Abstract

Lying between optical and microwave ranges, the terahertz band in the electromagnetic spectrum is attracting increased attention. Optical fibers are essential for developing the full potential of complex terahertz systems. In this manuscript, we review the optimal materials, the guiding mechanisms, the fabrication methodologies, the characterization methods and the applications of such terahertz waveguides. We examine various optical fiber types including tube fibers, solid core fiber, hollow-core photonic bandgap, anti-resonant fibers, porous-core fibers, metamaterial-based fibers, and their guiding mechanisms. The optimal materials for terahertz applications are discussed. The past and present trends of fabrication methods, including drilling, stacking, extrusion and 3D printing, are elaborated. Fiber characterization methods including different optics for terahertz time-domain spectroscopy (THz-TDS) setups are reviewed and application areas including short-distance data transmission, imaging, sensing, and spectroscopy are discussed.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Abbott and X.-C. Zhang, “T-ray imaging, sensing, and retection,” Proc. IEEE 95(8), 1509–1513 (2007).
    [Crossref]
  2. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  3. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17(5), 851–863 (2000).
    [Crossref]
  4. S. Atakaramians, A. V. Shahraam, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photonics 5(2), 169–215 (2013).
    [Crossref]
  5. P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microwave Theory Tech. 52(10), 2438–2447 (2004).
    [Crossref]
  6. M. S. Islam, J. Sultana, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “A novel Zeonex based oligoporous-core photonic crystal fiber for polarization preserving terahertz applications,” Opt. Commun. 413(15), 242–248 (2018).
    [Crossref]
  7. M. S. Islam, J. Sultana, S. Rana, M. R. Islam, M. Faisal, S. F. Kaijage, and D. Abbott, “Extremely low material loss and dispersion flattened topas based circular porous fiber for long distance terahertz wave transmission,” Opt. Fiber Technol. 34, 6–11 (2017).
    [Crossref]
  8. M. S. Islam, S. Rana, M. R. Islam, M. Faisal, H. Rahman, and J. Sultana, “Porous-core photonic crystal fiber for ultra-low material loss in terahertz regime,” IET Commun. 10(16), 2179–2183 (2016).
    [Crossref]
  9. M. S. Islam, J. Sultana, A. Dinovitser, B. W.-H. Ng, and D. Abbot, “Zeonex based asymmetrical terahertz photonic crystal fiber for multichannel communication and polarization maintaining applications,” Appl. Opt. 57(4), 666–672 (2018).
    [Crossref]
  10. J. Sultana, Md. S. Islam, M. Faisal, M. R. Islam, B. W. -H. Ng, H. E. Heidepriem, and D. Abbot, “Highly birefringent elliptical core photonic crystal fiber for terahertz application,” Opt. Commun. 407, 92–96 (2018).
    [Crossref]
  11. M. S. Islam, M. R. Islam, M. Faisal, H. Rahman, J. Sultana, and S. Rana, “Extremely low-loss, dispersion flattened porous-core photonic crystal fiber for terahertz regime,” Opt. Eng. 55(7), 076117 (2016).
    [Crossref]
  12. M. S. Islam, M. R. Islam, M. Faisal, H. Rahman, J. Sultana, S. Rana, and M. R. Islam, “Ultra-low loss hybrid core porous fiber for broadband applications,” Appl. Opt. 56(4), 1232–1237 (2017).
    [Crossref]
  13. M. S. Islam, J. Sultana, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “A modified hexagonal photonic crystal fiber for terahertz applications,” Opt. Mater. 79, 336–339 (2018).
    [Crossref]
  14. T. Yang, C. Ding, R. W. Ziolkowski, and Y. J. Guo, “A scalable THz photonic crystal fiber with partially-slotted core that echibits improved birefringence and reduced loss,” J. Lightwave Technol. 36(16), 3408–3417 (2018).
    [Crossref]
  15. E. Reyes-Vera, J. Ú.restrepo, C. Jiménez-Durango, J. M.-Cardona, and N. G.-Cardona, “Design of low-loss and highly birefringent porous-core photonic crystal fiber and its application to terahertz polarization beam splitter,” IEEE Photonics J. 10(4), 1–13 (2018).
    [Crossref]
  16. Md. A. Habib, Md. S. Anower, and Md. R. Hasan, “Highly birefringent and low effective material loss microstructure fiber for THz wave guidance,” Opt. Commun. 423, 140–144 (2018).
    [Crossref]
  17. B. K. Paul, Md. S. Islam, S. Sen, K. Ahmed, and M. S. Uddin, “Low material loss and dispersion flattened fiber for single mode THz-wave transmission applications,” Results Phys. 11, 638–642 (2018).
    [Crossref]
  18. Md. A. Habib and Md. S. Anower, “Design and numerical analysis of highly birefringent single mode fiber in Thz regime,” Opt. Fiber Technol. 47, 197–203 (2019).
    [Crossref]
  19. D.-D. Wang, C.-L. Mu, D.-P. Kong, and C.-Y. Guo, “High birefringence, low loss, and flattened dispersion photonic crystal fiber for terahertz application,” Chin. Phys. B 28(11), 118701 (2019).
    [Crossref]
  20. S. Rana, A. S. Rakin, Md. R. Hasan, Md. S. Reza, R. Leonhardt, D. Abbott, and Harish Subbaraman, “Low loss and flat dispersion kagome photonic crystal fiber in the terahertz regime,” Opt. Commun. 410, 452–456 (2018).
    [Crossref]
  21. H. Xiao, H. Li, B. Wu, and S. Jian, “Polarization-maintaining terahertz bandgap fiber with a quasi-elliptical hollow-core,” Opt. Laser Technol. 105, 276–280 (2018).
    [Crossref]
  22. M. M. Nazarov, A. V. Shilov, K. A. bzheumikhov, Z. C. Margushev, V. I. Sokolov, A. B. Sotsky, and A. P. Shkurinov, “Eight-capillary cladding THz waveguide with low propagation losses and dispersion,” IEEE Trans. Terahertz Sci. Technol. 8(2), 183–191 (2018).
    [Crossref]
  23. S. Yan, S. Lou, X. Wang, T. Zhao, and W. Zhang, “High-birefringence hollow-core anti-resonant THz fiber,” Opt. Quantum Electron. 50(3), 162 (2018).
    [Crossref]
  24. J. Sultana, M. S. Islam, and D. Abbott, “High numerical aperture, highly birefringent novel photonic crystal fibre for medical imaging applications,” Electron. Lett. 54(2), 61–62 (2018).
    [Crossref]
  25. D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time domain spectroscopy,” Appl. Phys. B: Lasers Opt. 67(3), 379–390 (1998).
    [Crossref]
  26. E. Gerecht, K. O. Douglass, and D. F. Plusquellic, “Chirped-pulse terahertz spectroscopy for broadband trace gas sensing,” Opt. Express 19(9), 8973–8984 (2011).
    [Crossref]
  27. H. Lin, W. Withayachumnankul, B. M. Fischer, S. P. Mickan, and D. Abbott, “Gas recognition with terahertz time-domain spectroscopy and spectral catalog: a preliminary study,” Proc. SPIE 6840, 68400X (2007).
    [Crossref]
  28. E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D: Appl. Phys. 39(17), R301–R310 (2006).
    [Crossref]
  29. M. S. Islam, J. Sultana, K. Ahmed, A. Dinovitser, M. R. Islam, B. W.-H. Ng, and D. Abbott, “A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime,” IEEE Sens. J. 18(2), 575–582 (2018).
    [Crossref]
  30. M. S. Islam, J. Sultana, M. Biabanifard, M. J. Nine, Z. Vafapour, C. M. B. Cordeiro, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Electrically tunable graphene metasurface for multiband superabsorption and terahertz sensing,” 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-terahertz), 2019, (doi: 10.1109/IRMMW-terahertz.2019.8873851).
  31. M. S. Islam, J. Sultana, M. Biabanifard, M. J. Nine, Z. Vafapour, C. M. B. Cordeiro, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Tunable localized surface plasmon graphene metasurface for multiband superabsorption and terahertz sensing,” Carbon 158, 559–567 (2020).
    [Crossref]
  32. M. S. Islam, J. Sultana, A. A. Rifat, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Terahertz sensing in a hollow-core photonic crystal fiber,” IEEE Sens. J. 18(10), 4073–4080 (2018).
    [Crossref]
  33. B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
    [Crossref]
  34. W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
    [Crossref]
  35. G. E. Tsydynzhapov, P. A. Gusikhin, V. M. Muravev, I. V. Andreev, and I. V. Kukushkin, “New terahertz security body scanner,” 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-terahertz), 2018, (doi: 10.1109/IRMMW-terahertz.2018.8510513).
  36. T.-In Jeon, J. Zhangm, and D. Grischkowsky, “Terahertz sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005).
    [Crossref]
  37. N. Yudasari, J. Anthony, and R. Leonhardt, “Terahertz pulse propagation in 3D-printed waveguide with metal wires component,” Opt. Express 22(21), 26042–26054 (2014).
    [Crossref]
  38. G. P. Agrawal, “Fiber-Optic Communication Systems, Third Edition,” (John Wiley & Sons, Inc., 2002).
  39. F. Poli, A. Cucinotta, and S. Selleri, “Photonic crystal fibers properties and applications,” (Springer, 2007).
  40. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russel, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
    [Crossref]
  41. L. Vicentti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18(22), 23133–23146 (2010).
    [Crossref]
  42. R. Beravat, G. K. L. Wong Michael, H. Frosz, X. M. Xi, and P. St. J. Russel, “Twist-induced guidance in coreless photonic crystal fiber: a helical channel for light,” Sci. Adv. 2(11), e1601421 (2016).
    [Crossref]
  43. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [Crossref]
  44. J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
    [Crossref]
  45. A. C. S. Jr, “Recent progress and novel applications of photonic crystal fibers,” Rep. Prog. Phys. 73(2), 024401 (2010).
    [Crossref]
  46. A. Argyros and J. Pla, “Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared,” Opt. Express 15(12), 7713–7719 (2007).
    [Crossref]
  47. F. Gérôme, R. Jamier, J.-L. Auguste, G. Humbert, and J.-M. Blondy, “Simplified hollow-core photonic crystal fiber,” Opt. Lett. 35(8), 1157–1159 (2010).
    [Crossref]
  48. F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
    [Crossref]
  49. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
    [Crossref]
  50. F. Yu and J. C. Knight, “Negative curvature hollow-core optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 146–155 (2016).
    [Crossref]
  51. C. Wei, R. Joseph Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
    [Crossref]
  52. P. St. Russel, R. Beravat, and G. K. L. Wong, “Helically twisted photonic crystal fibres,” Philos. Trans. R. Soc., A 375(2087), 20150440 (2017).
    [Crossref]
  53. A. Argyros, “Microstructures in polymer fibres for optical fibres, terahertz waveguides, and fibre-based metamaterials,” ISRN Opt. 2013, 1–22 (2013).
    [Crossref]
  54. A. Barh, B. Pada Pal, G. P. Agrawal, R. K. Varshney, and B. M. Azizur Rahman, “Specialty fibers for terahertz generation and transmission: a review,” IEEE J. Sel. Top. Quantum Electron. 22(2), 365–379 (2016).
    [Crossref]
  55. S. Atakaramians, S. Afshar V., H. E.-Heidepriem, M. Nagel, B. M. Fischer, D. Abbot, and T. M. Monro, “Terahertz porous fibers: design, fabrication and experimental characterization,” Opt. Express 17(16), 14053–14062 (2009).
    [Crossref]
  56. N. Chen, J. Liang, and L.-y. Ren, “High-birefringence, low loss porous fiber for single-mode terahertz-wave guidance,” Appl. Opt. 52(21), 5297–5302 (2013).
    [Crossref]
  57. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss terahertz guiding,” Opt. Express 16(9), 6340–6351 (2008).
    [Crossref]
  58. H. Bao, K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Fabrication and characterization of porous-core honeycomb bandgap terahertz fibers,” Opt. Express 20(28), 29507–29517 (2012).
    [Crossref]
  59. S. F. Kaijage, Z. Ouyang, and X. Jin, “Porous-core photonic crystal fiber for low loss terahertz waveguiding,” IEEE Photonics Technol. Lett. 25(15), 1454–1457 (2013).
    [Crossref]
  60. A. Aming, M. Uthman, R. Chitaree, W. Mohammed, and B. M. Azizur Rahman, “Design and characterization of porous-core polarization maintaining photonic crystal fiber for terahertz guidance,” J. Lightwave Technol. 34(23), 5583–5590 (2016).
    [Crossref]
  61. G. K. M. Hasanuzzaman, Md. S. Habib, S. M. A. Razzak, A. Hossain, and Y. Namihira, “Low loss single-Mode porous-Core kagome photonic crystal fiber for THz wave guidance,” J. Lightwave Technol. 33(19), 4027–4031 (2015).
    [Crossref]
  62. S. Atakaramians, S. Afshar, V. B. M. Fischer, D. Abbot, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282(1), 36–38 (2009).
    [Crossref]
  63. A. L. S. Cruz, A. C. C. Migliano, J. G. Hayashi, C. M. B. Cordeiro, and M. A. R. Franco, “Highly birefringent polymer terahertz fiber with microstructure of slots in the core,” 22nd International Conference on Plastic Optical Fibers, (2013).
  64. J. Luo, S. Chen, H. Qu, Z. Su Li, and F. Tian, “Highly birefringent single-mode suspended-core fiber in terahertz regime,” J. Lightwave Technol. 36(16), 3242–3248 (2018).
    [Crossref]
  65. S. Atakaramians, S. Afshar V., H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbot, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express 17(16), 14053–14062 (2009).
    [Crossref]
  66. S. Atakaramians, S. Afshar V., H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbot, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16(12), 8845–8854 (2008).
    [Crossref]
  67. M. Nagel, A. Marchewka, and H. Kurz, “Low-index discontinuity terahertz waveguides,” Opt. Express 14(21), 9944 (2006).
    [Crossref]
  68. K. Ahmed, S. Chowdhury, B. K. Paul, Md. S. Islam, S. Sen, Md. I. Islam, and S. Asaduzzaman, “Ultrahigh birefringence, ultralow material loss porous core single-mode fiber for terahertz wave guidance,” Appl. Opt. 56(12), 3477–3483 (2017).
    [Crossref]
  69. K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
    [Crossref]
  70. R. Islam, “Dispersion flattened, low-loss porous fiber for single-mode terahertz wave guidance,” Opt. Eng. 54(5), 055102 (2015).
    [Crossref]
  71. L. Vincentti, “Numericl analysis of plastic hollow core microstructure fiber for terahertz applications,” Opt. Fiber Technol. 15(4), 398–401 (2009).
    [Crossref]
  72. M. Rozé, B. Ung, A. Mazhorova, M. Walther, and M. Skorobogatiy, “Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance,” Opt. Express 19(10), 9127–9138 (2011).
    [Crossref]
  73. X. Jiang, D. Chen, and G. Hu, “Suspended hollow core fiber for terahertz wave guiding,” Appl. Opt. 52(4), 770–774 (2013).
    [Crossref]
  74. S. Mei, D. Kong, L. Wang, T. Ma, Y. Zhu, X. Zhang, Z. He, X. Huang, and Y. Zhang, “Suspended graded-index porous core POF for ultra-flat near-zero dispersion terahertz transmission,” Opt. Fiber Technol. 52, 101946 (2019).
    [Crossref]
  75. H. Pkarzadeh, S. M. rezaei, and L. Namroodi, “Hollow-core photonic crystal fibers for efficient terahertz transmission,” Opt. Commun. 433, 81–88 (2019).
    [Crossref]
  76. L. Vicentti, “Hollow core photonic band gap fiber for THz applications,” Microw. Opt. Technol. Lett. 51(7), 1711–1714 (2009).
    [Crossref]
  77. L. Vincetti and V. Setti, “Elliptical hollow-core tube lattice for terahertz applications,” Opt. Fiber Technol. 19(1), 31–34 (2013).
    [Crossref]
  78. Y. Zhang and I. D. Robertson, “Single-mode terahertz Bragg fiber design using a modal filtering approach,” IEEE Trans. Microwave Theory Tech. 58(7), 1985–1992 (2010).
    [Crossref]
  79. A. Markov and M. Skorobogatiy, “Two-wire terahertz fibers with porous dielectric support,” Opt. Express 21(10), 12728–12743 (2013).
    [Crossref]
  80. H. Li, G. Ren, S. Atakaramians, B. T. Kuhlmey, and S. Jian, “Linearly polarized single TM mode terahertz waveguide,” Opt. Lett. 41(17), 4004–4007 (2016).
    [Crossref]
  81. B.-S. Sun, X.-L. Tang, X. Zeng, and Y.-W. Shi, “Characterization of cylindrical terahertz metallic hollow waveguide with multiple dielectric layers,” Appl. Opt. 51(30), 7276–7285 (2012).
    [Crossref]
  82. X. tang, Z. Yu, X. Tu, J. Chen, A. Argyros, B. T. Kuhlmey, and Y. Shi, “Elliptical metallic hollow fiber inner-coated with non-uniform dielectric layer,” Opt. Express 23(17), 22587–22601 (2015).
    [Crossref]
  83. A. Depuis, A. Mazhorova, F. Désévédavy, M. Rozé, and M. Skorobogatiy, “Spectral characterization of porous dielectric subwavelength THz fibers fabricated using a microstructured molding technique,” Opt. Express 18(13), 13813–13827 (2010).
    [Crossref]
  84. R. Guo Eva-Maria Stuebling, F. Beltran-Mejua, D. Ulm, T. Kleine-Ostmann, F. Ehrig, and M. Koch, “3D printed terahertz rectangular waveguides of polystyrene and TOPAS: a comparison,” J. Infrared, Millimeter, Terahertz Waves 40(1), 1–4 (2019).
    [Crossref]
  85. Y. S. Lee, S. Kim, I. Maeng, C. Kang, and K. Oh, “Los-loss terahertz pulse transmission through commercially available porous tubes with PTFE,” Proc. SPIE 11206, 112061S (2019).
  86. S. Yang, X. Sheng, G. Zhao, and S. Li, “Simple birefringent terahertz fiber based on elliptical hollow core,” Opt. Fiber Technol. 53, 102064 (2019).
    [Crossref]
  87. S. Li, Z. Dai, Z. Wang, P. Qi, Q. Su, X. Gao, C. Gong, and W. Liu, “Simple birefringent terahertz fiber based on elliptical hollow core,” Optik 176, 611–616 (2019).
    [Crossref]
  88. S. Yang, X. Sheng, G. Zhao, S. Lou, and J. Guo, “Anti-deformation low loss double pentagon nested terahertz hollow core fiber,” Opt. Fiber Technol. 56, 102199 (2020).
    [Crossref]
  89. Md. S. Islam, J. Sultana, A. Dinovitser, M. Faisal, M. R. Islam, B. W.-H. Ng, and D. Abbott, “Zeonex-based asymmetrical terahertz photonic crystal fiber for multichannel communication and polarization maintaining applications,” Appl. Opt. 57(4), 666–672 (2018).
    [Crossref]
  90. Md S. Islam, M. Faisal, and S. M. A. Razzak, “Dispersion flattened porous-core honeycomb lattice terahertz fiber for ultra low loss transmission,” IEEE J. Quantum Electron. 53(6), 1–8 (2017).
    [Crossref]
  91. Md S. Islam, M. Faisal, and S. M. A. Razzak, “Extremely low loss porous-core photonic crystal fiber with ultra-high dispersion in terahertz regime,” J. Opt. Soc. Am. B 34(8), 1747–1754 (2017).
    [Crossref]
  92. Md. S. Islam, J. Sultana, J. Atai, D. Abbott, S. Rana, and M. R. Islam, “Ultra low-loss hybrid core porous fiber for broadband applications,” Appl. Opt. 56(4), 1232–1237 (2017).
    [Crossref]
