Abstract

The most typical way to optically control population of atomic and molecular systems is to illuminate them with radiation, resonant to the relevant transitions. Here we consider a possibility to control populations with the subcycle and even unipolar pulses, containing less than one oscillation of electric field. Despite the spectrum of such pulses covers several levels at once, we show that it is possible to selectively excite the levels of our choice by varying the driving pulse shape, duration or time delay between consecutive pulses. The pulses which are not unipolar, but have a peak of electric field of one polarity much higher (and shorter) than of the opposite one, are also capable for such control.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Keller, “Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight,” Appl. Phys. B 100(1), 15–28 (2010).
    [Crossref]
  2. E. Rafailov, M. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
    [Crossref]
  3. F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
    [Crossref]
  4. J. C. Diels and W. Rudolph, Ultrashort laser pulse phenomena (Elsevier, 2006).
  5. F. Calegari, G. Sansone, S. Stagira, C. Vozzi, and M. Nisoli, “Advances in attosecond science,” J. Phys. B: At., Mol. Opt. Phys. 49(6), 062001 (2016).
    [Crossref]
  6. K. Ramasesha, S. R. Leone, and D. M. Neumark, “Real-time probing of electron dynamics using attosecond time-resolved spectroscopy,” Annu. Rev. Phys. Chem. 67(1), 41–63 (2016).
    [Crossref]
  7. M. T. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A. M. Zheltikov, V. Pervak, F. Krausz, and E. Goulielmakis, “Optical attosecond pulses and tracking the nonlinear response of bound electrons,” Nature 530(7588), 66–70 (2016).
    [Crossref]
  8. E. G. Bessonov, “On a class of electromagnetic waves,” Sov. Phys. JETP 53, 433–436 (1981).
  9. X. Song, W. Yang, Z. Zeng, R. Li, and Z. Xu, “Unipolar half-cycle pulse generation in asymmetrical media with a periodic subwavelength structure,” Phys. Rev. A 82(5), 053821 (2010).
    [Crossref]
  10. V. V. Kozlov, N. N. Rosanov, C. De Angelis, and S. Wabnitz, “Generation of unipolar pulses from nonunipolar optical pulses in a nonlinear medium,” Phys. Rev. A 84(2), 023818 (2011).
    [Crossref]
  11. G. Naumenko and M. Shevelev, “First indication of the coherent unipolar diffraction radiation generated by relativistic electrons,” J. Instrum. 13(05), C05001 (2018).
    [Crossref]
  12. H. Leblond and D. Mihalache, “Models of few optical cycle solitons beyond the slowly varying envelope approximation,” Phys. Rep. 523(2), 61–126 (2013).
    [Crossref]
  13. R. M. Arkhipov, A. V. Pakhomov, M. V. Arkhipov, I. Babushkin, Y. A. Tolmachev, and N. N. Rosanov, “Generation of unipolar pulses in nonlinear media,” JETP Lett. 105(6), 408–418 (2017).
    [Crossref]
  14. N. N. Rosanov, M. V. Arkhipov, R. M. Arkhipov, N. A. Veretenov, A. V. Pakhomov, and S. V. Fedorov, “Extreme and topological nonlinear optics of open systems,” Opt. Spectrosc. 127(1), 77–87 (2019).
    [Crossref]
  15. N. N. Rosanov, R. M. Arkhipov, and M. V. Arkhipov, “On laws of conservation in the electrodynamics of continuous media (on the occasion of the 100th anniversary of the S.I. Vavilov State Optical Institute),” Phys.-Usp. 61(12), 1227–1233 (2018).
    [Crossref]
  16. H.-C. Wu and J. Meyer-ter Vehn, “Giant half-cycle attosecond pulses,” Nat. Photonics 6(5), 304–307 (2012).
    [Crossref]
  17. J. Xu, B. Shen, X. Zhang, Y. Shi, L. Ji, L. Zhang, T. Xu, W. Wang, X. Zhao, and Z. Xu, “Terawatt-scale optical half-cycle attosecond pulses,” Sci. Rep. 8(1), 2669 (2018).
    [Crossref]
  18. K. Reimann, “Table-top sources of ultrashort THz pulses,” Rep. Prog. Phys. 70(10), 1597–1632 (2007).
    [Crossref]
  19. H. G. Roskos, M. D. Thomson, M. KreB, and T. Löffler, “Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications,” Laser Photonics Rev. 1(4), 349–368 (2007).
    [Crossref]
  20. Y. Gao, T. Drake, Z. Chen, and M. F. DeCamp, “Half-cycle-pulse terahertz emission from an ultrafast laser plasma in a solid target,” Opt. Lett. 33(23), 2776–2778 (2008).
    [Crossref]
  21. R. K. Bullough and F. Ahmad, “Exact solutions of the self-induced transparency equations,” Phys. Rev. Lett. 27(6), 330–333 (1971).
    [Crossref]
  22. V. P. Kalosha and J. Herrmann, “Formation of optical subcycle pulses and full Maxwell-Bloch solitary waves by coherent propagation effects,” Phys. Rev. Lett. 83(3), 544–547 (1999).
    [Crossref]
  23. N. V. Vysotina, N. N. Rosanov, and V. E. Semenov, “Extremely short dissipative solitons in an active nonlinear medium with quantum dots,” Opt. Spectrosc. 106(5), 713–717 (2009).
    [Crossref]
  24. M. V. Arkhipov, R. M. Arkhipov, A. V. Pakhomov, I. V. Babushkin, A. Demircan, U. Morgner, and N. N. Rosanov, “Generation of unipolar half-cycle pulses via unusual reflection of a single-cycle pulse from an optically thin metallic or dielectric layer,” Opt. Lett. 42(11), 2189–2192 (2017).
    [Crossref]
  25. R. M. Arkhipov, M. V. Arkhipov, A. A. Shimko, A. V. Pakhomov, and N. N. Rosanov, “Ultrashort optical pulses and their generation in resonant media (scientific summary),” JETP Lett. 110(1), 15–24 (2019).
    [Crossref]
  26. A. Wetzels, A. Gürtler, L. D. Noordam, F. Robicheaux, C. Dinu, H. G. Muller, M. J. J. Vrakking, and W. J. van der Zande, “Rydberg state ionization by half-cycle-pulse excitation: Strong kicks create slow electrons,” Phys. Rev. Lett. 89(27), 273003 (2002).
    [Crossref]
  27. Y. Pan, S.-F. Zhao, and X.-X. Zhou, “Generation of isolated sub-40-as pulses from gas-phase CO molecules using an intense few-cycle chirped laser and a unipolar pulse,” Phys. Rev. A 87(3), 035805 (2013).
    [Crossref]
  28. L. Feng and H. Liu, “Unipolar pulse assisted generation of the coherent XUV pulses,” Opt. Commun. 348, 1–6 (2015).
    [Crossref]
  29. Y. Li, L. Feng, and Y. Qiao, “Improvement of high-order harmonic generation via controlling multiple acceleration–recombination process,” Zeitschrift für Naturforschung A 74(7), 561–571 (2019).
  30. R. M. Arkhipov, M. V. Arkhipov, P. A. Belov, Y. A. Tolmachev, and I. Babushkin, “Generation of unipolar optical pulses in a raman-active medium,” Laser Phys. Lett. 13(4), 046001 (2016).
    [Crossref]
  31. R. M. Arkhipov, A. V. Pakhomov, I. V. Babushkin, M. V. Arkhipov, Y. A. Tolmachev, and N. N. Rosanov, “Generation of unipolar pulses in a circular raman-active medium excited by few-cycle optical pulses,” J. Opt. Soc. Am. B 33(12), 2518–2524 (2016).
    [Crossref]
  32. A. V. Pakhomov, R. M. Arkhipov, I. V. Babushkin, M. V. Arkhipov, Y. A. Tolmachev, and N. N. Rosanov, “All-optical control of unipolar pulse generation in a resonant medium with nonlinear field coupling,” Phys. Rev. A 95(1), 013804 (2017).
    [Crossref]
  33. D. Ziguleva, R. Arkhipov, M. Arkhipov, A. Pakhomov, I. Babushkin, and N. Rosanov, “Laser beam deflector based generation of few-cycle electromagnetic pulses in a circular nonlinear medium,” Opt. Commun. 424, 170–176 (2018).
    [Crossref]
  34. A. V. Pakhomov, R. M. Arkhipov, M. V. Arkhipov, A. Demircan, U. Morgner, N. N. Rosanov, and I. V. Babushkin, “Unusual terahertz waveforms from a resonant medium controlled by diffractive optical elements,” Sci. Rep. 9(1), 7444 (2019).
    [Crossref]
  35. S. V. Sazonov and N. V. Ustinov, “Propagation of few-cycle pulses in a nonlinear medium and an integrable generalization of the sine-Gordon equation,” Phys. Rev. A 98(6), 063803 (2018).
    [Crossref]
  36. M. I. Bakunov, A. V. Maslov, and M. V. Tsarev, “Optically generated terahertz pulses with strong quasistatic precursors,” Phys. Rev. A 95(6), 063817 (2017).
    [Crossref]
  37. E. S. Efimenko, S. A. Sychugin, M. V. Tsarev, and M. I. Bakunov, “Quasistatic precursors of ultrashort laser pulses in electro-optic crystals,” Phys. Rev. A 98(1), 013842 (2018).
    [Crossref]
  38. M. V. Tsarev and M. I. Bakunov, “Tilted-pulse-front excitation of strong quasistatic precursors,” Opt. Express 27(4), 5154–5164 (2019).
    [Crossref]
  39. N. N. Rosanov, “Transportation of extremely short radiation pulses in a waveguide with a nonsimply connected cross section,” Opt. Spectrosc. 127(6), 1050–1052 (2019).
    [Crossref]
  40. D. Dimitrovski, E. A. Solov’ev, and J. S. Briggs, “Ionization and recombination in intense, short electric field pulses,” Phys. Rev. Lett. 93(8), 083003 (2004).
    [Crossref]
  41. D. Dimitrovski, E. A. Solov’ev, and J. S. Briggs, “Ionization and recombination in attosecond electric field pulses,” Phys. Rev. A 72(4), 043411 (2005).
    [Crossref]
  42. É. M. Belenov, V. A. Isakov, and A. Nazarkin, “Nonresonant interaction of ultrashort electromagnetic pulses with multilevel quantum systems,” Quantum Electron. 23(11), 911–918 (1993).
    [Crossref]
  43. N. N. Rosanov, “Interactions of intense extremely short pulses with quantum objects,” Opt. Spectrosc. 124(1), 72–74 (2018).
    [Crossref]
  44. R. M. Arkhipov, A. V. Pakhomov, M. V. Arkhipov, I. Babushkin, A. Demircan, U. Morgner, and N. N. Rosanov, “Unipolar subcycle pulse-driven nonresonant excitation of quantum systems,” Opt. Lett. 44(5), 1202–1205 (2019).
    [Crossref]
  45. R. M. Arkhipov, M. V. Arkhipov, A. V. Pakhomov, and N. N. Rosanov, “On some new possibilities for controlling quantum systems using unipolar extremely short pulses,” Opt. Spectr. 128, 102–105 (2020).
  46. R. M. Arkhipov, M. V. Arkhipov, A. V. Pakhomov, and N. N. Rosanov, “Population gratings produced in a quantum system by a pair of sub-cycle pulses,” Quantum Electron. 49(10), 958–962 (2019).
    [Crossref]
  47. L. D. Landau and E. M. Lifshitz, Quantum mechanics (Pergamon, 1974).
  48. I. I. Sobelman, Introduction to the Theory of Atomic Spectra (Elsevier, 2016).
  49. D. Bohm, Quantum theory (Courier Corporation, 2012).
  50. R. M. Arkhipov, M. V. Arkhipov, I. Babushkin, A. Demircan, U. Morgner, and N. N. Rosanov, “Ultrafast creation and control of population density gratings via ultraslow polarization waves,” Opt. Lett. 41(21), 4983–4986 (2016).
    [Crossref]
  51. R. M. Arkhipov, A. V. Pakhomov, M. V. Arkhipov, I. V. Babushkin, A. Demircan, U. Morgner, and N. N. Rosanov, “Population density gratings induced by few-cycle optical pulses in a resonant medium,” Sci. Rep. 7(1), 12467 (2017).
    [Crossref]
  52. H. J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, 1981).
  53. R. M. Arkhipov and N. N. Rosanov, “Interaction of a rectangular unipolar pulse with a two-level resonant medium,” Opt. Spectr. 125(5), 630–634 (2020).
  54. L. Allen and J. H. Eberly, Optical resonance and two-level atoms (Wiley, 1975).
  55. L. D. Landau and L. M. Lifshitz, Quantum Mechanics Non-Relativistic Theory, Third Edition: Volume 3 (Butterworth-Heinemann, 1981), 3rd ed.
  56. A. Perelomov, V. Popov, and M. Terent’ev, “Ionization of atoms in an alternating electric field: II,” Sov. Phys. JETP 24, 207–217 (1967).

