Abstract

We present a design of a tunable terahertz (THz) filter (TTF) used in an indoor communication system. The unit cell of TTF is composed of ring-shaped and cross-shaped nanostructures. By utilizing the micro-electro-mechanical system (MEMS) technique to modify the height between the ring-shaped and cross-shaped nanostructures in the incident transverse electric (TE) mode, the resonant frequencies can be tuned from 0.530 THz to 0.760 THz, which covers an atmospheric window from 0.625 THz to 0.725 THz for indoor wireless optical communication applications. This design of TTF provides an effective approach to select and filter specific signals. It makes the data processing more flexible at the transmission end of the communication system. Furthermore, such a TTF design can be realized the commercialization of communication system components due to its integrated circuit (IC) process compatibility, miniaturization and high flexibility.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Cherry, “Edholm’s law of bandwidth,” IEEE Spectrum 41(7), 58–60 (2004).
    [Crossref]
  2. T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
    [Crossref]
  3. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  4. T. Kürner and S. Priebe, “Towards THz communications - Status in research, standardization and regulation,” J. Infrared, Millimeter, Terahertz Waves 35(1), 53–62 (2014).
    [Crossref]
  5. G. Fettweis, F. Guderian, and S. Krone, “Entering the path towards terabit/s wireless links,” in 2011 Design, Automation & Test in Europe (2011), pp. 1–6.
  6. T. Kürner, “Towards Future THz Communications Systems,” Terahertz Sci. Technol. 5(1), 11–17 (2012).
  7. J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
    [Crossref]
  8. Y. Niu, Y. Li, D. Jin, L. Su, and A. V. Vasilakos, “A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges,” Wireless Netw. 21(8), 2657–2676 (2015).
    [Crossref]
  9. A. Hirata, H. Takahashi, R. Yamaguchi, T. Kosugi, K. Murata, T. Nagatsuma, N. Kukutsu, and Y. Kado, “Transmission characteristics of 120-GHz-band wireless link using radio-on-fiber technologies,” J. Lightwave Technol. 26(15), 2338–2344 (2008).
    [Crossref]
  10. A. Hirata, R. Yamaguchi, T. Kosugi, H. Takahashi, K. Murata, T. Nagatsuma, N. Kukutsu, Y. Kado, N. Iai, S. Okabe, S. Kimura, H. Ikegawa, H. Nishikawa, T. Nakayama, and T. Inada, “10-Gbit/s wireless link using InP HEMT MMICs for generating 120-GHz-band millimeter-wave signal,” IEEE Trans. Microwave Theory Tech. 57(5), 1102–1109 (2009).
    [Crossref]
  11. J. Takeuchi, A. Hirata, H. Takahashi, and N. Kukutsu, “10-Gbit/s bi-directional and 20-Gbit/s uni-directional data transmission over a 120-GHz-band wireless link using a finline ortho-mode transducer,” in 2010 Asia-Pacific Microwave Conference (2010), pp. 195–198.
  12. U. R. Pfeiffer, E. Öjefors, and Y. Zhao, “A SiGe quadrature transmitter and receiver chipset for emerging high-frequency applications at 160 GHz,” in 2010 IEEE International Solid-State Circuits Conference-(ISSCC) (2010), pp. 416–417.
  13. C. Wang, C. Lin, Q. Chen, X. Deng, and J. Zhang, “0.14 THz high speed data communication over 1.5 kilometers,” in 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves (2012), pp. 1–2.
  14. G. Ducournau, P. Szriftgiser, D. Bacquet, A. Beck, T. Akalin, E. Peytavit, M. Zaknoune, and J. F. Lampin, “Optically power supplied Gbit/s wireless hotspot using 1.55 m THz photomixer and heterodyne detection at 200 GHz,” Electron. Lett. 46(19), 1349–1351 (2010).
    [Crossref]
  15. I. Kallfass, J. Antes, T. Schneider, F. Kurz, D. Lopez-Diaz, S. Diebold, H. Massler, A. Leuther, and A. Tessmann, “All active MMIC-based wireless communication at 220 GHz,” IEEE Trans. Terahertz Sci. Technol. 1(2), 477–487 (2011).
    [Crossref]
  16. S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
    [Crossref]
  17. H. J. Song, K. Ajito, A. Hirata, A. Wakatsuki, Y. Muramoto, T. Furuta, N. Kukutsu, T. Nagatsuma, and Y. Kado, “8Gbit/s wireless data transmission at 250 GHz,” Electron. Lett. 45(22), 1121–1122 (2009).
    [Crossref]
  18. E. G. Turitsyna and S. Webb, “Simple design of FBG-based VSB filters for ultra-dense WDM transmission ELECTRONICS LETTERS 20th January 2005,” Electron. Lett. 41(2), 89 (2005).
    [Crossref]
  19. R. Piesiewicz, M. Jacob, M. Koch, J. Schoebel, and T. Kürner, “Performance analysis of future multigigabit wireless communication systems at THz frequencies with highly directive antennas in realistic indoor environments,” IEEE J. Sel. Top. Quantum Electron. 14(2), 421–430 (2008).
    [Crossref]
  20. T. Nagatsuma, H.-J. Song, Y. Fujimoto, K. Miyake, A. Hirata, K. Ajito, A. Wakatsuki, T. Furuta, N. Kukutsu, and Y. Kado, “Giga-bit wireless link using 300–400 GHz bands,” in 2009 International Topical Meeting on Microwave Photonics (2009), pp. 1–4.
  21. T. Nagatsuma, K. Kato, and J. Hesler, “Enabling technologies for real-time 50-Gbit/s wireless transmission at 300 GHz,” in Proceedings of the Second Annual International Conference on Nanoscale Computing and Communication (2015), pp. 1–5.
  22. H. J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “24Gbit/s data transmission in 300 GHz band for future terahertz communications,” Electron. Lett. 48(15), 953–954 (2012).
    [Crossref]
  23. T. Nagatsuma, “Generating millimeter and terahertz waves by photonics for communications and sensing,” in 2013 IEEE MTT-S International Microwave Symposium Digest (MTT) (2013), pp. 1–3.
  24. T. Nagatsuma, T. Kurokawa, M. Sonoda, T. Ishibashi, M. Shimizu, and K. Kato, “600-GHz-band waveguide-output uni-traveling-carrier photodiodes and their applications to wireless communication,” in 2018 IEEE/MTT-S International Microwave Symposium-IMS (2018), pp. 1180–1183.
  25. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
    [Crossref]
  26. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
    [Crossref]
  27. W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
    [Crossref]
  28. A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express 21(7), 9144 (2013).
    [Crossref]
  29. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
    [Crossref]
  30. E. Plum, V. A. Fedotov, and N. I. Zheludev, “Optical activity in extrinsically chiral metamaterial,” Appl. Phys. Lett. 93(19), 191911 (2008).
    [Crossref]
  31. W. Panpradit, A. Sonsilphong, C. Soemphol, and N. Wongkasem, “High negative refractive index in chiral metamaterials,” J. Opt. 14(7), 075101 (2012).
    [Crossref]
  32. S. Misra, L. Li, J. Jian, J. Huang, X. Wang, D. Zemlyanov, J. W. Jang, F. H. Ribeiro, and H. Wang, “Tailorable Au Nanoparticles Embedded in Epitaxial TiO2 Thin Films for Tunable Optical Properties,” ACS Appl. Mater. Interfaces 10(38), 32895–32902 (2018).
    [Crossref]
  33. D. M. Wu, M. L. Solomon, G. V. Naik, A. García-Etxarri, M. Lawrence, A. Salleo, and J. A. Dionne, “Chemically Responsive Elastomers Exhibiting Unity-Order Refractive Index Modulation,” Adv. Mater. 30(7), 1703912 (2018).
    [Crossref]
  34. C. Yuan, X. Mu, C. K. Dunn, J. Haidar, T. Wang, and H. Jerry Qi, “Thermomechanically Triggered Two-Stage Pattern Switching of 2D Lattices for Adaptive Structures,” Adv. Funct. Mater. 28(18), 1705727 (2018).
    [Crossref]
  35. B. J. Roxworthy and V. A. Aksyuk, “Electrically tunable plasmomechanical oscillators for localized modulation, transduction, and amplification,” Optica 5(1), 71–79 (2018).
    [Crossref]
  36. P. Cheben, R. Halir, J. H. Schmid, H. A. Atwater, and D. R. Smith, “Subwavelength integrated photonics,” Nature 560(7720), 565–572 (2018).
    [Crossref]
  37. B. Gerislioglu and A. Ahmadivand, “Functional Charge Transfer Plasmon Metadevices,” Research (Washington, DC, U. S.) 2020, 1–18 (2020).
    [Crossref]
  38. A. Ahmadivand, B. Gerislioglu, and Z. Ramezani, “Gated graphene island-enabled tunable charge transfer plasmon terahertz metamodulator,” Nanoscale 11(17), 8091–8095 (2019).
    [Crossref]
  39. B. Gerislioglu, A. Ahmadivand, and N. Pala, “Tunable plasmonic toroidal terahertz metamodulator,” Phys. Rev. B 97(16), 161405 (2018).
    [Crossref]
  40. C. R. Lee, S. H. Lin, S. M. Wang, J. De Lin, Y. S. Chen, M. C. Hsu, J. K. Liu, T. S. Mo, and C. Y. Huang, “Optically controllable photonic crystals and passively tunable terahertz metamaterials using dye-doped liquid crystal cells,” J. Mater. Chem. C 6(18), 4959–4966 (2018).
    [Crossref]
  41. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
    [Crossref]
  42. H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
    [Crossref]
  43. Z. Liu, C.-Y. Huang, H. Liu, X. Zhang, and C. Lee, “Resonance enhancement of terahertz metamaterials by liquid crystals/indium tin oxide interfaces,” Opt. Express 21(5), 6519–6525 (2013).
    [Crossref]
  44. S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2(3), 275–279 (2014).
    [Crossref]
  45. D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, and W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express 19(10), 9968–9975 (2011).
    [Crossref]
  46. O. Paul, C. Imhof, B. Lägel, S. Wolff, J. Heinrich, S. Höfling, A. Forchel, R. Zengerle, R. Beigang, and M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 17(2), 819–827 (2009).
    [Crossref]
  47. N. Chen, D. Hasan, C. P. Ho, and C. Lee, “Graphene Tunable Plasmon–Phonon Coupling in Mid-IR Complementary Metamaterial,” Adv. Mater. Technol. 3(5), 1800014 (2018).
    [Crossref]
  48. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
    [Crossref]
  49. M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
    [Crossref]
  50. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO 2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
    [Crossref]
  51. H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79(24), 241108 (2009).
    [Crossref]
  52. R. Singh, A. K. Azad, Q. X. Jia, A. J. Taylor, and H.-T. Chen, “Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates,” Opt. Lett. 36(7), 1230–1232 (2011).
    [Crossref]
  53. L. Kang, Q. Zhao, H. Zhao, and J. Zhou, “Magnetically tunable negative permeability metamaterial composed by split ring resonators and ferrite rods,” Opt. Express 16(12), 8825–8834 (2008).
    [Crossref]
  54. H. Zhao, J. Zhou, L. Kang, and Q. Zhao, “Tunable two-dimensional left-handed material consisting of ferrite rods and metallic wires,” Opt. Express 17(16), 13373–13380 (2009).
    [Crossref]
  55. Z. Ren, Y. Chang, Y. Ma, K. Shih, B. Dong, and C. Lee, “Leveraging of MEMS Technologies for Optical Metamaterials Applications,” Adv. Opt. Mater. 8(3), 1900653 (2020).
    [Crossref]
  56. M. Manjappa, P. Pitchappa, N. Wang, C. Lee, and R. Singh, “Active Control of Resonant Cloaking in a Terahertz MEMS Metamaterial,” Adv. Opt. Mater. 6(16), 1800141 (2018).
    [Crossref]
  57. Z. Xu and Y. S. Lin, “A Stretchable Terahertz Parabolic-Shaped Metamaterial,” Adv. Opt. Mater. 7(19), 1900379 (2019).
    [Crossref]
  58. Z. Xu, Z. Lin, S. Cheng, and Y.-S. Lin, “Reconfigurable and tunable terahertz wrench-shape metamaterial performing programmable characteristic,” Opt. Lett. 44(16), 3944–3947 (2019).
    [Crossref]
  59. M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
    [Crossref]
  60. W.-F. Chiang, Y.-T. Hsieh, S.-H. Wang, H.-Y. Miao, J.-H. Liu, and C.-Y. Huang, “Effect of swelling of a photoresist on electromagnetic resonance of terahertz metamaterials,” Opt. Lett. 41(12), 2879–2882 (2016).
    [Crossref]
  61. P. Liu, Z. Liang, Z. Lin, Z. Xu, R. Xu, D. Yao, and Y. S. Lin, “Actively tunable terahertz chain-link metamaterial with bidirectional polarization-dependent characteristic,” Sci. Rep. 9(1), 1–8 (2019).
    [Crossref]
  62. J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. MacHulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt. 51(28), 6789–6798 (2012).
    [Crossref]
  63. J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microwave Theory Tech. 53(4), 1451–1461 (2005).
    [Crossref]
  64. C. M. Soukoulis, M. Kafesaki, and E. N. Economou, “Negative-index materials: New frontiers in optics,” Adv. Mater. 18(15), 1941–1952 (2006).
    [Crossref]
  65. T. Klar, M. Perner, S. Grosse, G. Von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).
    [Crossref]
  66. A. Ahmadivand, R. Sinha, B. Gerislioglu, M. Karabiyik, N. Pala, and M. Shur, “Transition from capacitive coupling to direct charge transfer in asymmetric terahertz plasmonic assemblies,” Opt. Lett. 41(22), 5333–5336 (2016).
    [Crossref]

