Abstract

We report an all-fiber high pulse energy ultrafast laser and amplifier operating at the short wavelength side of the thulium (Tm) emission band. An in-house W-type normal dispersion Tm-doped fiber (NDTDF) exhibits a bending-induced distributed short-pass filtering effect that efficiently suppresses the otherwise dominant long wavelength emission. By changing the bending diameter of the fiber, we demonstrated a tunable mode-locked Tm-doped fiber laser with a very wide tunable range of 152 nm spanning from 1740 nm to 1892 nm. Pulses at a central wavelength of 1755 nm were able to be amplified in an all-fiber configuration using the W-type NDTDF, without the use of any artificial short-pass filter or pulse stretcher. The all-fiber amplifier delivers 2.76 ps pulses with an energy of ∼32.7 nJ without pulse break-up, due to the normal dispersion nature of the gain fiber, which marks so far, the highest energy amongst fiber lasers in the 1700 nm-1800 nm region.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Xu and F. W. Wise, “Recent advances in fibre lasers for nonlinear microscopy,” Nat. Photonics 7(11), 875–882 (2013).
    [Crossref]
  2. N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
    [Crossref]
  3. S. P. Chong, C. W. Merkle, D. F. Cooke, T. Zhang, H. Radhakrishnan, L. Krubitzer, and V. J. Srinivasan, “Noninvasive, in vivo imaging of subcortical mouse brain regions with 1.7 µm optical coherence tomography,” Opt. Lett. 40(21), 4911–4914 (2015).
    [Crossref]
  4. M. Yamanaka, T. Teranishi, H. Kawagoe, and N. Nishizawa, “Optical coherence microscopy in 1700 nm spectral band for high-resolution label-free deep-tissue imaging,” Sci. Rep. 6(1), 31715 (2016).
    [Crossref]
  5. C. Li, J. Shi, X. Gong, C. Kong, Z. Luo, L. Song, and K. K. Y. Wong, “1.7 µm wavelength tunable gain-switched fiber laser and its application to spectroscopic photoacoustic imaging,” Opt. Lett. 43(23), 5849–5852 (2018).
    [Crossref]
  6. J. M. O. Daniel, N. Simakov, M. Tokurakawa, M. Ibsen, and W. A. Clarkson, “Ultra-short wavelength operation of a thulium fibre laser in the 1660–1750 nm wavelength band,” Opt. Express 23(14), 18269–18276 (2015).
    [Crossref]
  7. K. Wang and C. Xu, “Tunable high-energy soliton pulse generation from a large-mode-area fiber and its application to third harmonic generation microscopy,” Appl. Phys. Lett. 99(7), 071112 (2011).
    [Crossref]
  8. T. Noronen, S. Firstov, E. Dianov, and O. G. Okhotnikov, “1700 nm dispersion managed mode-Locked bismuth fiber laser,” Sci. Rep. 6(1), 24876 (2016).
    [Crossref]
  9. S. Firstov, S. Alyshev, M. Melkumov, K. Riumkin, A. Shubin, and E. Dianov, “Bismuth-doped optical fibers and fiber lasers for a spectral region of 1600–1800  nm,” Opt. Lett. 39(24), 6927–6930 (2014).
    [Crossref]
  10. T. Noronen, O. Okhotnikov, and R. Gumenyuk, “Electronically tunable thulium-holmium mode-locked fiber laser for the 1700-1800 nm wavelength band,” Opt. Express 24(13), 14703 (2016).
    [Crossref]
  11. S. Chen, Y. Jung, S. Alam, D. J. Richardson, R. Sidharthan, D. Ho, S. Yoo, and J. M. O. Daniel, “Ultra-short wavelength operation of thulium doped fiber amplifiers and lasers,” Opt. Express 27(25), 36699–36707 (2019).
    [Crossref]
  12. S. D. Emami, M. M. Dashtabi, H. J. Lee, A. S. Arabanian, and H. A. A. Rashid, “1700 nm and 1800 nm band tunable thulium doped mode-locked fiber lasers,” Sci. Rep. 7(1), 12747 (2017).
    [Crossref]
  13. C. Huang, C. Wang, W. Shang, N. Yang, Y. Tang, and J. Xu, “Developing high energy dissipative soliton fiber lasers at 2 micron,” Sci. Rep. 5(1), 13680 (2015).
    [Crossref]
  14. C. Li, X. Wei, C. Kong, S. Tan, N. Chen, J. Kang, and K. K. Y. Wong, “Fiber chirped pulse amplification of a short wavelength mode-locked thulium-doped fiber laser,” APL Photonics 2(12), 121302 (2017).
    [Crossref]
  15. M. Tokurakawa, H. Sagara, and H. Tünnermann, “All-normal-dispersion nonlinear polarization rotation mode-locked Tm:ZBLAN fiber laser,” Opt. Express 27(14), 19530–19535 (2019).
    [Crossref]
  16. D. Klimentov, V. V. Dvoyrin, and I. T. Sorokina, “Mode-Locked Thulium-Doped Fiber Lasers Based on Normal Dispersion Active Fiber,” IEEE Photonics Technol. Lett. 27(15), 1609–1612 (2015).
    [Crossref]
  17. Y. Chen, S. Chen, R. Sidharthan, C. J. Cheng, K. Liu, S. Rao. D. S., O. Bang, Q. J. Wang, D. Tang, and S. Yoo, “High Energy Ultrafast Laser at 2 µm Using Dispersion engineered Thulium-Doped Fiber,” IEEE Photonics J. 11(6), 1–12 (2019).
  18. M. Foroni, F. Poli, A. Cucinotta, and S. Selleri, “S-band depressed-cladding erbium-doped fiber amplifier with double-pass configuration,” Opt. Lett. 31(22), 3228–3230 (2006).
    [Crossref]
  19. S. Yoo, D. B. S. Soh, J. Kim, Y. Jung, J. Nilsson, J. K. Sahu, J. W. Lee, and K. Oh, “Analysis of W-type waveguide for Nd-doped fiber laser operating near 940 nm,” Opt. Commun. 247(1-3), 153–162 (2005).
    [Crossref]
  20. J. Sun, Z. Kang, J. Wang, C. Liu, and S. Jian, “Novel bending-resistant design of two-layer low-index trench fiber with parabolic-profile core,” Opt. Express 22(15), 18036–18043 (2014).
    [Crossref]
  21. W. Qi, X. Huang, D. Ho, S. Yoo, K. T. Yong, and F. Luan, “Dispersion measurement of optical fibers by phase retrieval from spectral interferometry,” J. Opt. 19(5), 055611 (2017).
    [Crossref]
  22. B. Sun, J. Luo, Z. Yan, K. Liu, J. Ji, Y. Zhang, Q. J. Wang, and X. Yu, “1867–2010 nm tunable femtosecond thulium-doped all-fiber laser,” Opt. Express 25(8), 8997–9002 (2017).
    [Crossref]
  23. S. D. Agger and J. H. Povlsen, “Emission and absorption cross section of thulium doped silica fibers,” Opt. Express 14(1), 50–57 (2006).
    [Crossref]
  24. P. Ciąćka, A. Rampur, A. Heidt, T. Feurer, and M. Klimczak, “Dispersion measurement of ultra-high numerical aperture fibers covering thulium, holmium, and erbium emission wavelengths,” J. Opt. Soc. Am. B 35(6), 1301 (2018).
    [Crossref]
  25. A. Wienke, D. Wandt, J. B. Lecourt, D. Lekime, Y. Hernandez, J. Neumann, and D. Kracht, “High energy, femtosecond fiber laser source at 1750 nm for 3-photon microscopy (Conference Presentation),” Proc. SPIE 10683, 106831T (2018).
    [Crossref]
  26. A. Khegai, M. Melkumov, K. Riumkin, V. Khopin, S. Firstov, and E. Dianov, “NALM-based bismuth-doped fiberlaser at 1.7µm,” Opt. Lett. 43(5), 1127–1130 (2018).
    [Crossref]