2020 (2)

R. M. Arkhipov, M. V. Arkhipov, A. V. Pakhomov, and N. N. Rosanov, “On some new possibilities for controlling quantum systems using unipolar extremely short pulses,” Opt. Spectr. 128, 102–105 (2020).

R. M. Arkhipov and N. N. Rosanov, “Interaction of a rectangular unipolar pulse with a two-level resonant medium,” Opt. Spectr. 125(5), 630–634 (2020).

2019 (8)

R. M. Arkhipov, M. V. Arkhipov, A. V. Pakhomov, and N. N. Rosanov, “Population gratings produced in a quantum system by a pair of sub-cycle pulses,” Quantum Electron. 49(10), 958–962 (2019).
[Crossref]

R. M. Arkhipov, A. V. Pakhomov, M. V. Arkhipov, I. Babushkin, A. Demircan, U. Morgner, and N. N. Rosanov, “Unipolar subcycle pulse-driven nonresonant excitation of quantum systems,” Opt. Lett. 44(5), 1202–1205 (2019).
[Crossref]

M. V. Tsarev and M. I. Bakunov, “Tilted-pulse-front excitation of strong quasistatic precursors,” Opt. Express 27(4), 5154–5164 (2019).
[Crossref]

N. N. Rosanov, “Transportation of extremely short radiation pulses in a waveguide with a nonsimply connected cross section,” Opt. Spectrosc. 127(6), 1050–1052 (2019).
[Crossref]

N. N. Rosanov, M. V. Arkhipov, R. M. Arkhipov, N. A. Veretenov, A. V. Pakhomov, and S. V. Fedorov, “Extreme and topological nonlinear optics of open systems,” Opt. Spectrosc. 127(1), 77–87 (2019).
[Crossref]

R. M. Arkhipov, M. V. Arkhipov, A. A. Shimko, A. V. Pakhomov, and N. N. Rosanov, “Ultrashort optical pulses and their generation in resonant media (scientific summary),” JETP Lett. 110(1), 15–24 (2019).
[Crossref]

Y. Li, L. Feng, and Y. Qiao, “Improvement of high-order harmonic generation via controlling multiple acceleration–recombination process,” Zeitschrift für Naturforschung A 74(7), 561–571 (2019).

A. V. Pakhomov, R. M. Arkhipov, M. V. Arkhipov, A. Demircan, U. Morgner, N. N. Rosanov, and I. V. Babushkin, “Unusual terahertz waveforms from a resonant medium controlled by diffractive optical elements,” Sci. Rep. 9(1), 7444 (2019).
[Crossref]

2018 (7)

S. V. Sazonov and N. V. Ustinov, “Propagation of few-cycle pulses in a nonlinear medium and an integrable generalization of the sine-Gordon equation,” Phys. Rev. A 98(6), 063803 (2018).
[Crossref]

D. Ziguleva, R. Arkhipov, M. Arkhipov, A. Pakhomov, I. Babushkin, and N. Rosanov, “Laser beam deflector based generation of few-cycle electromagnetic pulses in a circular nonlinear medium,” Opt. Commun. 424, 170–176 (2018).
[Crossref]

E. S. Efimenko, S. A. Sychugin, M. V. Tsarev, and M. I. Bakunov, “Quasistatic precursors of ultrashort laser pulses in electro-optic crystals,” Phys. Rev. A 98(1), 013842 (2018).
[Crossref]

N. N. Rosanov, R. M. Arkhipov, and M. V. Arkhipov, “On laws of conservation in the electrodynamics of continuous media (on the occasion of the 100th anniversary of the S.I. Vavilov State Optical Institute),” Phys.-Usp. 61(12), 1227–1233 (2018).
[Crossref]

J. Xu, B. Shen, X. Zhang, Y. Shi, L. Ji, L. Zhang, T. Xu, W. Wang, X. Zhao, and Z. Xu, “Terawatt-scale optical half-cycle attosecond pulses,” Sci. Rep. 8(1), 2669 (2018).
[Crossref]

G. Naumenko and M. Shevelev, “First indication of the coherent unipolar diffraction radiation generated by relativistic electrons,” J. Instrum. 13(05), C05001 (2018).
[Crossref]

N. N. Rosanov, “Interactions of intense extremely short pulses with quantum objects,” Opt. Spectrosc. 124(1), 72–74 (2018).
[Crossref]

2017 (5)

R. M. Arkhipov, A. V. Pakhomov, M. V. Arkhipov, I. V. Babushkin, A. Demircan, U. Morgner, and N. N. Rosanov, “Population density gratings induced by few-cycle optical pulses in a resonant medium,” Sci. Rep. 7(1), 12467 (2017).
[Crossref]

R. M. Arkhipov, A. V. Pakhomov, M. V. Arkhipov, I. Babushkin, Y. A. Tolmachev, and N. N. Rosanov, “Generation of unipolar pulses in nonlinear media,” JETP Lett. 105(6), 408–418 (2017).
[Crossref]

M. I. Bakunov, A. V. Maslov, and M. V. Tsarev, “Optically generated terahertz pulses with strong quasistatic precursors,” Phys. Rev. A 95(6), 063817 (2017).
[Crossref]

A. V. Pakhomov, R. M. Arkhipov, I. V. Babushkin, M. V. Arkhipov, Y. A. Tolmachev, and N. N. Rosanov, “All-optical control of unipolar pulse generation in a resonant medium with nonlinear field coupling,” Phys. Rev. A 95(1), 013804 (2017).
[Crossref]

M. V. Arkhipov, R. M. Arkhipov, A. V. Pakhomov, I. V. Babushkin, A. Demircan, U. Morgner, and N. N. Rosanov, “Generation of unipolar half-cycle pulses via unusual reflection of a single-cycle pulse from an optically thin metallic or dielectric layer,” Opt. Lett. 42(11), 2189–2192 (2017).
[Crossref]

2016 (6)

R. M. Arkhipov, M. V. Arkhipov, P. A. Belov, Y. A. Tolmachev, and I. Babushkin, “Generation of unipolar optical pulses in a raman-active medium,” Laser Phys. Lett. 13(4), 046001 (2016).
[Crossref]

R. M. Arkhipov, A. V. Pakhomov, I. V. Babushkin, M. V. Arkhipov, Y. A. Tolmachev, and N. N. Rosanov, “Generation of unipolar pulses in a circular raman-active medium excited by few-cycle optical pulses,” J. Opt. Soc. Am. B 33(12), 2518–2524 (2016).
[Crossref]

F. Calegari, G. Sansone, S. Stagira, C. Vozzi, and M. Nisoli, “Advances in attosecond science,” J. Phys. B: At., Mol. Opt. Phys. 49(6), 062001 (2016).
[Crossref]

K. Ramasesha, S. R. Leone, and D. M. Neumark, “Real-time probing of electron dynamics using attosecond time-resolved spectroscopy,” Annu. Rev. Phys. Chem. 67(1), 41–63 (2016).
[Crossref]

M. T. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A. M. Zheltikov, V. Pervak, F. Krausz, and E. Goulielmakis, “Optical attosecond pulses and tracking the nonlinear response of bound electrons,” Nature 530(7588), 66–70 (2016).
[Crossref]

R. M. Arkhipov, M. V. Arkhipov, I. Babushkin, A. Demircan, U. Morgner, and N. N. Rosanov, “Ultrafast creation and control of population density gratings via ultraslow polarization waves,” Opt. Lett. 41(21), 4983–4986 (2016).
[Crossref]

2015 (1)

L. Feng and H. Liu, “Unipolar pulse assisted generation of the coherent XUV pulses,” Opt. Commun. 348, 1–6 (2015).
[Crossref]

2013 (2)

Y. Pan, S.-F. Zhao, and X.-X. Zhou, “Generation of isolated sub-40-as pulses from gas-phase CO molecules using an intense few-cycle chirped laser and a unipolar pulse,” Phys. Rev. A 87(3), 035805 (2013).
[Crossref]

H. Leblond and D. Mihalache, “Models of few optical cycle solitons beyond the slowly varying envelope approximation,” Phys. Rep. 523(2), 61–126 (2013).
[Crossref]

2012 (1)

H.-C. Wu and J. Meyer-ter Vehn, “Giant half-cycle attosecond pulses,” Nat. Photonics 6(5), 304–307 (2012).
[Crossref]

2011 (1)

V. V. Kozlov, N. N. Rosanov, C. De Angelis, and S. Wabnitz, “Generation of unipolar pulses from nonunipolar optical pulses in a nonlinear medium,” Phys. Rev. A 84(2), 023818 (2011).
[Crossref]

2010 (2)

U. Keller, “Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight,” Appl. Phys. B 100(1), 15–28 (2010).
[Crossref]

X. Song, W. Yang, Z. Zeng, R. Li, and Z. Xu, “Unipolar half-cycle pulse generation in asymmetrical media with a periodic subwavelength structure,” Phys. Rev. A 82(5), 053821 (2010).
[Crossref]

2009 (2)

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[Crossref]

N. V. Vysotina, N. N. Rosanov, and V. E. Semenov, “Extremely short dissipative solitons in an active nonlinear medium with quantum dots,” Opt. Spectrosc. 106(5), 713–717 (2009).
[Crossref]

2008 (1)

2007 (3)

E. Rafailov, M. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[Crossref]

K. Reimann, “Table-top sources of ultrashort THz pulses,” Rep. Prog. Phys. 70(10), 1597–1632 (2007).
[Crossref]

H. G. Roskos, M. D. Thomson, M. KreB, and T. Löffler, “Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications,” Laser Photonics Rev. 1(4), 349–368 (2007).
[Crossref]

2005 (1)

D. Dimitrovski, E. A. Solov’ev, and J. S. Briggs, “Ionization and recombination in attosecond electric field pulses,” Phys. Rev. A 72(4), 043411 (2005).
[Crossref]

2004 (1)

D. Dimitrovski, E. A. Solov’ev, and J. S. Briggs, “Ionization and recombination in intense, short electric field pulses,” Phys. Rev. Lett. 93(8), 083003 (2004).
[Crossref]

2002 (1)

A. Wetzels, A. Gürtler, L. D. Noordam, F. Robicheaux, C. Dinu, H. G. Muller, M. J. J. Vrakking, and W. J. van der Zande, “Rydberg state ionization by half-cycle-pulse excitation: Strong kicks create slow electrons,” Phys. Rev. Lett. 89(27), 273003 (2002).
[Crossref]

1999 (1)

V. P. Kalosha and J. Herrmann, “Formation of optical subcycle pulses and full Maxwell-Bloch solitary waves by coherent propagation effects,” Phys. Rev. Lett. 83(3), 544–547 (1999).
[Crossref]

1993 (1)

É. M. Belenov, V. A. Isakov, and A. Nazarkin, “Nonresonant interaction of ultrashort electromagnetic pulses with multilevel quantum systems,” Quantum Electron. 23(11), 911–918 (1993).
[Crossref]

1981 (1)

E. G. Bessonov, “On a class of electromagnetic waves,” Sov. Phys. JETP 53, 433–436 (1981).

1971 (1)

R. K. Bullough and F. Ahmad, “Exact solutions of the self-induced transparency equations,” Phys. Rev. Lett. 27(6), 330–333 (1971).
[Crossref]

1967 (1)

A. Perelomov, V. Popov, and M. Terent’ev, “Ionization of atoms in an alternating electric field: II,” Sov. Phys. JETP 24, 207–217 (1967).