2020 (2)

B. Gerislioglu and A. Ahmadivand, “Functional Charge Transfer Plasmon Metadevices,” Research (Washington, DC, U. S.) 2020, 1–18 (2020).
[Crossref]

Z. Ren, Y. Chang, Y. Ma, K. Shih, B. Dong, and C. Lee, “Leveraging of MEMS Technologies for Optical Metamaterials Applications,” Adv. Opt. Mater. 8(3), 1900653 (2020).
[Crossref]

2019 (4)

P. Liu, Z. Liang, Z. Lin, Z. Xu, R. Xu, D. Yao, and Y. S. Lin, “Actively tunable terahertz chain-link metamaterial with bidirectional polarization-dependent characteristic,” Sci. Rep. 9(1), 1–8 (2019).
[Crossref]

Z. Xu and Y. S. Lin, “A Stretchable Terahertz Parabolic-Shaped Metamaterial,” Adv. Opt. Mater. 7(19), 1900379 (2019).
[Crossref]

Z. Xu, Z. Lin, S. Cheng, and Y.-S. Lin, “Reconfigurable and tunable terahertz wrench-shape metamaterial performing programmable characteristic,” Opt. Lett. 44(16), 3944–3947 (2019).
[Crossref]

A. Ahmadivand, B. Gerislioglu, and Z. Ramezani, “Gated graphene island-enabled tunable charge transfer plasmon terahertz metamodulator,” Nanoscale 11(17), 8091–8095 (2019).
[Crossref]

2018 (11)

B. Gerislioglu, A. Ahmadivand, and N. Pala, “Tunable plasmonic toroidal terahertz metamodulator,” Phys. Rev. B 97(16), 161405 (2018).
[Crossref]

C. R. Lee, S. H. Lin, S. M. Wang, J. De Lin, Y. S. Chen, M. C. Hsu, J. K. Liu, T. S. Mo, and C. Y. Huang, “Optically controllable photonic crystals and passively tunable terahertz metamaterials using dye-doped liquid crystal cells,” J. Mater. Chem. C 6(18), 4959–4966 (2018).
[Crossref]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref]

S. Misra, L. Li, J. Jian, J. Huang, X. Wang, D. Zemlyanov, J. W. Jang, F. H. Ribeiro, and H. Wang, “Tailorable Au Nanoparticles Embedded in Epitaxial TiO2 Thin Films for Tunable Optical Properties,” ACS Appl. Mater. Interfaces 10(38), 32895–32902 (2018).
[Crossref]

D. M. Wu, M. L. Solomon, G. V. Naik, A. García-Etxarri, M. Lawrence, A. Salleo, and J. A. Dionne, “Chemically Responsive Elastomers Exhibiting Unity-Order Refractive Index Modulation,” Adv. Mater. 30(7), 1703912 (2018).
[Crossref]

C. Yuan, X. Mu, C. K. Dunn, J. Haidar, T. Wang, and H. Jerry Qi, “Thermomechanically Triggered Two-Stage Pattern Switching of 2D Lattices for Adaptive Structures,” Adv. Funct. Mater. 28(18), 1705727 (2018).
[Crossref]

B. J. Roxworthy and V. A. Aksyuk, “Electrically tunable plasmomechanical oscillators for localized modulation, transduction, and amplification,” Optica 5(1), 71–79 (2018).
[Crossref]

P. Cheben, R. Halir, J. H. Schmid, H. A. Atwater, and D. R. Smith, “Subwavelength integrated photonics,” Nature 560(7720), 565–572 (2018).
[Crossref]

M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref]

M. Manjappa, P. Pitchappa, N. Wang, C. Lee, and R. Singh, “Active Control of Resonant Cloaking in a Terahertz MEMS Metamaterial,” Adv. Opt. Mater. 6(16), 1800141 (2018).
[Crossref]

N. Chen, D. Hasan, C. P. Ho, and C. Lee, “Graphene Tunable Plasmon–Phonon Coupling in Mid-IR Complementary Metamaterial,” Adv. Mater. Technol. 3(5), 1800014 (2018).
[Crossref]

2016 (3)

2015 (1)

Y. Niu, Y. Li, D. Jin, L. Su, and A. V. Vasilakos, “A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges,” Wireless Netw. 21(8), 2657–2676 (2015).
[Crossref]

2014 (2)

T. Kürner and S. Priebe, “Towards THz communications - Status in research, standardization and regulation,” J. Infrared, Millimeter, Terahertz Waves 35(1), 53–62 (2014).
[Crossref]

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2(3), 275–279 (2014).
[Crossref]

2013 (3)

A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express 21(7), 9144 (2013).
[Crossref]

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Z. Liu, C.-Y. Huang, H. Liu, X. Zhang, and C. Lee, “Resonance enhancement of terahertz metamaterials by liquid crystals/indium tin oxide interfaces,” Opt. Express 21(5), 6519–6525 (2013).
[Crossref]

2012 (6)

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. MacHulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt. 51(28), 6789–6798 (2012).
[Crossref]

H. J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “24Gbit/s data transmission in 300 GHz band for future terahertz communications,” Electron. Lett. 48(15), 953–954 (2012).
[Crossref]

T. Kürner, “Towards Future THz Communications Systems,” Terahertz Sci. Technol. 5(1), 11–17 (2012).

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

W. Panpradit, A. Sonsilphong, C. Soemphol, and N. Wongkasem, “High negative refractive index in chiral metamaterials,” J. Opt. 14(7), 075101 (2012).
[Crossref]

2011 (4)

D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, and W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express 19(10), 9968–9975 (2011).
[Crossref]

I. Kallfass, J. Antes, T. Schneider, F. Kurz, D. Lopez-Diaz, S. Diebold, H. Massler, A. Leuther, and A. Tessmann, “All active MMIC-based wireless communication at 220 GHz,” IEEE Trans. Terahertz Sci. Technol. 1(2), 477–487 (2011).
[Crossref]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

R. Singh, A. K. Azad, Q. X. Jia, A. J. Taylor, and H.-T. Chen, “Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates,” Opt. Lett. 36(7), 1230–1232 (2011).
[Crossref]

2010 (3)

G. Ducournau, P. Szriftgiser, D. Bacquet, A. Beck, T. Akalin, E. Peytavit, M. Zaknoune, and J. F. Lampin, “Optically power supplied Gbit/s wireless hotspot using 1.55 m THz photomixer and heterodyne detection at 200 GHz,” Electron. Lett. 46(19), 1349–1351 (2010).
[Crossref]

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref]

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[Crossref]

2009 (6)

A. Hirata, R. Yamaguchi, T. Kosugi, H. Takahashi, K. Murata, T. Nagatsuma, N. Kukutsu, Y. Kado, N. Iai, S. Okabe, S. Kimura, H. Ikegawa, H. Nishikawa, T. Nakayama, and T. Inada, “10-Gbit/s wireless link using InP HEMT MMICs for generating 120-GHz-band millimeter-wave signal,” IEEE Trans. Microwave Theory Tech. 57(5), 1102–1109 (2009).
[Crossref]

H. J. Song, K. Ajito, A. Hirata, A. Wakatsuki, Y. Muramoto, T. Furuta, N. Kukutsu, T. Nagatsuma, and Y. Kado, “8Gbit/s wireless data transmission at 250 GHz,” Electron. Lett. 45(22), 1121–1122 (2009).
[Crossref]

O. Paul, C. Imhof, B. Lägel, S. Wolff, J. Heinrich, S. Höfling, A. Forchel, R. Zengerle, R. Beigang, and M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 17(2), 819–827 (2009).
[Crossref]

H. Zhao, J. Zhou, L. Kang, and Q. Zhao, “Tunable two-dimensional left-handed material consisting of ferrite rods and metallic wires,” Opt. Express 17(16), 13373–13380 (2009).
[Crossref]

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO 2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
[Crossref]

H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79(24), 241108 (2009).
[Crossref]

2008 (5)

L. Kang, Q. Zhao, H. Zhao, and J. Zhou, “Magnetically tunable negative permeability metamaterial composed by split ring resonators and ferrite rods,” Opt. Express 16(12), 8825–8834 (2008).
[Crossref]

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Optical activity in extrinsically chiral metamaterial,” Appl. Phys. Lett. 93(19), 191911 (2008).
[Crossref]

R. Piesiewicz, M. Jacob, M. Koch, J. Schoebel, and T. Kürner, “Performance analysis of future multigigabit wireless communication systems at THz frequencies with highly directive antennas in realistic indoor environments,” IEEE J. Sel. Top. Quantum Electron. 14(2), 421–430 (2008).
[Crossref]

A. Hirata, H. Takahashi, R. Yamaguchi, T. Kosugi, K. Murata, T. Nagatsuma, N. Kukutsu, and Y. Kado, “Transmission characteristics of 120-GHz-band wireless link using radio-on-fiber technologies,” J. Lightwave Technol. 26(15), 2338–2344 (2008).
[Crossref]

2007 (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

2006 (2)

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref]

C. M. Soukoulis, M. Kafesaki, and E. N. Economou, “Negative-index materials: New frontiers in optics,” Adv. Mater. 18(15), 1941–1952 (2006).
[Crossref]

2005 (2)

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microwave Theory Tech. 53(4), 1451–1461 (2005).
[Crossref]

E. G. Turitsyna and S. Webb, “Simple design of FBG-based VSB filters for ultra-dense WDM transmission ELECTRONICS LETTERS 20th January 2005,” Electron. Lett. 41(2), 89 (2005).
[Crossref]

2004 (2)

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref]

S. Cherry, “Edholm’s law of bandwidth,” IEEE Spectrum 41(7), 58–60 (2004).
[Crossref]

1998 (1)

T. Klar, M. Perner, S. Grosse, G. Von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).
[Crossref]

Ahmadivand, A.

B. Gerislioglu and A. Ahmadivand, “Functional Charge Transfer Plasmon Metadevices,” Research (Washington, DC, U. S.) 2020, 1–18 (2020).
[Crossref]

A. Ahmadivand, B. Gerislioglu, and Z. Ramezani, “Gated graphene island-enabled tunable charge transfer plasmon terahertz metamodulator,” Nanoscale 11(17), 8091–8095 (2019).
[Crossref]

B. Gerislioglu, A. Ahmadivand, and N. Pala, “Tunable plasmonic toroidal terahertz metamodulator,” Phys. Rev. B 97(16), 161405 (2018).
[Crossref]

A. Ahmadivand, R. Sinha, B. Gerislioglu, M. Karabiyik, N. Pala, and M. Shur, “Transition from capacitive coupling to direct charge transfer in asymmetric terahertz plasmonic assemblies,” Opt. Lett. 41(22), 5333–5336 (2016).
[Crossref]

Ajito, K.

H. J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “24Gbit/s data transmission in 300 GHz band for future terahertz communications,” Electron. Lett. 48(15), 953–954 (2012).
[Crossref]

H. J. Song, K. Ajito, A. Hirata, A. Wakatsuki, Y. Muramoto, T. Furuta, N. Kukutsu, T. Nagatsuma, and Y. Kado, “8Gbit/s wireless data transmission at 250 GHz,” Electron. Lett. 45(22), 1121–1122 (2009).
[Crossref]

T. Nagatsuma, H.-J. Song, Y. Fujimoto, K. Miyake, A. Hirata, K. Ajito, A. Wakatsuki, T. Furuta, N. Kukutsu, and Y. Kado, “Giga-bit wireless link using 300–400 GHz bands,” in 2009 International Topical Meeting on Microwave Photonics (2009), pp. 1–4.

Akalin, T.

G. Ducournau, P. Szriftgiser, D. Bacquet, A. Beck, T. Akalin, E. Peytavit, M. Zaknoune, and J. F. Lampin, “Optically power supplied Gbit/s wireless hotspot using 1.55 m THz photomixer and heterodyne detection at 200 GHz,” Electron. Lett. 46(19), 1349–1351 (2010).
[Crossref]

Aksyuk, V. A.

Aleksandrova, A.

Ambacher, O.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Andryieuski, A.

Antes, J.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

I. Kallfass, J. Antes, T. Schneider, F. Kurz, D. Lopez-Diaz, S. Diebold, H. Massler, A. Leuther, and A. Tessmann, “All active MMIC-based wireless communication at 220 GHz,” IEEE Trans. Terahertz Sci. Technol. 1(2), 477–487 (2011).
[Crossref]

Atwater, H. A.