2019 (3)

2018 (4)

2017 (4)

W. Qi, X. Huang, D. Ho, S. Yoo, K. T. Yong, and F. Luan, “Dispersion measurement of optical fibers by phase retrieval from spectral interferometry,” J. Opt. 19(5), 055611 (2017).
[Crossref]

B. Sun, J. Luo, Z. Yan, K. Liu, J. Ji, Y. Zhang, Q. J. Wang, and X. Yu, “1867–2010 nm tunable femtosecond thulium-doped all-fiber laser,” Opt. Express 25(8), 8997–9002 (2017).
[Crossref]

S. D. Emami, M. M. Dashtabi, H. J. Lee, A. S. Arabanian, and H. A. A. Rashid, “1700 nm and 1800 nm band tunable thulium doped mode-locked fiber lasers,” Sci. Rep. 7(1), 12747 (2017).
[Crossref]

C. Li, X. Wei, C. Kong, S. Tan, N. Chen, J. Kang, and K. K. Y. Wong, “Fiber chirped pulse amplification of a short wavelength mode-locked thulium-doped fiber laser,” APL Photonics 2(12), 121302 (2017).
[Crossref]

2016 (3)

T. Noronen, O. Okhotnikov, and R. Gumenyuk, “Electronically tunable thulium-holmium mode-locked fiber laser for the 1700-1800 nm wavelength band,” Opt. Express 24(13), 14703 (2016).
[Crossref]

T. Noronen, S. Firstov, E. Dianov, and O. G. Okhotnikov, “1700 nm dispersion managed mode-Locked bismuth fiber laser,” Sci. Rep. 6(1), 24876 (2016).
[Crossref]

M. Yamanaka, T. Teranishi, H. Kawagoe, and N. Nishizawa, “Optical coherence microscopy in 1700 nm spectral band for high-resolution label-free deep-tissue imaging,” Sci. Rep. 6(1), 31715 (2016).
[Crossref]

2015 (4)

S. P. Chong, C. W. Merkle, D. F. Cooke, T. Zhang, H. Radhakrishnan, L. Krubitzer, and V. J. Srinivasan, “Noninvasive, in vivo imaging of subcortical mouse brain regions with 1.7 µm optical coherence tomography,” Opt. Lett. 40(21), 4911–4914 (2015).
[Crossref]

J. M. O. Daniel, N. Simakov, M. Tokurakawa, M. Ibsen, and W. A. Clarkson, “Ultra-short wavelength operation of a thulium fibre laser in the 1660–1750 nm wavelength band,” Opt. Express 23(14), 18269–18276 (2015).
[Crossref]

