Abstract

The most common approach to optically generate and manipulate bubbles in liquids involves temperature gradients induced by CW lasers. In this work, we present a method to accomplish both the generation of microbubbles and their 3D manipulation in ethanol through optothermal forces. These forces are triggered by light absorption from a nanosecond pulsed laser (λ = 532 nm) at silver nanoparticles photodeposited at the distal end of a multimode optical fiber. Light absorbed from each laser pulse quickly heats up the silver-ethanol interface beyond the ethanol critical-point (∼ 243 °C) before the heat diffuses through the liquid. Therefore, the liquid achieves a metastable state and owing to spontaneous nucleation converted to a vapor bubble attached to the optical fiber. The bubble grows with semi-spherical shape producing a counterjet in the final stage of the collapse. This jet reaches the hot nanoparticles vaporizing almost immediately and ejecting a microbubble. This microbubble-generation mechanism takes place with every laser pulse (10 kHz repetition rate) leading to the generation of a microbubbles stream. The microbubbles' velocities decrease as they move away from the optical fiber and eventually coalesce forming a larger bubble. The larger bubble is attracted to the optical fiber by the Marangoni force once it reaches a critical size while being continuously fed with each bubble of the microbubbles stream. The balance of the optothermal forces owing to the laser-pulse drives the 3D manipulation of the main bubble. A complete characterization of the trapping conditions is provided in this paper.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic Nanobubbles as Transient Vapor Nanobubbles Generated around Plasmonic Nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
    [Crossref]
  2. D. A. Boyd, J. R. Adleman, D. G. Goodwin, and D. Psaltis, “Chemical Separations by Bubble-Assisted Interphase Mass-Transfer,” Anal. Chem. 80(7), 2452–2456 (2008).
    [Crossref]
  3. G. M Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
    [Crossref]
  4. D. Ahmed, X. Mao, B. K. Juluri, and T. J. Huang, “A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles,” Microfluid. Nanofluid. 7(5), 727–731 (2009).
    [Crossref]
  5. T. H. Wu, Y. Chen, S. Y. Park, J. Hong, T. Teslaa, J. F. Zhong, D. D. Carlo, M. A. Teitelll, and P. Y. Chiou, “Pulsed laser triggered high speed microfluidic fluorescence activated cell sorter,” Lab Chip 12(7), 1378–1383 (2012).
    [Crossref]
  6. L. A. Hardy, J. D. Kennedy, C. R. Wilson, P. B. Irby, and N. M. Fried, “Analysis of thulium fiber laser induced bubble dynamics for ablation of kidney stones,” J. Biophotonics 10(10), 1240–1249 (2017).
    [Crossref]
  7. C. Berrospe, C. W. Visser, S. Schlautmann, D. F. Rivas, and R. Ramos-García, “Toward jet injection by continuous-wave laser cavitation,” J. Biomed. Opt. 22(10), 105003 (2017).
    [Crossref]
  8. J. Kao, X. Wang, J. Warren, J. Xu, and D. Attinger, “A bubble-powered micro-rotor: conception, manufacturing, assembly and characterization,” J. Micromech. Microeng. 17(12), 2454–2460 (2007).
    [Crossref]
  9. A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman, and J. Xu, “Oscillating bubbles: a versatile tool for lab on a chip applications,” Lab Chip 12(21), 4216–4227 (2012).
    [Crossref]
  10. K. Khoshmanesh, A. Almansouri, H. Albloushi, P. Yi, R. Soffe, and K. Kalantar-Zadeh, “A multi-functional bubble-based microfluidic system,” Sci. Rep. 5(1), 9942 (2015).
    [Crossref]
  11. P. Rogers and A. Neild, “Selective particle trapping using an oscillating microbubble,” Lab Chip 11(21), 3710–3715 (2011).
    [Crossref]
  12. Q. Y. You, H. J. Zhang, Y. D. Wang, and J. J. Chen, “Dynamic properties of symmetric optothermal microactuator,” J. Micromech. Microeng. 27(10), 105011 (2017).
    [Crossref]
  13. S. K. Chung, K. Rhee, and S. K. Cho, “Bubble actuation by electrowetting-on-dielectric (EWOD) and its applications: A review,” Int. J. Precis. Eng. Manuf. 11(6), 991–1006 (2010).
    [Crossref]
  14. L. Lin, X. Peng, Z. Mao, W. Li, M. N. Yogeesh, B. B. Rajeeva, E. P. Perillo, A. K. Dunn, D. Akinwande, and Y. Zheng, “Bubble-pen lithography,” Nano Lett. 16(1), 701–708 (2016).
    [Crossref]
  15. S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M.-a. Haga, “Fabrication and placement of a ring structure of nanoparticles by a laser-induced micronanobubble on a gold surface,” Langmuir 27(14), 8605–8610 (2011).
    [Crossref]
  16. O. V. Angelsky, A. Y. Berkshaev, P. P. Maksimyak, A. P. Maksimyak, and S. G. Hanson, “Low-temperature laser-stimulated controllable generation of micro-bubbles in a water suspension of absorptive colloid particles,” Opt. Express 26(11), 13995–14009 (2018).
    [Crossref]
  17. O. V. Angelsky, A. Y. Berkshaev, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and S. M. Kontush, “Controllable generation and manipulation of micro-bubbles in water with absorptive colloid particles by CW laser radiation,” Opt. Express 25(5), 5232–5243 (2017).
    [Crossref]
  18. J. G. Ortega-Mendoza, J. A. Sarabia-Alonso, P. Zaca-Morán, A. Padilla-Vivanco, C. Toxqui-Quitl, I. Rivas-Cambero, J. Ramirez-Ramirez, S. A. Torres-Hurtado, and R. Ramos-García, “Marangoni force-driven manipulation of photothermally-induced microbubbles,” Opt. Express 26(6), 6653–6662 (2018).
    [Crossref]
  19. A. Miniewicz, C. Quintard, H. Orlikowska, and S. Bartkiewicz, “On the origin of the driving force in the Marangoni propelled gas bubble trapping mechanism,” Phys. Chem. Chem. Phys. 19(28), 18695–18703 (2017).
    [Crossref]
  20. J. I. Ramos, “Lumped models of gas bubbles in thermal gradients,” Appl. Math. Model. 21(6), 371–386 (1997).
    [Crossref]
  21. Y. Xie and C. Zhao, “An optothermally generated surface bubble and its applications,” Nanoscale 9(20), 6622–6631 (2017).
    [Crossref]
  22. G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-Heating and Micro-Bubble Generation around Plasmonic Nanoparticles under cw Illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
    [Crossref]
  23. H. Takahira, M. Shirasawa, and S. Yamasaki, “Laser Manipulation of Bubbles and Evaluation of Its Optical Force,” JSME Int. J., Ser. B 43(3), 393–399 (2000).
    [Crossref]
  24. D. Faccio, G. Tamošauskas, E. Rubino, J. Darginavičius, D. G. Papazoglou, S. Tzortzakis, A. Couairon, and A. Dubietis, “Cavitation dynamics and directional microbubble ejection induced by intense femtosecond laser pulses in liquids,” Phys. Rev. E 86(3), 036304 (2012).
    [Crossref]
  25. A. Siems, S. A. Weber, J. Boneberg, and A. Plech, “Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles,” New J. Phys. 13(4), 043018 (2011).
    [Crossref]
  26. O. Supponen, D. Obreschkow, P. Kobel, M. Tinguely, N. Dorsaz, and M. Farhat, “Shock waves from nonspherical cavitation bubbles,” Phys. Rev. Fluids 2(9), 093601 (2017).
    [Crossref]
  27. R. Pimentel-Domínguez, J. Hernández-Cordero, and R. Zenit, “Microbubble generation using fiber optic tips coated with nanoparticles,” Opt. Express 20(8), 8732–8740 (2012).
    [Crossref]
  28. M. Kitz, S. Preisser, A. Wetterwald, M. Jaeger, G. N. Thalmann, and M. Frenz, “Vapor bubble generation around gold nano-particles and its application to damaging of cells,” Biomed. Opt. Express 2(2), 291–304 (2011).
    [Crossref]
  29. A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
    [Crossref]
  30. A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
    [Crossref]
  31. A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-Laser-Induced Nanocavitation in Water: Implications for Optical Breakdown Threshold and Cell Surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
    [Crossref]
  32. W. Hu, K. S. Ishii, and T. A. Ohta, “Micro-assembly using optically controlled bubble microrobots,” Appl. Phys. Lett. 99(9), 094103 (2011).
    [Crossref]
  33. P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
    [Crossref]
  34. P. H. Jones, E. Stride, and N. Saffari, “Trapping and manipulation of microscopic bubbles with a scanning optical tweezer,” Appl. Phys. Lett. 89(8), 081113 (2006).
    [Crossref]
  35. J. G. Ortega-Mendoza, F. Chávez, P. Zaca-Morán, C. Felipe, G. F. Pérez-Sánchez, G. Beltran-Pérez, O. Goiz, and R. Ramos-García, “Selective photodeposition of zinc nanoparticles on the core of a single-mode optical fiber,” Opt. Express 21(5), 6509–6518 (2013).
    [Crossref]
  36. P. Zaca-Morán, E. Kuzin, J. Torres-Turiján, J. G. Ortega-Mendoza, F. Chávez, G. F. Pérez-Sánchez, and L. C. Gómez-Pavón, “High gain pulsed erbium-doped fiber amplifier for the nonlinear characterization of SWCNTs photodeposited on optical fibers,” Opt. Laser Technol. 52, 15–20 (2013).
    [Crossref]
  37. F. Li, R. Gonzalez-Avila, D. M. Nguyen, and C. D. Ohl, “Oscillate boiling from microheaters,” Phys. Rev. Fluids 2(1), 014007 (2017).
    [Crossref]
  38. D. M. Nguyen, L. Hu, J. Miao, and C. D. Ohl, “Oscillate Boiling from Electrical Microheaters,” Phys. Rev. Appl. 10(4), 044064 (2018).
    [Crossref]
  39. J. C. Ramirez-San-Juan, E. Rodriguez-Aboytes, A. E. Martinez-Canton, O. Baldovino-Pantaleon, A. Robledo-Martinez, N. Korneev, and R. Ramos-García, “Time-resolved analysis of cavitation induced by CW lasers in absorbing liquids,” Opt. Express 18(9), 8735–8742 (2010).
    [Crossref]
  40. J. P. Padilla-Martinez, C. Berrospe-Rodriguez, G. Aguilar, J. C. Ramirez-San-Juan, and R. Ramos-García, “Optic cavitation with CW lasers: A Review,” Phys. Fluids 26(12), 122007 (2014).
    [Crossref]
  41. J. H. Lienhard and J. H. Lienhard, A heat transfer textbook (Phlogiston Press, 2017).
  42. J. Wang and M. Fiebig, “Measurement of the thermal diffusivity of aqueous solutions of alcohols by a laser-induced thermal grating technique,” Int. J. Thermophys. 16(6), 1353–1361 (1995).
    [Crossref]
  43. Y. Jiang, S. Pillai, and M. A. Green, “Re-evaluation of literature values of silver optical constants,” Opt. Express 23(3), 2133–2144 (2015).
    [Crossref]
  44. H. Cabrera, J. Akbar, D. Korte, I. Ashraf, E. E. Ramírez-Miquet, E. Marín, and J. Niemela, “Absorption Spectra of Ethanol and Water Using a Photothermal Lens Spectrophotometer,” Appl. Spectrosc. 72(7), 1069–1073 (2018).
    [Crossref]
  45. L. E. John, “Ethanol,” in Encyclopedia of Chemical Technology, Kirk-Othmer, ed. (Wiley, 2004).
  46. P. Lloveras, F. Salvat-Pujol, L. Truskinovsky, and E. Vives, “Boiling crisis as a critical phenomenon,” Phys. Rev. Lett. 108(21), 215701 (2012).
    [Crossref]
  47. R. Maurice., Pertubation effects in cavitation bubble dynamics (California Institute of Technology, 1951).
  48. C. R. Bruce, Nonspherical vapor bubble collapse (California Institute of Technology, 1970).
  49. E. Johnsen and T. Colonius, “Numerical simulations of non-spherical bubble collapse,” J. Fluid Mech. 629, 231–262 (2009).
    [Crossref]
  50. O. Lindau and W. Lauterborn, “Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall,” J. Fluid Mech. 479, 327–348 (2003).
    [Crossref]
  51. C. E. Brennen, Cavitation and Bubble Dynamics (Oxford University, Inc., 1995).
  52. W. M. Haynes, CRC Handbook of Chemistry and Physics (CRC Press, 2017).
  53. C. Lazarus, A. N. Pouliopoulos, M. Tinguely, V. Garbin, and J. J. Choi, “Clustering dynamics of microbubbles exposed to low-pressure 1-MHz ultrasound,” J. Acoust. Soc. Am. 142(5), 3135–3146 (2017).
    [Crossref]
  54. C. D. Ohl, A. Tijink, and A. Prosperetti, “The added mass of an expanding bubble,” J. Fluid Mech. 482, 271–290 (2003).
    [Crossref]
  55. E. Klaseboer, R. Manica, M. H. W. Hendrix, C. D. Ohl, and D. Y. C. Chan, “A force balance model for the motion, impact, and bounce of bubbles,” Phys. Fluids 26(9), 092101 (2014).
    [Crossref]