Ahmad, F.

R. K. Bullough and F. Ahmad, “Exact solutions of the self-induced transparency equations,” Phys. Rev. Lett. 27(6), 330–333 (1971).
[Crossref]

Allen, L.

L. Allen and J. H. Eberly, Optical resonance and two-level atoms (Wiley, 1975).

Arkhipov, M.

D. Ziguleva, R. Arkhipov, M. Arkhipov, A. Pakhomov, I. Babushkin, and N. Rosanov, “Laser beam deflector based generation of few-cycle electromagnetic pulses in a circular nonlinear medium,” Opt. Commun. 424, 170–176 (2018).
[Crossref]

Arkhipov, M. V.

R. M. Arkhipov, M. V. Arkhipov, A. V. Pakhomov, and N. N. Rosanov, “On some new possibilities for controlling quantum systems using unipolar extremely short pulses,” Opt. Spectr. 128, 102–105 (2020).

R. M. Arkhipov, M. V. Arkhipov, A. V. Pakhomov, and N. N. Rosanov, “Population gratings produced in a quantum system by a pair of sub-cycle pulses,” Quantum Electron. 49(10), 958–962 (2019).
[Crossref]

N. N. Rosanov, M. V. Arkhipov, R. M. Arkhipov, N. A. Veretenov, A. V. Pakhomov, and S. V. Fedorov, “Extreme and topological nonlinear optics of open systems,” Opt. Spectrosc. 127(1), 77–87 (2019).
[Crossref]

R. M. Arkhipov, M. V. Arkhipov, A. A. Shimko, A. V. Pakhomov, and N. N. Rosanov, “Ultrashort optical pulses and their generation in resonant media (scientific summary),” JETP Lett. 110(1), 15–24 (2019).
[Crossref]

A. V. Pakhomov, R. M. Arkhipov, M. V. Arkhipov, A. Demircan, U. Morgner, N. N. Rosanov, and I. V. Babushkin, “Unusual terahertz waveforms from a resonant medium controlled by diffractive optical elements,” Sci. Rep. 9(1), 7444 (2019).
[Crossref]

R. M. Arkhipov, A. V. Pakhomov, M. V. Arkhipov, I. Babushkin, A. Demircan, U. Morgner, and N. N. Rosanov, “Unipolar subcycle pulse-driven nonresonant excitation of quantum systems,” Opt. Lett. 44(5), 1202–1205 (2019).
[Crossref]

N. N. Rosanov, R. M. Arkhipov, and M. V. Arkhipov, “On laws of conservation in the electrodynamics of continuous media (on the occasion of the 100th anniversary of the S.I. Vavilov State Optical Institute),” Phys.-Usp. 61(12), 1227–1233 (2018).
[Crossref]

M. V. Arkhipov, R. M. Arkhipov, A. V. Pakhomov, I. V. Babushkin, A. Demircan, U. Morgner, and N. N. Rosanov, “Generation of unipolar half-cycle pulses via unusual reflection of a single-cycle pulse from an optically thin metallic or dielectric layer,” Opt. Lett. 42(11), 2189–2192 (2017).
[Crossref]

A. V. Pakhomov, R. M. Arkhipov, I. V. Babushkin, M. V. Arkhipov, Y. A. Tolmachev, and N. N. Rosanov, “All-optical control of unipolar pulse generation in a resonant medium with nonlinear field coupling,” Phys. Rev. A 95(1), 013804 (2017).
[Crossref]

R. M. Arkhipov, A. V. Pakhomov, M. V. Arkhipov, I. Babushkin, Y. A. Tolmachev, and N. N. Rosanov, “Generation of unipolar pulses in nonlinear media,” JETP Lett. 105(6), 408–418 (2017).
[Crossref]

R. M. Arkhipov, A. V. Pakhomov, M. V. Arkhipov, I. V. Babushkin, A. Demircan, U. Morgner, and N. N. Rosanov, “Population density gratings induced by few-cycle optical pulses in a resonant medium,” Sci. Rep. 7(1), 12467 (2017).
[Crossref]

R. M. Arkhipov, M. V. Arkhipov, I. Babushkin, A. Demircan, U. Morgner, and N. N. Rosanov, “Ultrafast creation and control of population density gratings via ultraslow polarization waves,” Opt. Lett. 41(21), 4983–4986 (2016).
[Crossref]

R. M. Arkhipov, M. V. Arkhipov, P. A. Belov, Y. A. Tolmachev, and I. Babushkin, “Generation of unipolar optical pulses in a raman-active medium,” Laser Phys. Lett. 13(4), 046001 (2016).
[Crossref]

R. M. Arkhipov, A. V. Pakhomov, I. V. Babushkin, M. V. Arkhipov, Y. A. Tolmachev, and N. N. Rosanov, “Generation of unipolar pulses in a circular raman-active medium excited by few-cycle optical pulses,” J. Opt. Soc. Am. B 33(12), 2518–2524 (2016).
[Crossref]

Arkhipov, R.

D. Ziguleva, R. Arkhipov, M. Arkhipov, A. Pakhomov, I. Babushkin, and N. Rosanov, “Laser beam deflector based generation of few-cycle electromagnetic pulses in a circular nonlinear medium,” Opt. Commun. 424, 170–176 (2018).
[Crossref]

Arkhipov, R. M.

R. M. Arkhipov and N. N. Rosanov, “Interaction of a rectangular unipolar pulse with a two-level resonant medium,” Opt. Spectr. 125(5), 630–634 (2020).

R. M. Arkhipov, M. V. Arkhipov, A. V. Pakhomov, and N. N. Rosanov, “On some new possibilities for controlling quantum systems using unipolar extremely short pulses,” Opt. Spectr. 128, 102–105 (2020).

R. M. Arkhipov, M. V. Arkhipov, A. V. Pakhomov, and N. N. Rosanov, “Population gratings produced in a quantum system by a pair of sub-cycle pulses,” Quantum Electron. 49(10), 958–962 (2019).
[Crossref]

N. N. Rosanov, M. V. Arkhipov, R. M. Arkhipov, N. A. Veretenov, A. V. Pakhomov, and S. V. Fedorov, “Extreme and topological nonlinear optics of open systems,” Opt. Spectrosc. 127(1), 77–87 (2019).
[Crossref]

R. M. Arkhipov, M. V. Arkhipov, A. A. Shimko, A. V. Pakhomov, and N. N. Rosanov, “Ultrashort optical pulses and their generation in resonant media (scientific summary),” JETP Lett. 110(1), 15–24 (2019).
[Crossref]

A. V. Pakhomov, R. M. Arkhipov, M. V. Arkhipov, A. Demircan, U. Morgner, N. N. Rosanov, and I. V. Babushkin, “Unusual terahertz waveforms from a resonant medium controlled by diffractive optical elements,” Sci. Rep. 9(1), 7444 (2019).
[Crossref]

R. M. Arkhipov, A. V. Pakhomov, M. V. Arkhipov, I. Babushkin, A. Demircan, U. Morgner, and N. N. Rosanov, “Unipolar subcycle pulse-driven nonresonant excitation of quantum systems,” Opt. Lett. 44(5), 1202–1205 (2019).
[Crossref]

N. N. Rosanov, R. M. Arkhipov, and M. V. Arkhipov, “On laws of conservation in the electrodynamics of continuous media (on the occasion of the 100th anniversary of the S.I. Vavilov State Optical Institute),” Phys.-Usp. 61(12), 1227–1233 (2018).
[Crossref]

A. V. Pakhomov, R. M. Arkhipov, I. V. Babushkin, M. V. Arkhipov, Y. A. Tolmachev, and N. N. Rosanov, “All-optical control of unipolar pulse generation in a resonant medium with nonlinear field coupling,” Phys. Rev. A 95(1), 013804 (2017).
[Crossref]

M. V. Arkhipov, R. M. Arkhipov, A. V. Pakhomov, I. V. Babushkin, A. Demircan, U. Morgner, and N. N. Rosanov, “Generation of unipolar half-cycle pulses via unusual reflection of a single-cycle pulse from an optically thin metallic or dielectric layer,” Opt. Lett. 42(11), 2189–2192 (2017).
[Crossref]

R. M. Arkhipov, A. V. Pakhomov, M. V. Arkhipov, I. Babushkin, Y. A. Tolmachev, and N. N. Rosanov, “Generation of unipolar pulses in nonlinear media,” JETP Lett. 105(6), 408–418 (2017).
[Crossref]

R. M. Arkhipov, A. V. Pakhomov, M. V. Arkhipov, I. V. Babushkin, A. Demircan, U. Morgner, and N. N. Rosanov, “Population density gratings induced by few-cycle optical pulses in a resonant medium,” Sci. Rep. 7(1), 12467 (2017).
[Crossref]

R. M. Arkhipov, M. V. Arkhipov, I. Babushkin, A. Demircan, U. Morgner, and N. N. Rosanov, “Ultrafast creation and control of population density gratings via ultraslow polarization waves,” Opt. Lett. 41(21), 4983–4986 (2016).
[Crossref]

R. M. Arkhipov, M. V. Arkhipov, P. A. Belov, Y. A. Tolmachev, and I. Babushkin, “Generation of unipolar optical pulses in a raman-active medium,” Laser Phys. Lett. 13(4), 046001 (2016).
[Crossref]

R. M. Arkhipov, A. V. Pakhomov, I. V. Babushkin, M. V. Arkhipov, Y. A. Tolmachev, and N. N. Rosanov, “Generation of unipolar pulses in a circular raman-active medium excited by few-cycle optical pulses,” J. Opt. Soc. Am. B 33(12), 2518–2524 (2016).
[Crossref]

Babushkin, I.