  93. J. Sultana, M. R. Islam, M. Faisal, and Md. K. Abu Talha, “Design and analysis of a Zeonex based diamond-shaped core kagome lattice photonic crystal fiber for T-ray wave transmission,” Opt. Fiber Technol. 47, 55–60 (2019).
    [Crossref]
  94. S. Rana, M. S. Islam, M. Faisal, K. C. Roy, R. Islam, and S. F. Kaijage, “Single-mode porous fiber for low-loss polarization maintaining terahertz transmission,” Opt. Eng. 55(7), 076114 (2016).
    [Crossref]
  95. L. Vicentti, “Hollow-core photonic band gap fiber for terahertz applications,” Microw. Opt. Technol. Lett. 51(7), 1711–1714 (2009).
    [Crossref]
  96. A. L. S. Cruz, C. M. B. Cordeiro, and M. A. R. Franco, “3D printed hollow-core terahertz fibers,” Fibers 6(3), 43 (2018).
    [Crossref]
  97. J. Anthony, R. Leonhardt, S. G. L.-Saval, and A. Argyros, “Terahertz propagation in kagome hollow-core microstructured fibers,” Opt. Express 19(19), 18470–18478 (2011).
    [Crossref]
  98. J. Yang, J. Zhao, C. Gong, H. Tian, L. Sun, P. Chen, L. Lin, and W. Liu, “3D printed low-loss terahertz waveguide based on kagome photonic crystal structure,” Opt. Express 24(20), 22454–22460 (2016).
    [Crossref]
  99. C.-H. Lai, B. You, j. Y. Lu, T. A. Liu, J.-L. Peng, C.-K. Sun, and H.-c. Chang, “Modal characteristics of anti-resonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18(1), 309–322 (2010).
    [Crossref]
  100. H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss terahertz guiding,” Sci. Rep. 5(1), 7620 (2015).
    [Crossref]
  101. Y.-F. Zhu, M.-Y. Chen, and Y. Liu, “Nested low-loss hollow-core fiber,” IEEE J. Sel. Top. Quantum Electron. 26(4), 1–6 (2020).
    [Crossref]
  102. G. K. M. Hasanuzzaman, S. Iezekiel, C. Markos, and M. S. Habib, “Hollow-core fiber with nested anti-resonant tubes for low-loss terahertz guidance,” Opt. Commun. 426, 477–482 (2018).
    [Crossref]
  103. A. L. S. Cruz, V. A. Serrao, C. L. Barbosa, C. M. B. Cordeiro, A. Argyros, X. Tang, and M. A. R. Franco, “3D Printed hollow-core fiber with negative curvature for terahertz applications,” J. Microw. Optoelectron. Electromagn. Appl. 14, 45–53 (2015).
  104. A. L. S. Cruz, C. M. B. Cordeiro, G. S. Rodrigues, J. H. Osório, L. E da Silva, and M. A. R. Franco, “Exploring terahertz hollow-core fiber designs manufactured by 3Dprinting,” IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC 2017), Águas de Lindoia, Brazil (2017).
  105. J. Sultana, M. S. Islam, C. M. B. Cordeiro, A. L. S. Cruz, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Five-Capillary Cladding Terahertz Fiber with Low Loss and Single Mode,” 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-terahertz), 2019. DOI: 10.1109/IRMMW-THz.2019.8874476.
  106. J. Sultana, M. S. Islam, C. M. B. Cordeiro, A. L. S. Cruz, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Novel hollow-core anti-resonant terahertz fiber with metamaterial cladding,” 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-terahertz), 2019. DOI: 10.1109/IRMMW-THz.2019.8873836.
  107. J. Sultana, M. S. Islam, C. M. B. Cordeiro, A. Dinovitser, M. Koushik, B. W.-H. Ng, and D. Abbott, “Terahertz hollow core antiresonant fiber with metamaterial cladding,” Fibers 8(2), 14–00 (2020).
    [Crossref]
  108. A. Dupuis, K. Stoeffer, B. Ung, C. Dubois, and M. Skorobogatiy, “Transmission measurements of hollow-core terahertz Bragg fibers,” J. Opt. Soc. Am. B 28(4), 896–907 (2011).
    [Crossref]
  109. A. L. S. Cruz, A. Argyros, X. Tang, C. M. B. Cordeiro, and M. A. R. Franco, “3D-Printed Terahertz Bragg Fiber,” 40th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW 2015), Hong Kong, Aug 2015.
  110. J. A. Harrington, R. George, and P. Pedersen, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12(21), 5263–5268 (2004).
    [Crossref]
  111. J. Anthony, R. Leonhardt, and A. Argyros, “Hybrid hollow-core fibers with embedded wires as terahertz waveguides,” Opt. Express 21(3), 2903–2912 (2013).
    [Crossref]
  112. A. Markov, H. Guerboukha, and M. Skorobogatiy, “Hybrid metal wire-dielectric terahertz waveguides: challenges and opportunities,” J. Opt. Soc. Am. B 31(11), 2587–2600 (2014).
    [Crossref]
  113. R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett. 24(20), 1431–1433 (1999).
    [Crossref]
  114. A. Markov, S. Gorgutsa, H. Qu, and M. Skorobogatiy, “Practical metal-wire THz waveguides,” arXiv:1206.2984, 2012.
  115. K. Wang and D. Mittleman, “Metal wires for terahertz guiding,” Nature 432(7015), 376–379 (2004).
    [Crossref]
  116. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32(20), 2945–2947 (2007).
    [Crossref]
  117. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93(18), 181104 (2008).
    [Crossref]
  118. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Fabrication of terahertz hollow-glass metallic waveguides with inner dielectric coatings,” J. Appl. Phys. 104(9), 093110 (2008).
    [Crossref]
  119. Y. Matsuura and E. Takeda, “Hollow optical fibers loaded with an inner dielectric film for terahertz broadband spectroscopy,” J. Opt. Soc. Am. B 25(12), 1949–1954 (2008).
    [Crossref]
  120. X.-L. Tang, Y.-W. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, “Transmission characteristics of terahertz hollow fiber with an absorptive dielectric inner-coating film,” Opt. Lett. 34(14), 2231–2233 (2009).
    [Crossref]
  121. H. Li, S. Atakaramians, R. Lwin, X. Tang, Z. Yu, A. Argyros, and B. T. Kuhlme, “Flexible single-mode hollow-core terahertz fiber with metamaterial cladding,” Optica 3(9), 941–947 (2016).
    [Crossref]
  122. A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fabricating metamaterials using the fiber drawing method,” J. Visualized Exp. 68, e4299 (2012).
    [Crossref]
  123. J. Anthony, R. Leonhardt, A. Argyros, and M. C. J. Large, “Characterization of a microstructured Zeonex terahertz fiber,” J. Opt. Soc. Am. B 28(5), 1013–1018 (2011).
    [Crossref]
  124. C. S. Ponseca, R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Opt. Lett. 33(9), 902–904 (2008).
    [Crossref]
  125. Z. Wu, W-R. Ng, M. E. Gehm, and H. Xin, “Terahertz electromagnetic crystal waveguide fabricated by polymer jetting rapid prototyping,” Opt. Express 19(5), 3962–3972 (2011).
    [Crossref]
  126. J. Li, K. Nallappan, H. Guerboukha, and M. Skorobogatiy, “3D printed hollow-core terahertz Bragg waveguides with defect layers for surface sensing applications,” Opt. Express 25(4), 4126–4144 (2017).
    [Crossref]
  127. L. D. Van Putten, J. Gorecki, E. Numkam Fokoua, V. Apostolopoulos, and F. Poletti, “3D-printed polymer anti-resonant wave-guides for short-reach terahertz applications,” Appl. Opt. 57(14), 3953–3958 (2018).
    [Crossref]
  128. V. Setti, L. Vincetti, and A. Argyros, “Flexible tube lattice fibers for terahertz applications,” Opt. Express 21(3), 3388–3399 (2013).
    [Crossref]
  129. A. Stefani, S. C. Fleming, and B. T. Kuhlmey, “Terahertz orbital angular momentum modes with flexible twisted hollow-core anti-resonant fiber,” APL Photonics 3(5), 051708 (2018).
    [Crossref]
  130. K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
    [Crossref]
  131. E. Arrospide, G. Durana, M. Azkune, G. Aldabaldetreku, I. Bikandi, L. R.-Rubioc, and J. Zubiab, “Polymers beyond standard optical fibres – fabrication of microstructured polymer optical fibres,” Polym. Int. 67(9), 1155–1163 (2018).
    [Crossref]
  132. G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Opt. Fiber Technol. 10(4), 325–335 (2004).
    [Crossref]
  133. Y. Zhang, K. Li, L. Wang, L. Ren, W. Zhao, and R. Miao, “Casting preforms for microstructured polymer optical fibre fabrication,” Opt. Express 14(12), 5541–5547 (2006).
    [Crossref]
  134. W. Talataisong, R. Ismaeel, M. Beresna, and G. Brambilla, “Suspended-core microstructured polymer optical fibers and potential applications in sensing,” Appl. Phys. Lett. 80(15), 2634–2636 (2002).
    [Crossref]
  135. H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634–2636 (2002).
    [Crossref]
  136. Z. Liu and H.-Y. Tam, “Fabrication and sensing applications of special microstructured optical fibers,” Sel. Top. on Opt. Fib. Tech. and Appl. vol. 2017. doi:10.5772/intechopen.70755
  137. M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43(No. 2B), L317–L319 (2004).
    [Crossref]
  138. J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in Kagome hollow-core microstructured fibers,” Opt. Express 19(19), 18470–18478 (2011).
    [Crossref]
  139. A. Dupuis, J.-F. Allard, D. Morris, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method,” Opt. Express 17(10), 8012–8028 (2009).
    [Crossref]
  140. J. Lu, C. Yu, H. Chang, H. Chen, Y. Li, C. Pan, and C. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
    [Crossref]
  141. M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, “Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers,” Opt. Express 16(1), 7–12 (2008).
    [Crossref]
  142. Z. Wu, J. Kinast, M. E. Gehm, and H. Xin, “Rapid and inexpensive fabrication of terahertz electromagnetic bandgap structures,” Opt. Express 16(21), 16442–16451 (2008).
    [Crossref]
  143. S. Yang, X. Sheng, G. Zhao, Y. Wang, and Y. Yu, “Novel pentagram THz hollow-core anti-resonant fiber using a 3D printer,” J. Infrared, Millimeter, Terahertz Waves 40(7), 720–730 (2019).
    [Crossref]
  144. T. Hidaka, H. Minamide, H. Ito, J.-I Nishizawa, K. Tamura, and S. Ichikawa, “Ferroelectric PVDF cladding terahertz waveguide,” J. Lightwave Technol. 23(8), 2469–2473 (2005).
    [Crossref]
  145. L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31(3), 308–310 (2006).
    [Crossref]
  146. D. Chen and H. Chen, “A novel low-loss Terahertz waveguide: Polymer tube,” Opt. Express 18(4), 3762–3767 (2010).
    [Crossref]
  147. Md. S. Islam, J. Sultana, J. Atai, M. R. Islam, and D. Abbott, “Design and characterization of a low-loss, dispersion-flattened photonic crystal fiber for T-Ray wave propagation,” Optik 145, 398–406 (2017).
    [Crossref]
  148. R. Islam, Md. S. Habib, G. K. M. Hasanuzzaman, R. Ahmad, S. Rana, and S. F. Kaijage, “Extremely high-birefringent asymmetric slotted-core photonic crystal fiber in THz regime,” IEEE Photonics Technol. Lett. 27(21), 2222–2225 (2015).
    [Crossref]
  149. X. Jiang, D. Chen, and G. Hu, “Suspended hollow core fiber for terahertz wave guideing,” Appl. Opt. 52(4), 770–774 (2013).
    [Crossref]
  150. Y.-F. Zhu, M.-Y. Chen, H. Wang, H.-B. Yao, Y.-K. Zhang, and J.-C. Yang, “Design and analysis of a low-loss suspended core terahertz fiber and its application to polarization splitter,” IEEE Photonics J. 5(6), 7101410 (2013).
    [Crossref]
  151. M. Faisal and Md. S. Islam, “Extremely high birefringent terahertz fiber using a suspended elliptic core with slotted airholes,” Appl. Opt. 57(13), 3340–3347 (2018).
    [Crossref]
  152. L. Vicentti and V. Setti, “Elliptical hollow core tube lattice fibers for terahertz applications,” Opt. Fiber Technol. 19(1), 31–34 (2013).
    [Crossref]
  153. A. L. S. Cruz, A. C. C. Migliano, and M. A. R. Franco, “Refractive index sensor based on terahertz multimode interference fiber device,” Proc. SPIE 8794, 18794L (2013).
    [Crossref]
  154. G. Hefferman, Z. Chen, L. Yuan, and T. Wei, “Phase-shifted terahertz fiber bragg grating for strain sensing with large dynamic range,” IEEE Photonics Technol. Lett. 27(15), 1649–1652 (2015).
    [Crossref]
  155. Z. Chen, L. Yuan, G. Hefferman, and T. Wei, “Terahertz fiber bragg grating for distributed sensing,” IEEE Photonics Technol. Lett. 27(10), 1084–1087 (2015).
    [Crossref]
  156. G. Yan, A. Markov, Y. Chinifooroshan, S. M. Tripathi, W. J. Bock, and M. Skorobogatiy, “Resonant THz sensor for paper quality monitoring using THz fiber Bragg gratings,” Opt. Lett. 38(13), 2200–2202 (2013).
    [Crossref]
  157. Y. Cao, K. Nallappan, H. Guerboukha, T. Gervais, and M. Skorobogativ, “Additive manufacturing of resonant fluidic sensors based on photonic bandgap waveguides for terahertz applications,” Opt. Express 27(20), 27663–27681 (2019).
    [Crossref]
  158. B. You, T.-A. Liu, J.-L. Peng, C.-L. Pan, and J.-Y. Lu, “A terahertz plastic wire based evanescent field sensor for high sensitivity liquid detection,” Opt. Express 17(23), 20675–20683 (2009).
    [Crossref]
  159. B. You, J.-Y. Lu, C.-P. You, T.-A. Liu, and J.-L. Peng, “Terahertz refractive index sensors using dielectric pipe waveguides,” Opt. Express 20(6), 5858–5866 (2012).
    [Crossref]
  160. B. You, J.-Y. Lu, J.-H. Liou, C.-P. Yu, H.-Z. Chen, T.-A. Liu, and J.-L. Peng, “Subwavelength film sensing based on terahertz anti-resonant reflecting hollow waveguides,” Opt. Express 18(18), 19353–19360 (2010).
    [Crossref]
  161. A. Hassani and M. Skorobogatiy, “Surface Plasmon Resonance-like integrated sensor at terahertz frequencies for gaseous analytes,” Opt. Express 16(25), 20206–20214 (2008).
    [Crossref]
  162. G. M. Katyba, K. I. Zaytsev, N. V. Chernomyrdin, I. A. Shikunova, G. A. Komandin, V. B. Anzin, S. P. Lebedev, I. E. Spektor, V. E. Karasik, S. O. Yurchenko, I. V. Reshetov, V. N. Kurlov, and M. Skorobogatiy, “Sapphire photonic crystal waveguides for terahertz sensing in aggressive environments,” Adv. Opt. Mater. 6, 1800573 (2018).
    [Crossref]
  163. J. Sultana, Md. S. Islam, K. Ahmed, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Terahertz detection of alcohol using a photonic crystal fiber sensor,” Appl. Opt. 57(10), 2426–2433 (2018).
    [Crossref]
  164. K. Ahmed, F. Ahmed, S. Roy, B. K. Paul Mst., N. Aktar, D. Vigneswaran, and Md. S. Islam, “Refractive index-based blood components sensing in terahertz spectrum,” IEEE Sens. J. 19(9), 3368–3375 (2019).
    [Crossref]
  165. D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baramiuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B: Lasers Opt. 68(6), 1085–1094 (1999).
    [Crossref]
  166. J. Li, K. Nallappan, H. Guerboukha, and M. Skorobogatiy, “3D printed hollow core terahertz Bragg waveguides with defect layers for surface sensing applications,” Opt. Express 25(4), 4126–4144 (2017).
    [Crossref]
  167. D. M. Mittleman, “Twenty years of terahertz imaging,” Opt. Express 26(8), 9417–9431 (2018).
    [Crossref]
  168. J.-Y. Lu, C.-M. Chiu, C.-C. Kuo, C.-H. Lai, and H.-C. Chang, “Terahertz scanning imaging with a subwavelength plastic fiber,” Appl. Phys. Lett. 92(8), 084102 (2008).
    [Crossref]
  169. H. Chen, W.-J. Lee, H.-Y. Huang, C.-M. Chiu, Y.-F. Tsai, T.-F. Tseng, J.-T. Lu, W.-L. Lai, and C.-K. Sun, “Performance of THz fiber-scanning near-field microscopy to diagnose breast tumors,” Opt. Express 19(20), 19523–19531 (2011).
    [Crossref]
  170. C. Hua, M. Shi-Hua, Y. W.-Xing, W. X.-Mei, and W. X.-Zhou, “The diagnosis of human liver cancer by using THz fiber-scanning near-field imaging,” Chin. Phys. Lett. 30(3), 030702 (2013).
    [Crossref]
  171. H. Chen, T.-H. Chen, T.-F. Tseng, J.-T. Lu, C.-C. Kuo, S.-C. Fu, W.-J. Lee, Y.-F. Tsai, Y. Y. Huang, E. Y. Chuang, Y.-J. Hwang, and C.-K. Sun, “High-sensitivity in vivo THz transmission imaging of early human breast cancer in a subcutaneous xenograft mouse model,” Opt. Express 19(22), 21552–21562 (2011).
    [Crossref]
  172. A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T.Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4(1), 2706 (2013).
    [Crossref]
  173. G. M. Katyba, N. V. Chernomyrdin, I. N.. Dolganova, A. A. Pronin, I. V. Minin, O. V. Minin, K. I. Zaytsev, and V. N. Kurlov, “Step-index sapphire fiber and its application in a terahertz near-field microscopy,” Proc. SPIE 11164, 11164G (2019).
    [Crossref]
  174. W. Talataisong, R. Ismaeel, T. H. R. Marques, S. A. Mousavi, M. Beresna, M. A. Gouveia, S. R. Sandoghchi, T. Lee, C. M. B. Cordeiro, and G. Brambilla, “Mid-IR Hollow-core microstructured fiber drawn from a 3D printed PETG preform,” Sci. Rep. 8(1), 8113 (2018).
    [Crossref]
  175. C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y.-j. Huang, H.-c. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34(21), 3457–3459 (2009).
    [Crossref]
  176. M. Mittendorff, S. Li, and T. E. Murphy, “Graphene-based waveguide-integrated terahertz modulator,” ACS Photonics 4(2), 316–321 (2017).
    [Crossref]
  177. M. S. Islam, J. Sultana, C. M. B. Cordeiro, A. L. S. Cruz, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Broadband characterization of glass and polymer materials using THz-TDS,” 44th Int. Conf. on Inf. Mil. and Ter. Waves (IRMMW-THz), DOI: 10.1109/IRMMW-THz.2019.8874013.
  178. M. S. Islam, J. Sultana, C. M. B. Cordeiro, M. J.Nine, A. L. S. Cruz, A. Dinovitser, B. W.-H. Ng, H. E. Heidepriem, D. Losic, and D. Abbott, “Experimental study on glass and polymers: Determining the optimal material for potential use in terahertz technology,” IEEE Access, (Revised version submitted).
  179. E. V. Fedulova, M. M. Nazarov, A. A. Angeluts, M. S. Kitai, V. I. Sokolov, and A. P. Shkurinov, “Studying of dielectric properties of polymers in the terahertz frequency range,” Proc. SPIE 8337, 83370I (2012).
    [Crossref]
  180. M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE 95(8), 1658–1665 (2007).
    [Crossref]
  181. Z. Shi, L. Song, and T. Zhang, “Optical and electrical characterization of pure PMMA for terahertz wide-band metamaterial absorbers,” J. Infrared, Millimeter, Terahertz Waves 40(1), 80–91 (2019).
    [Crossref]
  182. R. Peretti, F. Braud, E. Peytavit, E. Dubois, and J.-F. Lampin, “Broadband terahertz light–matter interaction enhancement for precise spectroscopy of thin films and micro-samples,” Photonics 5(2), 11 (2018).
    [Crossref]
  183. T. Ma, K. Nallapan, H. Guerboukha, and M. Skorobogatiy, “Analog signal processing in the terahertz communication links using waveguide Bragg gratings: example of dispersion compensation,” Opt. Express 25(10), 11009–11026 (2017).
    [Crossref]
  184. L. Yu, L. Hao, T. Meiqiong, H. Jiaoqi, L. Wei, D. Jinying, C. Xueping, F. Weiling, and Z. Yang, “The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges,” RSC Adv. 9(17), 9354–9363 (2019).
    [Crossref]
  185. R. B. Kohlhass, A. Rehn, S. Nellen, M. Koch, M. Schell, R. J. B. Dietz, and J. C. Balzer, “Terahertz quasi time-domain spectroscopy based on telecom technology for 1550 nm,” Opt. Express 25(11), 12851–12859 (2017).
    [Crossref]

