic spin co-magnetometer with a large electron magnetic field,” J. Phys. B: At., Mol. Opt. Phys. 49(6), 065006 (2016).
[Crossref]

Y. Chen, W. Quan, S. Zou, Y. Lu, L. Duan, Y. Li, H. Zhang, M. Ding, and J. Fang, “Spin exchange broadening of magnetic resonance lines in a high-sensitivity rotating K-Rb-21Ne co-magnetometer,” Sci. Rep. 6(1), 36547 (2016).
[Crossref]

Romalis, M. V.

M. Smiciklas, J. M. Brown, L. W. Cheuk, S. J. Smullin, and M. V. Romalis, “New Test of Local Lorentz Invariance Using a 21Ne-Rb-K Comagnetometer,” Phys. Rev. Lett. 107(17), 171604 (2011).
[Crossref]

M. V. Romalis, “Hybrid Optical Pumping of Optically Dense Alkali-Metal Vapor without Quenching Gas,” Phys. Rev. Lett. 105(24), 243001 (2010).
[Crossref]

T. W. Kornacka, S. J. Smullin, S. K. Lee, and M. V. Romalis, “A low-noise ferrite magnetic shield,” Appl. Phys. Lett. 90(22), 223501 (2007).
[Crossref]

T. W. Kornack, R. K. Ghosh, and M. V. Romalis, “Nuclear Spin Gyroscope Based on an Atomic Comagnetometer,” Phys. Rev. Lett. 95(23), 230801 (2005).
[Crossref]

I. M. Savukov and M. V. Romalis, “Effects of spin-exchange collisions in a high-density alkali-metal vapor in low magnetic fields,” Phys. Rev. A 71(2), 023405 (2005).
[Crossref]

S. J. Seltzer and M. V. Romalis, “Unshielded three-axis vector operation of a spin-exchange-relaxation-free atomic magnetometer,” Appl. Phys. Lett. 85(20), 4804–4806 (2004).
[Crossref]

T. W. Kornack and M. V. Romalis, “Dynamics of Two Overlapping Spin Ensembles Interacting by Spin Exchange,” Phys. Rev. Lett. 89(25), 253002 (2002).
[Crossref]

S. Appelt, A. B. A. Baranga, C. J. Erickson, M. V. Romalis, A. R. Young, and W. Happer, “Theory of spin-exchange optical pumping of 3He and 129Xe,” Phys. Rev. A: At., Mol., Opt. Phys. 58(2), 1412–1439 (1998).
[Crossref]

Savukov, I. M.

I. M. Savukov and M. V. Romalis, “Effects of spin-exchange collisions in a high-density alkali-metal vapor in low magnetic fields,” Phys. Rev. A 71(2), 023405 (2005).
[Crossref]

Schaefer, S. R.

S. R. Schaefer, G. D. Cates, T. R. Chien, D. Gonatas, W. Happer, and T. G. Walker, “Frequency shifts of the magnetic-resonance spectrum of mixtures of nuclear spin-polarized noble gases and vapors of spin-polarized alkali-metal atoms,” Phys. Rev. A 39(11), 5613–5623 (1989).
[Crossref]

Scharth, A.

F. Allmendinger, W. Heil, S. Karpuk, W. Kilian, A. Scharth, U. Schmidt, A. Schnabel, Y. Sobolev, and K. Tullney, “New Limit on Lorentz-Invariance- and CPT-Violating Neutron Spin Interactions Using a Free-Spin-Precession 3He-129Xe Comagnetometer,” Phys. Rev. Lett. 112(11), 110801 (2014).
[Crossref]

Schmidt, U.

F. Allmendinger, W. Heil, S. Karpuk, W. Kilian, A. Scharth, U. Schmidt, A. Schnabel, Y. Sobolev, and K. Tullney, “New Limit on Lorentz-Invariance- and CPT-Violating Neutron Spin Interactions Using a Free-Spin-Precession 3He-129Xe Comagnetometer,” Phys. Rev. Lett. 112(11), 110801 (2014).
[Crossref]

Schnabel, A.