2018 (4)

2017 (9)

C. Lazarus, A. N. Pouliopoulos, M. Tinguely, V. Garbin, and J. J. Choi, “Clustering dynamics of microbubbles exposed to low-pressure 1-MHz ultrasound,” J. Acoust. Soc. Am. 142(5), 3135–3146 (2017).
[Crossref]

A. Miniewicz, C. Quintard, H. Orlikowska, and S. Bartkiewicz, “On the origin of the driving force in the Marangoni propelled gas bubble trapping mechanism,” Phys. Chem. Chem. Phys. 19(28), 18695–18703 (2017).
[Crossref]

O. V. Angelsky, A. Y. Berkshaev, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and S. M. Kontush, “Controllable generation and manipulation of micro-bubbles in water with absorptive colloid particles by CW laser radiation,” Opt. Express 25(5), 5232–5243 (2017).
[Crossref]

Q. Y. You, H. J. Zhang, Y. D. Wang, and J. J. Chen, “Dynamic properties of symmetric optothermal microactuator,” J. Micromech. Microeng. 27(10), 105011 (2017).
[Crossref]

L. A. Hardy, J. D. Kennedy, C. R. Wilson, P. B. Irby, and N. M. Fried, “Analysis of thulium fiber laser induced bubble dynamics for ablation of kidney stones,” J. Biophotonics 10(10), 1240–1249 (2017).
[Crossref]

C. Berrospe, C. W. Visser, S. Schlautmann, D. F. Rivas, and R. Ramos-García, “Toward jet injection by continuous-wave laser cavitation,” J. Biomed. Opt. 22(10), 105003 (2017).
[Crossref]

Y. Xie and C. Zhao, “An optothermally generated surface bubble and its applications,” Nanoscale 9(20), 6622–6631 (2017).
[Crossref]

O. Supponen, D. Obreschkow, P. Kobel, M. Tinguely, N. Dorsaz, and M. Farhat, “Shock waves from nonspherical cavitation bubbles,” Phys. Rev. Fluids 2(9), 093601 (2017).
[Crossref]

F. Li, R. Gonzalez-Avila, D. M. Nguyen, and C. D. Ohl, “Oscillate boiling from microheaters,” Phys. Rev. Fluids 2(1), 014007 (2017).
[Crossref]

2016 (1)

L. Lin, X. Peng, Z. Mao, W. Li, M. N. Yogeesh, B. B. Rajeeva, E. P. Perillo, A. K. Dunn, D. Akinwande, and Y. Zheng, “Bubble-pen lithography,” Nano Lett. 16(1), 701–708 (2016).
[Crossref]

2015 (2)

K. Khoshmanesh, A. Almansouri, H. Albloushi, P. Yi, R. Soffe, and K. Kalantar-Zadeh, “A multi-functional bubble-based microfluidic system,” Sci. Rep. 5(1), 9942 (2015).
[Crossref]

Y. Jiang, S. Pillai, and M. A. Green, “Re-evaluation of literature values of silver optical constants,” Opt. Express 23(3), 2133–2144 (2015).
[Crossref]

2014 (3)

E. Klaseboer, R. Manica, M. H. W. Hendrix, C. D. Ohl, and D. Y. C. Chan, “A force balance model for the motion, impact, and bounce of bubbles,” Phys. Fluids 26(9), 092101 (2014).
[Crossref]

J. P. Padilla-Martinez, C. Berrospe-Rodriguez, G. Aguilar, J. C. Ramirez-San-Juan, and R. Ramos-García, “Optic cavitation with CW lasers: A Review,” Phys. Fluids 26(12), 122007 (2014).
[Crossref]

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-Heating and Micro-Bubble Generation around Plasmonic Nanoparticles under cw Illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
[Crossref]

2013 (2)

J. G. Ortega-Mendoza, F. Chávez, P. Zaca-Morán, C. Felipe, G. F. Pérez-Sánchez, G. Beltran-Pérez, O. Goiz, and R. Ramos-García, “Selective photodeposition of zinc nanoparticles on the core of a single-mode optical fiber,” Opt. Express 21(5), 6509–6518 (2013).
[Crossref]

P. Zaca-Morán, E. Kuzin, J. Torres-Turiján, J. G. Ortega-Mendoza, F. Chávez, G. F. Pérez-Sánchez, and L. C. Gómez-Pavón, “High gain pulsed erbium-doped fiber amplifier for the nonlinear characterization of SWCNTs photodeposited on optical fibers,” Opt. Laser Technol. 52, 15–20 (2013).
[Crossref]

2012 (5)

A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman, and J. Xu, “Oscillating bubbles: a versatile tool for lab on a chip applications,” Lab Chip 12(21), 4216–4227 (2012).
[Crossref]

D. Faccio, G. Tamošauskas, E. Rubino, J. Darginavičius, D. G. Papazoglou, S. Tzortzakis, A. Couairon, and A. Dubietis, “Cavitation dynamics and directional microbubble ejection induced by intense femtosecond laser pulses in liquids,” Phys. Rev. E 86(3), 036304 (2012).
[Crossref]

R. Pimentel-Domínguez, J. Hernández-Cordero, and R. Zenit, “Microbubble generation using fiber optic tips coated with nanoparticles,” Opt. Express 20(8), 8732–8740 (2012).
[Crossref]

T. H. Wu, Y. Chen, S. Y. Park, J. Hong, T. Teslaa, J. F. Zhong, D. D. Carlo, M. A. Teitelll, and P. Y. Chiou, “Pulsed laser triggered high speed microfluidic fluorescence activated cell sorter,” Lab Chip 12(7), 1378–1383 (2012).
[Crossref]

P. Lloveras, F. Salvat-Pujol, L. Truskinovsky, and E. Vives, “Boiling crisis as a critical phenomenon,” Phys. Rev. Lett. 108(21), 215701 (2012).
[Crossref]

2011 (5)

P. Rogers and A. Neild, “Selective particle trapping using an oscillating microbubble,” Lab Chip 11(21), 3710–3715 (2011).
[Crossref]

S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M.-a. Haga, “Fabrication and placement of a ring structure of nanoparticles by a laser-induced micronanobubble on a gold surface,” Langmuir 27(14), 8605–8610 (2011).
[Crossref]

M. Kitz, S. Preisser, A. Wetterwald, M. Jaeger, G. N. Thalmann, and M. Frenz, “Vapor bubble generation around gold nano-particles and its application to damaging of cells,” Biomed. Opt. Express 2(2), 291–304 (2011).
[Crossref]

A. Siems, S. A. Weber, J. Boneberg, and A. Plech, “Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles,” New J. Phys. 13(4), 043018 (2011).
[Crossref]

W. Hu, K. S. Ishii, and T. A. Ohta, “Micro-assembly using optically controlled bubble microrobots,” Appl. Phys. Lett. 99(9), 094103 (2011).
[Crossref]

2010 (3)

S. K. Chung, K. Rhee, and S. K. Cho, “Bubble actuation by electrowetting-on-dielectric (EWOD) and its applications: A review,” Int. J. Precis. Eng. Manuf. 11(6), 991–1006 (2010).
[Crossref]

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic Nanobubbles as Transient Vapor Nanobubbles Generated around Plasmonic Nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref]

