Abstract

We report the demonstration of quantum cascade lasers (QCLs) with improved efficiency emitting at a wavelength of 4.9 µm in pulsed and continuous-wave (CW) operation. Based on an established design and guided by simulation, the number of QCL-emitting stages is increased in order to realize a 29.3% wall plug efficiency (WPE) in pulsed operation at room temperature. With proper fabrication and packaging, a 5-mm-long, 8-µm-wide QCL with a buried ridge waveguide is capable of 22% CW WPE and 5.6 W CW output power at room temperature. This corresponds to an extremely high optical density at the output facet of ∼35 MW/cm2, without any damage.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264(5158), 553–556 (1994).
    [Crossref]
  2. M. Razeghi, “High-Performance InP-Based Mid-IR Quantum Cascade Lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 941–951 (2009).
    [Crossref]
  3. M. S. Vitiello, G. Scalari, B. Williams, and P. De Natale, “Quantum cascade lasers: 20 years of challenges,” Opt. Express 23(4), 5167 (2015).
    [Crossref]
  4. S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Matyas, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ∼200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20(4), 3866–3876 (2012).
    [Crossref]
  5. M. Razeghi, W. Zhou, S. Slivken, Q. Y. Lu, D. H. Wu, and R. McClintock, “Recent progress of quantum cascade laser research from 3 to 12 µm at the Center for Quantum Devices,” Appl. Opt. 56(31), H30 (2017).
    [Crossref]
  6. Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, “Quantum cascade lasers that emit more light than heat,” Nat. Photonics 4(2), 99–102 (2010).
    [Crossref]
  7. B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
    [Crossref]
  8. L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with > 1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
    [Crossref]
  9. A. Knigge, G. Erbert, J. Jönsson, W. Pittroff, R. Staske, B. Sumpf, M. Weyers, and G. Tränkle, “Passively cooled 940 nm laser bars with 73% wall-plug efficiency at 70 W and 25°C,” Electron. Lett. 41(5), 250 (2005).
    [Crossref]
  10. Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
    [Crossref]
  11. Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken, and M. Razeghi, “Highly temperature insensitive quantum cascade lasers,” Appl. Phys. Lett. 97(25), 251104 (2010).
    [Crossref]
  12. A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6 µ m quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109(12), 121109 (2016).
    [Crossref]
  13. Y. Bai, “High wall plug efficiency quantum cascade lasers,” PhD dissertation, Northwestern University (2011).
  14. J. S. Yu, A. Evans, S. Slivken, S. R. Darvish, and M. Razeghi, “Temperature dependent characteristics of λ∼3.8µm room-temperature continuous-wave quantum-cascade lasers,” Appl. Phys. Lett. 88(25), 251118 (2006).
    [Crossref]
  15. D. R. Miftakhutdinov, A. P. Bogatov, and A. E. Drakin, “Catastrophic optical degradation of the output facet of high-power single-transverse-mode diode lasers. 1. Physical model,” Quantum Electron. 40(7), 583–588 (2010).
    [Crossref]

2017 (1)

2016 (1)

A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6 µ m quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109(12), 121109 (2016).
[Crossref]

2015 (1)

2014 (1)

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with > 1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

2012 (1)

2011 (1)

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

2010 (3)

Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken, and M. Razeghi, “Highly temperature insensitive quantum cascade lasers,” Appl. Phys. Lett. 97(25), 251104 (2010).
[Crossref]

D. R. Miftakhutdinov, A. P. Bogatov, and A. E. Drakin, “Catastrophic optical degradation of the output facet of high-power single-transverse-mode diode lasers. 1. Physical model,” Quantum Electron. 40(7), 583–588 (2010).
[Crossref]

Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, “Quantum cascade lasers that emit more light than heat,” Nat. Photonics 4(2), 99–102 (2010).
[Crossref]

2009 (1)

M. Razeghi, “High-Performance InP-Based Mid-IR Quantum Cascade Lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 941–951 (2009).
[Crossref]

2007 (1)

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
[Crossref]

2006 (1)

J. S. Yu, A. Evans, S. Slivken, S. R. Darvish, and M. Razeghi, “Temperature dependent characteristics of λ∼3.8µm room-temperature continuous-wave quantum-cascade lasers,” Appl. Phys. Lett. 88(25), 251118 (2006).
[Crossref]

2005 (1)