F. Allmendinger, W. Heil, S. Karpuk, W. Kilian, A. Scharth, U. Schmidt, A. Schnabel, Y. Sobolev, and K. Tullney, “New Limit on Lorentz-Invariance- and CPT-Violating Neutron Spin Interactions Using a Free-Spin-Precession 3He-129Xe Comagnetometer,” Phys. Rev. Lett. 112(11), 110801 (2014).
[Crossref]

Seltzer, S. J.

S. J. Seltzer and M. V. Romalis, “Unshielded three-axis vector operation of a spin-exchange-relaxation-free atomic magnetometer,” Appl. Phys. Lett. 85(20), 4804–4806 (2004).
[Crossref]

Smiciklas, M.

M. Smiciklas, J. M. Brown, L. W. Cheuk, S. J. Smullin, and M. V. Romalis, “New Test of Local Lorentz Invariance Using a 21Ne-Rb-K Comagnetometer,” Phys. Rev. Lett. 107(17), 171604 (2011).
[Crossref]

Smith, E.

M. Bulatowicz, R. Griffith, M. Larsen, J. Mirijanian, C. B. Fu, E. Smith, W. M. Snow, H. Yan, and T. G. Walker, “Laboratory Search for a Long-Range T-Odd, P-Odd Interaction from Axionlike Particles Using Dual-Species Nuclear Magnetic Resonance with Polarized 129Xe and 131Xe Gas,” Phys. Rev. Lett. 111(10), 102001 (2013).
[Crossref]

Smullin, S. J.

M. Smiciklas, J. M. Brown, L. W. Cheuk, S. J. Smullin, and M. V. Romalis, “New Test of Local Lorentz Invariance Using a 21Ne-Rb-K Comagnetometer,” Phys. Rev. Lett. 107(17), 171604 (2011).
[Crossref]

T. W. Kornacka, S. J. Smullin, S. K. Lee, and M. V. Romalis, “A low-noise ferrite magnetic shield,” Appl. Phys. Lett. 90(22), 223501 (2007).
[Crossref]

Snow, W. M.

M. Bulatowicz, R. Griffith, M. Larsen, J. Mirijanian, C. B. Fu, E. Smith, W. M. Snow, H. Yan, and T. G. Walker, “Laboratory Search for a Long-Range T-Odd, P-Odd Interaction from Axionlike Particles Using Dual-Species Nuclear Magnetic Resonance with Polarized 129Xe and 131Xe Gas,” Phys. Rev. Lett. 111(10), 102001 (2013).
[Crossref]

Sobolev, Y.

F. Allmendinger, W. Heil, S. Karpuk, W. Kilian, A. Scharth, U. Schmidt, A. Schnabel, Y. Sobolev, and K. Tullney, “New Limit on Lorentz-Invariance- and CPT-Violating Neutron Spin Interactions Using a Free-Spin-Precession 3He-129Xe Comagnetometer,” Phys. Rev. Lett. 112(11), 110801 (2014).
[Crossref]

Song, T.

Terrano, W. A.

W. A. Terrano, E. G. Adelberger, J. G. Lee, and B. R. Heckel, “Short-Range, Spin-Dependent Interactions of Electrons: A Probe for Exotic Pseudo-Goldstone Bosons,” Phys. Rev. Lett. 115(20), 201801 (2015).
[Crossref]

Tullney, K.

F. Allmendinger, W. Heil, S. Karpuk, W. Kilian, A. Scharth, U. Schmidt, A. Schnabel, Y. Sobolev, and K. Tullney, “New Limit on Lorentz-Invariance- and CPT-Violating Neutron Spin Interactions Using a Free-Spin-Precession 3He-129Xe Comagnetometer,” Phys. Rev. Lett. 112(11), 110801 (2014).
[Crossref]

Vasilakis, G.