C. Huang, C. Wang, W. Shang, N. Yang, Y. Tang, and J. Xu, “Developing high energy dissipative soliton fiber lasers at 2 micron,” Sci. Rep. 5(1), 13680 (2015).
[Crossref]

D. Klimentov, V. V. Dvoyrin, and I. T. Sorokina, “Mode-Locked Thulium-Doped Fiber Lasers Based on Normal Dispersion Active Fiber,” IEEE Photonics Technol. Lett. 27(15), 1609–1612 (2015).
[Crossref]

2014 (2)

2013 (2)

C. Xu and F. W. Wise, “Recent advances in fibre lasers for nonlinear microscopy,” Nat. Photonics 7(11), 875–882 (2013).
[Crossref]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref]

2011 (1)

K. Wang and C. Xu, “Tunable high-energy soliton pulse generation from a large-mode-area fiber and its application to third harmonic generation microscopy,” Appl. Phys. Lett. 99(7), 071112 (2011).
[Crossref]

2006 (2)

2005 (1)

S. Yoo, D. B. S. Soh, J. Kim, Y. Jung, J. Nilsson, J. K. Sahu, J. W. Lee, and K. Oh, “Analysis of W-type waveguide for Nd-doped fiber laser operating near 940 nm,” Opt. Commun. 247(1-3), 153–162 (2005).
[Crossref]

Agger, S. D.

Alam, S.

Alyshev, S.

Arabanian, A. S.

S. D. Emami, M. M. Dashtabi, H. J. Lee, A. S. Arabanian, and H. A. A. Rashid, “1700 nm and 1800 nm band tunable thulium doped mode-locked fiber lasers,” Sci. Rep. 7(1), 12747 (2017).
[Crossref]

Bang, O.

Y. Chen, S. Chen, R. Sidharthan, C. J. Cheng, K. Liu, S. Rao. D. S., O. Bang, Q. J. Wang, D. Tang, and S. Yoo, “High Energy Ultrafast Laser at 2 µm Using Dispersion engineered Thulium-Doped Fiber,” IEEE Photonics J. 11(6), 1–12 (2019).

Chen, N.

C. Li, X. Wei, C. Kong, S. Tan, N. Chen, J. Kang, and K. K. Y. Wong, “Fiber chirped pulse amplification of a short wavelength mode-locked thulium-doped fiber laser,” APL Photonics 2(12), 121302 (2017).
[Crossref]

Chen, S.

Y. Chen, S. Chen, R. Sidharthan, C. J. Cheng, K. Liu, S. Rao. D. S., O. Bang, Q. J. Wang, D. Tang, and S. Yoo, “High Energy Ultrafast Laser at 2 µm Using Dispersion engineered Thulium-Doped Fiber,” IEEE Photonics J. 11(6), 1–12 (2019).

S. Chen, Y. Jung, S. Alam, D. J. Richardson, R. Sidharthan, D. Ho, S. Yoo, and J. M. O. Daniel, “Ultra-short wavelength operation of thulium doped fiber amplifiers and lasers,” Opt. Express 27(25), 36699–36707 (2019).
[Crossref]

Chen, Y.

Y. Chen, S. Chen, R. Sidharthan, C. J. Cheng, K. Liu, S. Rao. D. S., O. Bang, Q. J. Wang, D. Tang, and S. Yoo, “High Energy Ultrafast Laser at 2 µm Using Dispersion engineered Thulium-Doped Fiber,” IEEE Photonics J. 11(6), 1–12 (2019).

Cheng, C. J.

Y. Chen, S. Chen, R. Sidharthan, C. J. Cheng, K. Liu, S. Rao. D. S., O. Bang, Q. J. Wang, D. Tang, and S. Yoo, “High Energy Ultrafast Laser at 2 µm Using Dispersion engineered Thulium-Doped Fiber,” IEEE Photonics J. 11(6), 1–12 (2019).

Chong, S. P.

Ciacka, P.

Clark, C. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref]

Clarkson, W. A.

Cooke, D. F.

Cucinotta, A.

Daniel, J. M. O.

Dashtabi, M. M.

S. D. Emami, M. M. Dashtabi, H. J. Lee, A. S. Arabanian, and H. A. A. Rashid, “1700 nm and 1800 nm band tunable thulium doped mode-locked fiber lasers,” Sci. Rep. 7(1), 12747 (2017).
[Crossref]

Dianov, E.

Dvoyrin, V. V.

D. Klimentov, V. V. Dvoyrin, and I. T. Sorokina, “Mode-Locked Thulium-Doped Fiber Lasers Based on Normal Dispersion Active Fiber,” IEEE Photonics Technol. Lett. 27(15), 1609–1612 (2015).
[Crossref]

Emami, S. D.

S. D. Emami, M. M. Dashtabi, H. J. Lee, A. S. Arabanian, and H. A. A. Rashid, “1700 nm and 1800 nm band tunable thulium doped mode-locked fiber lasers,” Sci. Rep. 7(1), 12747 (2017).
[Crossref]

Feurer, T.

Firstov, S.

Foroni, M.

Gong, X.

Gumenyuk, R.

Heidt, A.

Hernandez, Y.