2020 (4)

M. S. Islam, J. Sultana, M. Biabanifard, M. J. Nine, Z. Vafapour, C. M. B. Cordeiro, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Tunable localized surface plasmon graphene metasurface for multiband superabsorption and terahertz sensing,” Carbon 158, 559–567 (2020).
[Crossref]

S. Yang, X. Sheng, G. Zhao, S. Lou, and J. Guo, “Anti-deformation low loss double pentagon nested terahertz hollow core fiber,” Opt. Fiber Technol. 56, 102199 (2020).
[Crossref]

Y.-F. Zhu, M.-Y. Chen, and Y. Liu, “Nested low-loss hollow-core fiber,” IEEE J. Sel. Top. Quantum Electron. 26(4), 1–6 (2020).
[Crossref]

J. Sultana, M. S. Islam, C. M. B. Cordeiro, A. Dinovitser, M. Koushik, B. W.-H. Ng, and D. Abbott, “Terahertz hollow core antiresonant fiber with metamaterial cladding,” Fibers 8(2), 14–00 (2020).
[Crossref]

2019 (15)

J. Sultana, M. R. Islam, M. Faisal, and Md. K. Abu Talha, “Design and analysis of a Zeonex based diamond-shaped core kagome lattice photonic crystal fiber for T-ray wave transmission,” Opt. Fiber Technol. 47, 55–60 (2019).
[Crossref]

R. Guo Eva-Maria Stuebling, F. Beltran-Mejua, D. Ulm, T. Kleine-Ostmann, F. Ehrig, and M. Koch, “3D printed terahertz rectangular waveguides of polystyrene and TOPAS: a comparison,” J. Infrared, Millimeter, Terahertz Waves 40(1), 1–4 (2019).
[Crossref]

Y. S. Lee, S. Kim, I. Maeng, C. Kang, and K. Oh, “Los-loss terahertz pulse transmission through commercially available porous tubes with PTFE,” Proc. SPIE 11206, 112061S (2019).

S. Yang, X. Sheng, G. Zhao, and S. Li, “Simple birefringent terahertz fiber based on elliptical hollow core,” Opt. Fiber Technol. 53, 102064 (2019).
[Crossref]

S. Li, Z. Dai, Z. Wang, P. Qi, Q. Su, X. Gao, C. Gong, and W. Liu, “Simple birefringent terahertz fiber based on elliptical hollow core,” Optik 176, 611–616 (2019).
[Crossref]

S. Yang, X. Sheng, G. Zhao, Y. Wang, and Y. Yu, “Novel pentagram THz hollow-core anti-resonant fiber using a 3D printer,” J. Infrared, Millimeter, Terahertz Waves 40(7), 720–730 (2019).
[Crossref]

Y. Cao, K. Nallappan, H. Guerboukha, T. Gervais, and M. Skorobogativ, “Additive manufacturing of resonant fluidic sensors based on photonic bandgap waveguides for terahertz applications,” Opt. Express 27(20), 27663–27681 (2019).
[Crossref]

Md. A. Habib and Md. S. Anower, “Design and numerical analysis of highly birefringent single mode fiber in Thz regime,” Opt. Fiber Technol. 47, 197–203 (2019).
[Crossref]

D.-D. Wang, C.-L. Mu, D.-P. Kong, and C.-Y. Guo, “High birefringence, low loss, and flattened dispersion photonic crystal fiber for terahertz application,” Chin. Phys. B 28(11), 118701 (2019).
[Crossref]

S. Mei, D. Kong, L. Wang, T. Ma, Y. Zhu, X. Zhang, Z. He, X. Huang, and Y. Zhang, “Suspended graded-index porous core POF for ultra-flat near-zero dispersion terahertz transmission,” Opt. Fiber Technol. 52, 101946 (2019).
[Crossref]

H. Pkarzadeh, S. M. rezaei, and L. Namroodi, “Hollow-core photonic crystal fibers for efficient terahertz transmission,” Opt. Commun. 433, 81–88 (2019).
[Crossref]

K. Ahmed, F. Ahmed, S. Roy, B. K. Paul Mst., N. Aktar, D. Vigneswaran, and Md. S. Islam, “Refractive index-based blood components sensing in terahertz spectrum,” IEEE Sens. J. 19(9), 3368–3375 (2019).
[Crossref]

G. M. Katyba, N. V. Chernomyrdin, I. N.. Dolganova, A. A. Pronin, I. V. Minin, O. V. Minin, K. I. Zaytsev, and V. N. Kurlov, “Step-index sapphire fiber and its application in a terahertz near-field microscopy,” Proc. SPIE 11164, 11164G (2019).
[Crossref]

Z. Shi, L. Song, and T. Zhang, “Optical and electrical characterization of pure PMMA for terahertz wide-band metamaterial absorbers,” J. Infrared, Millimeter, Terahertz Waves 40(1), 80–91 (2019).
[Crossref]

L. Yu, L. Hao, T. Meiqiong, H. Jiaoqi, L. Wei, D. Jinying, C. Xueping, F. Weiling, and Z. Yang, “The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges,” RSC Adv. 9(17), 9354–9363 (2019).
[Crossref]

2018 (28)

R. Peretti, F. Braud, E. Peytavit, E. Dubois, and J.-F. Lampin, “Broadband terahertz light–matter interaction enhancement for precise spectroscopy of thin films and micro-samples,” Photonics 5(2), 11 (2018).
[Crossref]

W. Talataisong, R. Ismaeel, T. H. R. Marques, S. A. Mousavi, M. Beresna, M. A. Gouveia, S. R. Sandoghchi, T. Lee, C. M. B. Cordeiro, and G. Brambilla, “Mid-IR Hollow-core microstructured fiber drawn from a 3D printed PETG preform,” Sci. Rep. 8(1), 8113 (2018).
[Crossref]

D. M. Mittleman, “Twenty years of terahertz imaging,” Opt. Express 26(8), 9417–9431 (2018).
[Crossref]

G. M. Katyba, K. I. Zaytsev, N. V. Chernomyrdin, I. A. Shikunova, G. A. Komandin, V. B. Anzin, S. P. Lebedev, I. E. Spektor, V. E. Karasik, S. O. Yurchenko, I. V. Reshetov, V. N. Kurlov, and M. Skorobogatiy, “Sapphire photonic crystal waveguides for terahertz sensing in aggressive environments,” Adv. Opt. Mater. 6, 1800573 (2018).
[Crossref]

J. Sultana, Md. S. Islam, K. Ahmed, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Terahertz detection of alcohol using a photonic crystal fiber sensor,” Appl. Opt. 57(10), 2426–2433 (2018).
[Crossref]

J. Luo, S. Chen, H. Qu, Z. Su Li, and F. Tian, “Highly birefringent single-mode suspended-core fiber in terahertz regime,” J. Lightwave Technol. 36(16), 3242–3248 (2018).
[Crossref]

S. Rana, A. S. Rakin, Md. R. Hasan, Md. S. Reza, R. Leonhardt, D. Abbott, and Harish Subbaraman, “Low loss and flat dispersion kagome photonic crystal fiber in the terahertz regime,” Opt. Commun. 410, 452–456 (2018).
[Crossref]

H. Xiao, H. Li, B. Wu, and S. Jian, “Polarization-maintaining terahertz bandgap fiber with a quasi-elliptical hollow-core,” Opt. Laser Technol. 105, 276–280 (2018).
[Crossref]

M. M. Nazarov, A. V. Shilov, K. A. bzheumikhov, Z. C. Margushev, V. I. Sokolov, A. B. Sotsky, and A. P. Shkurinov, “Eight-capillary cladding THz waveguide with low propagation losses and dispersion,” IEEE Trans. Terahertz Sci. Technol. 8(2), 183–191 (2018).
[Crossref]

S. Yan, S. Lou, X. Wang, T. Zhao, and W. Zhang, “High-birefringence hollow-core anti-resonant THz fiber,” Opt. Quantum Electron. 50(3), 162 (2018).
[Crossref]

J. Sultana, M. S. Islam, and D. Abbott, “High numerical aperture, highly birefringent novel photonic crystal fibre for medical imaging applications,” Electron. Lett. 54(2), 61–62 (2018).
[Crossref]

M. S. Islam, J. Sultana, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “A novel Zeonex based oligoporous-core photonic crystal fiber for polarization preserving terahertz applications,” Opt. Commun. 413(15), 242–248 (2018).
[Crossref]

M. S. Islam, J. Sultana, A. Dinovitser, B. W.-H. Ng, and D. Abbot, “Zeonex based asymmetrical terahertz photonic crystal fiber for multichannel communication and polarization maintaining applications,” Appl. Opt. 57(4), 666–672 (2018).
[Crossref]

J. Sultana, Md. S. Islam, M. Faisal, M. R. Islam, B. W. -H. Ng, H. E. Heidepriem, and D. Abbot, “Highly birefringent elliptical core photonic crystal fiber for terahertz application,” Opt. Commun. 407, 92–96 (2018).
[Crossref]

M. S. Islam, J. Sultana, A. A. Rifat, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Terahertz sensing in a hollow-core photonic crystal fiber,” IEEE Sens. J. 18(10), 4073–4080 (2018).
[Crossref]

M. S. Islam, J. Sultana, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “A modified hexagonal photonic crystal fiber for terahertz applications,” Opt. Mater. 79, 336–339 (2018).
[Crossref]

T. Yang, C. Ding, R. W. Ziolkowski, and Y. J. Guo, “A scalable THz photonic crystal fiber with partially-slotted core that echibits improved birefringence and reduced loss,” J. Lightwave Technol. 36(16), 3408–3417 (2018).
[Crossref]

E. Reyes-Vera, J. Ú.restrepo, C. Jiménez-Durango, J. M.-Cardona, and N. G.-Cardona, “Design of low-loss and highly birefringent porous-core photonic crystal fiber and its application to terahertz polarization beam splitter,” IEEE Photonics J. 10(4), 1–13 (2018).
[Crossref]

Md. A. Habib, Md. S. Anower, and Md. R. Hasan, “Highly birefringent and low effective material loss microstructure fiber for THz wave guidance,” Opt. Commun. 423, 140–144 (2018).
[Crossref]

B. K. Paul, Md. S. Islam, S. Sen, K. Ahmed, and M. S. Uddin, “Low material loss and dispersion flattened fiber for single mode THz-wave transmission applications,” Results Phys. 11, 638–642 (2018).
[Crossref]

M. S. Islam, J. Sultana, K. Ahmed, A. Dinovitser, M. R. Islam, B. W.-H. Ng, and D. Abbott, “A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime,” IEEE Sens. J. 18(2), 575–582 (2018).
[Crossref]

M. Faisal and Md. S. Islam, “Extremely high birefringent terahertz fiber using a suspended elliptic core with slotted airholes,” Appl. Opt. 57(13), 3340–3347 (2018).
[Crossref]

L. D. Van Putten, J. Gorecki, E. Numkam Fokoua, V. Apostolopoulos, and F. Poletti, “3D-printed polymer anti-resonant wave-guides for short-reach terahertz applications,” Appl. Opt. 57(14), 3953–3958 (2018).
[Crossref]

A. Stefani, S. C. Fleming, and B. T. Kuhlmey, “Terahertz orbital angular momentum modes with flexible twisted hollow-core anti-resonant fiber,” APL Photonics 3(5), 051708 (2018).
[Crossref]

E. Arrospide, G. Durana, M. Azkune, G. Aldabaldetreku, I. Bikandi, L. R.-Rubioc, and J. Zubiab, “Polymers beyond standard optical fibres – fabrication of microstructured polymer optical fibres,” Polym. Int. 67(9), 1155–1163 (2018).
[Crossref]