G. Vasilakis, “Precision measurements of spin interactions with high density atomic vapors,” Ph.D. thesis, Princeton University (2011).

Walker, T. G.

M. Bulatowicz, R. Griffith, M. Larsen, J. Mirijanian, C. B. Fu, E. Smith, W. M. Snow, H. Yan, and T. G. Walker, “Laboratory Search for a Long-Range T-Odd, P-Odd Interaction from Axionlike Particles Using Dual-Species Nuclear Magnetic Resonance with Polarized 129Xe and 131Xe Gas,” Phys. Rev. Lett. 111(10), 102001 (2013).
[Crossref]

W. C. Chen, T. R. Gentile, T. G. Walker, and E. Babcock, “Spin-exchange optical pumping of 3He with Rb-K mixtures and pure K,” Phys. Rev. A 75(1), 013416 (2007).
[Crossref]

E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, L. W. Anderson, F. W. Hersman, and T. G. Walker, “Hybrid spin-exchange optical pumping of 3He,” Phys. Rev. Lett. 91(12), 123003 (2003).
[Crossref]

S. R. Schaefer, G. D. Cates, T. R. Chien, D. Gonatas, W. Happer, and T. G. Walker, “Frequency shifts of the magnetic-resonance spectrum of mixtures of nuclear spin-polarized noble gases and vapors of spin-polarized alkali-metal atoms,” Phys. Rev. A 39(11), 5613–5623 (1989).
[Crossref]

Wan, S.

Wang, W.

Wei, K.

K. Wei, T. Zhao, X. Fang, Y. Zhai, H. Li, and W. Quan, “In-situ measurement of the density ratio of K-Rb hybrid vapor cell using spin-exchange collision mixing of the K and Rb light shifts,” Opt. Express 27(11), 16169–16183 (2019).
[Crossref]

W. Quan, K. Wei, T. Zhao, H. Li, and Y. Zhai, “Synchronous measurement of inertial rotation and magnetic field using a K-Rb-21Ne comagnetometer,” Phys. Rev. A 100(1), 012118 (2019).
[Crossref]

W. Ji, Y. Chen, C. Fu, M. Ding, J. Fang, Z. Xiao, K. Wei, and H. Yan, “New Experimental Limits on Exotic Spin-Spin-Velocity-Dependent Interactions by Using SmCo5 Spin Sources,” Phys. Rev. Lett. 121(26), 261803 (2018).
[Crossref]

W. Quan, K. Wei, and H. Li, “Precision measurement of magnetic field based on the transient process in a K-Rb-21Ne co-magnetometer,” Opt. Express 25(8), 8470–8483 (2017).
[Crossref]

Xiao, Z.

W. Ji, Y. Chen, C. Fu, M. Ding, J. Fang, Z. Xiao, K. Wei, and H. Yan, “New Experimental Limits on Exotic Spin-Spin-Velocity-Dependent Interactions by Using SmCo5 Spin Sources,” Phys. Rev. Lett. 121(26), 261803 (2018).
[Crossref]

Xing, L.

Y. Lu, Y. Zhai, Y. Zhang, W. Fan, L. Xing, and W. Quan, “Spin-exchange relaxation of naturally abundant Rb in a K–Rb–21Ne self-compensated atomic comagnetometer,” Chin. Phys. B 29(4), 043204 (2020).
[Crossref]

W. Fan, W. Quan, W. Zhang, L. Xing, and G. Liu, “Analysis on the Magnetic Field Response for Nuclear Spin Co-Magnetometer Operated in Spin-Exchange Relaxation-Free Regime,” IEEE Access 7, 28574–28580 (2019).
[Crossref]

L. Xing, Y. Zhai, W. Fan, J. Huang, T. Song, W. Ye, and W. Quan, “Miniaturized optical rotation detection system based on liquid crystal variable retarder in a K-Rb-21Ne gyroscope,” Opt. Express 27(26), 38061–38070 (2019).
[Crossref]

L. Jiang, W. Quan, F. Liu, W. Fan, L. Xing, L. Duan, W. Liu, and J. Fang, “Closed-Loop Control of Compensation Point in the K-Rb-21Ne Comagnetometer,” Phys. Rev. Appl. 12(2), 024017 (2019).
[Crossref]

Yan, H.