Averitt, R. D.

D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, and W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express 19(10), 9968–9975 (2011).
[Crossref]

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref]

Aydin, K.

Azad, A. K.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

R. Singh, A. K. Azad, Q. X. Jia, A. J. Taylor, and H.-T. Chen, “Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates,” Opt. Lett. 36(7), 1230–1232 (2011).
[Crossref]

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Bacquet, D.

G. Ducournau, P. Szriftgiser, D. Bacquet, A. Beck, T. Akalin, E. Peytavit, M. Zaknoune, and J. F. Lampin, “Optically power supplied Gbit/s wireless hotspot using 1.55 m THz photomixer and heterodyne detection at 200 GHz,” Electron. Lett. 46(19), 1349–1351 (2010).
[Crossref]

Baena, J. D.

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microwave Theory Tech. 53(4), 1451–1461 (2005).
[Crossref]

Basov, D. N.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Bechtel, H. A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Beck, A.

G. Ducournau, P. Szriftgiser, D. Bacquet, A. Beck, T. Akalin, E. Peytavit, M. Zaknoune, and J. F. Lampin, “Optically power supplied Gbit/s wireless hotspot using 1.55 m THz photomixer and heterodyne detection at 200 GHz,” Electron. Lett. 46(19), 1349–1351 (2010).
[Crossref]

Beigang, R.

Bingham, C.

Blanchard, R.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Boes, F.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Bonache, J.

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microwave Theory Tech. 53(4), 1451–1461 (2005).
[Crossref]

Boyd, E. M.

Capasso, F.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Chang, Y.

Z. Ren, Y. Chang, Y. Ma, K. Shih, B. Dong, and C. Lee, “Leveraging of MEMS Technologies for Optical Metamaterials Applications,” Adv. Opt. Mater. 8(3), 1900653 (2020).
[Crossref]

Chashnikova, M.

Cheben, P.

P. Cheben, R. Halir, J. H. Schmid, H. A. Atwater, and D. R. Smith, “Subwavelength integrated photonics,” Nature 560(7720), 565–572 (2018).
[Crossref]

Chen, H. T.

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Chen, H.-T.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

R. Singh, A. K. Azad, Q. X. Jia, A. J. Taylor, and H.-T. Chen, “Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates,” Opt. Lett. 36(7), 1230–1232 (2011).
[Crossref]

Chen, N.

N. Chen, D. Hasan, C. P. Ho, and C. Lee, “Graphene Tunable Plasmon–Phonon Coupling in Mid-IR Complementary Metamaterial,” Adv. Mater. Technol. 3(5), 1800014 (2018).
[Crossref]

Chen, Q.

C. Wang, C. Lin, Q. Chen, X. Deng, and J. Zhang, “0.14 THz high speed data communication over 1.5 kilometers,” in 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves (2012), pp. 1–2.

Chen, W. T.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref]

Chen, Y. S.

C. R. Lee, S. H. Lin, S. M. Wang, J. De Lin, Y. S. Chen, M. C. Hsu, J. K. Liu, T. S. Mo, and C. Y. Huang, “Optically controllable photonic crystals and passively tunable terahertz metamaterials using dye-doped liquid crystal cells,” J. Mater. Chem. C 6(18), 4959–4966 (2018).
[Crossref]

Cheng, S.

Cherry, S.

S. Cherry, “Edholm’s law of bandwidth,” IEEE Spectrum 41(7), 58–60 (2004).
[Crossref]

Chettiar, U. K.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref]

Chiang, W.-F.

De Lin, J.

C. R. Lee, S. H. Lin, S. M. Wang, J. De Lin, Y. S. Chen, M. C. Hsu, J. K. Liu, T. S. Mo, and C. Y. Huang, “Optically controllable photonic crystals and passively tunable terahertz metamaterials using dye-doped liquid crystal cells,” J. Mater. Chem. C 6(18), 4959–4966 (2018).
[Crossref]

Deng, X.

C. Wang, C. Lin, Q. Chen, X. Deng, and J. Zhang, “0.14 THz high speed data communication over 1.5 kilometers,” in 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves (2012), pp. 1–2.

Dicken, M. J.

Diebold, S.

I. Kallfass, J. Antes, T. Schneider, F. Kurz, D. Lopez-Diaz, S. Diebold, H. Massler, A. Leuther, and A. Tessmann, “All active MMIC-based wireless communication at 220 GHz,” IEEE Trans. Terahertz Sci. Technol. 1(2), 477–487 (2011).
[Crossref]

Dionne, J. A.

D. M. Wu, M. L. Solomon, G. V. Naik, A. García-Etxarri, M. Lawrence, A. Salleo, and J. A. Dionne, “Chemically Responsive Elastomers Exhibiting Unity-Order Refractive Index Modulation,” Adv. Mater. 30(7), 1703912 (2018).
[Crossref]

Dong, B.

Z. Ren, Y. Chang, Y. Ma, K. Shih, B. Dong, and C. Lee, “Leveraging of MEMS Technologies for Optical Metamaterials Applications,” Adv. Opt. Mater. 8(3), 1900653 (2020).
[Crossref]

Drachev, V. P.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref]

Ducournau, G.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

G. Ducournau, P. Szriftgiser, D. Bacquet, A. Beck, T. Akalin, E. Peytavit, M. Zaknoune, and J. F. Lampin, “Optically power supplied Gbit/s wireless hotspot using 1.55 m THz photomixer and heterodyne detection at 200 GHz,” Electron. Lett. 46(19), 1349–1351 (2010).
[Crossref]

Dunn, C. K.

C. Yuan, X. Mu, C. K. Dunn, J. Haidar, T. Wang, and H. Jerry Qi, “Thermomechanically Triggered Two-Stage Pattern Switching of 2D Lattices for Adaptive Structures,” Adv. Funct. Mater. 28(18), 1705727 (2018).
[Crossref]

Economou, E. N.

C. M. Soukoulis, M. Kafesaki, and E. N. Economou, “Negative-index materials: New frontiers in optics,” Adv. Mater. 18(15), 1941–1952 (2006).
[Crossref]

Enkrich, C.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref]

Falcone, F.

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microwave Theory Tech. 53(4), 1451–1461 (2005).
[Crossref]

Federici, J.

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[Crossref]

Fedosenko, O.

Fedotov, V. A.

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Optical activity in extrinsically chiral metamaterial,” Appl. Phys. Lett. 93(19), 191911 (2008).
[Crossref]

Feldmann, J.

T. Klar, M. Perner, S. Grosse, G. Von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).
[Crossref]

Fettweis, G.

G. Fettweis, F. Guderian, and S. Krone, “Entering the path towards terabit/s wireless links,” in 2011 Design, Automation & Test in Europe (2011), pp. 1–6.

Flores, Y.

Forchel, A.

Freude, W.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Fujimoto, Y.

T. Nagatsuma, H.-J. Song, Y. Fujimoto, K. Miyake, A. Hirata, K. Ajito, A. Wakatsuki, T. Furuta, N. Kukutsu, and Y. Kado, “Giga-bit wireless link using 300–400 GHz bands,” in 2009 International Topical Meeting on Microwave Photonics (2009), pp. 1–4.

Furuta, T.

H. J. Song, K. Ajito, A. Hirata, A. Wakatsuki, Y. Muramoto, T. Furuta, N. Kukutsu, T. Nagatsuma, and Y. Kado, “8Gbit/s wireless data transmission at 250 GHz,” Electron. Lett. 45(22), 1121–1122 (2009).
[Crossref]

T. Nagatsuma, H.-J. Song, Y. Fujimoto, K. Miyake, A. Hirata, K. Ajito, A. Wakatsuki, T. Furuta, N. Kukutsu, and Y. Kado, “Giga-bit wireless link using 300–400 GHz bands,” in 2009 International Topical Meeting on Microwave Photonics (2009), pp. 1–4.

García-Etxarri, A.

D. M. Wu, M. L. Solomon, G. V. Naik, A. García-Etxarri, M. Lawrence, A. Salleo, and J. A. Dionne, “Chemically Responsive Elastomers Exhibiting Unity-Order Refractive Index Modulation,” Adv. Mater. 30(7), 1703912 (2018).
[Crossref]

Garcia-Garcia, J.

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microwave Theory Tech. 53(4), 1451–1461 (2005).
[Crossref]

Genevet, P.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Geng, B.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Gerislioglu, B.

B. Gerislioglu and A. Ahmadivand, “Functional Charge Transfer Plasmon Metadevices,” Research (Washington, DC, U. S.) 2020, 1–18 (2020).
[Crossref]

A. Ahmadivand, B. Gerislioglu, and Z. Ramezani, “Gated graphene island-enabled tunable charge transfer plasmon terahertz metamodulator,” Nanoscale 11(17), 8091–8095 (2019).
[Crossref]

B. Gerislioglu, A. Ahmadivand, and N. Pala, “Tunable plasmonic toroidal terahertz metamodulator,” Phys. Rev. B 97(16), 161405 (2018).
[Crossref]

A. Ahmadivand, R. Sinha, B. Gerislioglu, M. Karabiyik, N. Pala, and M. Shur, “Transition from capacitive coupling to direct charge transfer in asymmetric terahertz plasmonic assemblies,” Opt. Lett. 41(22), 5333–5336 (2016).
[Crossref]

Gil, I.

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microwave Theory Tech. 53(4), 1451–1461 (2005).
[Crossref]

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Grosse, S.

T. Klar, M. Perner, S. Grosse, G. Von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).
[Crossref]

Gruska, B.

Gu, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Guderian, F.

G. Fettweis, F. Guderian, and S. Krone, “Entering the path towards terabit/s wireless links,” in 2011 Design, Automation & Test in Europe (2011), pp. 1–6.

Haidar, J.

C. Yuan, X. Mu, C. K. Dunn, J. Haidar, T. Wang, and H. Jerry Qi, “Thermomechanically Triggered Two-Stage Pattern Switching of 2D Lattices for Adaptive Structures,” Adv. Funct. Mater. 28(18), 1705727 (2018).
[Crossref]

Halir, R.

P. Cheben, R. Halir, J. H. Schmid, H. A. Atwater, and D. R. Smith, “Subwavelength integrated photonics,” Nature 560(7720), 565–572 (2018).
[Crossref]

Han, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Hasan, D.

N. Chen, D. Hasan, C. P. Ho, and C. Lee, “Graphene Tunable Plasmon–Phonon Coupling in Mid-IR Complementary Metamaterial,” Adv. Mater. Technol. 3(5), 1800014 (2018).
[Crossref]

Heinrich, J.

Henneberger, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Hesler, J.

T. Nagatsuma, K. Kato, and J. Hesler, “Enabling technologies for real-time 50-Gbit/s wireless transmission at 300 GHz,” in Proceedings of the Second Annual International Conference on Nanoscale Computing and Communication (2015), pp. 1–5.

Highstrete, C.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref]

Hillerkuss, D.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Hirata, A.

H. J. Song, K. Ajito, A. Hirata, A. Wakatsuki, Y. Muramoto, T. Furuta, N. Kukutsu, T. Nagatsuma, and Y. Kado, “8Gbit/s wireless data transmission at 250 GHz,” Electron. Lett. 45(22), 1121–1122 (2009).
[Crossref]

A. Hirata, R. Yamaguchi, T. Kosugi, H. Takahashi, K. Murata, T. Nagatsuma, N. Kukutsu, Y. Kado, N. Iai, S. Okabe, S. Kimura, H. Ikegawa, H. Nishikawa, T. Nakayama, and T. Inada, “10-Gbit/s wireless link using InP HEMT MMICs for generating 120-GHz-band millimeter-wave signal,” IEEE Trans. Microwave Theory Tech. 57(5), 1102–1109 (2009).
[Crossref]

A. Hirata, H. Takahashi, R. Yamaguchi, T. Kosugi, K. Murata, T. Nagatsuma, N. Kukutsu, and Y. Kado, “Transmission characteristics of 120-GHz-band wireless link using radio-on-fiber technologies,” J. Lightwave Technol. 26(15), 2338–2344 (2008).
[Crossref]

T. Nagatsuma, H.-J. Song, Y. Fujimoto, K. Miyake, A. Hirata, K. Ajito, A. Wakatsuki, T. Furuta, N. Kukutsu, and Y. Kado, “Giga-bit wireless link using 300–400 GHz bands,” in 2009 International Topical Meeting on Microwave Photonics (2009), pp. 1–4.

J. Takeuchi, A. Hirata, H. Takahashi, and N. Kukutsu, “10-Gbit/s bi-directional and 20-Gbit/s uni-directional data transmission over a 120-GHz-band wireless link using a finline ortho-mode transducer,” in 2010 Asia-Pacific Microwave Conference (2010), pp. 195–198.

Ho, C. P.

N. Chen, D. Hasan, C. P. Ho, and C. Lee, “Graphene Tunable Plasmon–Phonon Coupling in Mid-IR Complementary Metamaterial,” Adv. Mater. Technol. 3(5), 1800014 (2018).
[Crossref]

Höfling, S.