A. Knigge, G. Erbert, J. Jönsson, W. Pittroff, R. Staske, B. Sumpf, M. Weyers, and G. Tränkle, “Passively cooled 940 nm laser bars with 73% wall-plug efficiency at 70 W and 25°C,” Electron. Lett. 41(5), 250 (2005).
[Crossref]

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264(5158), 553–556 (1994).
[Crossref]

Bai, Y.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken, and M. Razeghi, “Highly temperature insensitive quantum cascade lasers,” Appl. Phys. Lett. 97(25), 251104 (2010).
[Crossref]

Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, “Quantum cascade lasers that emit more light than heat,” Nat. Photonics 4(2), 99–102 (2010).
[Crossref]

Y. Bai, “High wall plug efficiency quantum cascade lasers,” PhD dissertation, Northwestern University (2011).

Ban, D.

Bandyopadhyay, N.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken, and M. Razeghi, “Highly temperature insensitive quantum cascade lasers,” Appl. Phys. Lett. 97(25), 251104 (2010).
[Crossref]

Bogatov, A. P.

D. R. Miftakhutdinov, A. P. Bogatov, and A. E. Drakin, “Catastrophic optical degradation of the output facet of high-power single-transverse-mode diode lasers. 1. Physical model,” Quantum Electron. 40(7), 583–588 (2010).
[Crossref]

Capasso, F.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264(5158), 553–556 (1994).
[Crossref]

Chan, C. W. I.

Chen, L.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with > 1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

Cho, A. Y.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264(5158), 553–556 (1994).
[Crossref]

Darvish, S. R.

Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, “Quantum cascade lasers that emit more light than heat,” Nat. Photonics 4(2), 99–102 (2010).
[Crossref]

J. S. Yu, A. Evans, S. Slivken, S. R. Darvish, and M. Razeghi, “Temperature dependent characteristics of λ∼3.8µm room-temperature continuous-wave quantum-cascade lasers,” Appl. Phys. Lett. 88(25), 251118 (2006).
[Crossref]

Davies, A. G.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with > 1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

De Natale, P.

Dean, P.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with > 1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

Drakin, A. E.

D. R. Miftakhutdinov, A. P. Bogatov, and A. E. Drakin, “Catastrophic optical degradation of the output facet of high-power single-transverse-mode diode lasers. 1. Physical model,” Quantum Electron. 40(7), 583–588 (2010).
[Crossref]

Dupont, E.

Erbert, G.

A. Knigge, G. Erbert, J. Jönsson, W. Pittroff, R. Staske, B. Sumpf, M. Weyers, and G. Tränkle, “Passively cooled 940 nm laser bars with 73% wall-plug efficiency at 70 W and 25°C,” Electron. Lett. 41(5), 250 (2005).
[Crossref]

Evans, A.

J. S. Yu, A. Evans, S. Slivken, S. R. Darvish, and M. Razeghi, “Temperature dependent characteristics of λ∼3.8µm room-temperature continuous-wave quantum-cascade lasers,” Appl. Phys. Lett. 88(25), 251118 (2006).
[Crossref]

Faist, J.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264(5158), 553–556 (1994).
[Crossref]

Fathololoumi, S.

Figueiredo, P.

A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6 µ m quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109(12), 121109 (2016).
[Crossref]

Freeman, J.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with > 1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

Go, R.

A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6 µ m quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109(12), 121109 (2016).
[Crossref]

Hu, Q.

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264(5158), 553–556 (1994).
[Crossref]

Jirauschek, C.

Jönsson, J.

A. Knigge, G. Erbert, J. Jönsson, W. Pittroff, R. Staske, B. Sumpf, M. Weyers, and G. Tränkle, “Passively cooled 940 nm laser bars with 73% wall-plug efficiency at 70 W and 25°C,” Electron. Lett. 41(5), 250 (2005).
[Crossref]

Knigge, A.

A. Knigge, G. Erbert, J. Jönsson, W. Pittroff, R. Staske, B. Sumpf, M. Weyers, and G. Tränkle, “Passively cooled 940 nm laser bars with 73% wall-plug efficiency at 70 W and 25°C,” Electron. Lett. 41(5), 250 (2005).
[Crossref]

Kuboya, S.

Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, “Quantum cascade lasers that emit more light than heat,” Nat. Photonics 4(2), 99–102 (2010).
[Crossref]

Laframboise, S. R.

Li, L.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with > 1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

Linfield, E. H.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with > 1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

Liu, H. C.

Lu, Q. Y.

Lyakh, A.