W. Ji, Y. Chen, C. Fu, M. Ding, J. Fang, Z. Xiao, K. Wei, and H. Yan, “New Experimental Limits on Exotic Spin-Spin-Velocity-Dependent Interactions by Using SmCo5 Spin Sources,” Phys. Rev. Lett. 121(26), 261803 (2018).
[Crossref]

M. Bulatowicz, R. Griffith, M. Larsen, J. Mirijanian, C. B. Fu, E. Smith, W. M. Snow, H. Yan, and T. G. Walker, “Laboratory Search for a Long-Range T-Odd, P-Odd Interaction from Axionlike Particles Using Dual-Species Nuclear Magnetic Resonance with Polarized 129Xe and 131Xe Gas,” Phys. Rev. Lett. 111(10), 102001 (2013).
[Crossref]

Ye, W.

Young, A. R.

S. Appelt, A. B. A. Baranga, C. J. Erickson, M. V. Romalis, A. R. Young, and W. Happer, “Theory of spin-exchange optical pumping of 3He and 129Xe,” Phys. Rev. A: At., Mol., Opt. Phys. 58(2), 1412–1439 (1998).
[Crossref]

Yuan, H.

J. Fang, Y. Chen, S. Zou, X. Liu, Z. Hu, W. Quan, H. Yuan, and M Ding, “Low frequency magnetic field suppression in an atomic spin co-magnetometer with a large electron magnetic field,” J. Phys. B: At., Mol. Opt. Phys. 49(6), 065006 (2016).
[Crossref]

J. Fang, S. Wan, and H. Yuan, “Dynamics of an all-optical atomic spin gyroscope,” Appl. Opt. 52(30), 7220–7227 (2013).
[Crossref]

Zhai, Y.

Y. Lu, Y. Zhai, Y. Zhang, W. Fan, L. Xing, and W. Quan, “Spin-exchange relaxation of naturally abundant Rb in a K–Rb–21Ne self-compensated atomic comagnetometer,” Chin. Phys. B 29(4), 043204 (2020).
[Crossref]

W. Quan, K. Wei, T. Zhao, H. Li, and Y. Zhai, “Synchronous measurement of inertial rotation and magnetic field using a K-Rb-21Ne comagnetometer,” Phys. Rev. A 100(1), 012118 (2019).
[Crossref]

L. Xing, Y. Zhai, W. Fan, J. Huang, T. Song, W. Ye, and W. Quan, “Miniaturized optical rotation detection system based on liquid crystal variable retarder in a K-Rb-21Ne gyroscope,” Opt. Express 27(26), 38061–38070 (2019).
[Crossref]

K. Wei, T. Zhao, X. Fang, Y. Zhai, H. Li, and W. Quan, “In-situ measurement of the density ratio of K-Rb hybrid vapor cell using spin-exchange collision mixing of the K and Rb light shifts,” Opt. Express 27(11), 16169–16183 (2019).
[Crossref]

Zhang, H.

Y. Chen, W. Quan, S. Zou, Y. Lu, L. Duan, Y. Li, H. Zhang, M. Ding, and J. Fang, “Spin exchange broadening of magnetic resonance lines in a high-sensitivity rotating K-Rb-21Ne co-magnetometer,” Sci. Rep. 6(1), 36547 (2016).
[Crossref]

Zhang, W.

W. Fan, W. Quan, W. Zhang, L. Xing, and G. Liu, “Analysis on the Magnetic Field Response for Nuclear Spin Co-Magnetometer Operated in Spin-Exchange Relaxation-Free Regime,” IEEE Access 7, 28574–28580 (2019).
[Crossref]

Zhang, Y.