A. Wienke, D. Wandt, J. B. Lecourt, D. Lekime, Y. Hernandez, J. Neumann, and D. Kracht, “High energy, femtosecond fiber laser source at 1750 nm for 3-photon microscopy (Conference Presentation),” Proc. SPIE 10683, 106831T (2018).
[Crossref]

Ho, D.

S. Chen, Y. Jung, S. Alam, D. J. Richardson, R. Sidharthan, D. Ho, S. Yoo, and J. M. O. Daniel, “Ultra-short wavelength operation of thulium doped fiber amplifiers and lasers,” Opt. Express 27(25), 36699–36707 (2019).
[Crossref]

W. Qi, X. Huang, D. Ho, S. Yoo, K. T. Yong, and F. Luan, “Dispersion measurement of optical fibers by phase retrieval from spectral interferometry,” J. Opt. 19(5), 055611 (2017).
[Crossref]

Horton, N. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref]

Huang, C.

C. Huang, C. Wang, W. Shang, N. Yang, Y. Tang, and J. Xu, “Developing high energy dissipative soliton fiber lasers at 2 micron,” Sci. Rep. 5(1), 13680 (2015).
[Crossref]

Huang, X.

W. Qi, X. Huang, D. Ho, S. Yoo, K. T. Yong, and F. Luan, “Dispersion measurement of optical fibers by phase retrieval from spectral interferometry,” J. Opt. 19(5), 055611 (2017).
[Crossref]

Ibsen, M.

Ji, J.

Jian, S.

Jung, Y.

S. Chen, Y. Jung, S. Alam, D. J. Richardson, R. Sidharthan, D. Ho, S. Yoo, and J. M. O. Daniel, “Ultra-short wavelength operation of thulium doped fiber amplifiers and lasers,” Opt. Express 27(25), 36699–36707 (2019).
[Crossref]

S. Yoo, D. B. S. Soh, J. Kim, Y. Jung, J. Nilsson, J. K. Sahu, J. W. Lee, and K. Oh, “Analysis of W-type waveguide for Nd-doped fiber laser operating near 940 nm,” Opt. Commun. 247(1-3), 153–162 (2005).
[Crossref]

Kang, J.

C. Li, X. Wei, C. Kong, S. Tan, N. Chen, J. Kang, and K. K. Y. Wong, “Fiber chirped pulse amplification of a short wavelength mode-locked thulium-doped fiber laser,” APL Photonics 2(12), 121302 (2017).
[Crossref]

Kang, Z.

Kawagoe, H.

M. Yamanaka, T. Teranishi, H. Kawagoe, and N. Nishizawa, “Optical coherence microscopy in 1700 nm spectral band for high-resolution label-free deep-tissue imaging,” Sci. Rep. 6(1), 31715 (2016).
[Crossref]

Khegai, A.

Khopin, V.

Kim, J.

S. Yoo, D. B. S. Soh, J. Kim, Y. Jung, J. Nilsson, J. K. Sahu, J. W. Lee, and K. Oh, “Analysis of W-type waveguide for Nd-doped fiber laser operating near 940 nm,” Opt. Commun. 247(1-3), 153–162 (2005).
[Crossref]

Klimczak, M.

Klimentov, D.

D. Klimentov, V. V. Dvoyrin, and I. T. Sorokina, “Mode-Locked Thulium-Doped Fiber Lasers Based on Normal Dispersion Active Fiber,” IEEE Photonics Technol. Lett. 27(15), 1609–1612 (2015).
[Crossref]

Kobat, D.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref]

Kong, C.

C. Li, J. Shi, X. Gong, C. Kong, Z. Luo, L. Song, and K. K. Y. Wong, “1.7 µm wavelength tunable gain-switched fiber laser and its application to spectroscopic photoacoustic imaging,” Opt. Lett. 43(23), 5849–5852 (2018).
[Crossref]

C. Li, X. Wei, C. Kong, S. Tan, N. Chen, J. Kang, and K. K. Y. Wong, “Fiber chirped pulse amplification of a short wavelength mode-locked thulium-doped fiber laser,” APL Photonics 2(12), 121302 (2017).
[Crossref]

Kracht, D.

A. Wienke, D. Wandt, J. B. Lecourt, D. Lekime, Y. Hernandez, J. Neumann, and D. Kracht, “High energy, femtosecond fiber laser source at 1750 nm for 3-photon microscopy (Conference Presentation),” Proc. SPIE 10683, 106831T (2018).
[Crossref]

Krubitzer, L.

Lecourt, J. B.

A. Wienke, D. Wandt, J. B. Lecourt, D. Lekime, Y. Hernandez, J. Neumann, and D. Kracht, “High energy, femtosecond fiber laser source at 1750 nm for 3-photon microscopy (Conference Presentation),” Proc. SPIE 10683, 106831T (2018).
[Crossref]

Lee, H. J.

S. D. Emami, M. M. Dashtabi, H. J. Lee, A. S. Arabanian, and H. A. A. Rashid, “1700 nm and 1800 nm band tunable thulium doped mode-locked fiber lasers,” Sci. Rep. 7(1), 12747 (2017).
[Crossref]

Lee, J. W.