A. L. S. Cruz, C. M. B. Cordeiro, and M. A. R. Franco, “3D printed hollow-core terahertz fibers,” Fibers 6(3), 43 (2018).
[Crossref]

Md. S. Islam, J. Sultana, A. Dinovitser, M. Faisal, M. R. Islam, B. W.-H. Ng, and D. Abbott, “Zeonex-based asymmetrical terahertz photonic crystal fiber for multichannel communication and polarization maintaining applications,” Appl. Opt. 57(4), 666–672 (2018).
[Crossref]

G. K. M. Hasanuzzaman, S. Iezekiel, C. Markos, and M. S. Habib, “Hollow-core fiber with nested anti-resonant tubes for low-loss terahertz guidance,” Opt. Commun. 426, 477–482 (2018).
[Crossref]

2017 (14)

Md S. Islam, M. Faisal, and S. M. A. Razzak, “Dispersion flattened porous-core honeycomb lattice terahertz fiber for ultra low loss transmission,” IEEE J. Quantum Electron. 53(6), 1–8 (2017).
[Crossref]

Md S. Islam, M. Faisal, and S. M. A. Razzak, “Extremely low loss porous-core photonic crystal fiber with ultra-high dispersion in terahertz regime,” J. Opt. Soc. Am. B 34(8), 1747–1754 (2017).
[Crossref]

Md. S. Islam, J. Sultana, J. Atai, D. Abbott, S. Rana, and M. R. Islam, “Ultra low-loss hybrid core porous fiber for broadband applications,” Appl. Opt. 56(4), 1232–1237 (2017).
[Crossref]

J. Li, K. Nallappan, H. Guerboukha, and M. Skorobogatiy, “3D printed hollow-core terahertz Bragg waveguides with defect layers for surface sensing applications,” Opt. Express 25(4), 4126–4144 (2017).
[Crossref]

Md. S. Islam, J. Sultana, J. Atai, M. R. Islam, and D. Abbott, “Design and characterization of a low-loss, dispersion-flattened photonic crystal fiber for T-Ray wave propagation,” Optik 145, 398–406 (2017).
[Crossref]

M. S. Islam, M. R. Islam, M. Faisal, H. Rahman, J. Sultana, S. Rana, and M. R. Islam, “Ultra-low loss hybrid core porous fiber for broadband applications,” Appl. Opt. 56(4), 1232–1237 (2017).
[Crossref]

M. S. Islam, J. Sultana, S. Rana, M. R. Islam, M. Faisal, S. F. Kaijage, and D. Abbott, “Extremely low material loss and dispersion flattened topas based circular porous fiber for long distance terahertz wave transmission,” Opt. Fiber Technol. 34, 6–11 (2017).
[Crossref]

K. Ahmed, S. Chowdhury, B. K. Paul, Md. S. Islam, S. Sen, Md. I. Islam, and S. Asaduzzaman, “Ultrahigh birefringence, ultralow material loss porous core single-mode fiber for terahertz wave guidance,” Appl. Opt. 56(12), 3477–3483 (2017).
[Crossref]

C. Wei, R. Joseph Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

P. St. Russel, R. Beravat, and G. K. L. Wong, “Helically twisted photonic crystal fibres,” Philos. Trans. R. Soc., A 375(2087), 20150440 (2017).
[Crossref]

M. Mittendorff, S. Li, and T. E. Murphy, “Graphene-based waveguide-integrated terahertz modulator,” ACS Photonics 4(2), 316–321 (2017).
[Crossref]

J. Li, K. Nallappan, H. Guerboukha, and M. Skorobogatiy, “3D printed hollow core terahertz Bragg waveguides with defect layers for surface sensing applications,” Opt. Express 25(4), 4126–4144 (2017).
[Crossref]

T. Ma, K. Nallapan, H. Guerboukha, and M. Skorobogatiy, “Analog signal processing in the terahertz communication links using waveguide Bragg gratings: example of dispersion compensation,” Opt. Express 25(10), 11009–11026 (2017).
[Crossref]

R. B. Kohlhass, A. Rehn, S. Nellen, M. Koch, M. Schell, R. J. B. Dietz, and J. C. Balzer, “Terahertz quasi time-domain spectroscopy based on telecom technology for 1550 nm,” Opt. Express 25(11), 12851–12859 (2017).
[Crossref]

2016 (10)

A. Barh, B. Pada Pal, G. P. Agrawal, R. K. Varshney, and B. M. Azizur Rahman, “Specialty fibers for terahertz generation and transmission: a review,” IEEE J. Sel. Top. Quantum Electron. 22(2), 365–379 (2016).
[Crossref]

F. Yu and J. C. Knight, “Negative curvature hollow-core optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 146–155 (2016).
[Crossref]

A. Aming, M. Uthman, R. Chitaree, W. Mohammed, and B. M. Azizur Rahman, “Design and characterization of porous-core polarization maintaining photonic crystal fiber for terahertz guidance,” J. Lightwave Technol. 34(23), 5583–5590 (2016).
[Crossref]

M. S. Islam, S. Rana, M. R. Islam, M. Faisal, H. Rahman, and J. Sultana, “Porous-core photonic crystal fiber for ultra-low material loss in terahertz regime,” IET Commun. 10(16), 2179–2183 (2016).
[Crossref]

M. S. Islam, M. R. Islam, M. Faisal, H. Rahman, J. Sultana, and S. Rana, “Extremely low-loss, dispersion flattened porous-core photonic crystal fiber for terahertz regime,” Opt. Eng. 55(7), 076117 (2016).
[Crossref]

R. Beravat, G. K. L. Wong Michael, H. Frosz, X. M. Xi, and P. St. J. Russel, “Twist-induced guidance in coreless photonic crystal fiber: a helical channel for light,” Sci. Adv. 2(11), e1601421 (2016).
[Crossref]

S. Rana, M. S. Islam, M. Faisal, K. C. Roy, R. Islam, and S. F. Kaijage, “Single-mode porous fiber for low-loss polarization maintaining terahertz transmission,” Opt. Eng. 55(7), 076114 (2016).
[Crossref]

H. Li, G. Ren, S. Atakaramians, B. T. Kuhlmey, and S. Jian, “Linearly polarized single TM mode terahertz waveguide,” Opt. Lett. 41(17), 4004–4007 (2016).
[Crossref]

J. Yang, J. Zhao, C. Gong, H. Tian, L. Sun, P. Chen, L. Lin, and W. Liu, “3D printed low-loss terahertz waveguide based on kagome photonic crystal structure,” Opt. Express 24(20), 22454–22460 (2016).
[Crossref]

H. Li, S. Atakaramians, R. Lwin, X. Tang, Z. Yu, A. Argyros, and B. T. Kuhlme, “Flexible single-mode hollow-core terahertz fiber with metamaterial cladding,” Optica 3(9), 941–947 (2016).
[Crossref]

2015 (8)

A. L. S. Cruz, V. A. Serrao, C. L. Barbosa, C. M. B. Cordeiro, A. Argyros, X. Tang, and M. A. R. Franco, “3D Printed hollow-core fiber with negative curvature for terahertz applications,” J. Microw. Optoelectron. Electromagn. Appl. 14, 45–53 (2015).

H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss terahertz guiding,” Sci. Rep. 5(1), 7620 (2015).
[Crossref]

X. tang, Z. Yu, X. Tu, J. Chen, A. Argyros, B. T. Kuhlmey, and Y. Shi, “Elliptical metallic hollow fiber inner-coated with non-uniform dielectric layer,” Opt. Express 23(17), 22587–22601 (2015).
[Crossref]

R. Islam, Md. S. Habib, G. K. M. Hasanuzzaman, R. Ahmad, S. Rana, and S. F. Kaijage, “Extremely high-birefringent asymmetric slotted-core photonic crystal fiber in THz regime,” IEEE Photonics Technol. Lett. 27(21), 2222–2225 (2015).
[Crossref]

G. Hefferman, Z. Chen, L. Yuan, and T. Wei, “Phase-shifted terahertz fiber bragg grating for strain sensing with large dynamic range,” IEEE Photonics Technol. Lett. 27(15), 1649–1652 (2015).
[Crossref]

Z. Chen, L. Yuan, G. Hefferman, and T. Wei, “Terahertz fiber bragg grating for distributed sensing,” IEEE Photonics Technol. Lett. 27(10), 1084–1087 (2015).
[Crossref]

G. K. M. Hasanuzzaman, Md. S. Habib, S. M. A. Razzak, A. Hossain, and Y. Namihira, “Low loss single-Mode porous-Core kagome photonic crystal fiber for THz wave guidance,” J. Lightwave Technol. 33(19), 4027–4031 (2015).
[Crossref]

R. Islam, “Dispersion flattened, low-loss porous fiber for single-mode terahertz wave guidance,” Opt. Eng. 54(5), 055102 (2015).
[Crossref]

2014 (2)

2013 (16)

J. Anthony, R. Leonhardt, and A. Argyros, “Hybrid hollow-core fibers with embedded wires as terahertz waveguides,” Opt. Express 21(3), 2903–2912 (2013).
[Crossref]

G. Yan, A. Markov, Y. Chinifooroshan, S. M. Tripathi, W. J. Bock, and M. Skorobogatiy, “Resonant THz sensor for paper quality monitoring using THz fiber Bragg gratings,” Opt. Lett. 38(13), 2200–2202 (2013).
[Crossref]

L. Vicentti and V. Setti, “Elliptical hollow core tube lattice fibers for terahertz applications,” Opt. Fiber Technol. 19(1), 31–34 (2013).
[Crossref]

A. L. S. Cruz, A. C. C. Migliano, and M. A. R. Franco, “Refractive index sensor based on terahertz multimode interference fiber device,” Proc. SPIE 8794, 18794L (2013).
[Crossref]

X. Jiang, D. Chen, and G. Hu, “Suspended hollow core fiber for terahertz wave guideing,” Appl. Opt. 52(4), 770–774 (2013).
[Crossref]

Y.-F. Zhu, M.-Y. Chen, H. Wang, H.-B. Yao, Y.-K. Zhang, and J.-C. Yang, “Design and analysis of a low-loss suspended core terahertz fiber and its application to polarization splitter,” IEEE Photonics J. 5(6), 7101410 (2013).
[Crossref]

V. Setti, L. Vincetti, and A. Argyros, “Flexible tube lattice fibers for terahertz applications,” Opt. Express 21(3), 3388–3399 (2013).
[Crossref]

S. Atakaramians, A. V. Shahraam, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photonics 5(2), 169–215 (2013).
[Crossref]

S. F. Kaijage, Z. Ouyang, and X. Jin, “Porous-core photonic crystal fiber for low loss terahertz waveguiding,” IEEE Photonics Technol. Lett. 25(15), 1454–1457 (2013).
[Crossref]

L. Vincetti and V. Setti, “Elliptical hollow-core tube lattice for terahertz applications,” Opt. Fiber Technol. 19(1), 31–34 (2013).
[Crossref]

X. Jiang, D. Chen, and G. Hu, “Suspended hollow core fiber for terahertz wave guiding,” Appl. Opt. 52(4), 770–774 (2013).
[Crossref]

A. Markov and M. Skorobogatiy, “Two-wire terahertz fibers with porous dielectric support,” Opt. Express 21(10), 12728–12743 (2013).
[Crossref]

N. Chen, J. Liang, and L.-y. Ren, “High-birefringence, low loss porous fiber for single-mode terahertz-wave guidance,” Appl. Opt. 52(21), 5297–5302 (2013).
[Crossref]

A. Argyros, “Microstructures in polymer fibres for optical fibres, terahertz waveguides, and fibre-based metamaterials,” ISRN Opt. 2013, 1–22 (2013).
[Crossref]

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T.Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4(1), 2706 (2013).
[Crossref]

C. Hua, M. Shi-Hua, Y. W.-Xing, W. X.-Mei, and W. X.-Zhou, “The diagnosis of human liver cancer by using THz fiber-scanning near-field imaging,” Chin. Phys. Lett. 30(3), 030702 (2013).
[Crossref]

2012 (5)

2011 (9)

J. Anthony, R. Leonhardt, S. G. L.-Saval, and A. Argyros, “Terahertz propagation in kagome hollow-core microstructured fibers,” Opt. Express 19(19), 18470–18478 (2011).
[Crossref]

J. Anthony, R. Leonhardt, A. Argyros, and M. C. J. Large, “Characterization of a microstructured Zeonex terahertz fiber,” J. Opt. Soc. Am. B 28(5), 1013–1018 (2011).
[Crossref]

A. Dupuis, K. Stoeffer, B. Ung, C. Dubois, and M. Skorobogatiy, “Transmission measurements of hollow-core terahertz Bragg fibers,” J. Opt. Soc. Am. B 28(4), 896–907 (2011).
[Crossref]

Z. Wu, W-R. Ng, M. E. Gehm, and H. Xin, “Terahertz electromagnetic crystal waveguide fabricated by polymer jetting rapid prototyping,” Opt. Express 19(5), 3962–3972 (2011).
[Crossref]

J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in Kagome hollow-core microstructured fibers,” Opt. Express 19(19), 18470–18478 (2011).
[Crossref]

M. Rozé, B. Ung, A. Mazhorova, M. Walther, and M. Skorobogatiy, “Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance,” Opt. Express 19(10), 9127–9138 (2011).
[Crossref]

E. Gerecht, K. O. Douglass, and D. F. Plusquellic, “Chirped-pulse terahertz spectroscopy for broadband trace gas sensing,” Opt. Express 19(9), 8973–8984 (2011).
[Crossref]

H. Chen, T.-H. Chen, T.-F. Tseng, J.-T. Lu, C.-C. Kuo, S.-C. Fu, W.-J. Lee, Y.-F. Tsai, Y. Y. Huang, E. Y. Chuang, Y.-J. Hwang, and C.-K. Sun, “High-sensitivity in vivo THz transmission imaging of early human breast cancer in a subcutaneous xenograft mouse model,” Opt. Express 19(22), 21552–21562 (2011).
[Crossref]

H. Chen, W.-J. Lee, H.-Y. Huang, C.-M. Chiu, Y.-F. Tsai, T.-F. Tseng, J.-T. Lu, W.-L. Lai, and C.-K. Sun, “Performance of THz fiber-scanning near-field microscopy to diagnose breast tumors,” Opt. Express 19(20), 19523–19531 (2011).
[Crossref]

2010 (8)

2009 (12)

L. Vicentti, “Hollow-core photonic band gap fiber for terahertz applications,” Microw. Opt. Technol. Lett. 51(7), 1711–1714 (2009).
[Crossref]

B. You, T.-A. Liu, J.-L. Peng, C.-L. Pan, and J.-Y. Lu, “A terahertz plastic wire based evanescent field sensor for high sensitivity liquid detection,” Opt. Express 17(23), 20675–20683 (2009).
[Crossref]

A. Dupuis, J.-F. Allard, D. Morris, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method,” Opt. Express 17(10), 8012–8028 (2009).
[Crossref]

X.-L. Tang, Y.-W. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, “Transmission characteristics of terahertz hollow fiber with an absorptive dielectric inner-coating film,” Opt. Lett. 34(14), 2231–2233 (2009).
[Crossref]

K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[Crossref]

S. Atakaramians, S. Afshar, V. B. M. Fischer, D. Abbot, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282(1), 36–38 (2009).
[Crossref]

S. Atakaramians, S. Afshar V., H. E.-Heidepriem, M. Nagel, B. M. Fischer, D. Abbot, and T. M. Monro, “Terahertz porous fibers: design, fabrication and experimental characterization,” Opt. Express 17(16), 14053–14062 (2009).
[Crossref]

L. Vicentti, “Hollow core photonic band gap fiber for THz applications,” Microw. Opt. Technol. Lett. 51(7), 1711–1714 (2009).
[Crossref]

L. Vincentti, “Numericl analysis of plastic hollow core microstructure fiber for terahertz applications,” Opt. Fiber Technol. 15(4), 398–401 (2009).
[Crossref]

K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[Crossref]

S. Atakaramians, S. Afshar V., H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbot, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express 17(16), 14053–14062 (2009).
[Crossref]

C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y.-j. Huang, H.-c. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34(21), 3457–3459 (2009).
[Crossref]

2008 (11)

A. Hassani and M. Skorobogatiy, “Surface Plasmon Resonance-like integrated sensor at terahertz frequencies for gaseous analytes,” Opt. Express 16(25), 20206–20214 (2008).
[Crossref]

J.-Y. Lu, C.-M. Chiu, C.-C. Kuo, C.-H. Lai, and H.-C. Chang, “Terahertz scanning imaging with a subwavelength plastic fiber,” Appl. Phys. Lett. 92(8), 084102 (2008).
[Crossref]

S. Atakaramians, S. Afshar V., H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbot, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16(12), 8845–8854 (2008).
[Crossref]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss terahertz guiding,” Opt. Express 16(9), 6340–6351 (2008).
[Crossref]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93(18), 181104 (2008).
[Crossref]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Fabrication of terahertz hollow-glass metallic waveguides with inner dielectric coatings,” J. Appl. Phys. 104(9), 093110 (2008).
[Crossref]

Y. Matsuura and E. Takeda, “Hollow optical fibers loaded with an inner dielectric film for terahertz broadband spectroscopy,” J. Opt. Soc. Am. B 25(12), 1949–1954 (2008).
[Crossref]

J. Lu, C. Yu, H. Chang, H. Chen, Y. Li, C. Pan, and C. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
[Crossref]

M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, “Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers,” Opt. Express 16(1), 7–12 (2008).
[Crossref]