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Hsieh, Y.-T.

Hsu, M. C.

C. R. Lee, S. H. Lin, S. M. Wang, J. De Lin, Y. S. Chen, M. C. Hsu, J. K. Liu, T. S. Mo, and C. Y. Huang, “Optically controllable photonic crystals and passively tunable terahertz metamaterials using dye-doped liquid crystal cells,” J. Mater. Chem. C 6(18), 4959–4966 (2018).
[Crossref]

Huang, C. Y.

C. R. Lee, S. H. Lin, S. M. Wang, J. De Lin, Y. S. Chen, M. C. Hsu, J. K. Liu, T. S. Mo, and C. Y. Huang, “Optically controllable photonic crystals and passively tunable terahertz metamaterials using dye-doped liquid crystal cells,” J. Mater. Chem. C 6(18), 4959–4966 (2018).
[Crossref]

Huang, C.-Y.

Huang, J.

S. Misra, L. Li, J. Jian, J. Huang, X. Wang, D. Zemlyanov, J. W. Jang, F. H. Ribeiro, and H. Wang, “Tailorable Au Nanoparticles Embedded in Epitaxial TiO2 Thin Films for Tunable Optical Properties,” ACS Appl. Mater. Interfaces 10(38), 32895–32902 (2018).
[Crossref]

Iai, N.

A. Hirata, R. Yamaguchi, T. Kosugi, H. Takahashi, K. Murata, T. Nagatsuma, N. Kukutsu, Y. Kado, N. Iai, S. Okabe, S. Kimura, H. Ikegawa, H. Nishikawa, T. Nakayama, and T. Inada, “10-Gbit/s wireless link using InP HEMT MMICs for generating 120-GHz-band millimeter-wave signal,” IEEE Trans. Microwave Theory Tech. 57(5), 1102–1109 (2009).
[Crossref]

Ikegawa, H.

A. Hirata, R. Yamaguchi, T. Kosugi, H. Takahashi, K. Murata, T. Nagatsuma, N. Kukutsu, Y. Kado, N. Iai, S. Okabe, S. Kimura, H. Ikegawa, H. Nishikawa, T. Nakayama, and T. Inada, “10-Gbit/s wireless link using InP HEMT MMICs for generating 120-GHz-band millimeter-wave signal,” IEEE Trans. Microwave Theory Tech. 57(5), 1102–1109 (2009).
[Crossref]

Imhof, C.

Inada, T.

A. Hirata, R. Yamaguchi, T. Kosugi, H. Takahashi, K. Murata, T. Nagatsuma, N. Kukutsu, Y. Kado, N. Iai, S. Okabe, S. Kimura, H. Ikegawa, H. Nishikawa, T. Nakayama, and T. Inada, “10-Gbit/s wireless link using InP HEMT MMICs for generating 120-GHz-band millimeter-wave signal,” IEEE Trans. Microwave Theory Tech. 57(5), 1102–1109 (2009).
[Crossref]

Ishibashi, T.

T. Nagatsuma, T. Kurokawa, M. Sonoda, T. Ishibashi, M. Shimizu, and K. Kato, “600-GHz-band waveguide-output uni-traveling-carrier photodiodes and their applications to wireless communication,” in 2018 IEEE/MTT-S International Microwave Symposium-IMS (2018), pp. 1180–1183.

Jacob, M.

R. Piesiewicz, M. Jacob, M. Koch, J. Schoebel, and T. Kürner, “Performance analysis of future multigigabit wireless communication systems at THz frequencies with highly directive antennas in realistic indoor environments,” IEEE J. Sel. Top. Quantum Electron. 14(2), 421–430 (2008).
[Crossref]

Jang, J. W.

S. Misra, L. Li, J. Jian, J. Huang, X. Wang, D. Zemlyanov, J. W. Jang, F. H. Ribeiro, and H. Wang, “Tailorable Au Nanoparticles Embedded in Epitaxial TiO2 Thin Films for Tunable Optical Properties,” ACS Appl. Mater. Interfaces 10(38), 32895–32902 (2018).
[Crossref]

Jerry Qi, H.

C. Yuan, X. Mu, C. K. Dunn, J. Haidar, T. Wang, and H. Jerry Qi, “Thermomechanically Triggered Two-Stage Pattern Switching of 2D Lattices for Adaptive Structures,” Adv. Funct. Mater. 28(18), 1705727 (2018).
[Crossref]

Jia, Q. X.

Jian, J.

S. Misra, L. Li, J. Jian, J. Huang, X. Wang, D. Zemlyanov, J. W. Jang, F. H. Ribeiro, and H. Wang, “Tailorable Au Nanoparticles Embedded in Epitaxial TiO2 Thin Films for Tunable Optical Properties,” ACS Appl. Mater. Interfaces 10(38), 32895–32902 (2018).
[Crossref]

Jin, D.

Y. Niu, Y. Li, D. Jin, L. Su, and A. V. Vasilakos, “A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges,” Wireless Netw. 21(8), 2657–2676 (2015).
[Crossref]

Ju, L.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Kadlec, C.

H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79(24), 241108 (2009).
[Crossref]

Kadlec, F.

H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79(24), 241108 (2009).
[Crossref]

Kado, Y.

A. Hirata, R. Yamaguchi, T. Kosugi, H. Takahashi, K. Murata, T. Nagatsuma, N. Kukutsu, Y. Kado, N. Iai, S. Okabe, S. Kimura, H. Ikegawa, H. Nishikawa, T. Nakayama, and T. Inada, “10-Gbit/s wireless link using InP HEMT MMICs for generating 120-GHz-band millimeter-wave signal,” IEEE Trans. Microwave Theory Tech. 57(5), 1102–1109 (2009).
[Crossref]

H. J. Song, K. Ajito, A. Hirata, A. Wakatsuki, Y. Muramoto, T. Furuta, N. Kukutsu, T. Nagatsuma, and Y. Kado, “8Gbit/s wireless data transmission at 250 GHz,” Electron. Lett. 45(22), 1121–1122 (2009).
[Crossref]

A. Hirata, H. Takahashi, R. Yamaguchi, T. Kosugi, K. Murata, T. Nagatsuma, N. Kukutsu, and Y. Kado, “Transmission characteristics of 120-GHz-band wireless link using radio-on-fiber technologies,” J. Lightwave Technol. 26(15), 2338–2344 (2008).
[Crossref]

T. Nagatsuma, H.-J. Song, Y. Fujimoto, K. Miyake, A. Hirata, K. Ajito, A. Wakatsuki, T. Furuta, N. Kukutsu, and Y. Kado, “Giga-bit wireless link using 300–400 GHz bands,” in 2009 International Topical Meeting on Microwave Photonics (2009), pp. 1–4.

Kafesaki, M.

C. M. Soukoulis, M. Kafesaki, and E. N. Economou, “Negative-index materials: New frontiers in optics,” Adv. Mater. 18(15), 1941–1952 (2006).
[Crossref]

Kallfass, I.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

I. Kallfass, J. Antes, T. Schneider, F. Kurz, D. Lopez-Diaz, S. Diebold, H. Massler, A. Leuther, and A. Tessmann, “All active MMIC-based wireless communication at 220 GHz,” IEEE Trans. Terahertz Sci. Technol. 1(2), 477–487 (2011).
[Crossref]

Kang, L.

Karabiyik, M.

Kato, K.

T. Nagatsuma, K. Kato, and J. Hesler, “Enabling technologies for real-time 50-Gbit/s wireless transmission at 300 GHz,” in Proceedings of the Second Annual International Conference on Nanoscale Computing and Communication (2015), pp. 1–5.

T. Nagatsuma, T. Kurokawa, M. Sonoda, T. Ishibashi, M. Shimizu, and K. Kato, “600-GHz-band waveguide-output uni-traveling-carrier photodiodes and their applications to wireless communication,” in 2018 IEEE/MTT-S International Microwave Symposium-IMS (2018), pp. 1180–1183.

Kats, M. A.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Khorasaninejad, M.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref]

Kildishev, A. V.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref]

Kimura, S.

A. Hirata, R. Yamaguchi, T. Kosugi, H. Takahashi, K. Murata, T. Nagatsuma, N. Kukutsu, Y. Kado, N. Iai, S. Okabe, S. Kimura, H. Ikegawa, H. Nishikawa, T. Nakayama, and T. Inada, “10-Gbit/s wireless link using InP HEMT MMICs for generating 120-GHz-band millimeter-wave signal,” IEEE Trans. Microwave Theory Tech. 57(5), 1102–1109 (2009).
[Crossref]

Kischkat, J.

Klar, T.

T. Klar, M. Perner, S. Grosse, G. Von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).
[Crossref]

Klinkmüller, M.

Koch, M.

R. Piesiewicz, M. Jacob, M. Koch, J. Schoebel, and T. Kürner, “Performance analysis of future multigigabit wireless communication systems at THz frequencies with highly directive antennas in realistic indoor environments,” IEEE J. Sel. Top. Quantum Electron. 14(2), 421–430 (2008).
[Crossref]

Koenig, S.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Koos, C.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Koschny, T.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref]

Kosugi, T.

A. Hirata, R. Yamaguchi, T. Kosugi, H. Takahashi, K. Murata, T. Nagatsuma, N. Kukutsu, Y. Kado, N. Iai, S. Okabe, S. Kimura, H. Ikegawa, H. Nishikawa, T. Nakayama, and T. Inada, “10-Gbit/s wireless link using InP HEMT MMICs for generating 120-GHz-band millimeter-wave signal,” IEEE Trans. Microwave Theory Tech. 57(5), 1102–1109 (2009).
[Crossref]

A. Hirata, H. Takahashi, R. Yamaguchi, T. Kosugi, K. Murata, T. Nagatsuma, N. Kukutsu, and Y. Kado, “Transmission characteristics of 120-GHz-band wireless link using radio-on-fiber technologies,” J. Lightwave Technol. 26(15), 2338–2344 (2008).
[Crossref]

Krone, S.

G. Fettweis, F. Guderian, and S. Krone, “Entering the path towards terabit/s wireless links,” in 2011 Design, Automation & Test in Europe (2011), pp. 1–6.

Kukutsu, N.

H. J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “24Gbit/s data transmission in 300 GHz band for future terahertz communications,” Electron. Lett. 48(15), 953–954 (2012).
[Crossref]

H. J. Song, K. Ajito, A. Hirata, A. Wakatsuki, Y. Muramoto, T. Furuta, N. Kukutsu, T. Nagatsuma, and Y. Kado, “8Gbit/s wireless data transmission at 250 GHz,” Electron. Lett. 45(22), 1121–1122 (2009).
[Crossref]

A. Hirata, R. Yamaguchi, T. Kosugi, H. Takahashi, K. Murata, T. Nagatsuma, N. Kukutsu, Y. Kado, N. Iai, S. Okabe, S. Kimura, H. Ikegawa, H. Nishikawa, T. Nakayama, and T. Inada, “10-Gbit/s wireless link using InP HEMT MMICs for generating 120-GHz-band millimeter-wave signal,” IEEE Trans. Microwave Theory Tech. 57(5), 1102–1109 (2009).
[Crossref]

A. Hirata, H. Takahashi, R. Yamaguchi, T. Kosugi, K. Murata, T. Nagatsuma, N. Kukutsu, and Y. Kado, “Transmission characteristics of 120-GHz-band wireless link using radio-on-fiber technologies,” J. Lightwave Technol. 26(15), 2338–2344 (2008).
[Crossref]

J. Takeuchi, A. Hirata, H. Takahashi, and N. Kukutsu, “10-Gbit/s bi-directional and 20-Gbit/s uni-directional data transmission over a 120-GHz-band wireless link using a finline ortho-mode transducer,” in 2010 Asia-Pacific Microwave Conference (2010), pp. 195–198.

T. Nagatsuma, H.-J. Song, Y. Fujimoto, K. Miyake, A. Hirata, K. Ajito, A. Wakatsuki, T. Furuta, N. Kukutsu, and Y. Kado, “Giga-bit wireless link using 300–400 GHz bands,” in 2009 International Topical Meeting on Microwave Photonics (2009), pp. 1–4.

Kürner, T.

T. Kürner and S. Priebe, “Towards THz communications - Status in research, standardization and regulation,” J. Infrared, Millimeter, Terahertz Waves 35(1), 53–62 (2014).
[Crossref]

T. Kürner, “Towards Future THz Communications Systems,” Terahertz Sci. Technol. 5(1), 11–17 (2012).

R. Piesiewicz, M. Jacob, M. Koch, J. Schoebel, and T. Kürner, “Performance analysis of future multigigabit wireless communication systems at THz frequencies with highly directive antennas in realistic indoor environments,” IEEE J. Sel. Top. Quantum Electron. 14(2), 421–430 (2008).
[Crossref]

Kurokawa, T.