S. Yoo, D. B. S. Soh, J. Kim, Y. Jung, J. Nilsson, J. K. Sahu, J. W. Lee, and K. Oh, “Analysis of W-type waveguide for Nd-doped fiber laser operating near 940 nm,” Opt. Commun. 247(1-3), 153–162 (2005).
[Crossref]

Lekime, D.

A. Wienke, D. Wandt, J. B. Lecourt, D. Lekime, Y. Hernandez, J. Neumann, and D. Kracht, “High energy, femtosecond fiber laser source at 1750 nm for 3-photon microscopy (Conference Presentation),” Proc. SPIE 10683, 106831T (2018).
[Crossref]

Li, C.

C. Li, J. Shi, X. Gong, C. Kong, Z. Luo, L. Song, and K. K. Y. Wong, “1.7 µm wavelength tunable gain-switched fiber laser and its application to spectroscopic photoacoustic imaging,” Opt. Lett. 43(23), 5849–5852 (2018).
[Crossref]

C. Li, X. Wei, C. Kong, S. Tan, N. Chen, J. Kang, and K. K. Y. Wong, “Fiber chirped pulse amplification of a short wavelength mode-locked thulium-doped fiber laser,” APL Photonics 2(12), 121302 (2017).
[Crossref]

Liu, C.

Liu, K.

Y. Chen, S. Chen, R. Sidharthan, C. J. Cheng, K. Liu, S. Rao. D. S., O. Bang, Q. J. Wang, D. Tang, and S. Yoo, “High Energy Ultrafast Laser at 2 µm Using Dispersion engineered Thulium-Doped Fiber,” IEEE Photonics J. 11(6), 1–12 (2019).

B. Sun, J. Luo, Z. Yan, K. Liu, J. Ji, Y. Zhang, Q. J. Wang, and X. Yu, “1867–2010 nm tunable femtosecond thulium-doped all-fiber laser,” Opt. Express 25(8), 8997–9002 (2017).
[Crossref]

Luan, F.

W. Qi, X. Huang, D. Ho, S. Yoo, K. T. Yong, and F. Luan, “Dispersion measurement of optical fibers by phase retrieval from spectral interferometry,” J. Opt. 19(5), 055611 (2017).
[Crossref]

Luo, J.

Luo, Z.

Melkumov, M.

Merkle, C. W.

Neumann, J.

A. Wienke, D. Wandt, J. B. Lecourt, D. Lekime, Y. Hernandez, J. Neumann, and D. Kracht, “High energy, femtosecond fiber laser source at 1750 nm for 3-photon microscopy (Conference Presentation),” Proc. SPIE 10683, 106831T (2018).
[Crossref]

Nilsson, J.

S. Yoo, D. B. S. Soh, J. Kim, Y. Jung, J. Nilsson, J. K. Sahu, J. W. Lee, and K. Oh, “Analysis of W-type waveguide for Nd-doped fiber laser operating near 940 nm,” Opt. Commun. 247(1-3), 153–162 (2005).
[Crossref]

Nishizawa, N.

M. Yamanaka, T. Teranishi, H. Kawagoe, and N. Nishizawa, “Optical coherence microscopy in 1700 nm spectral band for high-resolution label-free deep-tissue imaging,” Sci. Rep. 6(1), 31715 (2016).
[Crossref]

Noronen, T.

T. Noronen, S. Firstov, E. Dianov, and O. G. Okhotnikov, “1700 nm dispersion managed mode-Locked bismuth fiber laser,” Sci. Rep. 6(1), 24876 (2016).
[Crossref]

T. Noronen, O. Okhotnikov, and R. Gumenyuk, “Electronically tunable thulium-holmium mode-locked fiber laser for the 1700-1800 nm wavelength band,” Opt. Express 24(13), 14703 (2016).
[Crossref]

Oh, K.

S. Yoo, D. B. S. Soh, J. Kim, Y. Jung, J. Nilsson, J. K. Sahu, J. W. Lee, and K. Oh, “Analysis of W-type waveguide for Nd-doped fiber laser operating near 940 nm,” Opt. Commun. 247(1-3), 153–162 (2005).
[Crossref]

Okhotnikov, O.

Okhotnikov, O. G.

T. Noronen, S. Firstov, E. Dianov, and O. G. Okhotnikov, “1700 nm dispersion managed mode-Locked bismuth fiber laser,” Sci. Rep. 6(1), 24876 (2016).
[Crossref]

Poli, F.

Povlsen, J. H.

Qi, W.

W. Qi, X. Huang, D. Ho, S. Yoo, K. T. Yong, and F. Luan, “Dispersion measurement of optical fibers by phase retrieval from spectral interferometry,” J. Opt. 19(5), 055611 (2017).
[Crossref]

Radhakrishnan, H.

Rampur, A.

Rao. D. S., S.

Y. Chen, S. Chen, R. Sidharthan, C. J. Cheng, K. Liu, S. Rao. D. S., O. Bang, Q. J. Wang, D. Tang, and S. Yoo, “High Energy Ultrafast Laser at 2 µm Using Dispersion engineered Thulium-Doped Fiber,” IEEE Photonics J. 11(6), 1–12 (2019).

Rashid, H. A. A.

S. D. Emami, M. M. Dashtabi, H. J. Lee, A. S. Arabanian, and H. A. A. Rashid, “1700 nm and 1800 nm band tunable thulium doped mode-locked fiber lasers,” Sci. Rep. 7(1), 12747 (2017).
[Crossref]

Richardson, D. J.