Z. Wu, J. Kinast, M. E. Gehm, and H. Xin, “Rapid and inexpensive fabrication of terahertz electromagnetic bandgap structures,” Opt. Express 16(21), 16442–16451 (2008).
[Crossref]

C. S. Ponseca, R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Opt. Lett. 33(9), 902–904 (2008).
[Crossref]

2007 (9)

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32(20), 2945–2947 (2007).
[Crossref]

A. Argyros and J. Pla, “Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared,” Opt. Express 15(12), 7713–7719 (2007).
[Crossref]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref]

H. Lin, W. Withayachumnankul, B. M. Fischer, S. P. Mickan, and D. Abbott, “Gas recognition with terahertz time-domain spectroscopy and spectral catalog: a preliminary study,” Proc. SPIE 6840, 68400X (2007).
[Crossref]

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
[Crossref]

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[Crossref]

D. Abbott and X.-C. Zhang, “T-ray imaging, sensing, and retection,” Proc. IEEE 95(8), 1509–1513 (2007).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE 95(8), 1658–1665 (2007).
[Crossref]

2006 (5)

2005 (2)

T. Hidaka, H. Minamide, H. Ito, J.-I Nishizawa, K. Tamura, and S. Ichikawa, “Ferroelectric PVDF cladding terahertz waveguide,” J. Lightwave Technol. 23(8), 2469–2473 (2005).
[Crossref]

T.-In Jeon, J. Zhangm, and D. Grischkowsky, “Terahertz sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005).
[Crossref]

2004 (5)

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microwave Theory Tech. 52(10), 2438–2447 (2004).
[Crossref]

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43(No. 2B), L317–L319 (2004).
[Crossref]

G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Opt. Fiber Technol. 10(4), 325–335 (2004).
[Crossref]

K. Wang and D. Mittleman, “Metal wires for terahertz guiding,” Nature 432(7015), 376–379 (2004).
[Crossref]

J. A. Harrington, R. George, and P. Pedersen, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12(21), 5263–5268 (2004).
[Crossref]

2003 (2)

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref]

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[Crossref]

2002 (2)

W. Talataisong, R. Ismaeel, M. Beresna, and G. Brambilla, “Suspended-core microstructured polymer optical fibers and potential applications in sensing,” Appl. Phys. Lett. 80(15), 2634–2636 (2002).
[Crossref]

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634–2636 (2002).
[Crossref]

2000 (1)

1999 (2)

R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett. 24(20), 1431–1433 (1999).
[Crossref]

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baramiuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B: Lasers Opt. 68(6), 1085–1094 (1999).
[Crossref]

1998 (2)

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time domain spectroscopy,” Appl. Phys. B: Lasers Opt. 67(3), 379–390 (1998).
[Crossref]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russel, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[Crossref]

Abbot, D.

Abbott, D.

J. Sultana, M. S. Islam, C. M. B. Cordeiro, A. Dinovitser, M. Koushik, B. W.-H. Ng, and D. Abbott, “Terahertz hollow core antiresonant fiber with metamaterial cladding,” Fibers 8(2), 14–00 (2020).
[Crossref]

M. S. Islam, J. Sultana, M. Biabanifard, M. J. Nine, Z. Vafapour, C. M. B. Cordeiro, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Tunable localized surface plasmon graphene metasurface for multiband superabsorption and terahertz sensing,” Carbon 158, 559–567 (2020).
[Crossref]

J. Sultana, M. S. Islam, and D. Abbott, “High numerical aperture, highly birefringent novel photonic crystal fibre for medical imaging applications,” Electron. Lett. 54(2), 61–62 (2018).
[Crossref]

M. S. Islam, J. Sultana, A. A. Rifat, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Terahertz sensing in a hollow-core photonic crystal fiber,” IEEE Sens. J. 18(10), 4073–4080 (2018).
[Crossref]

M. S. Islam, J. Sultana, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “A novel Zeonex based oligoporous-core photonic crystal fiber for polarization preserving terahertz applications,” Opt. Commun. 413(15), 242–248 (2018).
[Crossref]

M. S. Islam, J. Sultana, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “A modified hexagonal photonic crystal fiber for terahertz applications,” Opt. Mater. 79, 336–339 (2018).
[Crossref]

M. S. Islam, J. Sultana, K. Ahmed, A. Dinovitser, M. R. Islam, B. W.-H. Ng, and D. Abbott, “A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime,” IEEE Sens. J. 18(2), 575–582 (2018).
[Crossref]

J. Sultana, Md. S. Islam, K. Ahmed, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Terahertz detection of alcohol using a photonic crystal fiber sensor,” Appl. Opt. 57(10), 2426–2433 (2018).
[Crossref]

S. Rana, A. S. Rakin, Md. R. Hasan, Md. S. Reza, R. Leonhardt, D. Abbott, and Harish Subbaraman, “Low loss and flat dispersion kagome photonic crystal fiber in the terahertz regime,” Opt. Commun. 410, 452–456 (2018).
[Crossref]

Md. S. Islam, J. Sultana, A. Dinovitser, M. Faisal, M. R. Islam, B. W.-H. Ng, and D. Abbott, “Zeonex-based asymmetrical terahertz photonic crystal fiber for multichannel communication and polarization maintaining applications,” Appl. Opt. 57(4), 666–672 (2018).
[Crossref]

Md. S. Islam, J. Sultana, J. Atai, D. Abbott, S. Rana, and M. R. Islam, “Ultra low-loss hybrid core porous fiber for broadband applications,” Appl. Opt. 56(4), 1232–1237 (2017).
[Crossref]

Md. S. Islam, J. Sultana, J. Atai, M. R. Islam, and D. Abbott, “Design and characterization of a low-loss, dispersion-flattened photonic crystal fiber for T-Ray wave propagation,” Optik 145, 398–406 (2017).
[Crossref]

M. S. Islam, J. Sultana, S. Rana, M. R. Islam, M. Faisal, S. F. Kaijage, and D. Abbott, “Extremely low material loss and dispersion flattened topas based circular porous fiber for long distance terahertz wave transmission,” Opt. Fiber Technol. 34, 6–11 (2017).
[Crossref]

S. Atakaramians, A. V. Shahraam, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photonics 5(2), 169–215 (2013).
[Crossref]

H. Lin, W. Withayachumnankul, B. M. Fischer, S. P. Mickan, and D. Abbott, “Gas recognition with terahertz time-domain spectroscopy and spectral catalog: a preliminary study,” Proc. SPIE 6840, 68400X (2007).
[Crossref]

D. Abbott and X.-C. Zhang, “T-ray imaging, sensing, and retection,” Proc. IEEE 95(8), 1509–1513 (2007).
[Crossref]

J. Sultana, M. S. Islam, C. M. B. Cordeiro, A. L. S. Cruz, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Five-Capillary Cladding Terahertz Fiber with Low Loss and Single Mode,” 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-terahertz), 2019. DOI: 10.1109/IRMMW-THz.2019.8874476.

M. S. Islam, J. Sultana, C. M. B. Cordeiro, A. L. S. Cruz, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Broadband characterization of glass and polymer materials using THz-TDS,” 44th Int. Conf. on Inf. Mil. and Ter. Waves (IRMMW-THz), DOI: 10.1109/IRMMW-THz.2019.8874013.

J. Sultana, M. S. Islam, C. M. B. Cordeiro, A. L. S. Cruz, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Novel hollow-core anti-resonant terahertz fiber with metamaterial cladding,” 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-terahertz), 2019. DOI: 10.1109/IRMMW-THz.2019.8873836.

M. S. Islam, J. Sultana, C. M. B. Cordeiro, M. J.Nine, A. L. S. Cruz, A. Dinovitser, B. W.-H. Ng, H. E. Heidepriem, D. Losic, and D. Abbott, “Experimental study on glass and polymers: Determining the optimal material for potential use in terahertz technology,” IEEE Access, (Revised version submitted).

M. S. Islam, J. Sultana, M. Biabanifard, M. J. Nine, Z. Vafapour, C. M. B. Cordeiro, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Electrically tunable graphene metasurface for multiband superabsorption and terahertz sensing,” 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-terahertz), 2019, (doi: 10.1109/IRMMW-terahertz.2019.8873851).

Abu Talha, Md. K.

J. Sultana, M. R. Islam, M. Faisal, and Md. K. Abu Talha, “Design and analysis of a Zeonex based diamond-shaped core kagome lattice photonic crystal fiber for T-ray wave transmission,” Opt. Fiber Technol. 47, 55–60 (2019).
[Crossref]

Adam, A. J. L.

Afshar, S.

S. Atakaramians, S. Afshar, V. B. M. Fischer, D. Abbot, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282(1), 36–38 (2009).
[Crossref]

Afshar V., S.

Agrawal, G. P.

A. Barh, B. Pada Pal, G. P. Agrawal, R. K. Varshney, and B. M. Azizur Rahman, “Specialty fibers for terahertz generation and transmission: a review,” IEEE J. Sel. Top. Quantum Electron. 22(2), 365–379 (2016).
[Crossref]

G. P. Agrawal, “Fiber-Optic Communication Systems, Third Edition,” (John Wiley & Sons, Inc., 2002).

Ahmad, R.

R. Islam, Md. S. Habib, G. K. M. Hasanuzzaman, R. Ahmad, S. Rana, and S. F. Kaijage, “Extremely high-birefringent asymmetric slotted-core photonic crystal fiber in THz regime,” IEEE Photonics Technol. Lett. 27(21), 2222–2225 (2015).
[Crossref]

Ahmed, F.

K. Ahmed, F. Ahmed, S. Roy, B. K. Paul Mst., N. Aktar, D. Vigneswaran, and Md. S. Islam, “Refractive index-based blood components sensing in terahertz spectrum,” IEEE Sens. J. 19(9), 3368–3375 (2019).
[Crossref]

Ahmed, K.

K. Ahmed, F. Ahmed, S. Roy, B. K. Paul Mst., N. Aktar, D. Vigneswaran, and Md. S. Islam, “Refractive index-based blood components sensing in terahertz spectrum,” IEEE Sens. J. 19(9), 3368–3375 (2019).
[Crossref]

J. Sultana, Md. S. Islam, K. Ahmed, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Terahertz detection of alcohol using a photonic crystal fiber sensor,” Appl. Opt. 57(10), 2426–2433 (2018).
[Crossref]

B. K. Paul, Md. S. Islam, S. Sen, K. Ahmed, and M. S. Uddin, “Low material loss and dispersion flattened fiber for single mode THz-wave transmission applications,” Results Phys. 11, 638–642 (2018).
[Crossref]

M. S. Islam, J. Sultana, K. Ahmed, A. Dinovitser, M. R. Islam, B. W.-H. Ng, and D. Abbott, “A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime,” IEEE Sens. J. 18(2), 575–582 (2018).
[Crossref]

K. Ahmed, S. Chowdhury, B. K. Paul, Md. S. Islam, S. Sen, Md. I. Islam, and S. Asaduzzaman, “Ultrahigh birefringence, ultralow material loss porous core single-mode fiber for terahertz wave guidance,” Appl. Opt. 56(12), 3477–3483 (2017).
[Crossref]

Aktar, N.

K. Ahmed, F. Ahmed, S. Roy, B. K. Paul Mst., N. Aktar, D. Vigneswaran, and Md. S. Islam, “Refractive index-based blood components sensing in terahertz spectrum,” IEEE Sens. J. 19(9), 3368–3375 (2019).
[Crossref]

Aldabaldetreku, G.

E. Arrospide, G. Durana, M. Azkune, G. Aldabaldetreku, I. Bikandi, L. R.-Rubioc, and J. Zubiab, “Polymers beyond standard optical fibres – fabrication of microstructured polymer optical fibres,” Polym. Int. 67(9), 1155–1163 (2018).
[Crossref]

Allard, J.-F.

Aming, A.

Andreev, I. V.

G. E. Tsydynzhapov, P. A. Gusikhin, V. M. Muravev, I. V. Andreev, and I. V. Kukushkin, “New terahertz security body scanner,” 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-terahertz), 2018, (doi: 10.1109/IRMMW-terahertz.2018.8510513).

Angeluts, A. A.

E. V. Fedulova, M. M. Nazarov, A. A. Angeluts, M. S. Kitai, V. I. Sokolov, and A. P. Shkurinov, “Studying of dielectric properties of polymers in the terahertz frequency range,” Proc. SPIE 8337, 83370I (2012).
[Crossref]

Anower, Md. S.

Md. A. Habib and Md. S. Anower, “Design and numerical analysis of highly birefringent single mode fiber in Thz regime,” Opt. Fiber Technol. 47, 197–203 (2019).
[Crossref]

Md. A. Habib, Md. S. Anower, and Md. R. Hasan, “Highly birefringent and low effective material loss microstructure fiber for THz wave guidance,” Opt. Commun. 423, 140–144 (2018).
[Crossref]

Anthony, J.

Anzin, V. B.

G. M. Katyba, K. I. Zaytsev, N. V. Chernomyrdin, I. A. Shikunova, G. A. Komandin, V. B. Anzin, S. P. Lebedev, I. E. Spektor, V. E. Karasik, S. O. Yurchenko, I. V. Reshetov, V. N. Kurlov, and M. Skorobogatiy, “Sapphire photonic crystal waveguides for terahertz sensing in aggressive environments,” Adv. Opt. Mater. 6, 1800573 (2018).
[Crossref]

Apostolopoulos, V.

Argyros, A.

H. Li, S. Atakaramians, R. Lwin, X. Tang, Z. Yu, A. Argyros, and B. T. Kuhlme, “Flexible single-mode hollow-core terahertz fiber with metamaterial cladding,” Optica 3(9), 941–947 (2016).
[Crossref]

X. tang, Z. Yu, X. Tu, J. Chen, A. Argyros, B. T. Kuhlmey, and Y. Shi, “Elliptical metallic hollow fiber inner-coated with non-uniform dielectric layer,” Opt. Express 23(17), 22587–22601 (2015).
[Crossref]

A. L. S. Cruz, V. A. Serrao, C. L. Barbosa, C. M. B. Cordeiro, A. Argyros, X. Tang, and M. A. R. Franco, “3D Printed hollow-core fiber with negative curvature for terahertz applications,” J. Microw. Optoelectron. Electromagn. Appl. 14, 45–53 (2015).

J. Anthony, R. Leonhardt, and A. Argyros, “Hybrid hollow-core fibers with embedded wires as terahertz waveguides,” Opt. Express 21(3), 2903–2912 (2013).
[Crossref]

V. Setti, L. Vincetti, and A. Argyros, “Flexible tube lattice fibers for terahertz applications,” Opt. Express 21(3), 3388–3399 (2013).
[Crossref]

A. Argyros, “Microstructures in polymer fibres for optical fibres, terahertz waveguides, and fibre-based metamaterials,” ISRN Opt. 2013, 1–22 (2013).
[Crossref]

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T.Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4(1), 2706 (2013).
[Crossref]

A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fabricating metamaterials using the fiber drawing method,” J. Visualized Exp. 68, e4299 (2012).
[Crossref]

J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in Kagome hollow-core microstructured fibers,” Opt. Express 19(19), 18470–18478 (2011).
[Crossref]

J. Anthony, R. Leonhardt, S. G. L.-Saval, and A. Argyros, “Terahertz propagation in kagome hollow-core microstructured fibers,” Opt. Express 19(19), 18470–18478 (2011).
[Crossref]

J. Anthony, R. Leonhardt, A. Argyros, and M. C. J. Large, “Characterization of a microstructured Zeonex terahertz fiber,” J. Opt. Soc. Am. B 28(5), 1013–1018 (2011).
[Crossref]

C. S. Ponseca, R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Opt. Lett. 33(9), 902–904 (2008).
[Crossref]

A. Argyros and J. Pla, “Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared,” Opt. Express 15(12), 7713–7719 (2007).
[Crossref]

A. L. S. Cruz, A. Argyros, X. Tang, C. M. B. Cordeiro, and M. A. R. Franco, “3D-Printed Terahertz Bragg Fiber,” 40th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW 2015), Hong Kong, Aug 2015.

Arrospide, E.

E. Arrospide, G. Durana, M. Azkune, G. Aldabaldetreku, I. Bikandi, L. R.-Rubioc, and J. Zubiab, “Polymers beyond standard optical fibres – fabrication of microstructured polymer optical fibres,” Polym. Int. 67(9), 1155–1163 (2018).
[Crossref]

Asaduzzaman, S.

Atai, J.

Md. S. Islam, J. Sultana, J. Atai, D. Abbott, S. Rana, and M. R. Islam, “Ultra low-loss hybrid core porous fiber for broadband applications,” Appl. Opt. 56(4), 1232–1237 (2017).
[Crossref]

Md. S. Islam, J. Sultana, J. Atai, M. R. Islam, and D. Abbott, “Design and characterization of a low-loss, dispersion-flattened photonic crystal fiber for T-Ray wave propagation,” Optik 145, 398–406 (2017).
[Crossref]

Atakaramians, S.

Auguste, J.-L.

Azizur Rahman, B. M.

A. Barh, B. Pada Pal, G. P. Agrawal, R. K. Varshney, and B. M. Azizur Rahman, “Specialty fibers for terahertz generation and transmission: a review,” IEEE J. Sel. Top. Quantum Electron. 22(2), 365–379 (2016).
[Crossref]

A. Aming, M. Uthman, R. Chitaree, W. Mohammed, and B. M. Azizur Rahman, “Design and characterization of porous-core polarization maintaining photonic crystal fiber for terahertz guidance,” J. Lightwave Technol. 34(23), 5583–5590 (2016).
[Crossref]

Azkune, M.