R. M. Arkhipov, A. V. Pakhomov, M. V. Arkhipov, I. Babushkin, A. Demircan, U. Morgner, and N. N. Rosanov, “Unipolar subcycle pulse-driven nonresonant excitation of quantum systems,” Opt. Lett. 44(5), 1202–1205 (2019).
[Crossref]

D. Ziguleva, R. Arkhipov, M. Arkhipov, A. Pakhomov, I. Babushkin, and N. Rosanov, “Laser beam deflector based generation of few-cycle electromagnetic pulses in a circular nonlinear medium,” Opt. Commun. 424, 170–176 (2018).
[Crossref]

R. M. Arkhipov, A. V. Pakhomov, M. V. Arkhipov, I. Babushkin, Y. A. Tolmachev, and N. N. Rosanov, “Generation of unipolar pulses in nonlinear media,” JETP Lett. 105(6), 408–418 (2017).
[Crossref]

R. M. Arkhipov, M. V. Arkhipov, P. A. Belov, Y. A. Tolmachev, and I. Babushkin, “Generation of unipolar optical pulses in a raman-active medium,” Laser Phys. Lett. 13(4), 046001 (2016).
[Crossref]

R. M. Arkhipov, M. V. Arkhipov, I. Babushkin, A. Demircan, U. Morgner, and N. N. Rosanov, “Ultrafast creation and control of population density gratings via ultraslow polarization waves,” Opt. Lett. 41(21), 4983–4986 (2016).
[Crossref]

Babushkin, I. V.

A. V. Pakhomov, R. M. Arkhipov, M. V. Arkhipov, A. Demircan, U. Morgner, N. N. Rosanov, and I. V. Babushkin, “Unusual terahertz waveforms from a resonant medium controlled by diffractive optical elements,” Sci. Rep. 9(1), 7444 (2019).
[Crossref]

R. M. Arkhipov, A. V. Pakhomov, M. V. Arkhipov, I. V. Babushkin, A. Demircan, U. Morgner, and N. N. Rosanov, “Population density gratings induced by few-cycle optical pulses in a resonant medium,” Sci. Rep. 7(1), 12467 (2017).
[Crossref]

M. V. Arkhipov, R. M. Arkhipov, A. V. Pakhomov, I. V. Babushkin, A. Demircan, U. Morgner, and N. N. Rosanov, “Generation of unipolar half-cycle pulses via unusual reflection of a single-cycle pulse from an optically thin metallic or dielectric layer,” Opt. Lett. 42(11), 2189–2192 (2017).
[Crossref]

A. V. Pakhomov, R. M. Arkhipov, I. V. Babushkin, M. V. Arkhipov, Y. A. Tolmachev, and N. N. Rosanov, “All-optical control of unipolar pulse generation in a resonant medium with nonlinear field coupling,” Phys. Rev. A 95(1), 013804 (2017).
[Crossref]

R. M. Arkhipov, A. V. Pakhomov, I. V. Babushkin, M. V. Arkhipov, Y. A. Tolmachev, and N. N. Rosanov, “Generation of unipolar pulses in a circular raman-active medium excited by few-cycle optical pulses,” J. Opt. Soc. Am. B 33(12), 2518–2524 (2016).
[Crossref]

Bakunov, M. I.

M. V. Tsarev and M. I. Bakunov, “Tilted-pulse-front excitation of strong quasistatic precursors,” Opt. Express 27(4), 5154–5164 (2019).
[Crossref]

E. S. Efimenko, S. A. Sychugin, M. V. Tsarev, and M. I. Bakunov, “Quasistatic precursors of ultrashort laser pulses in electro-optic crystals,” Phys. Rev. A 98(1), 013842 (2018).
[Crossref]

M. I. Bakunov, A. V. Maslov, and M. V. Tsarev, “Optically generated terahertz pulses with strong quasistatic precursors,” Phys. Rev. A 95(6), 063817 (2017).
[Crossref]

Belenov, É. M.

É. M. Belenov, V. A. Isakov, and A. Nazarkin, “Nonresonant interaction of ultrashort electromagnetic pulses with multilevel quantum systems,” Quantum Electron. 23(11), 911–918 (1993).
[Crossref]

Belov, P. A.

R. M. Arkhipov, M. V. Arkhipov, P. A. Belov, Y. A. Tolmachev, and I. Babushkin, “Generation of unipolar optical pulses in a raman-active medium,” Laser Phys. Lett. 13(4), 046001 (2016).
[Crossref]

Bessonov, E. G.

E. G. Bessonov, “On a class of electromagnetic waves,” Sov. Phys. JETP 53, 433–436 (1981).

Bohm, D.

D. Bohm, Quantum theory (Courier Corporation, 2012).

Briggs, J. S.

D. Dimitrovski, E. A. Solov’ev, and J. S. Briggs, “Ionization and recombination in attosecond electric field pulses,” Phys. Rev. A 72(4), 043411 (2005).
[Crossref]

D. Dimitrovski, E. A. Solov’ev, and J. S. Briggs, “Ionization and recombination in intense, short electric field pulses,” Phys. Rev. Lett. 93(8), 083003 (2004).
[Crossref]

Bullough, R. K.

R. K. Bullough and F. Ahmad, “Exact solutions of the self-induced transparency equations,” Phys. Rev. Lett. 27(6), 330–333 (1971).
[Crossref]

Calegari, F.

F. Calegari, G. Sansone, S. Stagira, C. Vozzi, and M. Nisoli, “Advances in attosecond science,” J. Phys. B: At., Mol. Opt. Phys. 49(6), 062001 (2016).
[Crossref]

Cataluna, M.

E. Rafailov, M. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[Crossref]

Chen, Z.

De Angelis, C.

V. V. Kozlov, N. N. Rosanov, C. De Angelis, and S. Wabnitz, “Generation of unipolar pulses from nonunipolar optical pulses in a nonlinear medium,” Phys. Rev. A 84(2), 023818 (2011).
[Crossref]

DeCamp, M. F.

Demircan, A.

Diels, J. C.

J. C. Diels and W. Rudolph, Ultrashort laser pulse phenomena (Elsevier, 2006).

Dimitrovski, D.

D. Dimitrovski, E. A. Solov’ev, and J. S. Briggs, “Ionization and recombination in attosecond electric field pulses,” Phys. Rev. A 72(4), 043411 (2005).
[Crossref]

D. Dimitrovski, E. A. Solov’ev, and J. S. Briggs, “Ionization and recombination in intense, short electric field pulses,” Phys. Rev. Lett. 93(8), 083003 (2004).
[Crossref]

Dinu, C.

A. Wetzels, A. Gürtler, L. D. Noordam, F. Robicheaux, C. Dinu, H. G. Muller, M. J. J. Vrakking, and W. J. van der Zande, “Rydberg state ionization by half-cycle-pulse excitation: Strong kicks create slow electrons,” Phys. Rev. Lett. 89(27), 273003 (2002).
[Crossref]

Drake, T.

Eberly, J. H.

L. Allen and J. H. Eberly, Optical resonance and two-level atoms (Wiley, 1975).

Efimenko, E. S.

E. S. Efimenko, S. A. Sychugin, M. V. Tsarev, and M. I. Bakunov, “Quasistatic precursors of ultrashort laser pulses in electro-optic crystals,” Phys. Rev. A 98(1), 013842 (2018).
[Crossref]

Eichler, H. J.

H. J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, 1981).

Fedorov, S. V.

N. N. Rosanov, M. V. Arkhipov, R. M. Arkhipov, N. A. Veretenov, A. V. Pakhomov, and S. V. Fedorov, “Extreme and topological nonlinear optics of open systems,” Opt. Spectrosc. 127(1), 77–87 (2019).
[Crossref]

Feng, L.

Y. Li, L. Feng, and Y. Qiao, “Improvement of high-order harmonic generation via controlling multiple acceleration–recombination process,” Zeitschrift für Naturforschung A 74(7), 561–571 (2019).

L. Feng and H. Liu, “Unipolar pulse assisted generation of the coherent XUV pulses,” Opt. Commun. 348, 1–6 (2015).
[Crossref]

Gao, Y.

Garg, M.

M. T. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A. M. Zheltikov, V. Pervak, F. Krausz, and E. Goulielmakis, “Optical attosecond pulses and tracking the nonlinear response of bound electrons,” Nature 530(7588), 66–70 (2016).
[Crossref]

Goulielmakis, E.

M. T. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A. M. Zheltikov, V. Pervak, F. Krausz, and E. Goulielmakis, “Optical attosecond pulses and tracking the nonlinear response of bound electrons,” Nature 530(7588), 66–70 (2016).
[Crossref]

Günter, P.

H. J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, 1981).

Gürtler, A.

A. Wetzels, A. Gürtler, L. D. Noordam, F. Robicheaux, C. Dinu, H. G. Muller, M. J. J. Vrakking, and W. J. van der Zande, “Rydberg state ionization by half-cycle-pulse excitation: Strong kicks create slow electrons,” Phys. Rev. Lett. 89(27), 273003 (2002).
[Crossref]

Hassan, M. T.

M. T. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A. M. Zheltikov, V. Pervak, F. Krausz, and E. Goulielmakis, “Optical attosecond pulses and tracking the nonlinear response of bound electrons,” Nature 530(7588), 66–70 (2016).
[Crossref]

Herrmann, J.

V. P. Kalosha and J. Herrmann, “Formation of optical subcycle pulses and full Maxwell-Bloch solitary waves by coherent propagation effects,” Phys. Rev. Lett. 83(3), 544–547 (1999).
[Crossref]

Isakov, V. A.

É. M. Belenov, V. A. Isakov, and A. Nazarkin, “Nonresonant interaction of ultrashort electromagnetic pulses with multilevel quantum systems,” Quantum Electron. 23(11), 911–918 (1993).
[Crossref]

Ivanov, M.

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[Crossref]

Ji, L.

J. Xu, B. Shen, X. Zhang, Y. Shi, L. Ji, L. Zhang, T. Xu, W. Wang, X. Zhao, and Z. Xu, “Terawatt-scale optical half-cycle attosecond pulses,” Sci. Rep. 8(1), 2669 (2018).
[Crossref]

Kalosha, V. P.

V. P. Kalosha and J. Herrmann, “Formation of optical subcycle pulses and full Maxwell-Bloch solitary waves by coherent propagation effects,” Phys. Rev. Lett. 83(3), 544–547 (1999).
[Crossref]

Karpowicz, N.

M. T. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A. M. Zheltikov, V. Pervak, F. Krausz, and E. Goulielmakis, “Optical attosecond pulses and tracking the nonlinear response of bound electrons,” Nature 530(7588), 66–70 (2016).
[Crossref]

Keller, U.

U. Keller, “Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight,” Appl. Phys. B 100(1), 15–28 (2010).
[Crossref]

Kozlov, V. V.

V. V. Kozlov, N. N. Rosanov, C. De Angelis, and S. Wabnitz, “Generation of unipolar pulses from nonunipolar optical pulses in a nonlinear medium,” Phys. Rev. A 84(2), 023818 (2011).
[Crossref]

Krausz, F.

M. T. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A. M. Zheltikov, V. Pervak, F. Krausz, and E. Goulielmakis, “Optical attosecond pulses and tracking the nonlinear response of bound electrons,” Nature 530(7588), 66–70 (2016).
[Crossref]

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[Crossref]

KreB, M.

H. G. Roskos, M. D. Thomson, M. KreB, and T. Löffler, “Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications,” Laser Photonics Rev. 1(4), 349–368 (2007).
[Crossref]

Landau, L. D.

L. D. Landau and E. M. Lifshitz, Quantum mechanics (Pergamon, 1974).

L. D. Landau and L. M. Lifshitz, Quantum Mechanics Non-Relativistic Theory, Third Edition: Volume 3 (Butterworth-Heinemann, 1981), 3rd ed.

Leblond, H.