T. Nagatsuma, T. Kurokawa, M. Sonoda, T. Ishibashi, M. Shimizu, and K. Kato, “600-GHz-band waveguide-output uni-traveling-carrier photodiodes and their applications to wireless communication,” in 2018 IEEE/MTT-S International Microwave Symposium-IMS (2018), pp. 1180–1183.

Kurz, F.

I. Kallfass, J. Antes, T. Schneider, F. Kurz, D. Lopez-Diaz, S. Diebold, H. Massler, A. Leuther, and A. Tessmann, “All active MMIC-based wireless communication at 220 GHz,” IEEE Trans. Terahertz Sci. Technol. 1(2), 477–487 (2011).
[Crossref]

Kužel, P.

H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79(24), 241108 (2009).
[Crossref]

Lägel, B.

Lampin, J. F.

G. Ducournau, P. Szriftgiser, D. Bacquet, A. Beck, T. Akalin, E. Peytavit, M. Zaknoune, and J. F. Lampin, “Optically power supplied Gbit/s wireless hotspot using 1.55 m THz photomixer and heterodyne detection at 200 GHz,” Electron. Lett. 46(19), 1349–1351 (2010).
[Crossref]

Laso, M. A. G.

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microwave Theory Tech. 53(4), 1451–1461 (2005).
[Crossref]

Lavrinenko, A. V.

Lawrence, M.

D. M. Wu, M. L. Solomon, G. V. Naik, A. García-Etxarri, M. Lawrence, A. Salleo, and J. A. Dionne, “Chemically Responsive Elastomers Exhibiting Unity-Order Refractive Index Modulation,” Adv. Mater. 30(7), 1703912 (2018).
[Crossref]

Lee, C.

Z. Ren, Y. Chang, Y. Ma, K. Shih, B. Dong, and C. Lee, “Leveraging of MEMS Technologies for Optical Metamaterials Applications,” Adv. Opt. Mater. 8(3), 1900653 (2020).
[Crossref]

N. Chen, D. Hasan, C. P. Ho, and C. Lee, “Graphene Tunable Plasmon–Phonon Coupling in Mid-IR Complementary Metamaterial,” Adv. Mater. Technol. 3(5), 1800014 (2018).
[Crossref]

M. Manjappa, P. Pitchappa, N. Wang, C. Lee, and R. Singh, “Active Control of Resonant Cloaking in a Terahertz MEMS Metamaterial,” Adv. Opt. Mater. 6(16), 1800141 (2018).
[Crossref]

M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref]

Z. Liu, C.-Y. Huang, H. Liu, X. Zhang, and C. Lee, “Resonance enhancement of terahertz metamaterials by liquid crystals/indium tin oxide interfaces,” Opt. Express 21(5), 6519–6525 (2013).
[Crossref]

Lee, C. R.

C. R. Lee, S. H. Lin, S. M. Wang, J. De Lin, Y. S. Chen, M. C. Hsu, J. K. Liu, T. S. Mo, and C. Y. Huang, “Optically controllable photonic crystals and passively tunable terahertz metamaterials using dye-doped liquid crystal cells,” J. Mater. Chem. C 6(18), 4959–4966 (2018).
[Crossref]

Lee, E.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref]

Lee, M.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref]

Leuther, A.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

I. Kallfass, J. Antes, T. Schneider, F. Kurz, D. Lopez-Diaz, S. Diebold, H. Massler, A. Leuther, and A. Tessmann, “All active MMIC-based wireless communication at 220 GHz,” IEEE Trans. Terahertz Sci. Technol. 1(2), 477–487 (2011).
[Crossref]

Leuthold, J.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Li, L.

S. Misra, L. Li, J. Jian, J. Huang, X. Wang, D. Zemlyanov, J. W. Jang, F. H. Ribeiro, and H. Wang, “Tailorable Au Nanoparticles Embedded in Epitaxial TiO2 Thin Films for Tunable Optical Properties,” ACS Appl. Mater. Interfaces 10(38), 32895–32902 (2018).
[Crossref]

Li, Y.

Y. Niu, Y. Li, D. Jin, L. Su, and A. V. Vasilakos, “A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges,” Wireless Netw. 21(8), 2657–2676 (2015).
[Crossref]

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Liang, Z.

P. Liu, Z. Liang, Z. Lin, Z. Xu, R. Xu, D. Yao, and Y. S. Lin, “Actively tunable terahertz chain-link metamaterial with bidirectional polarization-dependent characteristic,” Sci. Rep. 9(1), 1–8 (2019).
[Crossref]

Lin, C.

C. Wang, C. Lin, Q. Chen, X. Deng, and J. Zhang, “0.14 THz high speed data communication over 1.5 kilometers,” in 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves (2012), pp. 1–2.

Lin, J.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Lin, S. H.

C. R. Lee, S. H. Lin, S. M. Wang, J. De Lin, Y. S. Chen, M. C. Hsu, J. K. Liu, T. S. Mo, and C. Y. Huang, “Optically controllable photonic crystals and passively tunable terahertz metamaterials using dye-doped liquid crystal cells,” J. Mater. Chem. C 6(18), 4959–4966 (2018).
[Crossref]

Lin, Y. S.

P. Liu, Z. Liang, Z. Lin, Z. Xu, R. Xu, D. Yao, and Y. S. Lin, “Actively tunable terahertz chain-link metamaterial with bidirectional polarization-dependent characteristic,” Sci. Rep. 9(1), 1–8 (2019).
[Crossref]

Z. Xu and Y. S. Lin, “A Stretchable Terahertz Parabolic-Shaped Metamaterial,” Adv. Opt. Mater. 7(19), 1900379 (2019).
[Crossref]

Lin, Y.-S.

Lin, Z.

Z. Xu, Z. Lin, S. Cheng, and Y.-S. Lin, “Reconfigurable and tunable terahertz wrench-shape metamaterial performing programmable characteristic,” Opt. Lett. 44(16), 3944–3947 (2019).
[Crossref]

P. Liu, Z. Liang, Z. Lin, Z. Xu, R. Xu, D. Yao, and Y. S. Lin, “Actively tunable terahertz chain-link metamaterial with bidirectional polarization-dependent characteristic,” Sci. Rep. 9(1), 1–8 (2019).
[Crossref]

Linden, S.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref]

Liu, H.

Liu, J. K.

C. R. Lee, S. H. Lin, S. M. Wang, J. De Lin, Y. S. Chen, M. C. Hsu, J. K. Liu, T. S. Mo, and C. Y. Huang, “Optically controllable photonic crystals and passively tunable terahertz metamaterials using dye-doped liquid crystal cells,” J. Mater. Chem. C 6(18), 4959–4966 (2018).
[Crossref]

Liu, J.-H.

Liu, P.

P. Liu, Z. Liang, Z. Lin, Z. Xu, R. Xu, D. Yao, and Y. S. Lin, “Actively tunable terahertz chain-link metamaterial with bidirectional polarization-dependent characteristic,” Sci. Rep. 9(1), 1–8 (2019).
[Crossref]

Liu, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Liu, Z.

Lopetegi, T.

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microwave Theory Tech. 53(4), 1451–1461 (2005).
[Crossref]

Lopez-Diaz, D.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

I. Kallfass, J. Antes, T. Schneider, F. Kurz, D. Lopez-Diaz, S. Diebold, H. Massler, A. Leuther, and A. Tessmann, “All active MMIC-based wireless communication at 220 GHz,” IEEE Trans. Terahertz Sci. Technol. 1(2), 477–487 (2011).
[Crossref]

Ma, J.

Ma, Y.

Z. Ren, Y. Chang, Y. Ma, K. Shih, B. Dong, and C. Lee, “Leveraging of MEMS Technologies for Optical Metamaterials Applications,” Adv. Opt. Mater. 8(3), 1900653 (2020).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

MacHulik, S.

Maier, S. A.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Manjappa, M.

M. Manjappa, P. Pitchappa, N. Wang, C. Lee, and R. Singh, “Active Control of Resonant Cloaking in a Terahertz MEMS Metamaterial,” Adv. Opt. Mater. 6(16), 1800141 (2018).
[Crossref]

M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref]

Martin, F.

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microwave Theory Tech. 53(4), 1451–1461 (2005).
[Crossref]

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Masselink, W. T.

Massler, H.

I. Kallfass, J. Antes, T. Schneider, F. Kurz, D. Lopez-Diaz, S. Diebold, H. Massler, A. Leuther, and A. Tessmann, “All active MMIC-based wireless communication at 220 GHz,” IEEE Trans. Terahertz Sci. Technol. 1(2), 477–487 (2011).
[Crossref]

Miao, H.-Y.

Misra, S.

S. Misra, L. Li, J. Jian, J. Huang, X. Wang, D. Zemlyanov, J. W. Jang, F. H. Ribeiro, and H. Wang, “Tailorable Au Nanoparticles Embedded in Epitaxial TiO2 Thin Films for Tunable Optical Properties,” ACS Appl. Mater. Interfaces 10(38), 32895–32902 (2018).
[Crossref]

Miyake, K.

T. Nagatsuma, H.-J. Song, Y. Fujimoto, K. Miyake, A. Hirata, K. Ajito, A. Wakatsuki, T. Furuta, N. Kukutsu, and Y. Kado, “Giga-bit wireless link using 300–400 GHz bands,” in 2009 International Topical Meeting on Microwave Photonics (2009), pp. 1–4.

Mo, T. S.

C. R. Lee, S. H. Lin, S. M. Wang, J. De Lin, Y. S. Chen, M. C. Hsu, J. K. Liu, T. S. Mo, and C. Y. Huang, “Optically controllable photonic crystals and passively tunable terahertz metamaterials using dye-doped liquid crystal cells,” J. Mater. Chem. C 6(18), 4959–4966 (2018).
[Crossref]

Moeller, L.

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[Crossref]

Monastyrskyi, G.

Mounaix, P.

H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79(24), 241108 (2009).
[Crossref]

Mu, X.

C. Yuan, X. Mu, C. K. Dunn, J. Haidar, T. Wang, and H. Jerry Qi, “Thermomechanically Triggered Two-Stage Pattern Switching of 2D Lattices for Adaptive Structures,” Adv. Funct. Mater. 28(18), 1705727 (2018).
[Crossref]

Muramoto, Y.

H. J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “24Gbit/s data transmission in 300 GHz band for future terahertz communications,” Electron. Lett. 48(15), 953–954 (2012).
[Crossref]

H. J. Song, K. Ajito, A. Hirata, A. Wakatsuki, Y. Muramoto, T. Furuta, N. Kukutsu, T. Nagatsuma, and Y. Kado, “8Gbit/s wireless data transmission at 250 GHz,” Electron. Lett. 45(22), 1121–1122 (2009).
[Crossref]

Murata, K.

A. Hirata, R. Yamaguchi, T. Kosugi, H. Takahashi, K. Murata, T. Nagatsuma, N. Kukutsu, Y. Kado, N. Iai, S. Okabe, S. Kimura, H. Ikegawa, H. Nishikawa, T. Nakayama, and T. Inada, “10-Gbit/s wireless link using InP HEMT MMICs for generating 120-GHz-band millimeter-wave signal,” IEEE Trans. Microwave Theory Tech. 57(5), 1102–1109 (2009).
[Crossref]

A. Hirata, H. Takahashi, R. Yamaguchi, T. Kosugi, K. Murata, T. Nagatsuma, N. Kukutsu, and Y. Kado, “Transmission characteristics of 120-GHz-band wireless link using radio-on-fiber technologies,” J. Lightwave Technol. 26(15), 2338–2344 (2008).
[Crossref]

Nagatsuma, T.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

H. J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “24Gbit/s data transmission in 300 GHz band for future terahertz communications,” Electron. Lett. 48(15), 953–954 (2012).
[Crossref]

A. Hirata, R. Yamaguchi, T. Kosugi, H. Takahashi, K. Murata, T. Nagatsuma, N. Kukutsu, Y. Kado, N. Iai, S. Okabe, S. Kimura, H. Ikegawa, H. Nishikawa, T. Nakayama, and T. Inada, “10-Gbit/s wireless link using InP HEMT MMICs for generating 120-GHz-band millimeter-wave signal,” IEEE Trans. Microwave Theory Tech. 57(5), 1102–1109 (2009).
[Crossref]

H. J. Song, K. Ajito, A. Hirata, A. Wakatsuki, Y. Muramoto, T. Furuta, N. Kukutsu, T. Nagatsuma, and Y. Kado, “8Gbit/s wireless data transmission at 250 GHz,” Electron. Lett. 45(22), 1121–1122 (2009).
[Crossref]

A. Hirata, H. Takahashi, R. Yamaguchi, T. Kosugi, K. Murata, T. Nagatsuma, N. Kukutsu, and Y. Kado, “Transmission characteristics of 120-GHz-band wireless link using radio-on-fiber technologies,” J. Lightwave Technol. 26(15), 2338–2344 (2008).
[Crossref]

T. Nagatsuma, H.-J. Song, Y. Fujimoto, K. Miyake, A. Hirata, K. Ajito, A. Wakatsuki, T. Furuta, N. Kukutsu, and Y. Kado, “Giga-bit wireless link using 300–400 GHz bands,” in 2009 International Topical Meeting on Microwave Photonics (2009), pp. 1–4.