E. Arrospide, G. Durana, M. Azkune, G. Aldabaldetreku, I. Bikandi, L. R.-Rubioc, and J. Zubiab, “Polymers beyond standard optical fibres – fabrication of microstructured polymer optical fibres,” Polym. Int. 67(9), 1155–1163 (2018).
[Crossref]

Balzer, J. C.

Bang, O.

Bao, H.

H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss terahertz guiding,” Sci. Rep. 5(1), 7620 (2015).
[Crossref]

H. Bao, K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Fabrication and characterization of porous-core honeycomb bandgap terahertz fibers,” Opt. Express 20(28), 29507–29517 (2012).
[Crossref]

Baramiuk, R. G.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baramiuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B: Lasers Opt. 68(6), 1085–1094 (1999).
[Crossref]

Baraniuk, R. G.

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time domain spectroscopy,” Appl. Phys. B: Lasers Opt. 67(3), 379–390 (1998).
[Crossref]

Barbosa, C. L.

A. L. S. Cruz, V. A. Serrao, C. L. Barbosa, C. M. B. Cordeiro, A. Argyros, X. Tang, and M. A. R. Franco, “3D Printed hollow-core fiber with negative curvature for terahertz applications,” J. Microw. Optoelectron. Electromagn. Appl. 14, 45–53 (2015).

Barh, A.

A. Barh, B. Pada Pal, G. P. Agrawal, R. K. Varshney, and B. M. Azizur Rahman, “Specialty fibers for terahertz generation and transmission: a review,” IEEE J. Sel. Top. Quantum Electron. 22(2), 365–379 (2016).
[Crossref]

Barton, G.

G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Opt. Fiber Technol. 10(4), 325–335 (2004).
[Crossref]

Beltran-Mejua, F.

R. Guo Eva-Maria Stuebling, F. Beltran-Mejua, D. Ulm, T. Kleine-Ostmann, F. Ehrig, and M. Koch, “3D printed terahertz rectangular waveguides of polystyrene and TOPAS: a comparison,” J. Infrared, Millimeter, Terahertz Waves 40(1), 1–4 (2019).
[Crossref]

Benabid, F.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
[Crossref]

Beravat, R.

P. St. Russel, R. Beravat, and G. K. L. Wong, “Helically twisted photonic crystal fibres,” Philos. Trans. R. Soc., A 375(2087), 20150440 (2017).
[Crossref]

R. Beravat, G. K. L. Wong Michael, H. Frosz, X. M. Xi, and P. St. J. Russel, “Twist-induced guidance in coreless photonic crystal fiber: a helical channel for light,” Sci. Adv. 2(11), e1601421 (2016).
[Crossref]

Beresna, M.

W. Talataisong, R. Ismaeel, T. H. R. Marques, S. A. Mousavi, M. Beresna, M. A. Gouveia, S. R. Sandoghchi, T. Lee, C. M. B. Cordeiro, and G. Brambilla, “Mid-IR Hollow-core microstructured fiber drawn from a 3D printed PETG preform,” Sci. Rep. 8(1), 8113 (2018).
[Crossref]

W. Talataisong, R. Ismaeel, M. Beresna, and G. Brambilla, “Suspended-core microstructured polymer optical fibers and potential applications in sensing,” Appl. Phys. Lett. 80(15), 2634–2636 (2002).
[Crossref]

Biabanifard, M.

M. S. Islam, J. Sultana, M. Biabanifard, M. J. Nine, Z. Vafapour, C. M. B. Cordeiro, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Tunable localized surface plasmon graphene metasurface for multiband superabsorption and terahertz sensing,” Carbon 158, 559–567 (2020).
[Crossref]

M. S. Islam, J. Sultana, M. Biabanifard, M. J. Nine, Z. Vafapour, C. M. B. Cordeiro, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Electrically tunable graphene metasurface for multiband superabsorption and terahertz sensing,” 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-terahertz), 2019, (doi: 10.1109/IRMMW-terahertz.2019.8873851).

Bikandi, I.

E. Arrospide, G. Durana, M. Azkune, G. Aldabaldetreku, I. Bikandi, L. R.-Rubioc, and J. Zubiab, “Polymers beyond standard optical fibres – fabrication of microstructured polymer optical fibres,” Polym. Int. 67(9), 1155–1163 (2018).
[Crossref]

Birks, T. A.

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russel, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[Crossref]

Blondy, J.-M.

Bock, W. J.

Bowden, B.

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Fabrication of terahertz hollow-glass metallic waveguides with inner dielectric coatings,” J. Appl. Phys. 104(9), 093110 (2008).
[Crossref]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93(18), 181104 (2008).
[Crossref]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32(20), 2945–2947 (2007).
[Crossref]

Brambilla, G.

W. Talataisong, R. Ismaeel, T. H. R. Marques, S. A. Mousavi, M. Beresna, M. A. Gouveia, S. R. Sandoghchi, T. Lee, C. M. B. Cordeiro, and G. Brambilla, “Mid-IR Hollow-core microstructured fiber drawn from a 3D printed PETG preform,” Sci. Rep. 8(1), 8113 (2018).
[Crossref]

W. Talataisong, R. Ismaeel, M. Beresna, and G. Brambilla, “Suspended-core microstructured polymer optical fibers and potential applications in sensing,” Appl. Phys. Lett. 80(15), 2634–2636 (2002).
[Crossref]

Braud, F.

R. Peretti, F. Braud, E. Peytavit, E. Dubois, and J.-F. Lampin, “Broadband terahertz light–matter interaction enhancement for precise spectroscopy of thin films and micro-samples,” Photonics 5(2), 11 (2018).
[Crossref]

Broeng, J.

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russel, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[Crossref]

bzheumikhov, K. A.

M. M. Nazarov, A. V. Shilov, K. A. bzheumikhov, Z. C. Margushev, V. I. Sokolov, A. B. Sotsky, and A. P. Shkurinov, “Eight-capillary cladding THz waveguide with low propagation losses and dispersion,” IEEE Trans. Terahertz Sci. Technol. 8(2), 183–191 (2018).
[Crossref]

Cao, Y.

Chan, W. L.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[Crossref]

Chang, H.

J. Lu, C. Yu, H. Chang, H. Chen, Y. Li, C. Pan, and C. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
[Crossref]

Chang, H.-c.

Chen, D.

Chen, H.

Chen, H. W.

Chen, H.-W.

Chen, H.-Z.

Chen, J.

Chen, L. J.

Chen, M.-Y.

Y.-F. Zhu, M.-Y. Chen, and Y. Liu, “Nested low-loss hollow-core fiber,” IEEE J. Sel. Top. Quantum Electron. 26(4), 1–6 (2020).
[Crossref]

Y.-F. Zhu, M.-Y. Chen, H. Wang, H.-B. Yao, Y.-K. Zhang, and J.-C. Yang, “Design and analysis of a low-loss suspended core terahertz fiber and its application to polarization splitter,” IEEE Photonics J. 5(6), 7101410 (2013).
[Crossref]

Chen, N.

Chen, P.

Chen, S.

Chen, T.-H.

Chen, Z.

Z. Chen, L. Yuan, G. Hefferman, and T. Wei, “Terahertz fiber bragg grating for distributed sensing,” IEEE Photonics Technol. Lett. 27(10), 1084–1087 (2015).
[Crossref]

G. Hefferman, Z. Chen, L. Yuan, and T. Wei, “Phase-shifted terahertz fiber bragg grating for strain sensing with large dynamic range,” IEEE Photonics Technol. Lett. 27(15), 1649–1652 (2015).
[Crossref]

Chernomyrdin, N. V.

G. M. Katyba, N. V. Chernomyrdin, I. N.. Dolganova, A. A. Pronin, I. V. Minin, O. V. Minin, K. I. Zaytsev, and V. N. Kurlov, “Step-index sapphire fiber and its application in a terahertz near-field microscopy,” Proc. SPIE 11164, 11164G (2019).
[Crossref]

G. M. Katyba, K. I. Zaytsev, N. V. Chernomyrdin, I. A. Shikunova, G. A. Komandin, V. B. Anzin, S. P. Lebedev, I. E. Spektor, V. E. Karasik, S. O. Yurchenko, I. V. Reshetov, V. N. Kurlov, and M. Skorobogatiy, “Sapphire photonic crystal waveguides for terahertz sensing in aggressive environments,” Adv. Opt. Mater. 6, 1800573 (2018).
[Crossref]

Chinifooroshan, Y.

Chitaree, R.

Chiu, C.-M.

Cho, M.

M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, “Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers,” Opt. Express 16(1), 7–12 (2008).
[Crossref]

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634–2636 (2002).
[Crossref]

Chowdhury, S.

Chuang, E. Y.

Cordeiro, C. M. B.

J. Sultana, M. S. Islam, C. M. B. Cordeiro, A. Dinovitser, M. Koushik, B. W.-H. Ng, and D. Abbott, “Terahertz hollow core antiresonant fiber with metamaterial cladding,” Fibers 8(2), 14–00 (2020).
[Crossref]

M. S. Islam, J. Sultana, M. Biabanifard, M. J. Nine, Z. Vafapour, C. M. B. Cordeiro, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Tunable localized surface plasmon graphene metasurface for multiband superabsorption and terahertz sensing,” Carbon 158, 559–567 (2020).
[Crossref]

A. L. S. Cruz, C. M. B. Cordeiro, and M. A. R. Franco, “3D printed hollow-core terahertz fibers,” Fibers 6(3), 43 (2018).
[Crossref]

W. Talataisong, R. Ismaeel, T. H. R. Marques, S. A. Mousavi, M. Beresna, M. A. Gouveia, S. R. Sandoghchi, T. Lee, C. M. B. Cordeiro, and G. Brambilla, “Mid-IR Hollow-core microstructured fiber drawn from a 3D printed PETG preform,” Sci. Rep. 8(1), 8113 (2018).
[Crossref]

A. L. S. Cruz, V. A. Serrao, C. L. Barbosa, C. M. B. Cordeiro, A. Argyros, X. Tang, and M. A. R. Franco, “3D Printed hollow-core fiber with negative curvature for terahertz applications,” J. Microw. Optoelectron. Electromagn. Appl. 14, 45–53 (2015).

A. L. S. Cruz, A. C. C. Migliano, J. G. Hayashi, C. M. B. Cordeiro, and M. A. R. Franco, “Highly birefringent polymer terahertz fiber with microstructure of slots in the core,” 22nd International Conference on Plastic Optical Fibers, (2013).

A. L. S. Cruz, C. M. B. Cordeiro, G. S. Rodrigues, J. H. Osório, L. E da Silva, and M. A. R. Franco, “Exploring terahertz hollow-core fiber designs manufactured by 3Dprinting,” IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC 2017), Águas de Lindoia, Brazil (2017).

M. S. Islam, J. Sultana, M. Biabanifard, M. J. Nine, Z. Vafapour, C. M. B. Cordeiro, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Electrically tunable graphene metasurface for multiband superabsorption and terahertz sensing,” 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-terahertz), 2019, (doi: 10.1109/IRMMW-terahertz.2019.8873851).

A. L. S. Cruz, A. Argyros, X. Tang, C. M. B. Cordeiro, and M. A. R. Franco, “3D-Printed Terahertz Bragg Fiber,” 40th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW 2015), Hong Kong, Aug 2015.

M. S. Islam, J. Sultana, C. M. B. Cordeiro, A. L. S. Cruz, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Broadband characterization of glass and polymer materials using THz-TDS,” 44th Int. Conf. on Inf. Mil. and Ter. Waves (IRMMW-THz), DOI: 10.1109/IRMMW-THz.2019.8874013.

J. Sultana, M. S. Islam, C. M. B. Cordeiro, A. L. S. Cruz, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Five-Capillary Cladding Terahertz Fiber with Low Loss and Single Mode,” 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-terahertz), 2019. DOI: 10.1109/IRMMW-THz.2019.8874476.

M. S. Islam, J. Sultana, C. M. B. Cordeiro, M. J.Nine, A. L. S. Cruz, A. Dinovitser, B. W.-H. Ng, H. E. Heidepriem, D. Losic, and D. Abbott, “Experimental study on glass and polymers: Determining the optimal material for potential use in terahertz technology,” IEEE Access, (Revised version submitted).

J. Sultana, M. S. Islam, C. M. B. Cordeiro, A. L. S. Cruz, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Novel hollow-core anti-resonant terahertz fiber with metamaterial cladding,” 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-terahertz), 2019. DOI: 10.1109/IRMMW-THz.2019.8873836.

Couny, F.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
[Crossref]

Cruz, A. L. S.

A. L. S. Cruz, C. M. B. Cordeiro, and M. A. R. Franco, “3D printed hollow-core terahertz fibers,” Fibers 6(3), 43 (2018).
[Crossref]

A. L. S. Cruz, V. A. Serrao, C. L. Barbosa, C. M. B. Cordeiro, A. Argyros, X. Tang, and M. A. R. Franco, “3D Printed hollow-core fiber with negative curvature for terahertz applications,” J. Microw. Optoelectron. Electromagn. Appl. 14, 45–53 (2015).

A. L. S. Cruz, A. C. C. Migliano, and M. A. R. Franco, “Refractive index sensor based on terahertz multimode interference fiber device,” Proc. SPIE 8794, 18794L (2013).
[Crossref]

M. S. Islam, J. Sultana, C. M. B. Cordeiro, A. L. S. Cruz, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Broadband characterization of glass and polymer materials using THz-TDS,” 44th Int. Conf. on Inf. Mil. and Ter. Waves (IRMMW-THz), DOI: 10.1109/IRMMW-THz.2019.8874013.

J. Sultana, M. S. Islam, C. M. B. Cordeiro, A. L. S. Cruz, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Five-Capillary Cladding Terahertz Fiber with Low Loss and Single Mode,” 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-terahertz), 2019. DOI: 10.1109/IRMMW-THz.2019.8874476.

J. Sultana, M. S. Islam, C. M. B. Cordeiro, A. L. S. Cruz, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Novel hollow-core anti-resonant terahertz fiber with metamaterial cladding,” 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-terahertz), 2019. DOI: 10.1109/IRMMW-THz.2019.8873836.

M. S. Islam, J. Sultana, C. M. B. Cordeiro, M. J.Nine, A. L. S. Cruz, A. Dinovitser, B. W.-H. Ng, H. E. Heidepriem, D. Losic, and D. Abbott, “Experimental study on glass and polymers: Determining the optimal material for potential use in terahertz technology,” IEEE Access, (Revised version submitted).

A. L. S. Cruz, A. C. C. Migliano, J. G. Hayashi, C. M. B. Cordeiro, and M. A. R. Franco, “Highly birefringent polymer terahertz fiber with microstructure of slots in the core,” 22nd International Conference on Plastic Optical Fibers, (2013).

A. L. S. Cruz, C. M. B. Cordeiro, G. S. Rodrigues, J. H. Osório, L. E da Silva, and M. A. R. Franco, “Exploring terahertz hollow-core fiber designs manufactured by 3Dprinting,” IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC 2017), Águas de Lindoia, Brazil (2017).

A. L. S. Cruz, A. Argyros, X. Tang, C. M. B. Cordeiro, and M. A. R. Franco, “3D-Printed Terahertz Bragg Fiber,” 40th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW 2015), Hong Kong, Aug 2015.

Cucinotta, A.

F. Poli, A. Cucinotta, and S. Selleri, “Photonic crystal fibers properties and applications,” (Springer, 2007).

da Silva, L. E

A. L. S. Cruz, C. M. B. Cordeiro, G. S. Rodrigues, J. H. Osório, L. E da Silva, and M. A. R. Franco, “Exploring terahertz hollow-core fiber designs manufactured by 3Dprinting,” IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC 2017), Águas de Lindoia, Brazil (2017).

Dai, Z.

S. Li, Z. Dai, Z. Wang, P. Qi, Q. Su, X. Gao, C. Gong, and W. Liu, “Simple birefringent terahertz fiber based on elliptical hollow core,” Optik 176, 611–616 (2019).
[Crossref]

Deibel, J.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[Crossref]

Depuis, A.

Désévédavy, F.

Dietz, R. J. B.

Ding, C.

Dinovitser, A.

M. S. Islam, J. Sultana, M. Biabanifard, M. J. Nine, Z. Vafapour, C. M. B. Cordeiro, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Tunable localized surface plasmon graphene metasurface for multiband superabsorption and terahertz sensing,” Carbon 158, 559–567 (2020).
[Crossref]

J. Sultana, M. S. Islam, C. M. B. Cordeiro, A. Dinovitser, M. Koushik, B. W.-H. Ng, and D. Abbott, “Terahertz hollow core antiresonant fiber with metamaterial cladding,” Fibers 8(2), 14–00 (2020).
[Crossref]

J. Sultana, Md. S. Islam, K. Ahmed, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Terahertz detection of alcohol using a photonic crystal fiber sensor,” Appl. Opt. 57(10), 2426–2433 (2018).
[Crossref]

Md. S. Islam, J. Sultana, A. Dinovitser, M. Faisal, M. R. Islam, B. W.-H. Ng, and D. Abbott, “Zeonex-based asymmetrical terahertz photonic crystal fiber for multichannel communication and polarization maintaining applications,” Appl. Opt. 57(4), 666–672 (2018).
[Crossref]

M. S. Islam, J. Sultana, A. Dinovitser, B. W.-H. Ng, and D. Abbot, “Zeonex based asymmetrical terahertz photonic crystal fiber for multichannel communication and polarization maintaining applications,” Appl. Opt. 57(4), 666–672 (2018).
[Crossref]

M. S. Islam, J. Sultana, A. A. Rifat, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Terahertz sensing in a hollow-core photonic crystal fiber,” IEEE Sens. J. 18(10), 4073–4080 (2018).
[Crossref]

M. S. Islam, J. Sultana, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “A novel Zeonex based oligoporous-core photonic crystal fiber for polarization preserving terahertz applications,” Opt. Commun. 413(15), 242–248 (2018).
[Crossref]

M. S. Islam, J. Sultana, K. Ahmed, A. Dinovitser, M. R. Islam, B. W.-H. Ng, and D. Abbott, “A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime,” IEEE Sens. J. 18(2), 575–582 (2018).
[Crossref]

M. S. Islam, J. Sultana, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “A modified hexagonal photonic crystal fiber for terahertz applications,” Opt. Mater. 79, 336–339 (2018).
[Crossref]

M. S. Islam, J. Sultana, M. Biabanifard, M. J. Nine, Z. Vafapour, C. M. B. Cordeiro, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Electrically tunable graphene metasurface for multiband superabsorption and terahertz sensing,” 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-terahertz), 2019, (doi: 10.1109/IRMMW-terahertz.2019.8873851).