H. Leblond and D. Mihalache, “Models of few optical cycle solitons beyond the slowly varying envelope approximation,” Phys. Rep. 523(2), 61–126 (2013).
[Crossref]

Leone, S. R.

K. Ramasesha, S. R. Leone, and D. M. Neumark, “Real-time probing of electron dynamics using attosecond time-resolved spectroscopy,” Annu. Rev. Phys. Chem. 67(1), 41–63 (2016).
[Crossref]

Li, R.

X. Song, W. Yang, Z. Zeng, R. Li, and Z. Xu, “Unipolar half-cycle pulse generation in asymmetrical media with a periodic subwavelength structure,” Phys. Rev. A 82(5), 053821 (2010).
[Crossref]

Li, Y.

Y. Li, L. Feng, and Y. Qiao, “Improvement of high-order harmonic generation via controlling multiple acceleration–recombination process,” Zeitschrift für Naturforschung A 74(7), 561–571 (2019).

Lifshitz, E. M.

L. D. Landau and E. M. Lifshitz, Quantum mechanics (Pergamon, 1974).

Lifshitz, L. M.

L. D. Landau and L. M. Lifshitz, Quantum Mechanics Non-Relativistic Theory, Third Edition: Volume 3 (Butterworth-Heinemann, 1981), 3rd ed.

Liu, H.

L. Feng and H. Liu, “Unipolar pulse assisted generation of the coherent XUV pulses,” Opt. Commun. 348, 1–6 (2015).
[Crossref]

Löffler, T.

H. G. Roskos, M. D. Thomson, M. KreB, and T. Löffler, “Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications,” Laser Photonics Rev. 1(4), 349–368 (2007).
[Crossref]

Luu, T. T.

M. T. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A. M. Zheltikov, V. Pervak, F. Krausz, and E. Goulielmakis, “Optical attosecond pulses and tracking the nonlinear response of bound electrons,” Nature 530(7588), 66–70 (2016).
[Crossref]

Maslov, A. V.

M. I. Bakunov, A. V. Maslov, and M. V. Tsarev, “Optically generated terahertz pulses with strong quasistatic precursors,” Phys. Rev. A 95(6), 063817 (2017).
[Crossref]

Meyer-ter Vehn, J.

H.-C. Wu and J. Meyer-ter Vehn, “Giant half-cycle attosecond pulses,” Nat. Photonics 6(5), 304–307 (2012).
[Crossref]

Mihalache, D.

H. Leblond and D. Mihalache, “Models of few optical cycle solitons beyond the slowly varying envelope approximation,” Phys. Rep. 523(2), 61–126 (2013).
[Crossref]

Morgner, U.

Moulet, A.

M. T. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A. M. Zheltikov, V. Pervak, F. Krausz, and E. Goulielmakis, “Optical attosecond pulses and tracking the nonlinear response of bound electrons,” Nature 530(7588), 66–70 (2016).
[Crossref]

Muller, H. G.

A. Wetzels, A. Gürtler, L. D. Noordam, F. Robicheaux, C. Dinu, H. G. Muller, M. J. J. Vrakking, and W. J. van der Zande, “Rydberg state ionization by half-cycle-pulse excitation: Strong kicks create slow electrons,” Phys. Rev. Lett. 89(27), 273003 (2002).
[Crossref]

Naumenko, G.

G. Naumenko and M. Shevelev, “First indication of the coherent unipolar diffraction radiation generated by relativistic electrons,” J. Instrum. 13(05), C05001 (2018).
[Crossref]

Nazarkin, A.

É. M. Belenov, V. A. Isakov, and A. Nazarkin, “Nonresonant interaction of ultrashort electromagnetic pulses with multilevel quantum systems,” Quantum Electron. 23(11), 911–918 (1993).
[Crossref]

Neumark, D. M.

K. Ramasesha, S. R. Leone, and D. M. Neumark, “Real-time probing of electron dynamics using attosecond time-resolved spectroscopy,” Annu. Rev. Phys. Chem. 67(1), 41–63 (2016).
[Crossref]

Nisoli, M.

F. Calegari, G. Sansone, S. Stagira, C. Vozzi, and M. Nisoli, “Advances in attosecond science,” J. Phys. B: At., Mol. Opt. Phys. 49(6), 062001 (2016).
[Crossref]

Noordam, L. D.

A. Wetzels, A. Gürtler, L. D. Noordam, F. Robicheaux, C. Dinu, H. G. Muller, M. J. J. Vrakking, and W. J. van der Zande, “Rydberg state ionization by half-cycle-pulse excitation: Strong kicks create slow electrons,” Phys. Rev. Lett. 89(27), 273003 (2002).
[Crossref]

Pakhomov, A.

D. Ziguleva, R. Arkhipov, M. Arkhipov, A. Pakhomov, I. Babushkin, and N. Rosanov, “Laser beam deflector based generation of few-cycle electromagnetic pulses in a circular nonlinear medium,” Opt. Commun. 424, 170–176 (2018).
[Crossref]

Pakhomov, A. V.

R. M. Arkhipov, M. V. Arkhipov, A. V. Pakhomov, and N. N. Rosanov, “On some new possibilities for controlling quantum systems using unipolar extremely short pulses,” Opt. Spectr. 128, 102–105 (2020).

N. N. Rosanov, M. V. Arkhipov, R. M. Arkhipov, N. A. Veretenov, A. V. Pakhomov, and S. V. Fedorov, “Extreme and topological nonlinear optics of open systems,” Opt. Spectrosc. 127(1), 77–87 (2019).
[Crossref]

R. M. Arkhipov, M. V. Arkhipov, A. V. Pakhomov, and N. N. Rosanov, “Population gratings produced in a quantum system by a pair of sub-cycle pulses,” Quantum Electron. 49(10), 958–962 (2019).
[Crossref]

R. M. Arkhipov, M. V. Arkhipov, A. A. Shimko, A. V. Pakhomov, and N. N. Rosanov, “Ultrashort optical pulses and their generation in resonant media (scientific summary),” JETP Lett. 110(1), 15–24 (2019).
[Crossref]

A. V. Pakhomov, R. M. Arkhipov, M. V. Arkhipov, A. Demircan, U. Morgner, N. N. Rosanov, and I. V. Babushkin, “Unusual terahertz waveforms from a resonant medium controlled by diffractive optical elements,” Sci. Rep. 9(1), 7444 (2019).
[Crossref]

R. M. Arkhipov, A. V. Pakhomov, M. V. Arkhipov, I. Babushkin, A. Demircan, U. Morgner, and N. N. Rosanov, “Unipolar subcycle pulse-driven nonresonant excitation of quantum systems,” Opt. Lett. 44(5), 1202–1205 (2019).
[Crossref]

R. M. Arkhipov, A. V. Pakhomov, M. V. Arkhipov, I. V. Babushkin, A. Demircan, U. Morgner, and N. N. Rosanov, “Population density gratings induced by few-cycle optical pulses in a resonant medium,” Sci. Rep. 7(1), 12467 (2017).
[Crossref]

R. M. Arkhipov, A. V. Pakhomov, M. V. Arkhipov, I. Babushkin, Y. A. Tolmachev, and N. N. Rosanov, “Generation of unipolar pulses in nonlinear media,” JETP Lett. 105(6), 408–418 (2017).
[Crossref]

M. V. Arkhipov, R. M. Arkhipov, A. V. Pakhomov, I. V. Babushkin, A. Demircan, U. Morgner, and N. N. Rosanov, “Generation of unipolar half-cycle pulses via unusual reflection of a single-cycle pulse from an optically thin metallic or dielectric layer,” Opt. Lett. 42(11), 2189–2192 (2017).
[Crossref]

A. V. Pakhomov, R. M. Arkhipov, I. V. Babushkin, M. V. Arkhipov, Y. A. Tolmachev, and N. N. Rosanov, “All-optical control of unipolar pulse generation in a resonant medium with nonlinear field coupling,” Phys. Rev. A 95(1), 013804 (2017).
[Crossref]

R. M. Arkhipov, A. V. Pakhomov, I. V. Babushkin, M. V. Arkhipov, Y. A. Tolmachev, and N. N. Rosanov, “Generation of unipolar pulses in a circular raman-active medium excited by few-cycle optical pulses,” J. Opt. Soc. Am. B 33(12), 2518–2524 (2016).
[Crossref]

Pan, Y.

Y. Pan, S.-F. Zhao, and X.-X. Zhou, “Generation of isolated sub-40-as pulses from gas-phase CO molecules using an intense few-cycle chirped laser and a unipolar pulse,” Phys. Rev. A 87(3), 035805 (2013).
[Crossref]

Perelomov, A.

A. Perelomov, V. Popov, and M. Terent’ev, “Ionization of atoms in an alternating electric field: II,” Sov. Phys. JETP 24, 207–217 (1967).

Pervak, V.

M. T. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A. M. Zheltikov, V. Pervak, F. Krausz, and E. Goulielmakis, “Optical attosecond pulses and tracking the nonlinear response of bound electrons,” Nature 530(7588), 66–70 (2016).
[Crossref]

Pohl, D. W.

H. J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, 1981).

Popov, V.

A. Perelomov, V. Popov, and M. Terent’ev, “Ionization of atoms in an alternating electric field: II,” Sov. Phys. JETP 24, 207–217 (1967).

Qiao, Y.

Y. Li, L. Feng, and Y. Qiao, “Improvement of high-order harmonic generation via controlling multiple acceleration–recombination process,” Zeitschrift für Naturforschung A 74(7), 561–571 (2019).

Rafailov, E.

E. Rafailov, M. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[Crossref]

Ramasesha, K.

K. Ramasesha, S. R. Leone, and D. M. Neumark, “Real-time probing of electron dynamics using attosecond time-resolved spectroscopy,” Annu. Rev. Phys. Chem. 67(1), 41–63 (2016).
[Crossref]

Raskazovskaya, O.

M. T. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A. M. Zheltikov, V. Pervak, F. Krausz, and E. Goulielmakis, “Optical attosecond pulses and tracking the nonlinear response of bound electrons,” Nature 530(7588), 66–70 (2016).
[Crossref]

Reimann, K.

K. Reimann, “Table-top sources of ultrashort THz pulses,” Rep. Prog. Phys. 70(10), 1597–1632 (2007).
[Crossref]

Robicheaux, F.

A. Wetzels, A. Gürtler, L. D. Noordam, F. Robicheaux, C. Dinu, H. G. Muller, M. J. J. Vrakking, and W. J. van der Zande, “Rydberg state ionization by half-cycle-pulse excitation: Strong kicks create slow electrons,” Phys. Rev. Lett. 89(27), 273003 (2002).
[Crossref]

Rosanov, N.

D. Ziguleva, R. Arkhipov, M. Arkhipov, A. Pakhomov, I. Babushkin, and N. Rosanov, “Laser beam deflector based generation of few-cycle electromagnetic pulses in a circular nonlinear medium,” Opt. Commun. 424, 170–176 (2018).
[Crossref]

Rosanov, N. N.

R. M. Arkhipov, M. V. Arkhipov, A. V. Pakhomov, and N. N. Rosanov, “On some new possibilities for controlling quantum systems using unipolar extremely short pulses,” Opt. Spectr. 128, 102–105 (2020).

R. M. Arkhipov and N. N. Rosanov, “Interaction of a rectangular unipolar pulse with a two-level resonant medium,” Opt. Spectr. 125(5), 630–634 (2020).