Y. Lu, Y. Zhai, Y. Zhang, W. Fan, L. Xing, and W. Quan, “Spin-exchange relaxation of naturally abundant Rb in a K–Rb–21Ne self-compensated atomic comagnetometer,” Chin. Phys. B 29(4), 043204 (2020).
[Crossref]

Zhao, T.

W. Quan, K. Wei, T. Zhao, H. Li, and Y. Zhai, “Synchronous measurement of inertial rotation and magnetic field using a K-Rb-21Ne comagnetometer,” Phys. Rev. A 100(1), 012118 (2019).
[Crossref]

K. Wei, T. Zhao, X. Fang, Y. Zhai, H. Li, and W. Quan, “In-situ measurement of the density ratio of K-Rb hybrid vapor cell using spin-exchange collision mixing of the K and Rb light shifts,” Opt. Express 27(11), 16169–16183 (2019).
[Crossref]

Zou, S.

J. Fang, Y. Chen, Y. Lu, W. Quan, and S. Zou, “Dynamics of Rb and 21Ne spin ensembles interacting by spin exchange with a high Rb magnetic field,” J. Phys. B: At., Mol. Opt. Phys. 49(13), 135002 (2016).
[Crossref]

J. Fang, Y. Chen, S. Zou, X. Liu, Z. Hu, W. Quan, H. Yuan, and M Ding, “Low frequency magnetic field suppression in an atomic spin co-magnetometer with a large electron magnetic field,” J. Phys. B: At., Mol. Opt. Phys. 49(6), 065006 (2016).
[Crossref]

Y. Chen, W. Quan, S. Zou, Y. Lu, L. Duan, Y. Li, H. Zhang, M. Ding, and J. Fang, “Spin exchange broadening of magnetic resonance lines in a high-sensitivity rotating K-Rb-21Ne co-magnetometer,” Sci. Rep. 6(1), 36547 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

S. J. Seltzer and M. V. Romalis, “Unshielded three-axis vector operation of a spin-exchange-relaxation-free atomic magnetometer,” Appl. Phys. Lett. 85(20), 4804–4806 (2004).
[Crossref]

T. W. Kornacka, S. J. Smullin, S. K. Lee, and M. V. Romalis, “A low-noise ferrite magnetic shield,” Appl. Phys. Lett. 90(22), 223501 (2007).
[Crossref]

Chin. Phys. B (2)

Y. Lu, Y. Zhai, Y. Zhang, W. Fan, L. Xing, and W. Quan, “Spin-exchange relaxation of naturally abundant Rb in a K–Rb–21Ne self-compensated atomic comagnetometer,” Chin. Phys. B 29(4), 043204 (2020).
[Crossref]

W. Fan, W. Quan, F. Liu, L. Duan, and G. Liu, “Low drift nuclear spin gyroscope with probe light intensity error suppression,” Chin. Phys. B 28(11), 110701 (2019).
[Crossref]

IEEE Access (1)

W. Fan, W. Quan, W. Zhang, L. Xing, and G. Liu, “Analysis on the Magnetic Field Response for Nuclear Spin Co-Magnetometer Operated in Spin-Exchange Relaxation-Free Regime,” IEEE Access 7, 28574–28580 (2019).
[Crossref]

J. Phys. B: At., Mol. Opt. Phys. (2)

J. Fang, Y. Chen, Y. Lu, W. Quan, and S. Zou, “Dynamics of Rb and 21Ne spin ensembles interacting by spin exchange with a high Rb magnetic field,” J. Phys. B: At., Mol. Opt. Phys. 49(13), 135002 (2016).
[Crossref]

J. Fang, Y. Chen, S. Zou, X. Liu, Z. Hu, W. Quan, H. Yuan, and M Ding, “Low frequency magnetic field suppression in an atomic spin co-magnetometer with a large electron magnetic field,” J. Phys. B: At., Mol. Opt. Phys. 49(6), 065006 (2016).
[Crossref]