A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6 µ m quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109(12), 121109 (2016).
[Crossref]

Matyas, A.

McClintock, R.

Miftakhutdinov, D. R.

D. R. Miftakhutdinov, A. P. Bogatov, and A. E. Drakin, “Catastrophic optical degradation of the output facet of high-power single-transverse-mode diode lasers. 1. Physical model,” Quantum Electron. 40(7), 583–588 (2010).
[Crossref]

Pittroff, W.

A. Knigge, G. Erbert, J. Jönsson, W. Pittroff, R. Staske, B. Sumpf, M. Weyers, and G. Tränkle, “Passively cooled 940 nm laser bars with 73% wall-plug efficiency at 70 W and 25°C,” Electron. Lett. 41(5), 250 (2005).
[Crossref]

Razeghi, M.

M. Razeghi, W. Zhou, S. Slivken, Q. Y. Lu, D. H. Wu, and R. McClintock, “Recent progress of quantum cascade laser research from 3 to 12 µm at the Center for Quantum Devices,” Appl. Opt. 56(31), H30 (2017).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken, and M. Razeghi, “Highly temperature insensitive quantum cascade lasers,” Appl. Phys. Lett. 97(25), 251104 (2010).
[Crossref]

Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, “Quantum cascade lasers that emit more light than heat,” Nat. Photonics 4(2), 99–102 (2010).
[Crossref]

M. Razeghi, “High-Performance InP-Based Mid-IR Quantum Cascade Lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 941–951 (2009).
[Crossref]

J. S. Yu, A. Evans, S. Slivken, S. R. Darvish, and M. Razeghi, “Temperature dependent characteristics of λ∼3.8µm room-temperature continuous-wave quantum-cascade lasers,” Appl. Phys. Lett. 88(25), 251118 (2006).
[Crossref]

Scalari, G.

Selcuk, E.

Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken, and M. Razeghi, “Highly temperature insensitive quantum cascade lasers,” Appl. Phys. Lett. 97(25), 251104 (2010).
[Crossref]

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264(5158), 553–556 (1994).
[Crossref]

Sivco, D. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264(5158), 553–556 (1994).
[Crossref]

Slivken, S.

M. Razeghi, W. Zhou, S. Slivken, Q. Y. Lu, D. H. Wu, and R. McClintock, “Recent progress of quantum cascade laser research from 3 to 12 µm at the Center for Quantum Devices,” Appl. Opt. 56(31), H30 (2017).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken, and M. Razeghi, “Highly temperature insensitive quantum cascade lasers,” Appl. Phys. Lett. 97(25), 251104 (2010).
[Crossref]

Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, “Quantum cascade lasers that emit more light than heat,” Nat. Photonics 4(2), 99–102 (2010).
[Crossref]

J. S. Yu, A. Evans, S. Slivken, S. R. Darvish, and M. Razeghi, “Temperature dependent characteristics of λ∼3.8µm room-temperature continuous-wave quantum-cascade lasers,” Appl. Phys. Lett. 88(25), 251118 (2006).
[Crossref]

Staske, R.

A. Knigge, G. Erbert, J. Jönsson, W. Pittroff, R. Staske, B. Sumpf, M. Weyers, and G. Tränkle, “Passively cooled 940 nm laser bars with 73% wall-plug efficiency at 70 W and 25°C,” Electron. Lett. 41(5), 250 (2005).
[Crossref]

Sumpf, B.

A. Knigge, G. Erbert, J. Jönsson, W. Pittroff, R. Staske, B. Sumpf, M. Weyers, and G. Tränkle, “Passively cooled 940 nm laser bars with 73% wall-plug efficiency at 70 W and 25°C,” Electron. Lett. 41(5), 250 (2005).
[Crossref]

Suttinger, M.

A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6 µ m quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109(12), 121109 (2016).
[Crossref]

Todi, A.

A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6 µ m quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109(12), 121109 (2016).
[Crossref]

Tränkle, G.

A. Knigge, G. Erbert, J. Jönsson, W. Pittroff, R. Staske, B. Sumpf, M. Weyers, and G. Tränkle, “Passively cooled 940 nm laser bars with 73% wall-plug efficiency at 70 W and 25°C,” Electron. Lett. 41(5), 250 (2005).
[Crossref]

Tsao, S.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken, and M. Razeghi, “Highly temperature insensitive quantum cascade lasers,” Appl. Phys. Lett. 97(25), 251104 (2010).
[Crossref]

Valavanis, A.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with > 1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

Vitiello, M. S.