T. Nagatsuma, K. Kato, and J. Hesler, “Enabling technologies for real-time 50-Gbit/s wireless transmission at 300 GHz,” in Proceedings of the Second Annual International Conference on Nanoscale Computing and Communication (2015), pp. 1–5.

T. Nagatsuma, “Generating millimeter and terahertz waves by photonics for communications and sensing,” in 2013 IEEE MTT-S International Microwave Symposium Digest (MTT) (2013), pp. 1–3.

T. Nagatsuma, T. Kurokawa, M. Sonoda, T. Ishibashi, M. Shimizu, and K. Kato, “600-GHz-band waveguide-output uni-traveling-carrier photodiodes and their applications to wireless communication,” in 2018 IEEE/MTT-S International Microwave Symposium-IMS (2018), pp. 1180–1183.

Naik, G. V.

D. M. Wu, M. L. Solomon, G. V. Naik, A. García-Etxarri, M. Lawrence, A. Salleo, and J. A. Dionne, “Chemically Responsive Elastomers Exhibiting Unity-Order Refractive Index Modulation,” Adv. Mater. 30(7), 1703912 (2018).
[Crossref]

Nakayama, T.

A. Hirata, R. Yamaguchi, T. Kosugi, H. Takahashi, K. Murata, T. Nagatsuma, N. Kukutsu, Y. Kado, N. Iai, S. Okabe, S. Kimura, H. Ikegawa, H. Nishikawa, T. Nakayama, and T. Inada, “10-Gbit/s wireless link using InP HEMT MMICs for generating 120-GHz-band millimeter-wave signal,” IEEE Trans. Microwave Theory Tech. 57(5), 1102–1109 (2009).
[Crossref]

Nemec, H.

H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79(24), 241108 (2009).
[Crossref]

Ni, X.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref]

Nishikawa, H.

A. Hirata, R. Yamaguchi, T. Kosugi, H. Takahashi, K. Murata, T. Nagatsuma, N. Kukutsu, Y. Kado, N. Iai, S. Okabe, S. Kimura, H. Ikegawa, H. Nishikawa, T. Nakayama, and T. Inada, “10-Gbit/s wireless link using InP HEMT MMICs for generating 120-GHz-band millimeter-wave signal,” IEEE Trans. Microwave Theory Tech. 57(5), 1102–1109 (2009).
[Crossref]

Niu, Y.

Y. Niu, Y. Li, D. Jin, L. Su, and A. V. Vasilakos, “A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges,” Wireless Netw. 21(8), 2657–2676 (2015).
[Crossref]

O’Hara, J. F.

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Öjefors, E.

U. R. Pfeiffer, E. Öjefors, and Y. Zhao, “A SiGe quadrature transmitter and receiver chipset for emerging high-frequency applications at 160 GHz,” in 2010 IEEE International Solid-State Circuits Conference-(ISSCC) (2010), pp. 416–417.

Okabe, S.

A. Hirata, R. Yamaguchi, T. Kosugi, H. Takahashi, K. Murata, T. Nagatsuma, N. Kukutsu, Y. Kado, N. Iai, S. Okabe, S. Kimura, H. Ikegawa, H. Nishikawa, T. Nakayama, and T. Inada, “10-Gbit/s wireless link using InP HEMT MMICs for generating 120-GHz-band millimeter-wave signal,” IEEE Trans. Microwave Theory Tech. 57(5), 1102–1109 (2009).
[Crossref]

Padilla, W. J.

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2(3), 275–279 (2014).
[Crossref]

D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, and W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express 19(10), 9968–9975 (2011).
[Crossref]

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref]

Pala, N.

Palmer, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Panpradit, W.

W. Panpradit, A. Sonsilphong, C. Soemphol, and N. Wongkasem, “High negative refractive index in chiral metamaterials,” J. Opt. 14(7), 075101 (2012).
[Crossref]

Paul, O.

Perner, M.

T. Klar, M. Perner, S. Grosse, G. Von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).
[Crossref]

Peters, S.

Peytavit, E.

G. Ducournau, P. Szriftgiser, D. Bacquet, A. Beck, T. Akalin, E. Peytavit, M. Zaknoune, and J. F. Lampin, “Optically power supplied Gbit/s wireless hotspot using 1.55 m THz photomixer and heterodyne detection at 200 GHz,” Electron. Lett. 46(19), 1349–1351 (2010).
[Crossref]

Pfeiffer, U. R.

U. R. Pfeiffer, E. Öjefors, and Y. Zhao, “A SiGe quadrature transmitter and receiver chipset for emerging high-frequency applications at 160 GHz,” in 2010 IEEE International Solid-State Circuits Conference-(ISSCC) (2010), pp. 416–417.

Piesiewicz, R.

R. Piesiewicz, M. Jacob, M. Koch, J. Schoebel, and T. Kürner, “Performance analysis of future multigigabit wireless communication systems at THz frequencies with highly directive antennas in realistic indoor environments,” IEEE J. Sel. Top. Quantum Electron. 14(2), 421–430 (2008).
[Crossref]

Pitchappa, P.

M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref]

M. Manjappa, P. Pitchappa, N. Wang, C. Lee, and R. Singh, “Active Control of Resonant Cloaking in a Terahertz MEMS Metamaterial,” Adv. Opt. Mater. 6(16), 1800141 (2018).
[Crossref]

Plum, E.

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Optical activity in extrinsically chiral metamaterial,” Appl. Phys. Lett. 93(19), 191911 (2008).
[Crossref]

Portillo, M. F.

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microwave Theory Tech. 53(4), 1451–1461 (2005).
[Crossref]

Priebe, S.

T. Kürner and S. Priebe, “Towards THz communications - Status in research, standardization and regulation,” J. Infrared, Millimeter, Terahertz Waves 35(1), 53–62 (2014).
[Crossref]

Pryce, I. M.

Qazilbash, M. M.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Rahm, M.

Ramanathan, S.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Ramezani, Z.

A. Ahmadivand, B. Gerislioglu, and Z. Ramezani, “Gated graphene island-enabled tunable charge transfer plasmon terahertz metamodulator,” Nanoscale 11(17), 8091–8095 (2019).
[Crossref]

Ren, Z.

Z. Ren, Y. Chang, Y. Ma, K. Shih, B. Dong, and C. Lee, “Leveraging of MEMS Technologies for Optical Metamaterials Applications,” Adv. Opt. Mater. 8(3), 1900653 (2020).
[Crossref]

Renaud, C. C.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Ribeiro, F. H.

S. Misra, L. Li, J. Jian, J. Huang, X. Wang, D. Zemlyanov, J. W. Jang, F. H. Ribeiro, and H. Wang, “Tailorable Au Nanoparticles Embedded in Epitaxial TiO2 Thin Films for Tunable Optical Properties,” ACS Appl. Mater. Interfaces 10(38), 32895–32902 (2018).
[Crossref]

Rout, S.

Roxworthy, B. J.

Salleo, A.

D. M. Wu, M. L. Solomon, G. V. Naik, A. García-Etxarri, M. Lawrence, A. Salleo, and J. A. Dionne, “Chemically Responsive Elastomers Exhibiting Unity-Order Refractive Index Modulation,” Adv. Mater. 30(7), 1703912 (2018).
[Crossref]

Sanjeev, V.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref]

Savo, S.

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2(3), 275–279 (2014).
[Crossref]

Schmid, J. H.

P. Cheben, R. Halir, J. H. Schmid, H. A. Atwater, and D. R. Smith, “Subwavelength integrated photonics,” Nature 560(7720), 565–572 (2018).
[Crossref]

Schmogrow, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Schneider, T.

I. Kallfass, J. Antes, T. Schneider, F. Kurz, D. Lopez-Diaz, S. Diebold, H. Massler, A. Leuther, and A. Tessmann, “All active MMIC-based wireless communication at 220 GHz,” IEEE Trans. Terahertz Sci. Technol. 1(2), 477–487 (2011).
[Crossref]

Schoebel, J.

R. Piesiewicz, M. Jacob, M. Koch, J. Schoebel, and T. Kürner, “Performance analysis of future multigigabit wireless communication systems at THz frequencies with highly directive antennas in realistic indoor environments,” IEEE J. Sel. Top. Quantum Electron. 14(2), 421–430 (2008).
[Crossref]

Semtsiv, M.

Shalaev, V. M.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref]

Sharma, D.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Shen, Y. R.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Shi, Z.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref]

Shih, K.

Z. Ren, Y. Chang, Y. Ma, K. Shih, B. Dong, and C. Lee, “Leveraging of MEMS Technologies for Optical Metamaterials Applications,” Adv. Opt. Mater. 8(3), 1900653 (2020).
[Crossref]

Shimizu, M.

T. Nagatsuma, T. Kurokawa, M. Sonoda, T. Ishibashi, M. Shimizu, and K. Kato, “600-GHz-band waveguide-output uni-traveling-carrier photodiodes and their applications to wireless communication,” in 2018 IEEE/MTT-S International Microwave Symposium-IMS (2018), pp. 1180–1183.

Shrekenhamer, D.

Shrekenhamer, D. B.

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Shur, M.

Sillero, R. M.

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microwave Theory Tech. 53(4), 1451–1461 (2005).
[Crossref]

Singh, N.

M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref]

Singh, R.

M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref]

M. Manjappa, P. Pitchappa, N. Wang, C. Lee, and R. Singh, “Active Control of Resonant Cloaking in a Terahertz MEMS Metamaterial,” Adv. Opt. Mater. 6(16), 1800141 (2018).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

R. Singh, A. K. Azad, Q. X. Jia, A. J. Taylor, and H.-T. Chen, “Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates,” Opt. Lett. 36(7), 1230–1232 (2011).
[Crossref]

Sinha, R.

Smith, D. R.

P. Cheben, R. Halir, J. H. Schmid, H. A. Atwater, and D. R. Smith, “Subwavelength integrated photonics,” Nature 560(7720), 565–572 (2018).
[Crossref]

Soemphol, C.

W. Panpradit, A. Sonsilphong, C. Soemphol, and N. Wongkasem, “High negative refractive index in chiral metamaterials,” J. Opt. 14(7), 075101 (2012).
[Crossref]

Solomon, M. L.

D. M. Wu, M. L. Solomon, G. V. Naik, A. García-Etxarri, M. Lawrence, A. Salleo, and J. A. Dionne, “Chemically Responsive Elastomers Exhibiting Unity-Order Refractive Index Modulation,” Adv. Mater. 30(7), 1703912 (2018).
[Crossref]

Song, H. J.

H. J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “24Gbit/s data transmission in 300 GHz band for future terahertz communications,” Electron. Lett. 48(15), 953–954 (2012).
[Crossref]

H. J. Song, K. Ajito, A. Hirata, A. Wakatsuki, Y. Muramoto, T. Furuta, N. Kukutsu, T. Nagatsuma, and Y. Kado, “8Gbit/s wireless data transmission at 250 GHz,” Electron. Lett. 45(22), 1121–1122 (2009).
[Crossref]

Song, H.-J.

T. Nagatsuma, H.-J. Song, Y. Fujimoto, K. Miyake, A. Hirata, K. Ajito, A. Wakatsuki, T. Furuta, N. Kukutsu, and Y. Kado, “Giga-bit wireless link using 300–400 GHz bands,” in 2009 International Topical Meeting on Microwave Photonics (2009), pp. 1–4.

Sonkusale, S.

Sonoda, M.

T. Nagatsuma, T. Kurokawa, M. Sonoda, T. Ishibashi, M. Shimizu, and K. Kato, “600-GHz-band waveguide-output uni-traveling-carrier photodiodes and their applications to wireless communication,” in 2018 IEEE/MTT-S International Microwave Symposium-IMS (2018), pp. 1180–1183.

Sonsilphong, A.

W. Panpradit, A. Sonsilphong, C. Soemphol, and N. Wongkasem, “High negative refractive index in chiral metamaterials,” J. Opt. 14(7), 075101 (2012).
[Crossref]

Sorolla, M.

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microwave Theory Tech. 53(4), 1451–1461 (2005).
[Crossref]

Soukoulis, C. M.

C. M. Soukoulis, M. Kafesaki, and E. N. Economou, “Negative-index materials: New frontiers in optics,” Adv. Mater. 18(15), 1941–1952 (2006).
[Crossref]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref]

Spirkl, W.

T. Klar, M. Perner, S. Grosse, G. Von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).
[Crossref]

Strikwerda, A. C.

Su, L.

Y. Niu, Y. Li, D. Jin, L. Su, and A. V. Vasilakos, “A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges,” Wireless Netw. 21(8), 2657–2676 (2015).
[Crossref]

Sweatlock, L. A.

Szriftgiser, P.

G. Ducournau, P. Szriftgiser, D. Bacquet, A. Beck, T. Akalin, E. Peytavit, M. Zaknoune, and J. F. Lampin, “Optically power supplied Gbit/s wireless hotspot using 1.55 m THz photomixer and heterodyne detection at 200 GHz,” Electron. Lett. 46(19), 1349–1351 (2010).
[Crossref]

Takahashi, H.