Meas. Sci. Technol. (1)

W. Fan, G. Liu, R. Li, W. Quan, L. Jiang, and L. Duan, “A three-axis atomic magnetometer for temperature-dependence measurements of fields in a magnetically shielded environment,” Meas. Sci. Technol. 28(9), 095007 (2017).
[Crossref]

Opt. Express (5)

Phys. Rev. (2)

F. Bloch, W. W. Hansen, and M. Packard, “The Nuclear Induction Experiment,” Phys. Rev. 70(7-8), 474–485 (1946).
[Crossref]

F. Bloch, “Nuclear induction,” Phys. Rev. 70(7-8), 460–474 (1946).
[Crossref]

Phys. Rev. A (5)

W. Quan, K. Wei, T. Zhao, H. Li, and Y. Zhai, “Synchronous measurement of inertial rotation and magnetic field using a K-Rb-21Ne comagnetometer,” Phys. Rev. A 100(1), 012118 (2019).
[Crossref]

I. M. Savukov and M. V. Romalis, “Effects of spin-exchange collisions in a high-density alkali-metal vapor in low magnetic fields,” Phys. Rev. A 71(2), 023405 (2005).
[Crossref]

Y. Chen, W. Quan, L. Duan, Y. Lu, L. Jiang, and J. Fang, “Spin-exchange collision mixing of the K and Rb ac Stark shifts,” Phys. Rev. A 94(5), 052705 (2016).
[Crossref]

S. R. Schaefer, G. D. Cates, T. R. Chien, D. Gonatas, W. Happer, and T. G. Walker, “Frequency shifts of the magnetic-resonance spectrum of mixtures of nuclear spin-polarized noble gases and vapors of spin-polarized alkali-metal atoms,” Phys. Rev. A 39(11), 5613–5623 (1989).
[Crossref]

W. C. Chen, T. R. Gentile, T. G. Walker, and E. Babcock, “Spin-exchange optical pumping of 3He with Rb-K mixtures and pure K,” Phys. Rev. A 75(1), 013416 (2007).
[Crossref]

Phys. Rev. A: At., Mol., Opt. Phys. (1)

S. Appelt, A. B. A. Baranga, C. J. Erickson, M. V. Romalis, A. R. Young, and W. Happer, “Theory of spin-exchange optical pumping of 3He and 129Xe,” Phys. Rev. A: At., Mol., Opt. Phys. 58(2), 1412–1439 (1998).
[Crossref]

Phys. Rev. Appl. (1)

L. Jiang, W. Quan, F. Liu, W. Fan, L. Xing, L. Duan, W. Liu, and J. Fang, “Closed-Loop Control of Compensation Point in the K-Rb-21Ne Comagnetometer,” Phys. Rev. Appl. 12(2), 024017 (2019).
[Crossref]

Phys. Rev. Lett. (9)

M. V. Romalis, “Hybrid Optical Pumping of Optically Dense Alkali-Metal Vapor without Quenching Gas,” Phys. Rev. Lett. 105(24), 243001 (2010).
[Crossref]

E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, L. W. Anderson, F. W. Hersman, and T. G. Walker, “Hybrid spin-exchange optical pumping of 3He,” Phys. Rev. Lett. 91(12), 123003 (2003).
[Crossref]

T. W. Kornack and M. V. Romalis, “Dynamics of Two Overlapping Spin Ensembles Interacting by Spin Exchange,” Phys. Rev. Lett. 89(25), 253002 (2002).
[Crossref]

M. Smiciklas, J. M. Brown, L. W. Cheuk, S. J. Smullin, and M. V. Romalis, “New Test of Local Lorentz Invariance Using a 21Ne-Rb-K Comagnetometer,” Phys. Rev. Lett. 107(17), 171604 (2011).
[Crossref]