J. C. Ramirez-San-Juan, E. Rodriguez-Aboytes, A. E. Martinez-Canton, O. Baldovino-Pantaleon, A. Robledo-Martinez, N. Korneev, and R. Ramos-García, “Time-resolved analysis of cavitation induced by CW lasers in absorbing liquids,” Opt. Express 18(9), 8735–8742 (2010).
[Crossref]

2009 (2)

E. Johnsen and T. Colonius, “Numerical simulations of non-spherical bubble collapse,” J. Fluid Mech. 629, 231–262 (2009).
[Crossref]

D. Ahmed, X. Mao, B. K. Juluri, and T. J. Huang, “A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles,” Microfluid. Nanofluid. 7(5), 727–731 (2009).
[Crossref]

2008 (2)

D. A. Boyd, J. R. Adleman, D. G. Goodwin, and D. Psaltis, “Chemical Separations by Bubble-Assisted Interphase Mass-Transfer,” Anal. Chem. 80(7), 2452–2456 (2008).
[Crossref]

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-Laser-Induced Nanocavitation in Water: Implications for Optical Breakdown Threshold and Cell Surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[Crossref]

2007 (1)

J. Kao, X. Wang, J. Warren, J. Xu, and D. Attinger, “A bubble-powered micro-rotor: conception, manufacturing, assembly and characterization,” J. Micromech. Microeng. 17(12), 2454–2460 (2007).
[Crossref]

2006 (2)

G. M Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[Crossref]

P. H. Jones, E. Stride, and N. Saffari, “Trapping and manipulation of microscopic bubbles with a scanning optical tweezer,” Appl. Phys. Lett. 89(8), 081113 (2006).
[Crossref]

2005 (1)

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref]

2003 (2)

O. Lindau and W. Lauterborn, “Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall,” J. Fluid Mech. 479, 327–348 (2003).
[Crossref]

C. D. Ohl, A. Tijink, and A. Prosperetti, “The added mass of an expanding bubble,” J. Fluid Mech. 482, 271–290 (2003).
[Crossref]

2000 (1)

H. Takahira, M. Shirasawa, and S. Yamasaki, “Laser Manipulation of Bubbles and Evaluation of Its Optical Force,” JSME Int. J., Ser. B 43(3), 393–399 (2000).
[Crossref]

1999 (1)

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

1997 (1)

J. I. Ramos, “Lumped models of gas bubbles in thermal gradients,” Appl. Math. Model. 21(6), 371–386 (1997).
[Crossref]

1996 (1)

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
[Crossref]

1995 (1)

J. Wang and M. Fiebig, “Measurement of the thermal diffusivity of aqueous solutions of alcohols by a laser-induced thermal grating technique,” Int. J. Thermophys. 16(6), 1353–1361 (1995).
[Crossref]

Adleman, J. R.

D. A. Boyd, J. R. Adleman, D. G. Goodwin, and D. Psaltis, “Chemical Separations by Bubble-Assisted Interphase Mass-Transfer,” Anal. Chem. 80(7), 2452–2456 (2008).
[Crossref]

Aguilar, G.

J. P. Padilla-Martinez, C. Berrospe-Rodriguez, G. Aguilar, J. C. Ramirez-San-Juan, and R. Ramos-García, “Optic cavitation with CW lasers: A Review,” Phys. Fluids 26(12), 122007 (2014).
[Crossref]

Ahmed, D.

D. Ahmed, X. Mao, B. K. Juluri, and T. J. Huang, “A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles,” Microfluid. Nanofluid. 7(5), 727–731 (2009).
[Crossref]

Akbar, J.

Akinwande, D.

L. Lin, X. Peng, Z. Mao, W. Li, M. N. Yogeesh, B. B. Rajeeva, E. P. Perillo, A. K. Dunn, D. Akinwande, and Y. Zheng, “Bubble-pen lithography,” Nano Lett. 16(1), 701–708 (2016).
[Crossref]

Albloushi, H.

K. Khoshmanesh, A. Almansouri, H. Albloushi, P. Yi, R. Soffe, and K. Kalantar-Zadeh, “A multi-functional bubble-based microfluidic system,” Sci. Rep. 5(1), 9942 (2015).
[Crossref]

Almansouri, A.

K. Khoshmanesh, A. Almansouri, H. Albloushi, P. Yi, R. Soffe, and K. Kalantar-Zadeh, “A multi-functional bubble-based microfluidic system,” Sci. Rep. 5(1), 9942 (2015).
[Crossref]

Angelsky, O. V.

Ashraf, I.

Attinger, D.

J. Kao, X. Wang, J. Warren, J. Xu, and D. Attinger, “A bubble-powered micro-rotor: conception, manufacturing, assembly and characterization,” J. Micromech. Microeng. 17(12), 2454–2460 (2007).
[Crossref]

Baffou, G.

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-Heating and Micro-Bubble Generation around Plasmonic Nanoparticles under cw Illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
[Crossref]

Baldovino-Pantaleon, O.

Bartkiewicz, S.

A. Miniewicz, C. Quintard, H. Orlikowska, and S. Bartkiewicz, “On the origin of the driving force in the Marangoni propelled gas bubble trapping mechanism,” Phys. Chem. Chem. Phys. 19(28), 18695–18703 (2017).
[Crossref]

Beltran-Pérez, G.

Berkshaev, A. Y.

Berrospe, C.

C. Berrospe, C. W. Visser, S. Schlautmann, D. F. Rivas, and R. Ramos-García, “Toward jet injection by continuous-wave laser cavitation,” J. Biomed. Opt. 22(10), 105003 (2017).
[Crossref]

Berrospe-Rodriguez, C.

J. P. Padilla-Martinez, C. Berrospe-Rodriguez, G. Aguilar, J. C. Ramirez-San-Juan, and R. Ramos-García, “Optic cavitation with CW lasers: A Review,” Phys. Fluids 26(12), 122007 (2014).
[Crossref]

Birngruber, R.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

Boneberg, J.

A. Siems, S. A. Weber, J. Boneberg, and A. Plech, “Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles,” New J. Phys. 13(4), 043018 (2011).
[Crossref]

Boyd, D. A.

D. A. Boyd, J. R. Adleman, D. G. Goodwin, and D. Psaltis, “Chemical Separations by Bubble-Assisted Interphase Mass-Transfer,” Anal. Chem. 80(7), 2452–2456 (2008).
[Crossref]

Brennen, C. E.

C. E. Brennen, Cavitation and Bubble Dynamics (Oxford University, Inc., 1995).

Bruce, C. R.

C. R. Bruce, Nonspherical vapor bubble collapse (California Institute of Technology, 1970).

Busch, S.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
[Crossref]

Cabrera, H.

Carlo, D. D.

T. H. Wu, Y. Chen, S. Y. Park, J. Hong, T. Teslaa, J. F. Zhong, D. D. Carlo, M. A. Teitelll, and P. Y. Chiou, “Pulsed laser triggered high speed microfluidic fluorescence activated cell sorter,” Lab Chip 12(7), 1378–1383 (2012).
[Crossref]

Chan, D. Y. C.

E. Klaseboer, R. Manica, M. H. W. Hendrix, C. D. Ohl, and D. Y. C. Chan, “A force balance model for the motion, impact, and bounce of bubbles,” Phys. Fluids 26(9), 092101 (2014).
[Crossref]

Chávez, F.

J. G. Ortega-Mendoza, F. Chávez, P. Zaca-Morán, C. Felipe, G. F. Pérez-Sánchez, G. Beltran-Pérez, O. Goiz, and R. Ramos-García, “Selective photodeposition of zinc nanoparticles on the core of a single-mode optical fiber,” Opt. Express 21(5), 6509–6518 (2013).
[Crossref]

P. Zaca-Morán, E. Kuzin, J. Torres-Turiján, J. G. Ortega-Mendoza, F. Chávez, G. F. Pérez-Sánchez, and L. C. Gómez-Pavón, “High gain pulsed erbium-doped fiber amplifier for the nonlinear characterization of SWCNTs photodeposited on optical fibers,” Opt. Laser Technol. 52, 15–20 (2013).
[Crossref]

Chen, J. J.

Q. Y. You, H. J. Zhang, Y. D. Wang, and J. J. Chen, “Dynamic properties of symmetric optothermal microactuator,” J. Micromech. Microeng. 27(10), 105011 (2017).
[Crossref]

Chen, Y.

T. H. Wu, Y. Chen, S. Y. Park, J. Hong, T. Teslaa, J. F. Zhong, D. D. Carlo, M. A. Teitelll, and P. Y. Chiou, “Pulsed laser triggered high speed microfluidic fluorescence activated cell sorter,” Lab Chip 12(7), 1378–1383 (2012).
[Crossref]

Chiou, P. Y.

T. H. Wu, Y. Chen, S. Y. Park, J. Hong, T. Teslaa, J. F. Zhong, D. D. Carlo, M. A. Teitelll, and P. Y. Chiou, “Pulsed laser triggered high speed microfluidic fluorescence activated cell sorter,” Lab Chip 12(7), 1378–1383 (2012).
[Crossref]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref]

Cho, S. K.

S. K. Chung, K. Rhee, and S. K. Cho, “Bubble actuation by electrowetting-on-dielectric (EWOD) and its applications: A review,” Int. J. Precis. Eng. Manuf. 11(6), 991–1006 (2010).
[Crossref]

Choi, J. J.

C. Lazarus, A. N. Pouliopoulos, M. Tinguely, V. Garbin, and J. J. Choi, “Clustering dynamics of microbubbles exposed to low-pressure 1-MHz ultrasound,” J. Acoust. Soc. Am. 142(5), 3135–3146 (2017).
[Crossref]

Chung, S. K.

S. K. Chung, K. Rhee, and S. K. Cho, “Bubble actuation by electrowetting-on-dielectric (EWOD) and its applications: A review,” Int. J. Precis. Eng. Manuf. 11(6), 991–1006 (2010).
[Crossref]

Colonius, T.

E. Johnsen and T. Colonius, “Numerical simulations of non-spherical bubble collapse,” J. Fluid Mech. 629, 231–262 (2009).
[Crossref]

Couairon, A.

D. Faccio, G. Tamošauskas, E. Rubino, J. Darginavičius, D. G. Papazoglou, S. Tzortzakis, A. Couairon, and A. Dubietis, “Cavitation dynamics and directional microbubble ejection induced by intense femtosecond laser pulses in liquids,” Phys. Rev. E 86(3), 036304 (2012).
[Crossref]

Darginavicius, J.