N. N. Rosanov, M. V. Arkhipov, R. M. Arkhipov, N. A. Veretenov, A. V. Pakhomov, and S. V. Fedorov, “Extreme and topological nonlinear optics of open systems,” Opt. Spectrosc. 127(1), 77–87 (2019).
[Crossref]

R. M. Arkhipov, M. V. Arkhipov, A. V. Pakhomov, and N. N. Rosanov, “Population gratings produced in a quantum system by a pair of sub-cycle pulses,” Quantum Electron. 49(10), 958–962 (2019).
[Crossref]

N. N. Rosanov, “Transportation of extremely short radiation pulses in a waveguide with a nonsimply connected cross section,” Opt. Spectrosc. 127(6), 1050–1052 (2019).
[Crossref]

R. M. Arkhipov, M. V. Arkhipov, A. A. Shimko, A. V. Pakhomov, and N. N. Rosanov, “Ultrashort optical pulses and their generation in resonant media (scientific summary),” JETP Lett. 110(1), 15–24 (2019).
[Crossref]

A. V. Pakhomov, R. M. Arkhipov, M. V. Arkhipov, A. Demircan, U. Morgner, N. N. Rosanov, and I. V. Babushkin, “Unusual terahertz waveforms from a resonant medium controlled by diffractive optical elements,” Sci. Rep. 9(1), 7444 (2019).
[Crossref]

R. M. Arkhipov, A. V. Pakhomov, M. V. Arkhipov, I. Babushkin, A. Demircan, U. Morgner, and N. N. Rosanov, “Unipolar subcycle pulse-driven nonresonant excitation of quantum systems,” Opt. Lett. 44(5), 1202–1205 (2019).
[Crossref]

N. N. Rosanov, “Interactions of intense extremely short pulses with quantum objects,” Opt. Spectrosc. 124(1), 72–74 (2018).
[Crossref]

N. N. Rosanov, R. M. Arkhipov, and M. V. Arkhipov, “On laws of conservation in the electrodynamics of continuous media (on the occasion of the 100th anniversary of the S.I. Vavilov State Optical Institute),” Phys.-Usp. 61(12), 1227–1233 (2018).
[Crossref]

A. V. Pakhomov, R. M. Arkhipov, I. V. Babushkin, M. V. Arkhipov, Y. A. Tolmachev, and N. N. Rosanov, “All-optical control of unipolar pulse generation in a resonant medium with nonlinear field coupling,” Phys. Rev. A 95(1), 013804 (2017).
[Crossref]

M. V. Arkhipov, R. M. Arkhipov, A. V. Pakhomov, I. V. Babushkin, A. Demircan, U. Morgner, and N. N. Rosanov, “Generation of unipolar half-cycle pulses via unusual reflection of a single-cycle pulse from an optically thin metallic or dielectric layer,” Opt. Lett. 42(11), 2189–2192 (2017).
[Crossref]

R. M. Arkhipov, A. V. Pakhomov, M. V. Arkhipov, I. Babushkin, Y. A. Tolmachev, and N. N. Rosanov, “Generation of unipolar pulses in nonlinear media,” JETP Lett. 105(6), 408–418 (2017).
[Crossref]

R. M. Arkhipov, A. V. Pakhomov, M. V. Arkhipov, I. V. Babushkin, A. Demircan, U. Morgner, and N. N. Rosanov, “Population density gratings induced by few-cycle optical pulses in a resonant medium,” Sci. Rep. 7(1), 12467 (2017).
[Crossref]

R. M. Arkhipov, M. V. Arkhipov, I. Babushkin, A. Demircan, U. Morgner, and N. N. Rosanov, “Ultrafast creation and control of population density gratings via ultraslow polarization waves,” Opt. Lett. 41(21), 4983–4986 (2016).
[Crossref]

R. M. Arkhipov, A. V. Pakhomov, I. V. Babushkin, M. V. Arkhipov, Y. A. Tolmachev, and N. N. Rosanov, “Generation of unipolar pulses in a circular raman-active medium excited by few-cycle optical pulses,” J. Opt. Soc. Am. B 33(12), 2518–2524 (2016).
[Crossref]

V. V. Kozlov, N. N. Rosanov, C. De Angelis, and S. Wabnitz, “Generation of unipolar pulses from nonunipolar optical pulses in a nonlinear medium,” Phys. Rev. A 84(2), 023818 (2011).
[Crossref]

N. V. Vysotina, N. N. Rosanov, and V. E. Semenov, “Extremely short dissipative solitons in an active nonlinear medium with quantum dots,” Opt. Spectrosc. 106(5), 713–717 (2009).
[Crossref]

Roskos, H. G.

H. G. Roskos, M. D. Thomson, M. KreB, and T. Löffler, “Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications,” Laser Photonics Rev. 1(4), 349–368 (2007).
[Crossref]

Rudolph, W.

J. C. Diels and W. Rudolph, Ultrashort laser pulse phenomena (Elsevier, 2006).

Sansone, G.

F. Calegari, G. Sansone, S. Stagira, C. Vozzi, and M. Nisoli, “Advances in attosecond science,” J. Phys. B: At., Mol. Opt. Phys. 49(6), 062001 (2016).
[Crossref]

Sazonov, S. V.

S. V. Sazonov and N. V. Ustinov, “Propagation of few-cycle pulses in a nonlinear medium and an integrable generalization of the sine-Gordon equation,” Phys. Rev. A 98(6), 063803 (2018).
[Crossref]

Semenov, V. E.

N. V. Vysotina, N. N. Rosanov, and V. E. Semenov, “Extremely short dissipative solitons in an active nonlinear medium with quantum dots,” Opt. Spectrosc. 106(5), 713–717 (2009).
[Crossref]

Shen, B.

J. Xu, B. Shen, X. Zhang, Y. Shi, L. Ji, L. Zhang, T. Xu, W. Wang, X. Zhao, and Z. Xu, “Terawatt-scale optical half-cycle attosecond pulses,” Sci. Rep. 8(1), 2669 (2018).
[Crossref]

Shevelev, M.

G. Naumenko and M. Shevelev, “First indication of the coherent unipolar diffraction radiation generated by relativistic electrons,” J. Instrum. 13(05), C05001 (2018).
[Crossref]

Shi, Y.

J. Xu, B. Shen, X. Zhang, Y. Shi, L. Ji, L. Zhang, T. Xu, W. Wang, X. Zhao, and Z. Xu, “Terawatt-scale optical half-cycle attosecond pulses,” Sci. Rep. 8(1), 2669 (2018).
[Crossref]

Shimko, A. A.

R. M. Arkhipov, M. V. Arkhipov, A. A. Shimko, A. V. Pakhomov, and N. N. Rosanov, “Ultrashort optical pulses and their generation in resonant media (scientific summary),” JETP Lett. 110(1), 15–24 (2019).
[Crossref]

Sibbett, W.

E. Rafailov, M. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[Crossref]

Sobelman, I. I.

I. I. Sobelman, Introduction to the Theory of Atomic Spectra (Elsevier, 2016).

Solov’ev, E. A.

D. Dimitrovski, E. A. Solov’ev, and J. S. Briggs, “Ionization and recombination in attosecond electric field pulses,” Phys. Rev. A 72(4), 043411 (2005).
[Crossref]

D. Dimitrovski, E. A. Solov’ev, and J. S. Briggs, “Ionization and recombination in intense, short electric field pulses,” Phys. Rev. Lett. 93(8), 083003 (2004).
[Crossref]

Song, X.

X. Song, W. Yang, Z. Zeng, R. Li, and Z. Xu, “Unipolar half-cycle pulse generation in asymmetrical media with a periodic subwavelength structure,” Phys. Rev. A 82(5), 053821 (2010).
[Crossref]

Stagira, S.

F. Calegari, G. Sansone, S. Stagira, C. Vozzi, and M. Nisoli, “Advances in attosecond science,” J. Phys. B: At., Mol. Opt. Phys. 49(6), 062001 (2016).
[Crossref]

Sychugin, S. A.

E. S. Efimenko, S. A. Sychugin, M. V. Tsarev, and M. I. Bakunov, “Quasistatic precursors of ultrashort laser pulses in electro-optic crystals,” Phys. Rev. A 98(1), 013842 (2018).
[Crossref]

Terent’ev, M.

A. Perelomov, V. Popov, and M. Terent’ev, “Ionization of atoms in an alternating electric field: II,” Sov. Phys. JETP 24, 207–217 (1967).

Thomson, M. D.

H. G. Roskos, M. D. Thomson, M. KreB, and T. Löffler, “Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications,” Laser Photonics Rev. 1(4), 349–368 (2007).
[Crossref]

Tolmachev, Y. A.

A. V. Pakhomov, R. M. Arkhipov, I. V. Babushkin, M. V. Arkhipov, Y. A. Tolmachev, and N. N. Rosanov, “All-optical control of unipolar pulse generation in a resonant medium with nonlinear field coupling,” Phys. Rev. A 95(1), 013804 (2017).
[Crossref]

R. M. Arkhipov, A. V. Pakhomov, M. V. Arkhipov, I. Babushkin, Y. A. Tolmachev, and N. N. Rosanov, “Generation of unipolar pulses in nonlinear media,” JETP Lett. 105(6), 408–418 (2017).
[Crossref]

R. M. Arkhipov, M. V. Arkhipov, P. A. Belov, Y. A. Tolmachev, and I. Babushkin, “Generation of unipolar optical pulses in a raman-active medium,” Laser Phys. Lett. 13(4), 046001 (2016).
[Crossref]

R. M. Arkhipov, A. V. Pakhomov, I. V. Babushkin, M. V. Arkhipov, Y. A. Tolmachev, and N. N. Rosanov, “Generation of unipolar pulses in a circular raman-active medium excited by few-cycle optical pulses,” J. Opt. Soc. Am. B 33(12), 2518–2524 (2016).
[Crossref]

Tsarev, M. V.

M. V. Tsarev and M. I. Bakunov, “Tilted-pulse-front excitation of strong quasistatic precursors,” Opt. Express 27(4), 5154–5164 (2019).
[Crossref]

E. S. Efimenko, S. A. Sychugin, M. V. Tsarev, and M. I. Bakunov, “Quasistatic precursors of ultrashort laser pulses in electro-optic crystals,” Phys. Rev. A 98(1), 013842 (2018).
[Crossref]

M. I. Bakunov, A. V. Maslov, and M. V. Tsarev, “Optically generated terahertz pulses with strong quasistatic precursors,” Phys. Rev. A 95(6), 063817 (2017).
[Crossref]

Ustinov, N. V.

S. V. Sazonov and N. V. Ustinov, “Propagation of few-cycle pulses in a nonlinear medium and an integrable generalization of the sine-Gordon equation,” Phys. Rev. A 98(6), 063803 (2018).
[Crossref]

van der Zande, W. J.

A. Wetzels, A. Gürtler, L. D. Noordam, F. Robicheaux, C. Dinu, H. G. Muller, M. J. J. Vrakking, and W. J. van der Zande, “Rydberg state ionization by half-cycle-pulse excitation: Strong kicks create slow electrons,” Phys. Rev. Lett. 89(27), 273003 (2002).
[Crossref]

Veretenov, N. A.

N. N. Rosanov, M. V. Arkhipov, R. M. Arkhipov, N. A. Veretenov, A. V. Pakhomov, and S. V. Fedorov, “Extreme and topological nonlinear optics of open systems,” Opt. Spectrosc. 127(1), 77–87 (2019).
[Crossref]

Vozzi, C.

F. Calegari, G. Sansone, S. Stagira, C. Vozzi, and M. Nisoli, “Advances in attosecond science,” J. Phys. B: At., Mol. Opt. Phys. 49(6), 062001 (2016).
[Crossref]

Vrakking, M. J. J.