J. Sultana, M. S. Islam, C. M. B. Cordeiro, A. L. S. Cruz, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Five-Capillary Cladding Terahertz Fiber with Low Loss and Single Mode,” 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-terahertz), 2019. DOI: 10.1109/IRMMW-THz.2019.8874476.

M. S. Islam, J. Sultana, C. M. B. Cordeiro, A. L. S. Cruz, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Broadband characterization of glass and polymer materials using THz-TDS,” 44th Int. Conf. on Inf. Mil. and Ter. Waves (IRMMW-THz), DOI: 10.1109/IRMMW-THz.2019.8874013.

J. Sultana, M. S. Islam, C. M. B. Cordeiro, A. L. S. Cruz, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Novel hollow-core anti-resonant terahertz fiber with metamaterial cladding,” 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-terahertz), 2019. DOI: 10.1109/IRMMW-THz.2019.8873836.

M. S. Islam, J. Sultana, C. M. B. Cordeiro, M. J.Nine, A. L. S. Cruz, A. Dinovitser, B. W.-H. Ng, H. E. Heidepriem, D. Losic, and D. Abbott, “Experimental study on glass and polymers: Determining the optimal material for potential use in terahertz technology,” IEEE Access, (Revised version submitted).

Dolganova, I. N..

G. M. Katyba, N. V. Chernomyrdin, I. N.. Dolganova, A. A. Pronin, I. V. Minin, O. V. Minin, K. I. Zaytsev, and V. N. Kurlov, “Step-index sapphire fiber and its application in a terahertz near-field microscopy,” Proc. SPIE 11164, 11164G (2019).
[Crossref]

Douglass, K. O.

Dubois, C.

Dubois, E.

R. Peretti, F. Braud, E. Peytavit, E. Dubois, and J.-F. Lampin, “Broadband terahertz light–matter interaction enhancement for precise spectroscopy of thin films and micro-samples,” Photonics 5(2), 11 (2018).
[Crossref]

Dupuis, A.

Durana, G.

E. Arrospide, G. Durana, M. Azkune, G. Aldabaldetreku, I. Bikandi, L. R.-Rubioc, and J. Zubiab, “Polymers beyond standard optical fibres – fabrication of microstructured polymer optical fibres,” Polym. Int. 67(9), 1155–1163 (2018).
[Crossref]

E.-Heidepriem, H.

Ebendorff-Heidepriem, H.

Ehrig, F.

R. Guo Eva-Maria Stuebling, F. Beltran-Mejua, D. Ulm, T. Kleine-Ostmann, F. Ehrig, and M. Koch, “3D printed terahertz rectangular waveguides of polystyrene and TOPAS: a comparison,” J. Infrared, Millimeter, Terahertz Waves 40(1), 1–4 (2019).
[Crossref]

Estacio, E.

Faisal, M.

J. Sultana, M. R. Islam, M. Faisal, and Md. K. Abu Talha, “Design and analysis of a Zeonex based diamond-shaped core kagome lattice photonic crystal fiber for T-ray wave transmission,” Opt. Fiber Technol. 47, 55–60 (2019).
[Crossref]

M. Faisal and Md. S. Islam, “Extremely high birefringent terahertz fiber using a suspended elliptic core with slotted airholes,” Appl. Opt. 57(13), 3340–3347 (2018).
[Crossref]

J. Sultana, Md. S. Islam, M. Faisal, M. R. Islam, B. W. -H. Ng, H. E. Heidepriem, and D. Abbot, “Highly birefringent elliptical core photonic crystal fiber for terahertz application,” Opt. Commun. 407, 92–96 (2018).
[Crossref]

Md. S. Islam, J. Sultana, A. Dinovitser, M. Faisal, M. R. Islam, B. W.-H. Ng, and D. Abbott, “Zeonex-based asymmetrical terahertz photonic crystal fiber for multichannel communication and polarization maintaining applications,” Appl. Opt. 57(4), 666–672 (2018).
[Crossref]

Md S. Islam, M. Faisal, and S. M. A. Razzak, “Dispersion flattened porous-core honeycomb lattice terahertz fiber for ultra low loss transmission,” IEEE J. Quantum Electron. 53(6), 1–8 (2017).
[Crossref]

M. S. Islam, M. R. Islam, M. Faisal, H. Rahman, J. Sultana, S. Rana, and M. R. Islam, “Ultra-low loss hybrid core porous fiber for broadband applications,” Appl. Opt. 56(4), 1232–1237 (2017).
[Crossref]

Md S. Islam, M. Faisal, and S. M. A. Razzak, “Extremely low loss porous-core photonic crystal fiber with ultra-high dispersion in terahertz regime,” J. Opt. Soc. Am. B 34(8), 1747–1754 (2017).
[Crossref]

M. S. Islam, J. Sultana, S. Rana, M. R. Islam, M. Faisal, S. F. Kaijage, and D. Abbott, “Extremely low material loss and dispersion flattened topas based circular porous fiber for long distance terahertz wave transmission,” Opt. Fiber Technol. 34, 6–11 (2017).
[Crossref]

M. S. Islam, S. Rana, M. R. Islam, M. Faisal, H. Rahman, and J. Sultana, “Porous-core photonic crystal fiber for ultra-low material loss in terahertz regime,” IET Commun. 10(16), 2179–2183 (2016).
[Crossref]

S. Rana, M. S. Islam, M. Faisal, K. C. Roy, R. Islam, and S. F. Kaijage, “Single-mode porous fiber for low-loss polarization maintaining terahertz transmission,” Opt. Eng. 55(7), 076114 (2016).
[Crossref]

M. S. Islam, M. R. Islam, M. Faisal, H. Rahman, J. Sultana, and S. Rana, “Extremely low-loss, dispersion flattened porous-core photonic crystal fiber for terahertz regime,” Opt. Eng. 55(7), 076117 (2016).
[Crossref]

Fedulova, E. V.

E. V. Fedulova, M. M. Nazarov, A. A. Angeluts, M. S. Kitai, V. I. Sokolov, and A. P. Shkurinov, “Studying of dielectric properties of polymers in the terahertz frequency range,” Proc. SPIE 8337, 83370I (2012).
[Crossref]

Fischer, B. M.

Fischer, V. B. M.

S. Atakaramians, S. Afshar, V. B. M. Fischer, D. Abbot, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282(1), 36–38 (2009).
[Crossref]

Fleming, S. C.

A. Stefani, S. C. Fleming, and B. T. Kuhlmey, “Terahertz orbital angular momentum modes with flexible twisted hollow-core anti-resonant fiber,” APL Photonics 3(5), 051708 (2018).
[Crossref]

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T.Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4(1), 2706 (2013).
[Crossref]

A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fabricating metamaterials using the fiber drawing method,” J. Visualized Exp. 68, e4299 (2012).
[Crossref]

Franco, M. A. R.

A. L. S. Cruz, C. M. B. Cordeiro, and M. A. R. Franco, “3D printed hollow-core terahertz fibers,” Fibers 6(3), 43 (2018).
[Crossref]

A. L. S. Cruz, V. A. Serrao, C. L. Barbosa, C. M. B. Cordeiro, A. Argyros, X. Tang, and M. A. R. Franco, “3D Printed hollow-core fiber with negative curvature for terahertz applications,” J. Microw. Optoelectron. Electromagn. Appl. 14, 45–53 (2015).

A. L. S. Cruz, A. C. C. Migliano, and M. A. R. Franco, “Refractive index sensor based on terahertz multimode interference fiber device,” Proc. SPIE 8794, 18794L (2013).
[Crossref]

A. L. S. Cruz, A. C. C. Migliano, J. G. Hayashi, C. M. B. Cordeiro, and M. A. R. Franco, “Highly birefringent polymer terahertz fiber with microstructure of slots in the core,” 22nd International Conference on Plastic Optical Fibers, (2013).

A. L. S. Cruz, C. M. B. Cordeiro, G. S. Rodrigues, J. H. Osório, L. E da Silva, and M. A. R. Franco, “Exploring terahertz hollow-core fiber designs manufactured by 3Dprinting,” IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC 2017), Águas de Lindoia, Brazil (2017).

A. L. S. Cruz, A. Argyros, X. Tang, C. M. B. Cordeiro, and M. A. R. Franco, “3D-Printed Terahertz Bragg Fiber,” 40th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW 2015), Hong Kong, Aug 2015.

Frosz, H.

R. Beravat, G. K. L. Wong Michael, H. Frosz, X. M. Xi, and P. St. J. Russel, “Twist-induced guidance in coreless photonic crystal fiber: a helical channel for light,” Sci. Adv. 2(11), e1601421 (2016).
[Crossref]

Fu, S.-C.

G.-Cardona, N.

E. Reyes-Vera, J. Ú.restrepo, C. Jiménez-Durango, J. M.-Cardona, and N. G.-Cardona, “Design of low-loss and highly birefringent porous-core photonic crystal fiber and its application to terahertz polarization beam splitter,” IEEE Photonics J. 10(4), 1–13 (2018).
[Crossref]

Gallot, G.

Gao, X.

S. Li, Z. Dai, Z. Wang, P. Qi, Q. Su, X. Gao, C. Gong, and W. Liu, “Simple birefringent terahertz fiber based on elliptical hollow core,” Optik 176, 611–616 (2019).
[Crossref]

Gehm, M. E.

George, R.

Gerecht, E.

Gérôme, F.

Gervais, T.

Gong, C.

S. Li, Z. Dai, Z. Wang, P. Qi, Q. Su, X. Gao, C. Gong, and W. Liu, “Simple birefringent terahertz fiber based on elliptical hollow core,” Optik 176, 611–616 (2019).
[Crossref]

J. Yang, J. Zhao, C. Gong, H. Tian, L. Sun, P. Chen, L. Lin, and W. Liu, “3D printed low-loss terahertz waveguide based on kagome photonic crystal structure,” Opt. Express 24(20), 22454–22460 (2016).
[Crossref]

Gorecki, J.

Gorgutsa, S.

A. Markov, S. Gorgutsa, H. Qu, and M. Skorobogatiy, “Practical metal-wire THz waveguides,” arXiv:1206.2984, 2012.

Goto, M.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43(No. 2B), L317–L319 (2004).
[Crossref]

Gouveia, M. A.

W. Talataisong, R. Ismaeel, T. H. R. Marques, S. A. Mousavi, M. Beresna, M. A. Gouveia, S. R. Sandoghchi, T. Lee, C. M. B. Cordeiro, and G. Brambilla, “Mid-IR Hollow-core microstructured fiber drawn from a 3D printed PETG preform,” Sci. Rep. 8(1), 8113 (2018).
[Crossref]

Grischkowsky, D.

Guerboukha, H.

Guo, C.-Y.

D.-D. Wang, C.-L. Mu, D.-P. Kong, and C.-Y. Guo, “High birefringence, low loss, and flattened dispersion photonic crystal fiber for terahertz application,” Chin. Phys. B 28(11), 118701 (2019).
[Crossref]

Guo, J.

S. Yang, X. Sheng, G. Zhao, S. Lou, and J. Guo, “Anti-deformation low loss double pentagon nested terahertz hollow core fiber,” Opt. Fiber Technol. 56, 102199 (2020).
[Crossref]

Guo, Y. J.

Guo Eva-Maria Stuebling, R.

R. Guo Eva-Maria Stuebling, F. Beltran-Mejua, D. Ulm, T. Kleine-Ostmann, F. Ehrig, and M. Koch, “3D printed terahertz rectangular waveguides of polystyrene and TOPAS: a comparison,” J. Infrared, Millimeter, Terahertz Waves 40(1), 1–4 (2019).
[Crossref]

Gupta, M.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baramiuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B: Lasers Opt. 68(6), 1085–1094 (1999).
[Crossref]

Gusikhin, P. A.

G. E. Tsydynzhapov, P. A. Gusikhin, V. M. Muravev, I. V. Andreev, and I. V. Kukushkin, “New terahertz security body scanner,” 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-terahertz), 2018, (doi: 10.1109/IRMMW-terahertz.2018.8510513).

-H. Ng, B. W.

J. Sultana, Md. S. Islam, M. Faisal, M. R. Islam, B. W. -H. Ng, H. E. Heidepriem, and D. Abbot, “Highly birefringent elliptical core photonic crystal fiber for terahertz application,” Opt. Commun. 407, 92–96 (2018).
[Crossref]

Habib, M. S.

G. K. M. Hasanuzzaman, S. Iezekiel, C. Markos, and M. S. Habib, “Hollow-core fiber with nested anti-resonant tubes for low-loss terahertz guidance,” Opt. Commun. 426, 477–482 (2018).
[Crossref]

Habib, Md. A.

Md. A. Habib and Md. S. Anower, “Design and numerical analysis of highly birefringent single mode fiber in Thz regime,” Opt. Fiber Technol. 47, 197–203 (2019).
[Crossref]

Md. A. Habib, Md. S. Anower, and Md. R. Hasan, “Highly birefringent and low effective material loss microstructure fiber for THz wave guidance,” Opt. Commun. 423, 140–144 (2018).
[Crossref]

Habib, Md. S.

G. K. M. Hasanuzzaman, Md. S. Habib, S. M. A. Razzak, A. Hossain, and Y. Namihira, “Low loss single-Mode porous-Core kagome photonic crystal fiber for THz wave guidance,” J. Lightwave Technol. 33(19), 4027–4031 (2015).
[Crossref]

R. Islam, Md. S. Habib, G. K. M. Hasanuzzaman, R. Ahmad, S. Rana, and S. F. Kaijage, “Extremely high-birefringent asymmetric slotted-core photonic crystal fiber in THz regime,” IEEE Photonics Technol. Lett. 27(21), 2222–2225 (2015).
[Crossref]

Han, H.

M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, “Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers,” Opt. Express 16(1), 7–12 (2008).
[Crossref]

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634–2636 (2002).
[Crossref]

Han, Y.

Hao, L.

L. Yu, L. Hao, T. Meiqiong, H. Jiaoqi, L. Wei, D. Jinying, C. Xueping, F. Weiling, and Z. Yang, “The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges,” RSC Adv. 9(17), 9354–9363 (2019).
[Crossref]

Harrington, J. A.

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93(18), 181104 (2008).
[Crossref]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Fabrication of terahertz hollow-glass metallic waveguides with inner dielectric coatings,” J. Appl. Phys. 104(9), 093110 (2008).
[Crossref]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32(20), 2945–2947 (2007).
[Crossref]

J. A. Harrington, R. George, and P. Pedersen, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12(21), 5263–5268 (2004).
[Crossref]

Hasan, Md. R.

Md. A. Habib, Md. S. Anower, and Md. R. Hasan, “Highly birefringent and low effective material loss microstructure fiber for THz wave guidance,” Opt. Commun. 423, 140–144 (2018).
[Crossref]

S. Rana, A. S. Rakin, Md. R. Hasan, Md. S. Reza, R. Leonhardt, D. Abbott, and Harish Subbaraman, “Low loss and flat dispersion kagome photonic crystal fiber in the terahertz regime,” Opt. Commun. 410, 452–456 (2018).
[Crossref]

Hasanuzzaman, G. K. M.

G. K. M. Hasanuzzaman, S. Iezekiel, C. Markos, and M. S. Habib, “Hollow-core fiber with nested anti-resonant tubes for low-loss terahertz guidance,” Opt. Commun. 426, 477–482 (2018).
[Crossref]

G. K. M. Hasanuzzaman, Md. S. Habib, S. M. A. Razzak, A. Hossain, and Y. Namihira, “Low loss single-Mode porous-Core kagome photonic crystal fiber for THz wave guidance,” J. Lightwave Technol. 33(19), 4027–4031 (2015).
[Crossref]

R. Islam, Md. S. Habib, G. K. M. Hasanuzzaman, R. Ahmad, S. Rana, and S. F. Kaijage, “Extremely high-birefringent asymmetric slotted-core photonic crystal fiber in THz regime,” IEEE Photonics Technol. Lett. 27(21), 2222–2225 (2015).
[Crossref]

Hassani, A.

Hayashi, J. G.

A. L. S. Cruz, A. C. C. Migliano, J. G. Hayashi, C. M. B. Cordeiro, and M. A. R. Franco, “Highly birefringent polymer terahertz fiber with microstructure of slots in the core,” 22nd International Conference on Plastic Optical Fibers, (2013).

He, Z.