D. Faccio, G. Tamošauskas, E. Rubino, J. Darginavičius, D. G. Papazoglou, S. Tzortzakis, A. Couairon, and A. Dubietis, “Cavitation dynamics and directional microbubble ejection induced by intense femtosecond laser pulses in liquids,” Phys. Rev. E 86(3), 036304 (2012).
[Crossref]

Dorsaz, N.

O. Supponen, D. Obreschkow, P. Kobel, M. Tinguely, N. Dorsaz, and M. Farhat, “Shock waves from nonspherical cavitation bubbles,” Phys. Rev. Fluids 2(9), 093601 (2017).
[Crossref]

Drezek, R. A.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic Nanobubbles as Transient Vapor Nanobubbles Generated around Plasmonic Nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref]

Dubietis, A.

D. Faccio, G. Tamošauskas, E. Rubino, J. Darginavičius, D. G. Papazoglou, S. Tzortzakis, A. Couairon, and A. Dubietis, “Cavitation dynamics and directional microbubble ejection induced by intense femtosecond laser pulses in liquids,” Phys. Rev. E 86(3), 036304 (2012).
[Crossref]

Dunn, A. K.

L. Lin, X. Peng, Z. Mao, W. Li, M. N. Yogeesh, B. B. Rajeeva, E. P. Perillo, A. K. Dunn, D. Akinwande, and Y. Zheng, “Bubble-pen lithography,” Nano Lett. 16(1), 701–708 (2016).
[Crossref]

Faccio, D.

D. Faccio, G. Tamošauskas, E. Rubino, J. Darginavičius, D. G. Papazoglou, S. Tzortzakis, A. Couairon, and A. Dubietis, “Cavitation dynamics and directional microbubble ejection induced by intense femtosecond laser pulses in liquids,” Phys. Rev. E 86(3), 036304 (2012).
[Crossref]

Farhat, M.

O. Supponen, D. Obreschkow, P. Kobel, M. Tinguely, N. Dorsaz, and M. Farhat, “Shock waves from nonspherical cavitation bubbles,” Phys. Rev. Fluids 2(9), 093601 (2017).
[Crossref]

Felipe, C.

Fiebig, M.

J. Wang and M. Fiebig, “Measurement of the thermal diffusivity of aqueous solutions of alcohols by a laser-induced thermal grating technique,” Int. J. Thermophys. 16(6), 1353–1361 (1995).
[Crossref]

Freidank, S.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-Laser-Induced Nanocavitation in Water: Implications for Optical Breakdown Threshold and Cell Surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[Crossref]

Frenz, M.

Fried, N. M.

L. A. Hardy, J. D. Kennedy, C. R. Wilson, P. B. Irby, and N. M. Fried, “Analysis of thulium fiber laser induced bubble dynamics for ablation of kidney stones,” J. Biophotonics 10(10), 1240–1249 (2017).
[Crossref]

Fujii, S.

S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M.-a. Haga, “Fabrication and placement of a ring structure of nanoparticles by a laser-induced micronanobubble on a gold surface,” Langmuir 27(14), 8605–8610 (2011).
[Crossref]

Garbin, V.

C. Lazarus, A. N. Pouliopoulos, M. Tinguely, V. Garbin, and J. J. Choi, “Clustering dynamics of microbubbles exposed to low-pressure 1-MHz ultrasound,” J. Acoust. Soc. Am. 142(5), 3135–3146 (2017).
[Crossref]

Goiz, O.

Gómez-Pavón, L. C.

P. Zaca-Morán, E. Kuzin, J. Torres-Turiján, J. G. Ortega-Mendoza, F. Chávez, G. F. Pérez-Sánchez, and L. C. Gómez-Pavón, “High gain pulsed erbium-doped fiber amplifier for the nonlinear characterization of SWCNTs photodeposited on optical fibers,” Opt. Laser Technol. 52, 15–20 (2013).
[Crossref]

Gonzalez-Avila, R.

F. Li, R. Gonzalez-Avila, D. M. Nguyen, and C. D. Ohl, “Oscillate boiling from microheaters,” Phys. Rev. Fluids 2(1), 014007 (2017).
[Crossref]

Goodwin, D. G.

D. A. Boyd, J. R. Adleman, D. G. Goodwin, and D. Psaltis, “Chemical Separations by Bubble-Assisted Interphase Mass-Transfer,” Anal. Chem. 80(7), 2452–2456 (2008).
[Crossref]

Green, M. A.

Hafner, J. H.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic Nanobubbles as Transient Vapor Nanobubbles Generated around Plasmonic Nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref]

Haga, M.-a.

S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M.-a. Haga, “Fabrication and placement of a ring structure of nanoparticles by a laser-induced micronanobubble on a gold surface,” Langmuir 27(14), 8605–8610 (2011).
[Crossref]

Hammer, D. X.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

Hanson, S. G.

Hardy, L. A.

L. A. Hardy, J. D. Kennedy, C. R. Wilson, P. B. Irby, and N. M. Fried, “Analysis of thulium fiber laser induced bubble dynamics for ablation of kidney stones,” J. Biophotonics 10(10), 1240–1249 (2017).
[Crossref]

Hashmi, A.

A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman, and J. Xu, “Oscillating bubbles: a versatile tool for lab on a chip applications,” Lab Chip 12(21), 4216–4227 (2012).
[Crossref]

Haynes, W. M.

W. M. Haynes, CRC Handbook of Chemistry and Physics (CRC Press, 2017).

Heiman, G.

A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman, and J. Xu, “Oscillating bubbles: a versatile tool for lab on a chip applications,” Lab Chip 12(21), 4216–4227 (2012).
[Crossref]

Hendrix, M. H. W.

E. Klaseboer, R. Manica, M. H. W. Hendrix, C. D. Ohl, and D. Y. C. Chan, “A force balance model for the motion, impact, and bounce of bubbles,” Phys. Fluids 26(9), 092101 (2014).
[Crossref]

Hernández-Cordero, J.

Hong, J.

T. H. Wu, Y. Chen, S. Y. Park, J. Hong, T. Teslaa, J. F. Zhong, D. D. Carlo, M. A. Teitelll, and P. Y. Chiou, “Pulsed laser triggered high speed microfluidic fluorescence activated cell sorter,” Lab Chip 12(7), 1378–1383 (2012).
[Crossref]

Hu, L.

D. M. Nguyen, L. Hu, J. Miao, and C. D. Ohl, “Oscillate Boiling from Electrical Microheaters,” Phys. Rev. Appl. 10(4), 044064 (2018).
[Crossref]

Hu, W.

W. Hu, K. S. Ishii, and T. A. Ohta, “Micro-assembly using optically controlled bubble microrobots,” Appl. Phys. Lett. 99(9), 094103 (2011).
[Crossref]

Hu, Y.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic Nanobubbles as Transient Vapor Nanobubbles Generated around Plasmonic Nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref]

Huang, T. J.

D. Ahmed, X. Mao, B. K. Juluri, and T. J. Huang, “A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles,” Microfluid. Nanofluid. 7(5), 727–731 (2009).
[Crossref]

Irby, P. B.

L. A. Hardy, J. D. Kennedy, C. R. Wilson, P. B. Irby, and N. M. Fried, “Analysis of thulium fiber laser induced bubble dynamics for ablation of kidney stones,” J. Biophotonics 10(10), 1240–1249 (2017).
[Crossref]

Ishii, K. S.

W. Hu, K. S. Ishii, and T. A. Ohta, “Micro-assembly using optically controlled bubble microrobots,” Appl. Phys. Lett. 99(9), 094103 (2011).
[Crossref]

Jaeger, M.

Jiang, Y.

John, L. E.

L. E. John, “Ethanol,” in Encyclopedia of Chemical Technology, Kirk-Othmer, ed. (Wiley, 2004).

Johnsen, E.

E. Johnsen and T. Colonius, “Numerical simulations of non-spherical bubble collapse,” J. Fluid Mech. 629, 231–262 (2009).
[Crossref]

Jones, P. H.

P. H. Jones, E. Stride, and N. Saffari, “Trapping and manipulation of microscopic bubbles with a scanning optical tweezer,” Appl. Phys. Lett. 89(8), 081113 (2006).
[Crossref]

Juluri, B. K.

D. Ahmed, X. Mao, B. K. Juluri, and T. J. Huang, “A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles,” Microfluid. Nanofluid. 7(5), 727–731 (2009).
[Crossref]

Kalantar-Zadeh, K.

K. Khoshmanesh, A. Almansouri, H. Albloushi, P. Yi, R. Soffe, and K. Kalantar-Zadeh, “A multi-functional bubble-based microfluidic system,” Sci. Rep. 5(1), 9942 (2015).
[Crossref]

Kanaizuka, K.

S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M.-a. Haga, “Fabrication and placement of a ring structure of nanoparticles by a laser-induced micronanobubble on a gold surface,” Langmuir 27(14), 8605–8610 (2011).
[Crossref]

Kao, J.

J. Kao, X. Wang, J. Warren, J. Xu, and D. Attinger, “A bubble-powered micro-rotor: conception, manufacturing, assembly and characterization,” J. Micromech. Microeng. 17(12), 2454–2460 (2007).
[Crossref]

Kennedy, J. D.

L. A. Hardy, J. D. Kennedy, C. R. Wilson, P. B. Irby, and N. M. Fried, “Analysis of thulium fiber laser induced bubble dynamics for ablation of kidney stones,” J. Biophotonics 10(10), 1240–1249 (2017).
[Crossref]

Khoshmanesh, K.

K. Khoshmanesh, A. Almansouri, H. Albloushi, P. Yi, R. Soffe, and K. Kalantar-Zadeh, “A multi-functional bubble-based microfluidic system,” Sci. Rep. 5(1), 9942 (2015).
[Crossref]

Kitz, M.

Klaseboer, E.

E. Klaseboer, R. Manica, M. H. W. Hendrix, C. D. Ohl, and D. Y. C. Chan, “A force balance model for the motion, impact, and bounce of bubbles,” Phys. Fluids 26(9), 092101 (2014).
[Crossref]

Kobayashi, K.

S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M.-a. Haga, “Fabrication and placement of a ring structure of nanoparticles by a laser-induced micronanobubble on a gold surface,” Langmuir 27(14), 8605–8610 (2011).
[Crossref]

Kobel, P.