A. Wetzels, A. Gürtler, L. D. Noordam, F. Robicheaux, C. Dinu, H. G. Muller, M. J. J. Vrakking, and W. J. van der Zande, “Rydberg state ionization by half-cycle-pulse excitation: Strong kicks create slow electrons,” Phys. Rev. Lett. 89(27), 273003 (2002).
[Crossref]

Vysotina, N. V.

N. V. Vysotina, N. N. Rosanov, and V. E. Semenov, “Extremely short dissipative solitons in an active nonlinear medium with quantum dots,” Opt. Spectrosc. 106(5), 713–717 (2009).
[Crossref]

Wabnitz, S.

V. V. Kozlov, N. N. Rosanov, C. De Angelis, and S. Wabnitz, “Generation of unipolar pulses from nonunipolar optical pulses in a nonlinear medium,” Phys. Rev. A 84(2), 023818 (2011).
[Crossref]

Wang, W.

J. Xu, B. Shen, X. Zhang, Y. Shi, L. Ji, L. Zhang, T. Xu, W. Wang, X. Zhao, and Z. Xu, “Terawatt-scale optical half-cycle attosecond pulses,” Sci. Rep. 8(1), 2669 (2018).
[Crossref]

Wetzels, A.

A. Wetzels, A. Gürtler, L. D. Noordam, F. Robicheaux, C. Dinu, H. G. Muller, M. J. J. Vrakking, and W. J. van der Zande, “Rydberg state ionization by half-cycle-pulse excitation: Strong kicks create slow electrons,” Phys. Rev. Lett. 89(27), 273003 (2002).
[Crossref]

Wu, H.-C.

H.-C. Wu and J. Meyer-ter Vehn, “Giant half-cycle attosecond pulses,” Nat. Photonics 6(5), 304–307 (2012).
[Crossref]

Xu, J.

J. Xu, B. Shen, X. Zhang, Y. Shi, L. Ji, L. Zhang, T. Xu, W. Wang, X. Zhao, and Z. Xu, “Terawatt-scale optical half-cycle attosecond pulses,” Sci. Rep. 8(1), 2669 (2018).
[Crossref]

Xu, T.

J. Xu, B. Shen, X. Zhang, Y. Shi, L. Ji, L. Zhang, T. Xu, W. Wang, X. Zhao, and Z. Xu, “Terawatt-scale optical half-cycle attosecond pulses,” Sci. Rep. 8(1), 2669 (2018).
[Crossref]

Xu, Z.

J. Xu, B. Shen, X. Zhang, Y. Shi, L. Ji, L. Zhang, T. Xu, W. Wang, X. Zhao, and Z. Xu, “Terawatt-scale optical half-cycle attosecond pulses,” Sci. Rep. 8(1), 2669 (2018).
[Crossref]

X. Song, W. Yang, Z. Zeng, R. Li, and Z. Xu, “Unipolar half-cycle pulse generation in asymmetrical media with a periodic subwavelength structure,” Phys. Rev. A 82(5), 053821 (2010).
[Crossref]

Yang, W.

X. Song, W. Yang, Z. Zeng, R. Li, and Z. Xu, “Unipolar half-cycle pulse generation in asymmetrical media with a periodic subwavelength structure,” Phys. Rev. A 82(5), 053821 (2010).
[Crossref]

Zeng, Z.

X. Song, W. Yang, Z. Zeng, R. Li, and Z. Xu, “Unipolar half-cycle pulse generation in asymmetrical media with a periodic subwavelength structure,” Phys. Rev. A 82(5), 053821 (2010).
[Crossref]

Zhang, L.

J. Xu, B. Shen, X. Zhang, Y. Shi, L. Ji, L. Zhang, T. Xu, W. Wang, X. Zhao, and Z. Xu, “Terawatt-scale optical half-cycle attosecond pulses,” Sci. Rep. 8(1), 2669 (2018).
[Crossref]

Zhang, X.

J. Xu, B. Shen, X. Zhang, Y. Shi, L. Ji, L. Zhang, T. Xu, W. Wang, X. Zhao, and Z. Xu, “Terawatt-scale optical half-cycle attosecond pulses,” Sci. Rep. 8(1), 2669 (2018).
[Crossref]

Zhao, S.-F.

Y. Pan, S.-F. Zhao, and X.-X. Zhou, “Generation of isolated sub-40-as pulses from gas-phase CO molecules using an intense few-cycle chirped laser and a unipolar pulse,” Phys. Rev. A 87(3), 035805 (2013).
[Crossref]

Zhao, X.

J. Xu, B. Shen, X. Zhang, Y. Shi, L. Ji, L. Zhang, T. Xu, W. Wang, X. Zhao, and Z. Xu, “Terawatt-scale optical half-cycle attosecond pulses,” Sci. Rep. 8(1), 2669 (2018).
[Crossref]

Zheltikov, A. M.

M. T. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A. M. Zheltikov, V. Pervak, F. Krausz, and E. Goulielmakis, “Optical attosecond pulses and tracking the nonlinear response of bound electrons,” Nature 530(7588), 66–70 (2016).
[Crossref]

Zhokhov, P.

M. T. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A. M. Zheltikov, V. Pervak, F. Krausz, and E. Goulielmakis, “Optical attosecond pulses and tracking the nonlinear response of bound electrons,” Nature 530(7588), 66–70 (2016).
[Crossref]

Zhou, X.-X.

Y. Pan, S.-F. Zhao, and X.-X. Zhou, “Generation of isolated sub-40-as pulses from gas-phase CO molecules using an intense few-cycle chirped laser and a unipolar pulse,” Phys. Rev. A 87(3), 035805 (2013).
[Crossref]

Ziguleva, D.

D. Ziguleva, R. Arkhipov, M. Arkhipov, A. Pakhomov, I. Babushkin, and N. Rosanov, “Laser beam deflector based generation of few-cycle electromagnetic pulses in a circular nonlinear medium,” Opt. Commun. 424, 170–176 (2018).
[Crossref]

Annu. Rev. Phys. Chem. (1)

K. Ramasesha, S. R. Leone, and D. M. Neumark, “Real-time probing of electron dynamics using attosecond time-resolved spectroscopy,” Annu. Rev. Phys. Chem. 67(1), 41–63 (2016).
[Crossref]

Appl. Phys. B (1)

U. Keller, “Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight,” Appl. Phys. B 100(1), 15–28 (2010).
[Crossref]

J. Instrum. (1)

G. Naumenko and M. Shevelev, “First indication of the coherent unipolar diffraction radiation generated by relativistic electrons,” J. Instrum. 13(05), C05001 (2018).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. B: At., Mol. Opt. Phys. (1)

F. Calegari, G. Sansone, S. Stagira, C. Vozzi, and M. Nisoli, “Advances in attosecond science,” J. Phys. B: At., Mol. Opt. Phys. 49(6), 062001 (2016).
[Crossref]

JETP Lett. (2)

R. M. Arkhipov, A. V. Pakhomov, M. V. Arkhipov, I. Babushkin, Y. A. Tolmachev, and N. N. Rosanov, “Generation of unipolar pulses in nonlinear media,” JETP Lett. 105(6), 408–418 (2017).
[Crossref]

R. M. Arkhipov, M. V. Arkhipov, A. A. Shimko, A. V. Pakhomov, and N. N. Rosanov, “Ultrashort optical pulses and their generation in resonant media (scientific summary),” JETP Lett. 110(1), 15–24 (2019).
[Crossref]

Laser Photonics Rev. (1)

H. G. Roskos, M. D. Thomson, M. KreB, and T. Löffler, “Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications,” Laser Photonics Rev. 1(4), 349–368 (2007).
[Crossref]

Laser Phys. Lett. (1)

R. M. Arkhipov, M. V. Arkhipov, P. A. Belov, Y. A. Tolmachev, and I. Babushkin, “Generation of unipolar optical pulses in a raman-active medium,” Laser Phys. Lett. 13(4), 046001 (2016).
[Crossref]

Nat. Photonics (2)

H.-C. Wu and J. Meyer-ter Vehn, “Giant half-cycle attosecond pulses,” Nat. Photonics 6(5), 304–307 (2012).
[Crossref]

E. Rafailov, M. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[Crossref]

Nature (1)

M. T. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A. M. Zheltikov, V. Pervak, F. Krausz, and E. Goulielmakis, “Optical attosecond pulses and tracking the nonlinear response of bound electrons,” Nature 530(7588), 66–70 (2016).
[Crossref]

Opt. Commun. (2)

D. Ziguleva, R. Arkhipov, M. Arkhipov, A. Pakhomov, I. Babushkin, and N. Rosanov, “Laser beam deflector based generation of few-cycle electromagnetic pulses in a circular nonlinear medium,” Opt. Commun. 424, 170–176 (2018).
[Crossref]

L. Feng and H. Liu, “Unipolar pulse assisted generation of the coherent XUV pulses,” Opt. Commun. 348, 1–6 (2015).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Opt. Spectr. (2)

R. M. Arkhipov and N. N. Rosanov, “Interaction of a rectangular unipolar pulse with a two-level resonant medium,” Opt. Spectr. 125(5), 630–634 (2020).

R. M. Arkhipov, M. V. Arkhipov, A. V. Pakhomov, and N. N. Rosanov, “On some new possibilities for controlling quantum systems using unipolar extremely short pulses,” Opt. Spectr. 128, 102–105 (2020).

Opt. Spectrosc. (4)

N. N. Rosanov, “Interactions of intense extremely short pulses with quantum objects,” Opt. Spectrosc. 124(1), 72–74 (2018).
[Crossref]

N. V. Vysotina, N. N. Rosanov, and V. E. Semenov, “Extremely short dissipative solitons in an active nonlinear medium with quantum dots,” Opt. Spectrosc. 106(5), 713–717 (2009).
[Crossref]

N. N. Rosanov, “Transportation of extremely short radiation pulses in a waveguide with a nonsimply connected cross section,” Opt. Spectrosc. 127(6), 1050–1052 (2019).
[Crossref]

N. N. Rosanov, M. V. Arkhipov, R. M. Arkhipov, N. A. Veretenov, A. V. Pakhomov, and S. V. Fedorov, “Extreme and topological nonlinear optics of open systems,” Opt. Spectrosc. 127(1), 77–87 (2019).
[Crossref]

Phys. Rep. (1)

H. Leblond and D. Mihalache, “Models of few optical cycle solitons beyond the slowly varying envelope approximation,” Phys. Rep. 523(2), 61–126 (2013).
[Crossref]

Phys. Rev. A (8)

X. Song, W. Yang, Z. Zeng, R. Li, and Z. Xu, “Unipolar half-cycle pulse generation in asymmetrical media with a periodic subwavelength structure,” Phys. Rev. A 82(5), 053821 (2010).
[Crossref]

V. V. Kozlov, N. N. Rosanov, C. De Angelis, and S. Wabnitz, “Generation of unipolar pulses from nonunipolar optical pulses in a nonlinear medium,” Phys. Rev. A 84(2), 023818 (2011).
[Crossref]

S. V. Sazonov and N. V. Ustinov, “Propagation of few-cycle pulses in a nonlinear medium and an integrable generalization of the sine-Gordon equation,” Phys. Rev. A 98(6), 063803 (2018).
[Crossref]

M. I. Bakunov, A. V. Maslov, and M. V. Tsarev, “Optically generated terahertz pulses with strong quasistatic precursors,” Phys. Rev. A 95(6), 063817 (2017).
[Crossref]