F. Allmendinger, W. Heil, S. Karpuk, W. Kilian, A. Scharth, U. Schmidt, A. Schnabel, Y. Sobolev, and K. Tullney, “New Limit on Lorentz-Invariance- and CPT-Violating Neutron Spin Interactions Using a Free-Spin-Precession 3He-129Xe Comagnetometer,” Phys. Rev. Lett. 112(11), 110801 (2014).
[Crossref]

M. Bulatowicz, R. Griffith, M. Larsen, J. Mirijanian, C. B. Fu, E. Smith, W. M. Snow, H. Yan, and T. G. Walker, “Laboratory Search for a Long-Range T-Odd, P-Odd Interaction from Axionlike Particles Using Dual-Species Nuclear Magnetic Resonance with Polarized 129Xe and 131Xe Gas,” Phys. Rev. Lett. 111(10), 102001 (2013).
[Crossref]

W. A. Terrano, E. G. Adelberger, J. G. Lee, and B. R. Heckel, “Short-Range, Spin-Dependent Interactions of Electrons: A Probe for Exotic Pseudo-Goldstone Bosons,” Phys. Rev. Lett. 115(20), 201801 (2015).
[Crossref]

W. Ji, Y. Chen, C. Fu, M. Ding, J. Fang, Z. Xiao, K. Wei, and H. Yan, “New Experimental Limits on Exotic Spin-Spin-Velocity-Dependent Interactions by Using SmCo5 Spin Sources,” Phys. Rev. Lett. 121(26), 261803 (2018).
[Crossref]

T. W. Kornack, R. K. Ghosh, and M. V. Romalis, “Nuclear Spin Gyroscope Based on an Atomic Comagnetometer,” Phys. Rev. Lett. 95(23), 230801 (2005).
[Crossref]

Sci. Rep. (1)

Y. Chen, W. Quan, S. Zou, Y. Lu, L. Duan, Y. Li, H. Zhang, M. Ding, and J. Fang, “Spin exchange broadening of magnetic resonance lines in a high-sensitivity rotating K-Rb-21Ne co-magnetometer,” Sci. Rep. 6(1), 36547 (2016).
[Crossref]

Other (3)

J. M. Brown, “A New Limit on Lorentz- and CPT-Violating Neutron Spin Interactions Using a K-3He Comagnetometer,” Ph.D. thesis, Princeton University (2011).

T. W. Kornack, “A Test of CPT and Lorentz Symmetry Using a K-3He Co-magnetometer,” Ph.D. thesis, Princeton University (2005).