O. Supponen, D. Obreschkow, P. Kobel, M. Tinguely, N. Dorsaz, and M. Farhat, “Shock waves from nonspherical cavitation bubbles,” Phys. Rev. Fluids 2(9), 093601 (2017).
[Crossref]

Kontush, S. M.

Korneev, N.

Korte, D.

Kuzin, E.

P. Zaca-Morán, E. Kuzin, J. Torres-Turiján, J. G. Ortega-Mendoza, F. Chávez, G. F. Pérez-Sánchez, and L. C. Gómez-Pavón, “High gain pulsed erbium-doped fiber amplifier for the nonlinear characterization of SWCNTs photodeposited on optical fibers,” Opt. Laser Technol. 52, 15–20 (2013).
[Crossref]

Lapotko, D. O.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic Nanobubbles as Transient Vapor Nanobubbles Generated around Plasmonic Nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref]

Latterini, L.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic Nanobubbles as Transient Vapor Nanobubbles Generated around Plasmonic Nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref]

Lauterborn, W.

O. Lindau and W. Lauterborn, “Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall,” J. Fluid Mech. 479, 327–348 (2003).
[Crossref]

Lazarus, C.

C. Lazarus, A. N. Pouliopoulos, M. Tinguely, V. Garbin, and J. J. Choi, “Clustering dynamics of microbubbles exposed to low-pressure 1-MHz ultrasound,” J. Acoust. Soc. Am. 142(5), 3135–3146 (2017).
[Crossref]

Lee, S.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic Nanobubbles as Transient Vapor Nanobubbles Generated around Plasmonic Nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref]

Li, F.

F. Li, R. Gonzalez-Avila, D. M. Nguyen, and C. D. Ohl, “Oscillate boiling from microheaters,” Phys. Rev. Fluids 2(1), 014007 (2017).
[Crossref]

Li, W.

L. Lin, X. Peng, Z. Mao, W. Li, M. N. Yogeesh, B. B. Rajeeva, E. P. Perillo, A. K. Dunn, D. Akinwande, and Y. Zheng, “Bubble-pen lithography,” Nano Lett. 16(1), 701–708 (2016).
[Crossref]

Lienhard, J. H.

J. H. Lienhard and J. H. Lienhard, A heat transfer textbook (Phlogiston Press, 2017).

J. H. Lienhard and J. H. Lienhard, A heat transfer textbook (Phlogiston Press, 2017).

Lin, L.

L. Lin, X. Peng, Z. Mao, W. Li, M. N. Yogeesh, B. B. Rajeeva, E. P. Perillo, A. K. Dunn, D. Akinwande, and Y. Zheng, “Bubble-pen lithography,” Nano Lett. 16(1), 701–708 (2016).
[Crossref]

Lindau, O.

O. Lindau and W. Lauterborn, “Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall,” J. Fluid Mech. 479, 327–348 (2003).
[Crossref]

Linz, N.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-Laser-Induced Nanocavitation in Water: Implications for Optical Breakdown Threshold and Cell Surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[Crossref]

Lloveras, P.

P. Lloveras, F. Salvat-Pujol, L. Truskinovsky, and E. Vives, “Boiling crisis as a critical phenomenon,” Phys. Rev. Lett. 108(21), 215701 (2012).
[Crossref]

Lukianova-Hleb, E.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic Nanobubbles as Transient Vapor Nanobubbles Generated around Plasmonic Nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref]

Maksimyak, A. P.

Maksimyak, P. P.

Manica, R.

E. Klaseboer, R. Manica, M. H. W. Hendrix, C. D. Ohl, and D. Y. C. Chan, “A force balance model for the motion, impact, and bounce of bubbles,” Phys. Fluids 26(9), 092101 (2014).
[Crossref]

Mao, X.

D. Ahmed, X. Mao, B. K. Juluri, and T. J. Huang, “A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles,” Microfluid. Nanofluid. 7(5), 727–731 (2009).
[Crossref]

Mao, Z.

L. Lin, X. Peng, Z. Mao, W. Li, M. N. Yogeesh, B. B. Rajeeva, E. P. Perillo, A. K. Dunn, D. Akinwande, and Y. Zheng, “Bubble-pen lithography,” Nano Lett. 16(1), 701–708 (2016).
[Crossref]

Marín, E.

Martinez-Canton, A. E.

Maurice, R.

R. Maurice., Pertubation effects in cavitation bubble dynamics (California Institute of Technology, 1951).

Miao, J.

D. M. Nguyen, L. Hu, J. Miao, and C. D. Ohl, “Oscillate Boiling from Electrical Microheaters,” Phys. Rev. Appl. 10(4), 044064 (2018).
[Crossref]

Miniewicz, A.

A. Miniewicz, C. Quintard, H. Orlikowska, and S. Bartkiewicz, “On the origin of the driving force in the Marangoni propelled gas bubble trapping mechanism,” Phys. Chem. Chem. Phys. 19(28), 18695–18703 (2017).
[Crossref]

Monneret, S.

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-Heating and Micro-Bubble Generation around Plasmonic Nanoparticles under cw Illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
[Crossref]

Muneyuki, E.

S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M.-a. Haga, “Fabrication and placement of a ring structure of nanoparticles by a laser-induced micronanobubble on a gold surface,” Langmuir 27(14), 8605–8610 (2011).
[Crossref]

Nahen, K.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

Neild, A.

P. Rogers and A. Neild, “Selective particle trapping using an oscillating microbubble,” Lab Chip 11(21), 3710–3715 (2011).
[Crossref]

Nguyen, D. M.

D. M. Nguyen, L. Hu, J. Miao, and C. D. Ohl, “Oscillate Boiling from Electrical Microheaters,” Phys. Rev. Appl. 10(4), 044064 (2018).
[Crossref]

F. Li, R. Gonzalez-Avila, D. M. Nguyen, and C. D. Ohl, “Oscillate boiling from microheaters,” Phys. Rev. Fluids 2(1), 014007 (2017).
[Crossref]

Niemela, J.

Noack, J.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

Noojin, G. D.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

Obreschkow, D.

O. Supponen, D. Obreschkow, P. Kobel, M. Tinguely, N. Dorsaz, and M. Farhat, “Shock waves from nonspherical cavitation bubbles,” Phys. Rev. Fluids 2(9), 093601 (2017).
[Crossref]

Ohl, C. D.

D. M. Nguyen, L. Hu, J. Miao, and C. D. Ohl, “Oscillate Boiling from Electrical Microheaters,” Phys. Rev. Appl. 10(4), 044064 (2018).
[Crossref]

F. Li, R. Gonzalez-Avila, D. M. Nguyen, and C. D. Ohl, “Oscillate boiling from microheaters,” Phys. Rev. Fluids 2(1), 014007 (2017).
[Crossref]

E. Klaseboer, R. Manica, M. H. W. Hendrix, C. D. Ohl, and D. Y. C. Chan, “A force balance model for the motion, impact, and bounce of bubbles,” Phys. Fluids 26(9), 092101 (2014).
[Crossref]

C. D. Ohl, A. Tijink, and A. Prosperetti, “The added mass of an expanding bubble,” J. Fluid Mech. 482, 271–290 (2003).
[Crossref]

Ohta, A. T.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref]

Ohta, T. A.

W. Hu, K. S. Ishii, and T. A. Ohta, “Micro-assembly using optically controlled bubble microrobots,” Appl. Phys. Lett. 99(9), 094103 (2011).
[Crossref]

Orlikowska, H.

A. Miniewicz, C. Quintard, H. Orlikowska, and S. Bartkiewicz, “On the origin of the driving force in the Marangoni propelled gas bubble trapping mechanism,” Phys. Chem. Chem. Phys. 19(28), 18695–18703 (2017).
[Crossref]

Ortega-Mendoza, J. G.

Padilla-Martinez, J. P.

J. P. Padilla-Martinez, C. Berrospe-Rodriguez, G. Aguilar, J. C. Ramirez-San-Juan, and R. Ramos-García, “Optic cavitation with CW lasers: A Review,” Phys. Fluids 26(12), 122007 (2014).
[Crossref]

Padilla-Vivanco, A.

Paltauf, G.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-Laser-Induced Nanocavitation in Water: Implications for Optical Breakdown Threshold and Cell Surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[Crossref]

Papazoglou, D. G.

D. Faccio, G. Tamošauskas, E. Rubino, J. Darginavičius, D. G. Papazoglou, S. Tzortzakis, A. Couairon, and A. Dubietis, “Cavitation dynamics and directional microbubble ejection induced by intense femtosecond laser pulses in liquids,” Phys. Rev. E 86(3), 036304 (2012).
[Crossref]

Park, S. Y.

T. H. Wu, Y. Chen, S. Y. Park, J. Hong, T. Teslaa, J. F. Zhong, D. D. Carlo, M. A. Teitelll, and P. Y. Chiou, “Pulsed laser triggered high speed microfluidic fluorescence activated cell sorter,” Lab Chip 12(7), 1378–1383 (2012).
[Crossref]

Parlitz, U.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
[Crossref]

Peng, X.

L. Lin, X. Peng, Z. Mao, W. Li, M. N. Yogeesh, B. B. Rajeeva, E. P. Perillo, A. K. Dunn, D. Akinwande, and Y. Zheng, “Bubble-pen lithography,” Nano Lett. 16(1), 701–708 (2016).
[Crossref]

Pérez-Sánchez, G. F.

P. Zaca-Morán, E. Kuzin, J. Torres-Turiján, J. G. Ortega-Mendoza, F. Chávez, G. F. Pérez-Sánchez, and L. C. Gómez-Pavón, “High gain pulsed erbium-doped fiber amplifier for the nonlinear characterization of SWCNTs photodeposited on optical fibers,” Opt. Laser Technol. 52, 15–20 (2013).
[Crossref]

J. G. Ortega-Mendoza, F. Chávez, P. Zaca-Morán, C. Felipe, G. F. Pérez-Sánchez, G. Beltran-Pérez, O. Goiz, and R. Ramos-García, “Selective photodeposition of zinc nanoparticles on the core of a single-mode optical fiber,” Opt. Express 21(5), 6509–6518 (2013).
[Crossref]

Perillo, E. P.