Riumkin, K.

Sagara, H.

Sahu, J. K.

S. Yoo, D. B. S. Soh, J. Kim, Y. Jung, J. Nilsson, J. K. Sahu, J. W. Lee, and K. Oh, “Analysis of W-type waveguide for Nd-doped fiber laser operating near 940 nm,” Opt. Commun. 247(1-3), 153–162 (2005).
[Crossref]

Schaffer, C. B.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref]

Selleri, S.

Shang, W.

C. Huang, C. Wang, W. Shang, N. Yang, Y. Tang, and J. Xu, “Developing high energy dissipative soliton fiber lasers at 2 micron,” Sci. Rep. 5(1), 13680 (2015).
[Crossref]

Shi, J.

Shubin, A.

Sidharthan, R.

S. Chen, Y. Jung, S. Alam, D. J. Richardson, R. Sidharthan, D. Ho, S. Yoo, and J. M. O. Daniel, “Ultra-short wavelength operation of thulium doped fiber amplifiers and lasers,” Opt. Express 27(25), 36699–36707 (2019).
[Crossref]

Y. Chen, S. Chen, R. Sidharthan, C. J. Cheng, K. Liu, S. Rao. D. S., O. Bang, Q. J. Wang, D. Tang, and S. Yoo, “High Energy Ultrafast Laser at 2 µm Using Dispersion engineered Thulium-Doped Fiber,” IEEE Photonics J. 11(6), 1–12 (2019).

Simakov, N.

Soh, D. B. S.

S. Yoo, D. B. S. Soh, J. Kim, Y. Jung, J. Nilsson, J. K. Sahu, J. W. Lee, and K. Oh, “Analysis of W-type waveguide for Nd-doped fiber laser operating near 940 nm,” Opt. Commun. 247(1-3), 153–162 (2005).
[Crossref]

Song, L.

Sorokina, I. T.

D. Klimentov, V. V. Dvoyrin, and I. T. Sorokina, “Mode-Locked Thulium-Doped Fiber Lasers Based on Normal Dispersion Active Fiber,” IEEE Photonics Technol. Lett. 27(15), 1609–1612 (2015).
[Crossref]

Srinivasan, V. J.

Sun, B.

Sun, J.

Tan, S.

C. Li, X. Wei, C. Kong, S. Tan, N. Chen, J. Kang, and K. K. Y. Wong, “Fiber chirped pulse amplification of a short wavelength mode-locked thulium-doped fiber laser,” APL Photonics 2(12), 121302 (2017).
[Crossref]

Tang, D.

Y. Chen, S. Chen, R. Sidharthan, C. J. Cheng, K. Liu, S. Rao. D. S., O. Bang, Q. J. Wang, D. Tang, and S. Yoo, “High Energy Ultrafast Laser at 2 µm Using Dispersion engineered Thulium-Doped Fiber,” IEEE Photonics J. 11(6), 1–12 (2019).

Tang, Y.

C. Huang, C. Wang, W. Shang, N. Yang, Y. Tang, and J. Xu, “Developing high energy dissipative soliton fiber lasers at 2 micron,” Sci. Rep. 5(1), 13680 (2015).
[Crossref]

Teranishi, T.

M. Yamanaka, T. Teranishi, H. Kawagoe, and N. Nishizawa, “Optical coherence microscopy in 1700 nm spectral band for high-resolution label-free deep-tissue imaging,” Sci. Rep. 6(1), 31715 (2016).
[Crossref]

Tokurakawa, M.

Tünnermann, H.

Wandt, D.

A. Wienke, D. Wandt, J. B. Lecourt, D. Lekime, Y. Hernandez, J. Neumann, and D. Kracht, “High energy, femtosecond fiber laser source at 1750 nm for 3-photon microscopy (Conference Presentation),” Proc. SPIE 10683, 106831T (2018).
[Crossref]

Wang, C.

C. Huang, C. Wang, W. Shang, N. Yang, Y. Tang, and J. Xu, “Developing high energy dissipative soliton fiber lasers at 2 micron,” Sci. Rep. 5(1), 13680 (2015).
[Crossref]

Wang, J.

Wang, K.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref]

K. Wang and C. Xu, “Tunable high-energy soliton pulse generation from a large-mode-area fiber and its application to third harmonic generation microscopy,” Appl. Phys. Lett. 99(7), 071112 (2011).
[Crossref]

Wang, Q. J.

Y. Chen, S. Chen, R. Sidharthan, C. J. Cheng, K. Liu, S. Rao. D. S., O. Bang, Q. J. Wang, D. Tang, and S. Yoo, “High Energy Ultrafast Laser at 2 µm Using Dispersion engineered Thulium-Doped Fiber,” IEEE Photonics J. 11(6), 1–12 (2019).

B. Sun, J. Luo, Z. Yan, K. Liu, J. Ji, Y. Zhang, Q. J. Wang, and X. Yu, “1867–2010 nm tunable femtosecond thulium-doped all-fiber laser,” Opt. Express 25(8), 8997–9002 (2017).
[Crossref]

Wei, X.