Wasilewski, Z. R.

Weyers, M.

A. Knigge, G. Erbert, J. Jönsson, W. Pittroff, R. Staske, B. Sumpf, M. Weyers, and G. Tränkle, “Passively cooled 940 nm laser bars with 73% wall-plug efficiency at 70 W and 25°C,” Electron. Lett. 41(5), 250 (2005).
[Crossref]

Williams, B.

Williams, B. S.

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
[Crossref]

Wu, D. H.

Yu, J. S.

J. S. Yu, A. Evans, S. Slivken, S. R. Darvish, and M. Razeghi, “Temperature dependent characteristics of λ∼3.8µm room-temperature continuous-wave quantum-cascade lasers,” Appl. Phys. Lett. 88(25), 251118 (2006).
[Crossref]

Zhou, W.

Zhu, J.

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with > 1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken, and M. Razeghi, “Highly temperature insensitive quantum cascade lasers,” Appl. Phys. Lett. 97(25), 251104 (2010).
[Crossref]

A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, and A. Todi, “5.6 µ m quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%,” Appl. Phys. Lett. 109(12), 121109 (2016).
[Crossref]

J. S. Yu, A. Evans, S. Slivken, S. R. Darvish, and M. Razeghi, “Temperature dependent characteristics of λ∼3.8µm room-temperature continuous-wave quantum-cascade lasers,” Appl. Phys. Lett. 88(25), 251118 (2006).
[Crossref]

Electron. Lett. (2)

L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with > 1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

A. Knigge, G. Erbert, J. Jönsson, W. Pittroff, R. Staske, B. Sumpf, M. Weyers, and G. Tränkle, “Passively cooled 940 nm laser bars with 73% wall-plug efficiency at 70 W and 25°C,” Electron. Lett. 41(5), 250 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Razeghi, “High-Performance InP-Based Mid-IR Quantum Cascade Lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 941–951 (2009).
[Crossref]

Nat. Photonics (2)

Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, “Quantum cascade lasers that emit more light than heat,” Nat. Photonics 4(2), 99–102 (2010).
[Crossref]

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
[Crossref]

Opt. Express (2)

Quantum Electron. (1)

D. R. Miftakhutdinov, A. P. Bogatov, and A. E. Drakin, “Catastrophic optical degradation of the output facet of high-power single-transverse-mode diode lasers. 1. Physical model,” Quantum Electron. 40(7), 583–588 (2010).
[Crossref]

Science (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264(5158), 553–556 (1994).
[Crossref]

Other (1)

Y. Bai, “High wall plug efficiency quantum cascade lasers,” PhD dissertation, Northwestern University (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) The optical modal simulation of a buried ridge QCL. (b) The imaginary part of the effective refractive index (proportional to waveguide loss) and the confinement factor of the buried QCL as a function of the numbers of QCL stages.
Fig. 2.
Fig. 2. (a) The model and temperature distribution of a buried ridge QCL epi-down bonded on a diamond heat spreader for CW operation. (b) The maximum (Tmax) and average (Taverage) core temperature of the buried ridge QCL under CW operation as a function of QCL stages.
Fig. 3.
Fig. 3. (a) The QCL wafer grown structure (upper) and the dark field of the wafer surface after growth (lower). (b) The photoluminescence of the wafer and comparison with the reference wafer. (c) The SEM images of the cross section of buried ridge QCL device with a wide ridge width for pulsed operation. (d) The SEM images of the cross section of buried ridge QCL device with a narrow ridge width for CW operation.
Fig. 4.
Fig. 4. (a) The LIV curves and extracted WPE for a 5 mm long, 17 µm wide laser. Inset: the spectrum of the laser emission at 2.5 kA/cm2 (b) The mirror loss dependent slope efficiency and (c) total loss dependent threshold current density. These measurements were conducted in pulsed mode with a pulse width of 500 ns and a duty cycle of 2% at 293 K.
Fig. 5.
Fig. 5. The LIV curves and extracted WPE of the HRAR coated, buried ridge QCL with 8-µm ridge width and 5-mm cavity length in CW operation at 20 °C.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

J t h = J t r + α m + α w g d Γ
η w p e = η s ( J J t h ) J V = ω N s q V η i η o ( J J t h ) J
[ k ( x , y , T ) T ( x , y , t ) ] + S ( x , y , t ) = 0
1 η s = 1 η i e N ω ( 1 + α w α m )

Metrics