L. Lin, X. Peng, Z. Mao, W. Li, M. N. Yogeesh, B. B. Rajeeva, E. P. Perillo, A. K. Dunn, D. Akinwande, and Y. Zheng, “Bubble-pen lithography,” Nano Lett. 16(1), 701–708 (2016).
[Crossref]

Pillai, S.

Pimentel-Domínguez, R.

Plech, A.

A. Siems, S. A. Weber, J. Boneberg, and A. Plech, “Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles,” New J. Phys. 13(4), 043018 (2011).
[Crossref]

Polleux, J.

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-Heating and Micro-Bubble Generation around Plasmonic Nanoparticles under cw Illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
[Crossref]

Pouliopoulos, A. N.

C. Lazarus, A. N. Pouliopoulos, M. Tinguely, V. Garbin, and J. J. Choi, “Clustering dynamics of microbubbles exposed to low-pressure 1-MHz ultrasound,” J. Acoust. Soc. Am. 142(5), 3135–3146 (2017).
[Crossref]

Preisser, S.

Prosperetti, A.

C. D. Ohl, A. Tijink, and A. Prosperetti, “The added mass of an expanding bubble,” J. Fluid Mech. 482, 271–290 (2003).
[Crossref]

Psaltis, D.

D. A. Boyd, J. R. Adleman, D. G. Goodwin, and D. Psaltis, “Chemical Separations by Bubble-Assisted Interphase Mass-Transfer,” Anal. Chem. 80(7), 2452–2456 (2008).
[Crossref]

Quintard, C.

A. Miniewicz, C. Quintard, H. Orlikowska, and S. Bartkiewicz, “On the origin of the driving force in the Marangoni propelled gas bubble trapping mechanism,” Phys. Chem. Chem. Phys. 19(28), 18695–18703 (2017).
[Crossref]

Rajeeva, B. B.

L. Lin, X. Peng, Z. Mao, W. Li, M. N. Yogeesh, B. B. Rajeeva, E. P. Perillo, A. K. Dunn, D. Akinwande, and Y. Zheng, “Bubble-pen lithography,” Nano Lett. 16(1), 701–708 (2016).
[Crossref]

Ramírez-Miquet, E. E.

Ramirez-Ramirez, J.

Ramirez-San-Juan, J. C.

Ramos, J. I.

J. I. Ramos, “Lumped models of gas bubbles in thermal gradients,” Appl. Math. Model. 21(6), 371–386 (1997).
[Crossref]

Ramos-García, R.

Reilly-Collette, M.

A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman, and J. Xu, “Oscillating bubbles: a versatile tool for lab on a chip applications,” Lab Chip 12(21), 4216–4227 (2012).
[Crossref]

Rhee, K.

S. K. Chung, K. Rhee, and S. K. Cho, “Bubble actuation by electrowetting-on-dielectric (EWOD) and its applications: A review,” Int. J. Precis. Eng. Manuf. 11(6), 991–1006 (2010).
[Crossref]

Rigneault, H.

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-Heating and Micro-Bubble Generation around Plasmonic Nanoparticles under cw Illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
[Crossref]

Rivas, D. F.

C. Berrospe, C. W. Visser, S. Schlautmann, D. F. Rivas, and R. Ramos-García, “Toward jet injection by continuous-wave laser cavitation,” J. Biomed. Opt. 22(10), 105003 (2017).
[Crossref]

Rivas-Cambero, I.

Robledo-Martinez, A.

Rockwell, B. A.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

Rodriguez-Aboytes, E.

Rogers, P.

P. Rogers and A. Neild, “Selective particle trapping using an oscillating microbubble,” Lab Chip 11(21), 3710–3715 (2011).
[Crossref]

Rubino, E.

D. Faccio, G. Tamošauskas, E. Rubino, J. Darginavičius, D. G. Papazoglou, S. Tzortzakis, A. Couairon, and A. Dubietis, “Cavitation dynamics and directional microbubble ejection induced by intense femtosecond laser pulses in liquids,” Phys. Rev. E 86(3), 036304 (2012).
[Crossref]

Saffari, N.

P. H. Jones, E. Stride, and N. Saffari, “Trapping and manipulation of microscopic bubbles with a scanning optical tweezer,” Appl. Phys. Lett. 89(8), 081113 (2006).
[Crossref]

Salvat-Pujol, F.

P. Lloveras, F. Salvat-Pujol, L. Truskinovsky, and E. Vives, “Boiling crisis as a critical phenomenon,” Phys. Rev. Lett. 108(21), 215701 (2012).
[Crossref]

Sarabia-Alonso, J. A.

Schlautmann, S.

C. Berrospe, C. W. Visser, S. Schlautmann, D. F. Rivas, and R. Ramos-García, “Toward jet injection by continuous-wave laser cavitation,” J. Biomed. Opt. 22(10), 105003 (2017).
[Crossref]

Shirasawa, M.

H. Takahira, M. Shirasawa, and S. Yamasaki, “Laser Manipulation of Bubbles and Evaluation of Its Optical Force,” JSME Int. J., Ser. B 43(3), 393–399 (2000).
[Crossref]

Siems, A.

A. Siems, S. A. Weber, J. Boneberg, and A. Plech, “Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles,” New J. Phys. 13(4), 043018 (2011).
[Crossref]

Soffe, R.

K. Khoshmanesh, A. Almansouri, H. Albloushi, P. Yi, R. Soffe, and K. Kalantar-Zadeh, “A multi-functional bubble-based microfluidic system,” Sci. Rep. 5(1), 9942 (2015).
[Crossref]

Stride, E.

P. H. Jones, E. Stride, and N. Saffari, “Trapping and manipulation of microscopic bubbles with a scanning optical tweezer,” Appl. Phys. Lett. 89(8), 081113 (2006).
[Crossref]

Supponen, O.

O. Supponen, D. Obreschkow, P. Kobel, M. Tinguely, N. Dorsaz, and M. Farhat, “Shock waves from nonspherical cavitation bubbles,” Phys. Rev. Fluids 2(9), 093601 (2017).
[Crossref]

Takahira, H.

H. Takahira, M. Shirasawa, and S. Yamasaki, “Laser Manipulation of Bubbles and Evaluation of Its Optical Force,” JSME Int. J., Ser. B 43(3), 393–399 (2000).
[Crossref]

Tamošauskas, G.

D. Faccio, G. Tamošauskas, E. Rubino, J. Darginavičius, D. G. Papazoglou, S. Tzortzakis, A. Couairon, and A. Dubietis, “Cavitation dynamics and directional microbubble ejection induced by intense femtosecond laser pulses in liquids,” Phys. Rev. E 86(3), 036304 (2012).
[Crossref]

Tarpani, L.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic Nanobubbles as Transient Vapor Nanobubbles Generated around Plasmonic Nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref]

Teitelll, M. A.

T. H. Wu, Y. Chen, S. Y. Park, J. Hong, T. Teslaa, J. F. Zhong, D. D. Carlo, M. A. Teitelll, and P. Y. Chiou, “Pulsed laser triggered high speed microfluidic fluorescence activated cell sorter,” Lab Chip 12(7), 1378–1383 (2012).
[Crossref]

Teslaa, T.

T. H. Wu, Y. Chen, S. Y. Park, J. Hong, T. Teslaa, J. F. Zhong, D. D. Carlo, M. A. Teitelll, and P. Y. Chiou, “Pulsed laser triggered high speed microfluidic fluorescence activated cell sorter,” Lab Chip 12(7), 1378–1383 (2012).
[Crossref]

Thalmann, G. N.

Theisen, D.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

Tijink, A.

C. D. Ohl, A. Tijink, and A. Prosperetti, “The added mass of an expanding bubble,” J. Fluid Mech. 482, 271–290 (2003).
[Crossref]

Tinguely, M.

C. Lazarus, A. N. Pouliopoulos, M. Tinguely, V. Garbin, and J. J. Choi, “Clustering dynamics of microbubbles exposed to low-pressure 1-MHz ultrasound,” J. Acoust. Soc. Am. 142(5), 3135–3146 (2017).
[Crossref]

O. Supponen, D. Obreschkow, P. Kobel, M. Tinguely, N. Dorsaz, and M. Farhat, “Shock waves from nonspherical cavitation bubbles,” Phys. Rev. Fluids 2(9), 093601 (2017).
[Crossref]

Torres-Hurtado, S. A.

Torres-Turiján, J.

P. Zaca-Morán, E. Kuzin, J. Torres-Turiján, J. G. Ortega-Mendoza, F. Chávez, G. F. Pérez-Sánchez, and L. C. Gómez-Pavón, “High gain pulsed erbium-doped fiber amplifier for the nonlinear characterization of SWCNTs photodeposited on optical fibers,” Opt. Laser Technol. 52, 15–20 (2013).
[Crossref]

Toxqui-Quitl, C.

Toyabe, S.

S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M.-a. Haga, “Fabrication and placement of a ring structure of nanoparticles by a laser-induced micronanobubble on a gold surface,” Langmuir 27(14), 8605–8610 (2011).
[Crossref]

Truskinovsky, L.

P. Lloveras, F. Salvat-Pujol, L. Truskinovsky, and E. Vives, “Boiling crisis as a critical phenomenon,” Phys. Rev. Lett. 108(21), 215701 (2012).
[Crossref]

Tzortzakis, S.

D. Faccio, G. Tamošauskas, E. Rubino, J. Darginavičius, D. G. Papazoglou, S. Tzortzakis, A. Couairon, and A. Dubietis, “Cavitation dynamics and directional microbubble ejection induced by intense femtosecond laser pulses in liquids,” Phys. Rev. E 86(3), 036304 (2012).
[Crossref]

Visser, C. W.

C. Berrospe, C. W. Visser, S. Schlautmann, D. F. Rivas, and R. Ramos-García, “Toward jet injection by continuous-wave laser cavitation,” J. Biomed. Opt. 22(10), 105003 (2017).
[Crossref]

Vives, E.

P. Lloveras, F. Salvat-Pujol, L. Truskinovsky, and E. Vives, “Boiling crisis as a critical phenomenon,” Phys. Rev. Lett. 108(21), 215701 (2012).
[Crossref]

Vogel, A.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-Laser-Induced Nanocavitation in Water: Implications for Optical Breakdown Threshold and Cell Surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[Crossref]

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
[Crossref]

Wang, J.

J. Wang and M. Fiebig, “Measurement of the thermal diffusivity of aqueous solutions of alcohols by a laser-induced thermal grating technique,” Int. J. Thermophys. 16(6), 1353–1361 (1995).
[Crossref]

Wang, X.