C. Li, X. Wei, C. Kong, S. Tan, N. Chen, J. Kang, and K. K. Y. Wong, “Fiber chirped pulse amplification of a short wavelength mode-locked thulium-doped fiber laser,” APL Photonics 2(12), 121302 (2017).
[Crossref]

Wienke, A.

A. Wienke, D. Wandt, J. B. Lecourt, D. Lekime, Y. Hernandez, J. Neumann, and D. Kracht, “High energy, femtosecond fiber laser source at 1750 nm for 3-photon microscopy (Conference Presentation),” Proc. SPIE 10683, 106831T (2018).
[Crossref]

Wise, F. W.

C. Xu and F. W. Wise, “Recent advances in fibre lasers for nonlinear microscopy,” Nat. Photonics 7(11), 875–882 (2013).
[Crossref]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref]

Wong, K. K. Y.

C. Li, J. Shi, X. Gong, C. Kong, Z. Luo, L. Song, and K. K. Y. Wong, “1.7 µm wavelength tunable gain-switched fiber laser and its application to spectroscopic photoacoustic imaging,” Opt. Lett. 43(23), 5849–5852 (2018).
[Crossref]

C. Li, X. Wei, C. Kong, S. Tan, N. Chen, J. Kang, and K. K. Y. Wong, “Fiber chirped pulse amplification of a short wavelength mode-locked thulium-doped fiber laser,” APL Photonics 2(12), 121302 (2017).
[Crossref]

Xu, C.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref]

C. Xu and F. W. Wise, “Recent advances in fibre lasers for nonlinear microscopy,” Nat. Photonics 7(11), 875–882 (2013).
[Crossref]

K. Wang and C. Xu, “Tunable high-energy soliton pulse generation from a large-mode-area fiber and its application to third harmonic generation microscopy,” Appl. Phys. Lett. 99(7), 071112 (2011).
[Crossref]

Xu, J.

C. Huang, C. Wang, W. Shang, N. Yang, Y. Tang, and J. Xu, “Developing high energy dissipative soliton fiber lasers at 2 micron,” Sci. Rep. 5(1), 13680 (2015).
[Crossref]

Yamanaka, M.

M. Yamanaka, T. Teranishi, H. Kawagoe, and N. Nishizawa, “Optical coherence microscopy in 1700 nm spectral band for high-resolution label-free deep-tissue imaging,” Sci. Rep. 6(1), 31715 (2016).
[Crossref]

Yan, Z.

Yang, N.

C. Huang, C. Wang, W. Shang, N. Yang, Y. Tang, and J. Xu, “Developing high energy dissipative soliton fiber lasers at 2 micron,” Sci. Rep. 5(1), 13680 (2015).
[Crossref]

Yong, K. T.

W. Qi, X. Huang, D. Ho, S. Yoo, K. T. Yong, and F. Luan, “Dispersion measurement of optical fibers by phase retrieval from spectral interferometry,” J. Opt. 19(5), 055611 (2017).
[Crossref]

Yoo, S.

Y. Chen, S. Chen, R. Sidharthan, C. J. Cheng, K. Liu, S. Rao. D. S., O. Bang, Q. J. Wang, D. Tang, and S. Yoo, “High Energy Ultrafast Laser at 2 µm Using Dispersion engineered Thulium-Doped Fiber,” IEEE Photonics J. 11(6), 1–12 (2019).

S. Chen, Y. Jung, S. Alam, D. J. Richardson, R. Sidharthan, D. Ho, S. Yoo, and J. M. O. Daniel, “Ultra-short wavelength operation of thulium doped fiber amplifiers and lasers,” Opt. Express 27(25), 36699–36707 (2019).
[Crossref]

W. Qi, X. Huang, D. Ho, S. Yoo, K. T. Yong, and F. Luan, “Dispersion measurement of optical fibers by phase retrieval from spectral interferometry,” J. Opt. 19(5), 055611 (2017).
[Crossref]

S. Yoo, D. B. S. Soh, J. Kim, Y. Jung, J. Nilsson, J. K. Sahu, J. W. Lee, and K. Oh, “Analysis of W-type waveguide for Nd-doped fiber laser operating near 940 nm,” Opt. Commun. 247(1-3), 153–162 (2005).
[Crossref]

Yu, X.

Zhang, T.

Zhang, Y.

APL Photonics (1)

C. Li, X. Wei, C. Kong, S. Tan, N. Chen, J. Kang, and K. K. Y. Wong, “Fiber chirped pulse amplification of a short wavelength mode-locked thulium-doped fiber laser,” APL Photonics 2(12), 121302 (2017).
[Crossref]

Appl. Phys. Lett. (1)

K. Wang and C. Xu, “Tunable high-energy soliton pulse generation from a large-mode-area fiber and its application to third harmonic generation microscopy,” Appl. Phys. Lett. 99(7), 071112 (2011).
[Crossref]

IEEE Photonics J. (1)

Y. Chen, S. Chen, R. Sidharthan, C. J. Cheng, K. Liu, S. Rao. D. S., O. Bang, Q. J. Wang, D. Tang, and S. Yoo, “High Energy Ultrafast Laser at 2 µm Using Dispersion engineered Thulium-Doped Fiber,” IEEE Photonics J. 11(6), 1–12 (2019).