A. Hirata, R. Yamaguchi, T. Kosugi, H. Takahashi, K. Murata, T. Nagatsuma, N. Kukutsu, Y. Kado, N. Iai, S. Okabe, S. Kimura, H. Ikegawa, H. Nishikawa, T. Nakayama, and T. Inada, “10-Gbit/s wireless link using InP HEMT MMICs for generating 120-GHz-band millimeter-wave signal,” IEEE Trans. Microwave Theory Tech. 57(5), 1102–1109 (2009).
[Crossref]

A. Hirata, H. Takahashi, R. Yamaguchi, T. Kosugi, K. Murata, T. Nagatsuma, N. Kukutsu, and Y. Kado, “Transmission characteristics of 120-GHz-band wireless link using radio-on-fiber technologies,” J. Lightwave Technol. 26(15), 2338–2344 (2008).
[Crossref]

J. Takeuchi, A. Hirata, H. Takahashi, and N. Kukutsu, “10-Gbit/s bi-directional and 20-Gbit/s uni-directional data transmission over a 120-GHz-band wireless link using a finline ortho-mode transducer,” in 2010 Asia-Pacific Microwave Conference (2010), pp. 195–198.

Takeuchi, J.

J. Takeuchi, A. Hirata, H. Takahashi, and N. Kukutsu, “10-Gbit/s bi-directional and 20-Gbit/s uni-directional data transmission over a 120-GHz-band wireless link using a finline ortho-mode transducer,” in 2010 Asia-Pacific Microwave Conference (2010), pp. 195–198.

Taylor, A. J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

R. Singh, A. K. Azad, Q. X. Jia, A. J. Taylor, and H.-T. Chen, “Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates,” Opt. Lett. 36(7), 1230–1232 (2011).
[Crossref]

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref]

Tessmann, A.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

I. Kallfass, J. Antes, T. Schneider, F. Kurz, D. Lopez-Diaz, S. Diebold, H. Massler, A. Leuther, and A. Tessmann, “All active MMIC-based wireless communication at 220 GHz,” IEEE Trans. Terahertz Sci. Technol. 1(2), 477–487 (2011).
[Crossref]

Tian, Z.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Turitsyna, E. G.

E. G. Turitsyna and S. Webb, “Simple design of FBG-based VSB filters for ultra-dense WDM transmission ELECTRONICS LETTERS 20th January 2005,” Electron. Lett. 41(2), 89 (2005).
[Crossref]

Vasilakos, A. V.

Y. Niu, Y. Li, D. Jin, L. Su, and A. V. Vasilakos, “A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges,” Wireless Netw. 21(8), 2657–2676 (2015).
[Crossref]

Von Plessen, G.

T. Klar, M. Perner, S. Grosse, G. Von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).
[Crossref]

Wakatsuki, A.

H. J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “24Gbit/s data transmission in 300 GHz band for future terahertz communications,” Electron. Lett. 48(15), 953–954 (2012).
[Crossref]

H. J. Song, K. Ajito, A. Hirata, A. Wakatsuki, Y. Muramoto, T. Furuta, N. Kukutsu, T. Nagatsuma, and Y. Kado, “8Gbit/s wireless data transmission at 250 GHz,” Electron. Lett. 45(22), 1121–1122 (2009).
[Crossref]

T. Nagatsuma, H.-J. Song, Y. Fujimoto, K. Miyake, A. Hirata, K. Ajito, A. Wakatsuki, T. Furuta, N. Kukutsu, and Y. Kado, “Giga-bit wireless link using 300–400 GHz bands,” in 2009 International Topical Meeting on Microwave Photonics (2009), pp. 1–4.

Walavalkar, S.

Wang, C.

C. Wang, C. Lin, Q. Chen, X. Deng, and J. Zhang, “0.14 THz high speed data communication over 1.5 kilometers,” in 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves (2012), pp. 1–2.

Wang, F.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Wang, H.

S. Misra, L. Li, J. Jian, J. Huang, X. Wang, D. Zemlyanov, J. W. Jang, F. H. Ribeiro, and H. Wang, “Tailorable Au Nanoparticles Embedded in Epitaxial TiO2 Thin Films for Tunable Optical Properties,” ACS Appl. Mater. Interfaces 10(38), 32895–32902 (2018).
[Crossref]

Wang, N.

M. Manjappa, P. Pitchappa, N. Wang, C. Lee, and R. Singh, “Active Control of Resonant Cloaking in a Terahertz MEMS Metamaterial,” Adv. Opt. Mater. 6(16), 1800141 (2018).
[Crossref]

M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref]

Wang, S. M.

C. R. Lee, S. H. Lin, S. M. Wang, J. De Lin, Y. S. Chen, M. C. Hsu, J. K. Liu, T. S. Mo, and C. Y. Huang, “Optically controllable photonic crystals and passively tunable terahertz metamaterials using dye-doped liquid crystal cells,” J. Mater. Chem. C 6(18), 4959–4966 (2018).
[Crossref]

Wang, S.-H.

Wang, T.

C. Yuan, X. Mu, C. K. Dunn, J. Haidar, T. Wang, and H. Jerry Qi, “Thermomechanically Triggered Two-Stage Pattern Switching of 2D Lattices for Adaptive Structures,” Adv. Funct. Mater. 28(18), 1705727 (2018).
[Crossref]

Wang, X.

S. Misra, L. Li, J. Jian, J. Huang, X. Wang, D. Zemlyanov, J. W. Jang, F. H. Ribeiro, and H. Wang, “Tailorable Au Nanoparticles Embedded in Epitaxial TiO2 Thin Films for Tunable Optical Properties,” ACS Appl. Mater. Interfaces 10(38), 32895–32902 (2018).
[Crossref]

Webb, S.

E. G. Turitsyna and S. Webb, “Simple design of FBG-based VSB filters for ultra-dense WDM transmission ELECTRONICS LETTERS 20th January 2005,” Electron. Lett. 41(2), 89 (2005).
[Crossref]

Wegener, M.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref]

Wolff, S.

Wongkasem, N.

W. Panpradit, A. Sonsilphong, C. Soemphol, and N. Wongkasem, “High negative refractive index in chiral metamaterials,” J. Opt. 14(7), 075101 (2012).
[Crossref]

Wu, D. M.

D. M. Wu, M. L. Solomon, G. V. Naik, A. García-Etxarri, M. Lawrence, A. Salleo, and J. A. Dionne, “Chemically Responsive Elastomers Exhibiting Unity-Order Refractive Index Modulation,” Adv. Mater. 30(7), 1703912 (2018).
[Crossref]

Xiao, S.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref]

Xu, R.

P. Liu, Z. Liang, Z. Lin, Z. Xu, R. Xu, D. Yao, and Y. S. Lin, “Actively tunable terahertz chain-link metamaterial with bidirectional polarization-dependent characteristic,” Sci. Rep. 9(1), 1–8 (2019).
[Crossref]

Xu, Z.

P. Liu, Z. Liang, Z. Lin, Z. Xu, R. Xu, D. Yao, and Y. S. Lin, “Actively tunable terahertz chain-link metamaterial with bidirectional polarization-dependent characteristic,” Sci. Rep. 9(1), 1–8 (2019).
[Crossref]

Z. Xu, Z. Lin, S. Cheng, and Y.-S. Lin, “Reconfigurable and tunable terahertz wrench-shape metamaterial performing programmable characteristic,” Opt. Lett. 44(16), 3944–3947 (2019).
[Crossref]

Z. Xu and Y. S. Lin, “A Stretchable Terahertz Parabolic-Shaped Metamaterial,” Adv. Opt. Mater. 7(19), 1900379 (2019).
[Crossref]

Yahiaoui, R.

H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79(24), 241108 (2009).
[Crossref]

Yamaguchi, R.

A. Hirata, R. Yamaguchi, T. Kosugi, H. Takahashi, K. Murata, T. Nagatsuma, N. Kukutsu, Y. Kado, N. Iai, S. Okabe, S. Kimura, H. Ikegawa, H. Nishikawa, T. Nakayama, and T. Inada, “10-Gbit/s wireless link using InP HEMT MMICs for generating 120-GHz-band millimeter-wave signal,” IEEE Trans. Microwave Theory Tech. 57(5), 1102–1109 (2009).
[Crossref]

A. Hirata, H. Takahashi, R. Yamaguchi, T. Kosugi, K. Murata, T. Nagatsuma, N. Kukutsu, and Y. Kado, “Transmission characteristics of 120-GHz-band wireless link using radio-on-fiber technologies,” J. Lightwave Technol. 26(15), 2338–2344 (2008).
[Crossref]

Yang, Z.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Yao, D.

P. Liu, Z. Liang, Z. Lin, Z. Xu, R. Xu, D. Yao, and Y. S. Lin, “Actively tunable terahertz chain-link metamaterial with bidirectional polarization-dependent characteristic,” Sci. Rep. 9(1), 1–8 (2019).
[Crossref]

Yuan, C.

C. Yuan, X. Mu, C. K. Dunn, J. Haidar, T. Wang, and H. Jerry Qi, “Thermomechanically Triggered Two-Stage Pattern Switching of 2D Lattices for Adaptive Structures,” Adv. Funct. Mater. 28(18), 1705727 (2018).
[Crossref]

Yuan, H. K.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref]

Zaknoune, M.

G. Ducournau, P. Szriftgiser, D. Bacquet, A. Beck, T. Akalin, E. Peytavit, M. Zaknoune, and J. F. Lampin, “Optically power supplied Gbit/s wireless hotspot using 1.55 m THz photomixer and heterodyne detection at 200 GHz,” Electron. Lett. 46(19), 1349–1351 (2010).
[Crossref]

Zemlyanov, D.

S. Misra, L. Li, J. Jian, J. Huang, X. Wang, D. Zemlyanov, J. W. Jang, F. H. Ribeiro, and H. Wang, “Tailorable Au Nanoparticles Embedded in Epitaxial TiO2 Thin Films for Tunable Optical Properties,” ACS Appl. Mater. Interfaces 10(38), 32895–32902 (2018).
[Crossref]

Zengerle, R.

Zettl, A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Zhang, J.

C. Wang, C. Lin, Q. Chen, X. Deng, and J. Zhang, “0.14 THz high speed data communication over 1.5 kilometers,” in 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves (2012), pp. 1–2.

Zhang, S.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Zhang, W.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Zhang, X.

Z. Liu, C.-Y. Huang, H. Liu, X. Zhang, and C. Lee, “Resonance enhancement of terahertz metamaterials by liquid crystals/indium tin oxide interfaces,” Opt. Express 21(5), 6519–6525 (2013).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Zhao, H.

Zhao, Q.

Zhao, Y.

U. R. Pfeiffer, E. Öjefors, and Y. Zhao, “A SiGe quadrature transmitter and receiver chipset for emerging high-frequency applications at 160 GHz,” in 2010 IEEE International Solid-State Circuits Conference-(ISSCC) (2010), pp. 416–417.

Zheludev, N. I.

M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Optical activity in extrinsically chiral metamaterial,” Appl. Phys. Lett. 93(19), 191911 (2008).
[Crossref]

Zhou, J.