G. Vasilakis, “Precision measurements of spin interactions with high density atomic vapors,” Ph.D. thesis, Princeton University (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. An intuitive model of self-compensation. (a) Alkali-metal and noble-gas atoms achieve polarization equilibriums, and the comagnetometer is set to the self-compensated state with $B_a=-B^c=-(B^n+B^e)$ . (b) In this state, the nuclear polarization ${\boldsymbol {P}}^{\boldsymbol{n}}$ and the magnetization $\boldsymbol{B}^{\boldsymbol{n}}$ can adiabatically follow a slowly changing magnetic field, and $B_x^n$ will cancel the slowly emerging $B_x$ , leaving the electron polarization ${\boldsymbol {P}}^{\boldsymbol{e}}$ unaffected.
Fig. 2.
Fig. 2. Simulation of the dependences of the $B_a{\sim}A$ relationship on various parameters.
Fig. 3.
Fig. 3. Simulation of the $\gamma ^n$ dependence of the $B_a{\sim}A$ relationship. (a) $f=1$ Hz. (b) $f=6$ Hz.
Fig. 4.
Fig. 4. Experimental setup of the K-Rb- $^{21}$ Ne comagnetometer (not to scale). ISO, isolator; NE, noise eater; NI PXI, National Instruments PXI system; PDA, photodiode amplifier; PD, photodetector; PBS, polarizing beam splitter; BE, beam expander; GT, Glan-Thompson polarizer; PEM, photoelastic modulator.
Fig. 5.
Fig. 5. (a) Measurement of the $^{21}$ Ne nuclear magnetic field $\widetilde {B^n}$ at various pump light intensities using the $B_x$ sinusoidal modulation. (b) and (c) are the details of the measurement using the $B_x$ sinusoidal modulation and the fastest decay (FD) methods at $P=46.1$ mW/cm $^2$ and $P=23.4$ mW/cm $^2$ , respectively.
Fig. 6.
Fig. 6. Fitting result of the system response to the $B_y$ square wave modulation at various pump light intensities. The inset is the amplitude-frequency response to the $B_x$ and $B_y$ sinusoidal modulations.
Fig. 7.
Fig. 7. (a) Measurement of the $B_a{\sim}A$ relationship in the frequency range of 0.5 $\sim$ 3 Hz at the pump light intensity of $P=46.1$ mW/cm $^2$ ; the solid lines are fitting results. (b) Simulation of the dependences of $f_c$ on $B^n$ and $B^e$ .
Fig. 8.
Fig. 8. Suppression of the residual magnetic field $\delta B_z$ using the $B_x$ sinusoidal modulation method. Inset (a) shows that the measured $B^n$ by this method gradually approaches the new equilibrium. Inset (b) shows the differences (green triangles) between $B^c$ and $B^n$ , which are measured by the traditional and $B_x$ modulation methods, respectively.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

P e t = γ e Q ( P e ) ( B + B n + L ) × P e + R p ( P K e P e ) + R s e e n ( P n P e ) Q ( P e ) P e [ T 1 e , T 2 e , T 2 e ] ,
P n t = γ n ( B + B e ) × P n + R s e n e ( P e P n ) P n [ T 1 n , T 2 n , T 2 n ] .
P t = M P + N ,
P = ( P x e P y e P x n P y n ) , M = ( R t o t ~ ω e a n R s e e n ~ ω e ω e a n R t o t ~ ω e R s e e n ~ R s e n e ω n R t o t n ω n a e ω n R s e n e ω n a e R t o t n ) , N = ( ω e D n B y ω e D n B x ω n D e B y ω n D e B x ) .
P x e ( t ) = a 4 ( a 2 s i n ω t + a 1 c o s ω t ) a 3 a 5 ( a 2 c o s ω t a 1 s i n ω t ) a 3 ,
A = ( a 1 2 + a 2 2 ) ( a 4 2 + a 5 2 ) a 3 ,
a 1 = ω n D e B x 0 ω e ( ω 2 R t o t ~ R t o t n ω e ω n + ω e a n ω n a e ) + ω e D n B x 0 ( ω 2 ω e a n R t o t n 2 ω e a n + ω e ω n ω n a e ω e a n ω n a e 2 ) , a 2 = ω [ ω n D e B x 0 ω e ( R t o t ~ + R t o t n ) + 2 ω e D n B x 0 R t o t n ω e a n ] , a 3 = a 4 2 + a 5 2 , a 4 = R t o t n 2 ( ω ω ean ) ( ω + ω ean ) + 2 R t o t ~ R t o t n ( 2 ω 2 ω e ω n ) + R t o t ~ 2 ( ω 2 R t o t n 2 ω n a e 2 ) [ ω e ω n + ( ω ω e a n ) ( ω ω n a e ) ] [ ω e ω n + ( ω + ω e a n ) ( ω + ω n a e ) ] , a 5 = 2 ω [ R t o t ~ 2 R t o t n + R t o t n ( ω 2 ω e a n 2 ω e ω n ) + R t o t ~ ( ω 2 ω e ω n ω n a e 2 R t o t n 2 ) ] .
B a = B n L z = B n ~ ,
Δ S = K Δ P x e = K P e R t o t / γ e ( R t o t / γ e ) 2 + ( δ B z + L z ) 2 δ B z B n Δ B y .

Metrics