J. Kao, X. Wang, J. Warren, J. Xu, and D. Attinger, “A bubble-powered micro-rotor: conception, manufacturing, assembly and characterization,” J. Micromech. Microeng. 17(12), 2454–2460 (2007).
[Crossref]

Wang, Y. D.

Q. Y. You, H. J. Zhang, Y. D. Wang, and J. J. Chen, “Dynamic properties of symmetric optothermal microactuator,” J. Micromech. Microeng. 27(10), 105011 (2017).
[Crossref]

Warren, J.

J. Kao, X. Wang, J. Warren, J. Xu, and D. Attinger, “A bubble-powered micro-rotor: conception, manufacturing, assembly and characterization,” J. Micromech. Microeng. 17(12), 2454–2460 (2007).
[Crossref]

Weber, S. A.

A. Siems, S. A. Weber, J. Boneberg, and A. Plech, “Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles,” New J. Phys. 13(4), 043018 (2011).
[Crossref]

Wetterwald, A.

Whitesides, G. M

G. M Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[Crossref]

Wilson, C. R.

L. A. Hardy, J. D. Kennedy, C. R. Wilson, P. B. Irby, and N. M. Fried, “Analysis of thulium fiber laser induced bubble dynamics for ablation of kidney stones,” J. Biophotonics 10(10), 1240–1249 (2017).
[Crossref]

Wu, M. C.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref]

Wu, T. H.

T. H. Wu, Y. Chen, S. Y. Park, J. Hong, T. Teslaa, J. F. Zhong, D. D. Carlo, M. A. Teitelll, and P. Y. Chiou, “Pulsed laser triggered high speed microfluidic fluorescence activated cell sorter,” Lab Chip 12(7), 1378–1383 (2012).
[Crossref]

Xie, Y.

Y. Xie and C. Zhao, “An optothermally generated surface bubble and its applications,” Nanoscale 9(20), 6622–6631 (2017).
[Crossref]

Xu, J.

A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman, and J. Xu, “Oscillating bubbles: a versatile tool for lab on a chip applications,” Lab Chip 12(21), 4216–4227 (2012).
[Crossref]

J. Kao, X. Wang, J. Warren, J. Xu, and D. Attinger, “A bubble-powered micro-rotor: conception, manufacturing, assembly and characterization,” J. Micromech. Microeng. 17(12), 2454–2460 (2007).
[Crossref]

Yamasaki, S.

H. Takahira, M. Shirasawa, and S. Yamasaki, “Laser Manipulation of Bubbles and Evaluation of Its Optical Force,” JSME Int. J., Ser. B 43(3), 393–399 (2000).
[Crossref]

Yi, P.

K. Khoshmanesh, A. Almansouri, H. Albloushi, P. Yi, R. Soffe, and K. Kalantar-Zadeh, “A multi-functional bubble-based microfluidic system,” Sci. Rep. 5(1), 9942 (2015).
[Crossref]

Yogeesh, M. N.

L. Lin, X. Peng, Z. Mao, W. Li, M. N. Yogeesh, B. B. Rajeeva, E. P. Perillo, A. K. Dunn, D. Akinwande, and Y. Zheng, “Bubble-pen lithography,” Nano Lett. 16(1), 701–708 (2016).
[Crossref]

You, Q. Y.

Q. Y. You, H. J. Zhang, Y. D. Wang, and J. J. Chen, “Dynamic properties of symmetric optothermal microactuator,” J. Micromech. Microeng. 27(10), 105011 (2017).
[Crossref]

Yu, G.

A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman, and J. Xu, “Oscillating bubbles: a versatile tool for lab on a chip applications,” Lab Chip 12(21), 4216–4227 (2012).
[Crossref]

Zaca-Morán, P.

Zenit, R.

Zhang, H. J.

Q. Y. You, H. J. Zhang, Y. D. Wang, and J. J. Chen, “Dynamic properties of symmetric optothermal microactuator,” J. Micromech. Microeng. 27(10), 105011 (2017).
[Crossref]

Zhao, C.

Y. Xie and C. Zhao, “An optothermally generated surface bubble and its applications,” Nanoscale 9(20), 6622–6631 (2017).
[Crossref]

Zheng, Y.

L. Lin, X. Peng, Z. Mao, W. Li, M. N. Yogeesh, B. B. Rajeeva, E. P. Perillo, A. K. Dunn, D. Akinwande, and Y. Zheng, “Bubble-pen lithography,” Nano Lett. 16(1), 701–708 (2016).
[Crossref]

Zhong, J. F.

T. H. Wu, Y. Chen, S. Y. Park, J. Hong, T. Teslaa, J. F. Zhong, D. D. Carlo, M. A. Teitelll, and P. Y. Chiou, “Pulsed laser triggered high speed microfluidic fluorescence activated cell sorter,” Lab Chip 12(7), 1378–1383 (2012).
[Crossref]

ACS Nano (1)

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic Nanobubbles as Transient Vapor Nanobubbles Generated around Plasmonic Nanoparticles,” ACS Nano 4(4), 2109–2123 (2010).
[Crossref]

Anal. Chem. (1)

D. A. Boyd, J. R. Adleman, D. G. Goodwin, and D. Psaltis, “Chemical Separations by Bubble-Assisted Interphase Mass-Transfer,” Anal. Chem. 80(7), 2452–2456 (2008).
[Crossref]

Appl. Math. Model. (1)

J. I. Ramos, “Lumped models of gas bubbles in thermal gradients,” Appl. Math. Model. 21(6), 371–386 (1997).
[Crossref]

Appl. Phys. B (1)

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68(2), 271–280 (1999).
[Crossref]

Appl. Phys. Lett. (2)

W. Hu, K. S. Ishii, and T. A. Ohta, “Micro-assembly using optically controlled bubble microrobots,” Appl. Phys. Lett. 99(9), 094103 (2011).
[Crossref]

P. H. Jones, E. Stride, and N. Saffari, “Trapping and manipulation of microscopic bubbles with a scanning optical tweezer,” Appl. Phys. Lett. 89(8), 081113 (2006).
[Crossref]

Appl. Spectrosc. (1)

Biomed. Opt. Express (1)

Int. J. Precis. Eng. Manuf. (1)

S. K. Chung, K. Rhee, and S. K. Cho, “Bubble actuation by electrowetting-on-dielectric (EWOD) and its applications: A review,” Int. J. Precis. Eng. Manuf. 11(6), 991–1006 (2010).
[Crossref]

Int. J. Thermophys. (1)

J. Wang and M. Fiebig, “Measurement of the thermal diffusivity of aqueous solutions of alcohols by a laser-induced thermal grating technique,” Int. J. Thermophys. 16(6), 1353–1361 (1995).
[Crossref]

J. Acoust. Soc. Am. (2)

C. Lazarus, A. N. Pouliopoulos, M. Tinguely, V. Garbin, and J. J. Choi, “Clustering dynamics of microbubbles exposed to low-pressure 1-MHz ultrasound,” J. Acoust. Soc. Am. 142(5), 3135–3146 (2017).
[Crossref]

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100(1), 148–165 (1996).
[Crossref]

J. Biomed. Opt. (1)

C. Berrospe, C. W. Visser, S. Schlautmann, D. F. Rivas, and R. Ramos-García, “Toward jet injection by continuous-wave laser cavitation,” J. Biomed. Opt. 22(10), 105003 (2017).
[Crossref]

J. Biophotonics (1)

L. A. Hardy, J. D. Kennedy, C. R. Wilson, P. B. Irby, and N. M. Fried, “Analysis of thulium fiber laser induced bubble dynamics for ablation of kidney stones,” J. Biophotonics 10(10), 1240–1249 (2017).
[Crossref]

J. Fluid Mech. (3)

E. Johnsen and T. Colonius, “Numerical simulations of non-spherical bubble collapse,” J. Fluid Mech. 629, 231–262 (2009).
[Crossref]

O. Lindau and W. Lauterborn, “Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall,” J. Fluid Mech. 479, 327–348 (2003).
[Crossref]

C. D. Ohl, A. Tijink, and A. Prosperetti, “The added mass of an expanding bubble,” J. Fluid Mech. 482, 271–290 (2003).
[Crossref]

J. Micromech. Microeng. (2)

Q. Y. You, H. J. Zhang, Y. D. Wang, and J. J. Chen, “Dynamic properties of symmetric optothermal microactuator,” J. Micromech. Microeng. 27(10), 105011 (2017).
[Crossref]

J. Kao, X. Wang, J. Warren, J. Xu, and D. Attinger, “A bubble-powered micro-rotor: conception, manufacturing, assembly and characterization,” J. Micromech. Microeng. 17(12), 2454–2460 (2007).
[Crossref]

J. Phys. Chem. C (1)

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-Heating and Micro-Bubble Generation around Plasmonic Nanoparticles under cw Illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
[Crossref]

JSME Int. J., Ser. B (1)

H. Takahira, M. Shirasawa, and S. Yamasaki, “Laser Manipulation of Bubbles and Evaluation of Its Optical Force,” JSME Int. J., Ser. B 43(3), 393–399 (2000).
[Crossref]

Lab Chip (3)

A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman, and J. Xu, “Oscillating bubbles: a versatile tool for lab on a chip applications,” Lab Chip 12(21), 4216–4227 (2012).
[Crossref]

T. H. Wu, Y. Chen, S. Y. Park, J. Hong, T. Teslaa, J. F. Zhong, D. D. Carlo, M. A. Teitelll, and P. Y. Chiou, “Pulsed laser triggered high speed microfluidic fluorescence activated cell sorter,” Lab Chip 12(7), 1378–1383 (2012).
[Crossref]

P. Rogers and A. Neild, “Selective particle trapping using an oscillating microbubble,” Lab Chip 11(21), 3710–3715 (2011).
[Crossref]

Langmuir (1)

S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M.-a. Haga, “Fabrication and placement of a ring structure of nanoparticles by a laser-induced micronanobubble on a gold surface,” Langmuir 27(14), 8605–8610 (2011).
[Crossref]

Microfluid. Nanofluid. (1)

D. Ahmed, X. Mao, B. K. Juluri, and T. J. Huang, “A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles,” Microfluid. Nanofluid. 7(5), 727–731 (2009).
[Crossref]

Nano Lett. (1)