Zhu, A. Y.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref]

Zwick, T.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

ACS Appl. Mater. Interfaces (1)

S. Misra, L. Li, J. Jian, J. Huang, X. Wang, D. Zemlyanov, J. W. Jang, F. H. Ribeiro, and H. Wang, “Tailorable Au Nanoparticles Embedded in Epitaxial TiO2 Thin Films for Tunable Optical Properties,” ACS Appl. Mater. Interfaces 10(38), 32895–32902 (2018).
[Crossref]

Adv. Funct. Mater. (1)

C. Yuan, X. Mu, C. K. Dunn, J. Haidar, T. Wang, and H. Jerry Qi, “Thermomechanically Triggered Two-Stage Pattern Switching of 2D Lattices for Adaptive Structures,” Adv. Funct. Mater. 28(18), 1705727 (2018).
[Crossref]

Adv. Mater. (2)

D. M. Wu, M. L. Solomon, G. V. Naik, A. García-Etxarri, M. Lawrence, A. Salleo, and J. A. Dionne, “Chemically Responsive Elastomers Exhibiting Unity-Order Refractive Index Modulation,” Adv. Mater. 30(7), 1703912 (2018).
[Crossref]

C. M. Soukoulis, M. Kafesaki, and E. N. Economou, “Negative-index materials: New frontiers in optics,” Adv. Mater. 18(15), 1941–1952 (2006).
[Crossref]

Adv. Mater. Technol. (1)

N. Chen, D. Hasan, C. P. Ho, and C. Lee, “Graphene Tunable Plasmon–Phonon Coupling in Mid-IR Complementary Metamaterial,” Adv. Mater. Technol. 3(5), 1800014 (2018).
[Crossref]

Adv. Opt. Mater. (4)

Z. Ren, Y. Chang, Y. Ma, K. Shih, B. Dong, and C. Lee, “Leveraging of MEMS Technologies for Optical Metamaterials Applications,” Adv. Opt. Mater. 8(3), 1900653 (2020).
[Crossref]

M. Manjappa, P. Pitchappa, N. Wang, C. Lee, and R. Singh, “Active Control of Resonant Cloaking in a Terahertz MEMS Metamaterial,” Adv. Opt. Mater. 6(16), 1800141 (2018).
[Crossref]

Z. Xu and Y. S. Lin, “A Stretchable Terahertz Parabolic-Shaped Metamaterial,” Adv. Opt. Mater. 7(19), 1900379 (2019).
[Crossref]

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2(3), 275–279 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Optical activity in extrinsically chiral metamaterial,” Appl. Phys. Lett. 93(19), 191911 (2008).
[Crossref]

Electron. Lett. (4)

H. J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, “24Gbit/s data transmission in 300 GHz band for future terahertz communications,” Electron. Lett. 48(15), 953–954 (2012).
[Crossref]

G. Ducournau, P. Szriftgiser, D. Bacquet, A. Beck, T. Akalin, E. Peytavit, M. Zaknoune, and J. F. Lampin, “Optically power supplied Gbit/s wireless hotspot using 1.55 m THz photomixer and heterodyne detection at 200 GHz,” Electron. Lett. 46(19), 1349–1351 (2010).
[Crossref]

H. J. Song, K. Ajito, A. Hirata, A. Wakatsuki, Y. Muramoto, T. Furuta, N. Kukutsu, T. Nagatsuma, and Y. Kado, “8Gbit/s wireless data transmission at 250 GHz,” Electron. Lett. 45(22), 1121–1122 (2009).
[Crossref]

E. G. Turitsyna and S. Webb, “Simple design of FBG-based VSB filters for ultra-dense WDM transmission ELECTRONICS LETTERS 20th January 2005,” Electron. Lett. 41(2), 89 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Piesiewicz, M. Jacob, M. Koch, J. Schoebel, and T. Kürner, “Performance analysis of future multigigabit wireless communication systems at THz frequencies with highly directive antennas in realistic indoor environments,” IEEE J. Sel. Top. Quantum Electron. 14(2), 421–430 (2008).
[Crossref]

IEEE Spectrum (1)

S. Cherry, “Edholm’s law of bandwidth,” IEEE Spectrum 41(7), 58–60 (2004).
[Crossref]

IEEE Trans. Microwave Theory Tech. (2)

A. Hirata, R. Yamaguchi, T. Kosugi, H. Takahashi, K. Murata, T. Nagatsuma, N. Kukutsu, Y. Kado, N. Iai, S. Okabe, S. Kimura, H. Ikegawa, H. Nishikawa, T. Nakayama, and T. Inada, “10-Gbit/s wireless link using InP HEMT MMICs for generating 120-GHz-band millimeter-wave signal,” IEEE Trans. Microwave Theory Tech. 57(5), 1102–1109 (2009).
[Crossref]

J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microwave Theory Tech. 53(4), 1451–1461 (2005).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

I. Kallfass, J. Antes, T. Schneider, F. Kurz, D. Lopez-Diaz, S. Diebold, H. Massler, A. Leuther, and A. Tessmann, “All active MMIC-based wireless communication at 220 GHz,” IEEE Trans. Terahertz Sci. Technol. 1(2), 477–487 (2011).
[Crossref]

J. Appl. Phys. (1)

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[Crossref]

J. Infrared, Millimeter, Terahertz Waves (1)

T. Kürner and S. Priebe, “Towards THz communications - Status in research, standardization and regulation,” J. Infrared, Millimeter, Terahertz Waves 35(1), 53–62 (2014).
[Crossref]

J. Lightwave Technol. (1)

J. Mater. Chem. C (1)

C. R. Lee, S. H. Lin, S. M. Wang, J. De Lin, Y. S. Chen, M. C. Hsu, J. K. Liu, T. S. Mo, and C. Y. Huang, “Optically controllable photonic crystals and passively tunable terahertz metamaterials using dye-doped liquid crystal cells,” J. Mater. Chem. C 6(18), 4959–4966 (2018).
[Crossref]

J. Opt. (1)

W. Panpradit, A. Sonsilphong, C. Soemphol, and N. Wongkasem, “High negative refractive index in chiral metamaterials,” J. Opt. 14(7), 075101 (2012).
[Crossref]

Nanoscale (1)

A. Ahmadivand, B. Gerislioglu, and Z. Ramezani, “Gated graphene island-enabled tunable charge transfer plasmon terahertz metamodulator,” Nanoscale 11(17), 8091–8095 (2019).
[Crossref]

Nat. Commun. (2)

M. Manjappa, P. Pitchappa, N. Singh, N. Wang, N. I. Zheludev, C. Lee, and R. Singh, “Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies,” Nat. Commun. 9(1), 4056 (2018).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Nat. Nanotechnol. (2)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13(3), 220–226 (2018).
[Crossref]

Nat. Photonics (4)

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Nature (2)

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref]

P. Cheben, R. Halir, J. H. Schmid, H. A. Atwater, and D. R. Smith, “Subwavelength integrated photonics,” Nature 560(7720), 565–572 (2018).
[Crossref]

Opt. Express (7)

L. Kang, Q. Zhao, H. Zhao, and J. Zhou, “Magnetically tunable negative permeability metamaterial composed by split ring resonators and ferrite rods,” Opt. Express 16(12), 8825–8834 (2008).
[Crossref]

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO 2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
[Crossref]

A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express 21(7), 9144 (2013).
[Crossref]

H. Zhao, J. Zhou, L. Kang, and Q. Zhao, “Tunable two-dimensional left-handed material consisting of ferrite rods and metallic wires,” Opt. Express 17(16), 13373–13380 (2009).
[Crossref]

D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, and W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express 19(10), 9968–9975 (2011).
[Crossref]

Z. Liu, C.-Y. Huang, H. Liu, X. Zhang, and C. Lee, “Resonance enhancement of terahertz metamaterials by liquid crystals/indium tin oxide interfaces,” Opt. Express 21(5), 6519–6525 (2013).
[Crossref]

O. Paul, C. Imhof, B. Lägel, S. Wolff, J. Heinrich, S. Höfling, A. Forchel, R. Zengerle, R. Beigang, and M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 17(2), 819–827 (2009).
[Crossref]

Opt. Lett. (4)

Optica (1)

Phys. Rev. B (2)

H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79(24), 241108 (2009).
[Crossref]

B. Gerislioglu, A. Ahmadivand, and N. Pala, “Tunable plasmonic toroidal terahertz metamodulator,” Phys. Rev. B 97(16), 161405 (2018).
[Crossref]

Phys. Rev. Lett. (2)

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref]

T. Klar, M. Perner, S. Grosse, G. Von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).
[Crossref]

Research (Washington, DC, U. S.) (1)

B. Gerislioglu and A. Ahmadivand, “Functional Charge Transfer Plasmon Metadevices,” Research (Washington, DC, U. S.) 2020, 1–18 (2020).
[Crossref]

Sci. Rep. (1)

P. Liu, Z. Liang, Z. Lin, Z. Xu, R. Xu, D. Yao, and Y. S. Lin, “Actively tunable terahertz chain-link metamaterial with bidirectional polarization-dependent characteristic,” Sci. Rep. 9(1), 1–8 (2019).
[Crossref]

Science (1)

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref]

Terahertz Sci. Technol. (1)

T. Kürner, “Towards Future THz Communications Systems,” Terahertz Sci. Technol. 5(1), 11–17 (2012).

Wireless Netw. (1)

Y. Niu, Y. Li, D. Jin, L. Su, and A. V. Vasilakos, “A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges,” Wireless Netw. 21(8), 2657–2676 (2015).
[Crossref]

Other (8)

T. Nagatsuma, H.-J. Song, Y. Fujimoto, K. Miyake, A. Hirata, K. Ajito, A. Wakatsuki, T. Furuta, N. Kukutsu, and Y. Kado, “Giga-bit wireless link using 300–400 GHz bands,” in 2009 International Topical Meeting on Microwave Photonics (2009), pp. 1–4.

T. Nagatsuma, K. Kato, and J. Hesler, “Enabling technologies for real-time 50-Gbit/s wireless transmission at 300 GHz,” in Proceedings of the Second Annual International Conference on Nanoscale Computing and Communication (2015), pp. 1–5.

G. Fettweis, F. Guderian, and S. Krone, “Entering the path towards terabit/s wireless links,” in 2011 Design, Automation & Test in Europe (2011), pp. 1–6.

J. Takeuchi, A. Hirata, H. Takahashi, and N. Kukutsu, “10-Gbit/s bi-directional and 20-Gbit/s uni-directional data transmission over a 120-GHz-band wireless link using a finline ortho-mode transducer,” in 2010 Asia-Pacific Microwave Conference (2010), pp. 195–198.

U. R. Pfeiffer, E. Öjefors, and Y. Zhao, “A SiGe quadrature transmitter and receiver chipset for emerging high-frequency applications at 160 GHz,” in 2010 IEEE International Solid-State Circuits Conference-(ISSCC) (2010), pp. 416–417.

C. Wang, C. Lin, Q. Chen, X. Deng, and J. Zhang, “0.14 THz high speed data communication over 1.5 kilometers,” in 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves (2012), pp. 1–2.

T. Nagatsuma, “Generating millimeter and terahertz waves by photonics for communications and sensing,” in 2013 IEEE MTT-S International Microwave Symposium Digest (MTT) (2013), pp. 1–3.

T. Nagatsuma, T. Kurokawa, M. Sonoda, T. Ishibashi, M. Shimizu, and K. Kato, “600-GHz-band waveguide-output uni-traveling-carrier photodiodes and their applications to wireless communication,” in 2018 IEEE/MTT-S International Microwave Symposium-IMS (2018), pp. 1180–1183.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic drawing of indoor THz wireless communication system. In the photonic THz transmitter, MLL can generate frequency combs to act as data carriers. These combs will be separated by WS and modulated individually. An unmodulated line (fLO) is used as LO for optical heterodyne method. By separating the appropriate carriers of WS, the data can be encoded onto the carriers via multi-format transmitters (MFTx). The modulated carriers (f1, f2, fn) and unmodulated carrier (fLO) are mixed by UTC-PD. The UTC-PD can yield signal carriers from 0.625 THz to 0.725 THz. TTF will filter out the specific signal carriers. Carriers (0.625 THz to 0.725 THz) are then radiated over a beam-focusing antenna, and received by a beam-focusing antenna. The MMIC can process signals and act as an optical transmitter via an electro-optical converter (E/O) for transporting the data to any other optical receivers.
Fig. 2.
Fig. 2. Schematic drawing of metamaterial-based TTF. (a) 3D illustration of metamaterial-based TTF. (b) Top-view and (c) 3D illustrations of TTF unit cell and the geometrical parameters. The outer radius (R) is 4.19 µm. The inner radius (r) is 3.89 µm. The line width of the structure (w) is 300 nm. The gap between the ring-shaped and cross-shaped structures (g) is 300 nm. The thickness of metamaterial-based TTF (d) is 300 nm. The height between the bottom ring-shaped and the top cross-shaped structures (h) is variable. (d) Schematic drawing of the proposed TTF for indoor THz wireless communication system application. (e) Fabrication process flow of proposed TTF along AA’ line in (a). (i) The deposition of Au thin-film with 300 nm in thickness for the bottom ring-shaped nanostructure of TTF by using the lift-off process. (ii) The deposition of SiO2 and Si3N4 thin-films by using PECVD sequentially. (iii) The deposition of Au thin-film with 300 nm in thickness for the top cross-shaped nanostructure of TTF by using the lift-off process. (iv) Si3N4 thin-film is patterned by using RIE processes. (v) The microstructures are released by using vapor HF.
Fig. 3.
Fig. 3. (a) Transmission spectra of TTF with different r values at TE mode. The geometrical parameters are kept as w = 300 nm, g = 300 nm, d = 300 nm, h = 850 nm. (The green area is the indoor THz wireless communication window.) (b) The relationships of resonances and r values.
Fig. 4.
Fig. 4. (a) Transmission spectra of TTF with different h values at TE mode. The geometrical parameters are kept as w = 300 nm, g = 300 nm, d = 300 nm, r = 3.89 µm. (The green area is the indoor THz wireless communication window.) (b) The relationships of resonances and h values.
Fig. 5.
Fig. 5. E-field and H-field distribution of TTF with different h values at TE mode. (a), (b) h = 0 nm (f = 0.530 THz). (c), (d) h = 100 nm (f = 0.604 THz). (e), (f) h = 200 nm (f = 0.663 THz). (g), (h) h = 300 nm (f = 0.703 THz). (i), (j) h = 400 nm (f = 0.735 THz). (k), (l) h = 500 nm (f = 0.760 THz). (f is the monitored frequency.)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f 0 = 1 2 π L s C s = K c 0 2 π S ε c g w .

Metrics