IEEE Photonics Technol. Lett. (1)

D. Klimentov, V. V. Dvoyrin, and I. T. Sorokina, “Mode-Locked Thulium-Doped Fiber Lasers Based on Normal Dispersion Active Fiber,” IEEE Photonics Technol. Lett. 27(15), 1609–1612 (2015).
[Crossref]

J. Opt. (1)

W. Qi, X. Huang, D. Ho, S. Yoo, K. T. Yong, and F. Luan, “Dispersion measurement of optical fibers by phase retrieval from spectral interferometry,” J. Opt. 19(5), 055611 (2017).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Photonics (2)

C. Xu and F. W. Wise, “Recent advances in fibre lasers for nonlinear microscopy,” Nat. Photonics 7(11), 875–882 (2013).
[Crossref]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref]

Opt. Commun. (1)

S. Yoo, D. B. S. Soh, J. Kim, Y. Jung, J. Nilsson, J. K. Sahu, J. W. Lee, and K. Oh, “Analysis of W-type waveguide for Nd-doped fiber laser operating near 940 nm,” Opt. Commun. 247(1-3), 153–162 (2005).
[Crossref]

Opt. Express (7)

Opt. Lett. (5)

Proc. SPIE (1)

A. Wienke, D. Wandt, J. B. Lecourt, D. Lekime, Y. Hernandez, J. Neumann, and D. Kracht, “High energy, femtosecond fiber laser source at 1750 nm for 3-photon microscopy (Conference Presentation),” Proc. SPIE 10683, 106831T (2018).
[Crossref]

Sci. Rep. (4)

T. Noronen, S. Firstov, E. Dianov, and O. G. Okhotnikov, “1700 nm dispersion managed mode-Locked bismuth fiber laser,” Sci. Rep. 6(1), 24876 (2016).
[Crossref]

M. Yamanaka, T. Teranishi, H. Kawagoe, and N. Nishizawa, “Optical coherence microscopy in 1700 nm spectral band for high-resolution label-free deep-tissue imaging,” Sci. Rep. 6(1), 31715 (2016).
[Crossref]

S. D. Emami, M. M. Dashtabi, H. J. Lee, A. S. Arabanian, and H. A. A. Rashid, “1700 nm and 1800 nm band tunable thulium doped mode-locked fiber lasers,” Sci. Rep. 7(1), 12747 (2017).
[Crossref]

C. Huang, C. Wang, W. Shang, N. Yang, Y. Tang, and J. Xu, “Developing high energy dissipative soliton fiber lasers at 2 micron,” Sci. Rep. 5(1), 13680 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Cross sectional view of the fabricated W-type NDTDF under optical microscope; (b) Measured 2-D RIP of the fabricated W-type NDTDF by index profiler (IFA-100) in the section outlined by white dash line in (a); (c) Measured 1-D RIP curves of the fabricated W-type NDTDF along two perpendicular directions (labelled by arrows in (b)) and the corresponding parabolic fits in the core area.
Fig. 2.
Fig. 2. (a) The averaged bend loss (along two perpendicular directions shown by arrows in Fig. 1(b)) of fabricated 5 m W-type NDTDF at different bending diameters (Φbend), calculated using COMSOL, with the respective cut-off wavelength (λcutoff) marked by solid dots; (b) measured backward ASE of the fabricated 5 m W-type NDTDF at different bending diameters (Φbend); (c) the calculated LP01 mode intensity profile of the W-type NDTDF at 1750 nm by bending along two perpendicular directions as indicated by white arrow (Φbend at 8 cm, white dash line represents the designed core diameter); (d) the calculated MFD and (e) power percentage of LP01 mode in core of fabricated W-type NDTDF with respect to wavelength at different bending diameters.
Fig. 3.
Fig. 3. Dispersion curves at different bending diameters, with the respective λcutoff marked by solid dots.
Fig. 4.
Fig. 4. Schematic of all-fiber W-type NTDF based master oscillator power fiber amplifier; the oscillator and the amplifier setups are separately outlined by dash lines. WDM: wavelength division multiplexer; ISO: isolator; PC: polarization controller; SMF: single mode fiber; SESAM: semiconductor saturable absorber mirror.
Fig. 5.
Fig. 5. (a) Tunability of the mode-locked cavity from 1740 nm to 1892 nm utilizing the W-type NDTDF ; (b) output powers at the different operating wavelengths in (a) and their corresponding pump powers (blue lines: representative absorption, σabsorption, and emission, σemission, cross sections of a commercial TDF [23]); (c) a representative pulse train of the tunable mode-locked fiber lasers at 1755 nm.
Fig. 6.
Fig. 6. (a) Optical spectrum of mode-locked soliton pulse at 1755 nm; (b) an oscilloscope trace of the pulse train at 1755 nm with pump power of 30.5 dBm and at the bending diameter of 8 cm of the W-type NDTDF and (c) the detailed pulse train with a pulse interval of 181.8 ns in the section outlined by dash line in (b).
Fig. 7.
Fig. 7. (a) Spectra of amplified pulses with respect to pump power; (b) the output power (after WDM3) versus launched pump power; (c) the measured autocorrelator trace at the full power.

Tables (1)

Tables Icon

Table 1. Main characteristics of the state-of-the-art mode-locked fiber lasers and their amplifications in the 1700-1800 nm region

Metrics