L. Lin, X. Peng, Z. Mao, W. Li, M. N. Yogeesh, B. B. Rajeeva, E. P. Perillo, A. K. Dunn, D. Akinwande, and Y. Zheng, “Bubble-pen lithography,” Nano Lett. 16(1), 701–708 (2016).
[Crossref]

Nanoscale (1)

Y. Xie and C. Zhao, “An optothermally generated surface bubble and its applications,” Nanoscale 9(20), 6622–6631 (2017).
[Crossref]

Nature (2)

G. M Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[Crossref]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref]

New J. Phys. (1)

A. Siems, S. A. Weber, J. Boneberg, and A. Plech, “Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles,” New J. Phys. 13(4), 043018 (2011).
[Crossref]

Opt. Express (7)

R. Pimentel-Domínguez, J. Hernández-Cordero, and R. Zenit, “Microbubble generation using fiber optic tips coated with nanoparticles,” Opt. Express 20(8), 8732–8740 (2012).
[Crossref]

J. G. Ortega-Mendoza, F. Chávez, P. Zaca-Morán, C. Felipe, G. F. Pérez-Sánchez, G. Beltran-Pérez, O. Goiz, and R. Ramos-García, “Selective photodeposition of zinc nanoparticles on the core of a single-mode optical fiber,” Opt. Express 21(5), 6509–6518 (2013).
[Crossref]

Y. Jiang, S. Pillai, and M. A. Green, “Re-evaluation of literature values of silver optical constants,” Opt. Express 23(3), 2133–2144 (2015).
[Crossref]

O. V. Angelsky, A. Y. Berkshaev, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and S. M. Kontush, “Controllable generation and manipulation of micro-bubbles in water with absorptive colloid particles by CW laser radiation,” Opt. Express 25(5), 5232–5243 (2017).
[Crossref]

J. G. Ortega-Mendoza, J. A. Sarabia-Alonso, P. Zaca-Morán, A. Padilla-Vivanco, C. Toxqui-Quitl, I. Rivas-Cambero, J. Ramirez-Ramirez, S. A. Torres-Hurtado, and R. Ramos-García, “Marangoni force-driven manipulation of photothermally-induced microbubbles,” Opt. Express 26(6), 6653–6662 (2018).
[Crossref]

O. V. Angelsky, A. Y. Berkshaev, P. P. Maksimyak, A. P. Maksimyak, and S. G. Hanson, “Low-temperature laser-stimulated controllable generation of micro-bubbles in a water suspension of absorptive colloid particles,” Opt. Express 26(11), 13995–14009 (2018).
[Crossref]

J. C. Ramirez-San-Juan, E. Rodriguez-Aboytes, A. E. Martinez-Canton, O. Baldovino-Pantaleon, A. Robledo-Martinez, N. Korneev, and R. Ramos-García, “Time-resolved analysis of cavitation induced by CW lasers in absorbing liquids,” Opt. Express 18(9), 8735–8742 (2010).
[Crossref]

Opt. Laser Technol. (1)

P. Zaca-Morán, E. Kuzin, J. Torres-Turiján, J. G. Ortega-Mendoza, F. Chávez, G. F. Pérez-Sánchez, and L. C. Gómez-Pavón, “High gain pulsed erbium-doped fiber amplifier for the nonlinear characterization of SWCNTs photodeposited on optical fibers,” Opt. Laser Technol. 52, 15–20 (2013).
[Crossref]

Phys. Chem. Chem. Phys. (1)

A. Miniewicz, C. Quintard, H. Orlikowska, and S. Bartkiewicz, “On the origin of the driving force in the Marangoni propelled gas bubble trapping mechanism,” Phys. Chem. Chem. Phys. 19(28), 18695–18703 (2017).
[Crossref]

Phys. Fluids (2)

E. Klaseboer, R. Manica, M. H. W. Hendrix, C. D. Ohl, and D. Y. C. Chan, “A force balance model for the motion, impact, and bounce of bubbles,” Phys. Fluids 26(9), 092101 (2014).
[Crossref]

J. P. Padilla-Martinez, C. Berrospe-Rodriguez, G. Aguilar, J. C. Ramirez-San-Juan, and R. Ramos-García, “Optic cavitation with CW lasers: A Review,” Phys. Fluids 26(12), 122007 (2014).
[Crossref]

Phys. Rev. Appl. (1)

D. M. Nguyen, L. Hu, J. Miao, and C. D. Ohl, “Oscillate Boiling from Electrical Microheaters,” Phys. Rev. Appl. 10(4), 044064 (2018).
[Crossref]

Phys. Rev. E (1)

D. Faccio, G. Tamošauskas, E. Rubino, J. Darginavičius, D. G. Papazoglou, S. Tzortzakis, A. Couairon, and A. Dubietis, “Cavitation dynamics and directional microbubble ejection induced by intense femtosecond laser pulses in liquids,” Phys. Rev. E 86(3), 036304 (2012).
[Crossref]

Phys. Rev. Fluids (2)

O. Supponen, D. Obreschkow, P. Kobel, M. Tinguely, N. Dorsaz, and M. Farhat, “Shock waves from nonspherical cavitation bubbles,” Phys. Rev. Fluids 2(9), 093601 (2017).
[Crossref]

F. Li, R. Gonzalez-Avila, D. M. Nguyen, and C. D. Ohl, “Oscillate boiling from microheaters,” Phys. Rev. Fluids 2(1), 014007 (2017).
[Crossref]

Phys. Rev. Lett. (2)

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-Laser-Induced Nanocavitation in Water: Implications for Optical Breakdown Threshold and Cell Surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[Crossref]

P. Lloveras, F. Salvat-Pujol, L. Truskinovsky, and E. Vives, “Boiling crisis as a critical phenomenon,” Phys. Rev. Lett. 108(21), 215701 (2012).
[Crossref]

Sci. Rep. (1)

K. Khoshmanesh, A. Almansouri, H. Albloushi, P. Yi, R. Soffe, and K. Kalantar-Zadeh, “A multi-functional bubble-based microfluidic system,” Sci. Rep. 5(1), 9942 (2015).
[Crossref]

Other (6)

L. E. John, “Ethanol,” in Encyclopedia of Chemical Technology, Kirk-Othmer, ed. (Wiley, 2004).

C. E. Brennen, Cavitation and Bubble Dynamics (Oxford University, Inc., 1995).

W. M. Haynes, CRC Handbook of Chemistry and Physics (CRC Press, 2017).

R. Maurice., Pertubation effects in cavitation bubble dynamics (California Institute of Technology, 1951).

C. R. Bruce, Nonspherical vapor bubble collapse (California Institute of Technology, 1970).

J. H. Lienhard and J. H. Lienhard, A heat transfer textbook (Phlogiston Press, 2017).

Supplementary Material (2)

NameDescription
» Visualization 1       Trapping and 3D manipulation of a microbubble by an optical fiber emitting in -z and +z direction
» Visualization 2       The main-bubble moves in +z direction whereas the bubble stream does it in -z direction

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Experimental setup for the generation and 3D manipulation of microbubbles. A pulsed laser is coupled to the multimode optical fiber using a microscope objective (MO). Bubbles dynamics are viewed with a fast Phantom camera. (b) Image of the distal end of the multimode optical fiber obtained with a SEM after 3.5 dB of attenuation was achieved. (c) Closer view of the optical fiber core showed on (b).
Fig. 2.
Fig. 2. Growth of the main-bubble as a function of time. (a) Snapshots of the temporal evolution of the main-bubble radius recorded at 6,600 fps. (b) Blue dots correspond to the measured from the video main-bubble radius. The continuous blue line is fit to a double exponential function. The lower horizontal axis represents the number of coalesced bubbles and the upper one the corresponding elapsed time. The red solid line indicates the calculated radius of the main-bubble as a function of microbubbles generated at 2.1 µJ per pulse-energy at a repetition rate of 10 kHz.
Fig. 3.
Fig. 3. (a) Profile of the bubble’s velocity as a function of the laser energy, extracted from recorded images at 43,000 fps. Continuous lines are fit to an exponential function. (b) Snapshot of the tracers and bubbles when a 2.6 µJ of laser energy was used. White circles and white squares indicate the tracer and bubble displacement, respectively. Both the bubble and the tracer start from the same position at t = 50 µs, however, the bubble moves faster as time goes on.
Fig. 4.
Fig. 4. (a) Snapshot of the optothermal generation of microbubbles: (i) maximum bubble size, (ii) bubble collapse, (iii) bubble ejection, (iv-vi) bubble moves away from the optical fiber. (b) 4.2 µJ of laser-pulse energy. (i) Maximum cavitation bubble. (ii-iv) Temporal evolution of the remaining bubble. (v) Bright spots represent scatter laser-light due to AgNPs picked up by the video-camera. (vi) Bubble ejection due to the counterjet. The frame rate in all cases was 43,000 fps.
Fig. 5.
Fig. 5. Temperature profile at the AgNPs-ethanol interface obtained by solving the heat diffusion equation coupled to the Navier-Stokes equations using COMSOL Multiphysics. The phase explosion is more likely to occur around Tc ∼243 °C (continuous red line). The temperature increase at the interface is a linear function of the laser energy. Color solid lines represent the temporal profile of the temperature at the AgNPs-ethanol interface due to light absorption. The blue broken line represents the temporal profile of one laser pulse. The pink double-dot line represents the pure ethanol boiling temperature Tb ∼ 78 °C.
Fig. 6.
Fig. 6. (a) Free-body diagram of the forces involved in the main-bubble manipulation. (b) Total force over a main-bubble of R = 131 µm illuminated with pulses of 3.7 µJ of energy as a function of the propagation axis.
Fig. 7.
Fig. 7. Spatial displacement of the main-bubble Visualization 2. (a) The main-bubble moves in + z direction whereas the bubbles-stream does it in -z direction. (b) Total force over a main-bubble around the quasi-steady-state trapping distance for bubbles of different radii. Total force over a bubble of 129.5 µm of radius (red triangles), 131 µm of radius (blue dots) and 132.5 µm of radius (green squares) obtaining quasi-steady-state trapping at -430.2 µm, -439.7 µm and -451.4µm, respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

τ r τ c ( 1 + 0.205 γ ) ,
τ c 0.915 ρ l P P v R m a x ,
F M = 2 π R 2 T d σ d T ,
F T = F b ± F M F d F i ,

Metrics