E. S. Efimenko, S. A. Sychugin, M. V. Tsarev, and M. I. Bakunov, “Quasistatic precursors of ultrashort laser pulses in electro-optic crystals,” Phys. Rev. A 98(1), 013842 (2018).
[Crossref]

A. V. Pakhomov, R. M. Arkhipov, I. V. Babushkin, M. V. Arkhipov, Y. A. Tolmachev, and N. N. Rosanov, “All-optical control of unipolar pulse generation in a resonant medium with nonlinear field coupling,” Phys. Rev. A 95(1), 013804 (2017).
[Crossref]

Y. Pan, S.-F. Zhao, and X.-X. Zhou, “Generation of isolated sub-40-as pulses from gas-phase CO molecules using an intense few-cycle chirped laser and a unipolar pulse,” Phys. Rev. A 87(3), 035805 (2013).
[Crossref]

D. Dimitrovski, E. A. Solov’ev, and J. S. Briggs, “Ionization and recombination in attosecond electric field pulses,” Phys. Rev. A 72(4), 043411 (2005).
[Crossref]

Phys. Rev. Lett. (4)

R. K. Bullough and F. Ahmad, “Exact solutions of the self-induced transparency equations,” Phys. Rev. Lett. 27(6), 330–333 (1971).
[Crossref]

V. P. Kalosha and J. Herrmann, “Formation of optical subcycle pulses and full Maxwell-Bloch solitary waves by coherent propagation effects,” Phys. Rev. Lett. 83(3), 544–547 (1999).
[Crossref]

A. Wetzels, A. Gürtler, L. D. Noordam, F. Robicheaux, C. Dinu, H. G. Muller, M. J. J. Vrakking, and W. J. van der Zande, “Rydberg state ionization by half-cycle-pulse excitation: Strong kicks create slow electrons,” Phys. Rev. Lett. 89(27), 273003 (2002).
[Crossref]

D. Dimitrovski, E. A. Solov’ev, and J. S. Briggs, “Ionization and recombination in intense, short electric field pulses,” Phys. Rev. Lett. 93(8), 083003 (2004).
[Crossref]

Phys.-Usp. (1)

N. N. Rosanov, R. M. Arkhipov, and M. V. Arkhipov, “On laws of conservation in the electrodynamics of continuous media (on the occasion of the 100th anniversary of the S.I. Vavilov State Optical Institute),” Phys.-Usp. 61(12), 1227–1233 (2018).
[Crossref]

Quantum Electron. (2)

É. M. Belenov, V. A. Isakov, and A. Nazarkin, “Nonresonant interaction of ultrashort electromagnetic pulses with multilevel quantum systems,” Quantum Electron. 23(11), 911–918 (1993).
[Crossref]

R. M. Arkhipov, M. V. Arkhipov, A. V. Pakhomov, and N. N. Rosanov, “Population gratings produced in a quantum system by a pair of sub-cycle pulses,” Quantum Electron. 49(10), 958–962 (2019).
[Crossref]

Rep. Prog. Phys. (1)

K. Reimann, “Table-top sources of ultrashort THz pulses,” Rep. Prog. Phys. 70(10), 1597–1632 (2007).
[Crossref]

Rev. Mod. Phys. (1)

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[Crossref]

Sci. Rep. (3)

J. Xu, B. Shen, X. Zhang, Y. Shi, L. Ji, L. Zhang, T. Xu, W. Wang, X. Zhao, and Z. Xu, “Terawatt-scale optical half-cycle attosecond pulses,” Sci. Rep. 8(1), 2669 (2018).
[Crossref]

A. V. Pakhomov, R. M. Arkhipov, M. V. Arkhipov, A. Demircan, U. Morgner, N. N. Rosanov, and I. V. Babushkin, “Unusual terahertz waveforms from a resonant medium controlled by diffractive optical elements,” Sci. Rep. 9(1), 7444 (2019).
[Crossref]

R. M. Arkhipov, A. V. Pakhomov, M. V. Arkhipov, I. V. Babushkin, A. Demircan, U. Morgner, and N. N. Rosanov, “Population density gratings induced by few-cycle optical pulses in a resonant medium,” Sci. Rep. 7(1), 12467 (2017).
[Crossref]

Sov. Phys. JETP (2)

A. Perelomov, V. Popov, and M. Terent’ev, “Ionization of atoms in an alternating electric field: II,” Sov. Phys. JETP 24, 207–217 (1967).

E. G. Bessonov, “On a class of electromagnetic waves,” Sov. Phys. JETP 53, 433–436 (1981).

Zeitschrift für Naturforschung A (1)

Y. Li, L. Feng, and Y. Qiao, “Improvement of high-order harmonic generation via controlling multiple acceleration–recombination process,” Zeitschrift für Naturforschung A 74(7), 561–571 (2019).

Other (7)

J. C. Diels and W. Rudolph, Ultrashort laser pulse phenomena (Elsevier, 2006).

L. Allen and J. H. Eberly, Optical resonance and two-level atoms (Wiley, 1975).

L. D. Landau and L. M. Lifshitz, Quantum Mechanics Non-Relativistic Theory, Third Edition: Volume 3 (Butterworth-Heinemann, 1981), 3rd ed.

H. J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, 1981).

L. D. Landau and E. M. Lifshitz, Quantum mechanics (Pergamon, 1974).

I. I. Sobelman, Introduction to the Theory of Atomic Spectra (Elsevier, 2016).

D. Bohm, Quantum theory (Courier Corporation, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Probability of the transitions $w_{1m}$ of the Lyman series versus the duration $\tau _{p}$ of a unipolar pulse with rectangular waveshape for $m=2,3,4$ . The vertical lines indicate the positions, where selective population is achieved; $E_0=10^{8}$ V/cm.
Fig. 2.
Fig. 2. Excitation probabilities $w_{12}$ for the Lyman-alpha line of hydrogen versus pulse duration $\tau _{p}$ for a rectangular pulse (black) and a super-Gaussian pulse for different values of parameter $n=4,10,20$ ; $E_{0} = 5\cdot 10^{7}$ V/cm.
Fig. 3.
Fig. 3. Excitation probabilities $w_{12}$ (a), $w_{13}$ (b) and $w_{14}$ (c) as a function of the delay $\Delta$ between the pulses and their duration $\tau _p$ for the Lyman series of the hydrogen atom, interacting with a pair of rectangular pulses for $E_0=10^{8}$ V/cm.
Fig. 4.
Fig. 4. Excitation probabilities $w_{12}$ (a), $w_{13}$ (b) and $w_{14}$ (c) for the Lyman series of hydrogen versus pulse delay $\Delta$ and pulse duration $\tau _p$ ; (d): cross-sections of (a-c) for fixed $\tau _p = 0.08$ fs. Field amplitude is $E_{0}=10^{8}$ V/cm.
Fig. 5.
Fig. 5. (a): Example of the pump pulse shape for $\Delta =0.8$ fs, $\tau _{p1}=0.2$ fs, $E_{01}=10^{8}$ V/cm, $E_{02}=-0.1E_{01}$ ; (b): Excitation probability $w_{12}$ for the Lyman-alpha line of hydrogen versus delay between the pulses $\Delta$ and the duration of the second pulse $\tau _{p2}$ .
Fig. 6.
Fig. 6. (a): Example of the pump pulse shape for $\Delta =0.8$ fs, $\tau _{p1}=0.2$ fs, $\tau _{p1}=0.5$ fs, $E_{01}=10^{8}$ V/cm, $E_{02}=-\frac {\tau _{p2}}{\tau _{p1}}E_{01}=-4\cdot 10^{7}$ V/cm; (b): Excitation probability $w_{12}$ for the Lyman-alpha line of hydrogen versus delay between the pulses $\Delta$ and the duration of the second pulse $\tau _{p2}$ (note the logarithmic color scale); for each value of $\tau _{p2}$ , $E_{02}$ is choosen as $E_{02} = - E_{01} \frac {\tau _{p1}}{\tau _{p2}}$ , which ensures $S_E=0$ .
Fig. 7.
Fig. 7. Temporal dynamics of the excitation probabilities $w_{1m}$ for a 4-level medium upon excitation by a rectangular pulse of duration $\tau _p = 4$ fs and electric field strength: (a) $E_0 = 10^{6}$ V/cm; (a) $E_0 = 10^{8}$ V/cm.
Fig. 8.
Fig. 8. Excitation probabilities $w_{1m}$ for a 4-level medium, excited by a pair of rectangular pulses of duration $\tau _p = 1$ fs and electric field strength $E_0 = 10^{8}$ V/cm, propagating with time delay $\Delta$ .
Fig. 9.
Fig. 9. Excitation probabilities $w_{1m}$ for a 4-level medium, excited by a pair of Gaussian pulses of duration $\tau _p = 0.2$ fs and electric field strength $E_0 = 10^{8}$ V/cm, propagating with time delay $\Delta$ .

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

ξ = | t = + E ( t ) d t | t = + | E ( t ) | d t ,
S E = t = + E ( t ) d t .
i ψ t = [ H ^ 0 + V ( t ) ] ψ .
w 1 m = 1 2 | V 1 m e i ω 1 m t d t | 2 .
w 1 m = 2 d 1 m 2 E 0 2 2 ω 1 m 2 ( 1 cos ω 1 m τ p ) .
w 1 m = d 1 m 2 2 S E 2 .
ω k m = m e q 4 Z 2 2 2 ( 1 k 2 1 m 2 ) .
E ( t ) = E 0 e t n τ p n ,
w 1 m = d 1 m 2 E 0 2 2 | e t n τ p n e i ω 1 m t d t | 2 ,
E ( t ) = E 0 1 + ( t τ p ) 2 .
w 1 m = d 1 m 2 E 0 2 τ p 2 2 π 2 e 2 ω 1 m τ p .
w 1 m = 4 d 1 m 2 E 0 2 2 ω 1 m 2 ( 1 cos ω 1 m τ p ) ( 1 + cos [ ω 1 m ( Δ + τ p ) ] ) .
E ( t ) = E 1 e t 2 τ p 1 2 + E 2 e ( t Δ ) 2 τ p 2 2 .
w 1 m = d 1 m 2 S E 1 2 2 e ω 1 m 2 τ p 1 2 2 + d 1 m 2 S E 2 2 2 e ω 1 m 2 τ p 2 2 2 + 2 d 1 m 2 2 S E 1 S E 2 e ω 1 m 2 ( τ p 1 2 + τ p 2 2 ) 4 cos ω 1 m Δ ,
w 1 m = 2 d 1 m 2 E 0 2 τ p 2 2 π 2 e 2 ω 1 m τ p ( 1 + cos ω 1 m Δ ) .
ψ ( r , t ) = m = 1 N a m ( t ) ψ m ( r ) e i E m t ,           ω m l = E m E l , a ˙ m ( t ) = i l = 1 N d l m a l ( t ) E ( t ) e i ω m l t ,
d 1 m E 0 τ p 1 ,
a ˙ m ( t ) i d 1 m E ( t ) a 1 ( t ) e i ω m 1 t ,           m = 2 , 3 , 4 ,
n ( t ) = 4 Ω R 2 cos Ω t + ω 0 2 4 Ω R 2 + ω 0 2 , P ( t ) = 2 E 0 d 12 2 ω 0 ( 4 Ω R 2 + ω 0 2 ) [ 1 cos Ω t ] .
d 12 E 0 τ p 0.0414 ,

Metrics