S. Mei, D. Kong, L. Wang, T. Ma, Y. Zhu, X. Zhang, Z. He, X. Huang, and Y. Zhang, “Suspended graded-index porous core POF for ultra-flat near-zero dispersion terahertz transmission,” Opt. Fiber Technol. 52, 101946 (2019).
[Crossref]

Hefferman, G.

G. Hefferman, Z. Chen, L. Yuan, and T. Wei, “Phase-shifted terahertz fiber bragg grating for strain sensing with large dynamic range,” IEEE Photonics Technol. Lett. 27(15), 1649–1652 (2015).
[Crossref]

Z. Chen, L. Yuan, G. Hefferman, and T. Wei, “Terahertz fiber bragg grating for distributed sensing,” IEEE Photonics Technol. Lett. 27(10), 1084–1087 (2015).
[Crossref]

Heidepriem, H. E.

J. Sultana, Md. S. Islam, M. Faisal, M. R. Islam, B. W. -H. Ng, H. E. Heidepriem, and D. Abbot, “Highly birefringent elliptical core photonic crystal fiber for terahertz application,” Opt. Commun. 407, 92–96 (2018).
[Crossref]

M. S. Islam, J. Sultana, C. M. B. Cordeiro, M. J.Nine, A. L. S. Cruz, A. Dinovitser, B. W.-H. Ng, H. E. Heidepriem, D. Losic, and D. Abbott, “Experimental study on glass and polymers: Determining the optimal material for potential use in terahertz technology,” IEEE Access, (Revised version submitted).

Henry, G.

G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Opt. Fiber Technol. 10(4), 325–335 (2004).
[Crossref]

Hidaka, T.

Hossain, A.

Hsueh, Y.-C.

Hu, G.

Hu, J.

C. Wei, R. Joseph Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

Hua, C.

C. Hua, M. Shi-Hua, Y. W.-Xing, W. X.-Mei, and W. X.-Zhou, “The diagnosis of human liver cancer by using THz fiber-scanning near-field imaging,” Chin. Phys. Lett. 30(3), 030702 (2013).
[Crossref]

Huang, H.-Y.

Huang, X.

S. Mei, D. Kong, L. Wang, T. Ma, Y. Zhu, X. Zhang, Z. He, X. Huang, and Y. Zhang, “Suspended graded-index porous core POF for ultra-flat near-zero dispersion terahertz transmission,” Opt. Fiber Technol. 52, 101946 (2019).
[Crossref]

Huang, Y. Y.

Huang, Y.-j.

Humbert, G.

Hwang, Y.-J.

Ichikawa, S.

Iezekiel, S.

G. K. M. Hasanuzzaman, S. Iezekiel, C. Markos, and M. S. Habib, “Hollow-core fiber with nested anti-resonant tubes for low-loss terahertz guidance,” Opt. Commun. 426, 477–482 (2018).
[Crossref]

Islam, M. R.

J. Sultana, M. R. Islam, M. Faisal, and Md. K. Abu Talha, “Design and analysis of a Zeonex based diamond-shaped core kagome lattice photonic crystal fiber for T-ray wave transmission,” Opt. Fiber Technol. 47, 55–60 (2019).
[Crossref]

M. S. Islam, J. Sultana, K. Ahmed, A. Dinovitser, M. R. Islam, B. W.-H. Ng, and D. Abbott, “A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime,” IEEE Sens. J. 18(2), 575–582 (2018).
[Crossref]

J. Sultana, Md. S. Islam, M. Faisal, M. R. Islam, B. W. -H. Ng, H. E. Heidepriem, and D. Abbot, “Highly birefringent elliptical core photonic crystal fiber for terahertz application,” Opt. Commun. 407, 92–96 (2018).
[Crossref]

Md. S. Islam, J. Sultana, A. Dinovitser, M. Faisal, M. R. Islam, B. W.-H. Ng, and D. Abbott, “Zeonex-based asymmetrical terahertz photonic crystal fiber for multichannel communication and polarization maintaining applications,” Appl. Opt. 57(4), 666–672 (2018).
[Crossref]

Md. S. Islam, J. Sultana, J. Atai, M. R. Islam, and D. Abbott, “Design and characterization of a low-loss, dispersion-flattened photonic crystal fiber for T-Ray wave propagation,” Optik 145, 398–406 (2017).
[Crossref]

M. S. Islam, M. R. Islam, M. Faisal, H. Rahman, J. Sultana, S. Rana, and M. R. Islam, “Ultra-low loss hybrid core porous fiber for broadband applications,” Appl. Opt. 56(4), 1232–1237 (2017).
[Crossref]

M. S. Islam, M. R. Islam, M. Faisal, H. Rahman, J. Sultana, S. Rana, and M. R. Islam, “Ultra-low loss hybrid core porous fiber for broadband applications,” Appl. Opt. 56(4), 1232–1237 (2017).
[Crossref]

Md. S. Islam, J. Sultana, J. Atai, D. Abbott, S. Rana, and M. R. Islam, “Ultra low-loss hybrid core porous fiber for broadband applications,” Appl. Opt. 56(4), 1232–1237 (2017).
[Crossref]

M. S. Islam, J. Sultana, S. Rana, M. R. Islam, M. Faisal, S. F. Kaijage, and D. Abbott, “Extremely low material loss and dispersion flattened topas based circular porous fiber for long distance terahertz wave transmission,” Opt. Fiber Technol. 34, 6–11 (2017).
[Crossref]

M. S. Islam, S. Rana, M. R. Islam, M. Faisal, H. Rahman, and J. Sultana, “Porous-core photonic crystal fiber for ultra-low material loss in terahertz regime,” IET Commun. 10(16), 2179–2183 (2016).
[Crossref]

M. S. Islam, M. R. Islam, M. Faisal, H. Rahman, J. Sultana, and S. Rana, “Extremely low-loss, dispersion flattened porous-core photonic crystal fiber for terahertz regime,” Opt. Eng. 55(7), 076117 (2016).
[Crossref]

Islam, M. S.

J. Sultana, M. S. Islam, C. M. B. Cordeiro, A. Dinovitser, M. Koushik, B. W.-H. Ng, and D. Abbott, “Terahertz hollow core antiresonant fiber with metamaterial cladding,” Fibers 8(2), 14–00 (2020).
[Crossref]

M. S. Islam, J. Sultana, M. Biabanifard, M. J. Nine, Z. Vafapour, C. M. B. Cordeiro, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Tunable localized surface plasmon graphene metasurface for multiband superabsorption and terahertz sensing,” Carbon 158, 559–567 (2020).
[Crossref]

M. S. Islam, J. Sultana, A. A. Rifat, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Terahertz sensing in a hollow-core photonic crystal fiber,” IEEE Sens. J. 18(10), 4073–4080 (2018).
[Crossref]

J. Sultana, M. S. Islam, and D. Abbott, “High numerical aperture, highly birefringent novel photonic crystal fibre for medical imaging applications,” Electron. Lett. 54(2), 61–62 (2018).
[Crossref]

M. S. Islam, J. Sultana, K. Ahmed, A. Dinovitser, M. R. Islam, B. W.-H. Ng, and D. Abbott, “A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime,” IEEE Sens. J. 18(2), 575–582 (2018).
[Crossref]

M. S. Islam, J. Sultana, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “A modified hexagonal photonic crystal fiber for terahertz applications,” Opt. Mater. 79, 336–339 (2018).
[Crossref]

M. S. Islam, J. Sultana, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “A novel Zeonex based oligoporous-core photonic crystal fiber for polarization preserving terahertz applications,” Opt. Commun. 413(15), 242–248 (2018).
[Crossref]

M. S. Islam, J. Sultana, A. Dinovitser, B. W.-H. Ng, and D. Abbot, “Zeonex based asymmetrical terahertz photonic crystal fiber for multichannel communication and polarization maintaining applications,” Appl. Opt. 57(4), 666–672 (2018).
[Crossref]

M. S. Islam, M. R. Islam, M. Faisal, H. Rahman, J. Sultana, S. Rana, and M. R. Islam, “Ultra-low loss hybrid core porous fiber for broadband applications,” Appl. Opt. 56(4), 1232–1237 (2017).
[Crossref]

M. S. Islam, J. Sultana, S. Rana, M. R. Islam, M. Faisal, S. F. Kaijage, and D. Abbott, “Extremely low material loss and dispersion flattened topas based circular porous fiber for long distance terahertz wave transmission,” Opt. Fiber Technol. 34, 6–11 (2017).
[Crossref]

M. S. Islam, S. Rana, M. R. Islam, M. Faisal, H. Rahman, and J. Sultana, “Porous-core photonic crystal fiber for ultra-low material loss in terahertz regime,” IET Commun. 10(16), 2179–2183 (2016).
[Crossref]

S. Rana, M. S. Islam, M. Faisal, K. C. Roy, R. Islam, and S. F. Kaijage, “Single-mode porous fiber for low-loss polarization maintaining terahertz transmission,” Opt. Eng. 55(7), 076114 (2016).
[Crossref]

M. S. Islam, M. R. Islam, M. Faisal, H. Rahman, J. Sultana, and S. Rana, “Extremely low-loss, dispersion flattened porous-core photonic crystal fiber for terahertz regime,” Opt. Eng. 55(7), 076117 (2016).
[Crossref]

M. S. Islam, J. Sultana, C. M. B. Cordeiro, A. L. S. Cruz, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Broadband characterization of glass and polymer materials using THz-TDS,” 44th Int. Conf. on Inf. Mil. and Ter. Waves (IRMMW-THz), DOI: 10.1109/IRMMW-THz.2019.8874013.

J. Sultana, M. S. Islam, C. M. B. Cordeiro, A. L. S. Cruz, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Five-Capillary Cladding Terahertz Fiber with Low Loss and Single Mode,” 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-terahertz), 2019. DOI: 10.1109/IRMMW-THz.2019.8874476.

M. S. Islam, J. Sultana, C. M. B. Cordeiro, M. J.Nine, A. L. S. Cruz, A. Dinovitser, B. W.-H. Ng, H. E. Heidepriem, D. Losic, and D. Abbott, “Experimental study on glass and polymers: Determining the optimal material for potential use in terahertz technology,” IEEE Access, (Revised version submitted).

J. Sultana, M. S. Islam, C. M. B. Cordeiro, A. L. S. Cruz, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Novel hollow-core anti-resonant terahertz fiber with metamaterial cladding,” 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-terahertz), 2019. DOI: 10.1109/IRMMW-THz.2019.8873836.

M. S. Islam, J. Sultana, M. Biabanifard, M. J. Nine, Z. Vafapour, C. M. B. Cordeiro, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Electrically tunable graphene metasurface for multiband superabsorption and terahertz sensing,” 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-terahertz), 2019, (doi: 10.1109/IRMMW-terahertz.2019.8873851).

Islam, Md S.

Md S. Islam, M. Faisal, and S. M. A. Razzak, “Dispersion flattened porous-core honeycomb lattice terahertz fiber for ultra low loss transmission,” IEEE J. Quantum Electron. 53(6), 1–8 (2017).
[Crossref]

Md S. Islam, M. Faisal, and S. M. A. Razzak, “Extremely low loss porous-core photonic crystal fiber with ultra-high dispersion in terahertz regime,” J. Opt. Soc. Am. B 34(8), 1747–1754 (2017).
[Crossref]

Islam, Md. I.

Islam, Md. S.

K. Ahmed, F. Ahmed, S. Roy, B. K. Paul Mst., N. Aktar, D. Vigneswaran, and Md. S. Islam, “Refractive index-based blood components sensing in terahertz spectrum,” IEEE Sens. J. 19(9), 3368–3375 (2019).
[Crossref]

J. Sultana, Md. S. Islam, K. Ahmed, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Terahertz detection of alcohol using a photonic crystal fiber sensor,” Appl. Opt. 57(10), 2426–2433 (2018).
[Crossref]

J. Sultana, Md. S. Islam, M. Faisal, M. R. Islam, B. W. -H. Ng, H. E. Heidepriem, and D. Abbot, “Highly birefringent elliptical core photonic crystal fiber for terahertz application,” Opt. Commun. 407, 92–96 (2018).
[Crossref]

B. K. Paul, Md. S. Islam, S. Sen, K. Ahmed, and M. S. Uddin, “Low material loss and dispersion flattened fiber for single mode THz-wave transmission applications,” Results Phys. 11, 638–642 (2018).
[Crossref]

Md. S. Islam, J. Sultana, A. Dinovitser, M. Faisal, M. R. Islam, B. W.-H. Ng, and D. Abbott, “Zeonex-based asymmetrical terahertz photonic crystal fiber for multichannel communication and polarization maintaining applications,” Appl. Opt. 57(4), 666–672 (2018).
[Crossref]

M. Faisal and Md. S. Islam, “Extremely high birefringent terahertz fiber using a suspended elliptic core with slotted airholes,” Appl. Opt. 57(13), 3340–3347 (2018).
[Crossref]

Md. S. Islam, J. Sultana, J. Atai, M. R. Islam, and D. Abbott, “Design and characterization of a low-loss, dispersion-flattened photonic crystal fiber for T-Ray wave propagation,” Optik 145, 398–406 (2017).
[Crossref]

K. Ahmed, S. Chowdhury, B. K. Paul, Md. S. Islam, S. Sen, Md. I. Islam, and S. Asaduzzaman, “Ultrahigh birefringence, ultralow material loss porous core single-mode fiber for terahertz wave guidance,” Appl. Opt. 56(12), 3477–3483 (2017).
[Crossref]

Md. S. Islam, J. Sultana, J. Atai, D. Abbott, S. Rana, and M. R. Islam, “Ultra low-loss hybrid core porous fiber for broadband applications,” Appl. Opt. 56(4), 1232–1237 (2017).
[Crossref]

Islam, R.

S. Rana, M. S. Islam, M. Faisal, K. C. Roy, R. Islam, and S. F. Kaijage, “Single-mode porous fiber for low-loss polarization maintaining terahertz transmission,” Opt. Eng. 55(7), 076114 (2016).
[Crossref]

R. Islam, “Dispersion flattened, low-loss porous fiber for single-mode terahertz wave guidance,” Opt. Eng. 54(5), 055102 (2015).
[Crossref]

R. Islam, Md. S. Habib, G. K. M. Hasanuzzaman, R. Ahmad, S. Rana, and S. F. Kaijage, “Extremely high-birefringent asymmetric slotted-core photonic crystal fiber in THz regime,” IEEE Photonics Technol. Lett. 27(21), 2222–2225 (2015).
[Crossref]

Ismaeel, R.

W. Talataisong, R. Ismaeel, T. H. R. Marques, S. A. Mousavi, M. Beresna, M. A. Gouveia, S. R. Sandoghchi, T. Lee, C. M. B. Cordeiro, and G. Brambilla, “Mid-IR Hollow-core microstructured fiber drawn from a 3D printed PETG preform,” Sci. Rep. 8(1), 8113 (2018).
[Crossref]

W. Talataisong, R. Ismaeel, M. Beresna, and G. Brambilla, “Suspended-core microstructured polymer optical fibers and potential applications in sensing,” Appl. Phys. Lett. 80(15), 2634–2636 (2002).
[Crossref]

Ito, H.

Iwai, K.

J.Nine, M.

M. S. Islam, J. Sultana, C. M. B. Cordeiro, M. J.Nine, A. L. S. Cruz, A. Dinovitser, B. W.-H. Ng, H. E. Heidepriem, D. Losic, and D. Abbott, “Experimental study on glass and polymers: Determining the optimal material for potential use in terahertz technology,” IEEE Access, (Revised version submitted).

Jacobsen, R. H.

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time domain spectroscopy,” Appl. Phys. B: Lasers Opt. 67(3), 379–390 (1998).
[Crossref]

Jamier, R.

Jamison, S. P.

Jeon, T.-In

T.-In Jeon, J. Zhangm, and D. Grischkowsky, “Terahertz sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005).
[Crossref]

Jepsen, P. U.

Jian, S.

H. Xiao, H. Li, B. Wu, and S. Jian, “Polarization-maintaining terahertz bandgap fiber with a quasi-elliptical hollow-core,” Opt. Laser Technol. 105, 276–280 (2018).
[Crossref]

H. Li, G. Ren, S. Atakaramians, B. T. Kuhlmey, and S. Jian, “Linearly polarized single TM mode terahertz waveguide,” Opt. Lett. 41(17), 4004–4007 (2016).
[Crossref]

Jiang, X.

Jiaoqi, H.

L. Yu, L. Hao, T. Meiqiong, H. Jiaoqi, L. Wei, D. Jinying, C. Xueping, F. Weiling, and Z. Yang, “The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges,” RSC Adv. 9(17), 9354–9363 (2019).
[Crossref]

Jiménez-Durango, C.

E. Reyes-Vera, J. Ú.restrepo, C. Jiménez-Durango, J. M.-Cardona, and N. G.-Cardona, “Design of low-loss and highly birefringent porous-core photonic crystal fiber and its application to terahertz polarization beam splitter,” IEEE Photonics J. 10(4), 1–13 (2018).
[Crossref]

Jin, X.

S. F. Kaijage, Z. Ouyang, and X. Jin, “Porous-core photonic crystal fiber for low loss terahertz waveguiding,” IEEE Photonics Technol. Lett. 25(15), 1454–1457 (2013).
[Crossref]

Jinying, D.

L. Yu, L. Hao, T. Meiqiong, H. Jiaoqi, L. Wei, D. Jinying, C. Xueping, F. Weiling, and Z. Yang, “The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges,” RSC Adv. 9(17), 9354–9363 (2019).
[Crossref]

Joseph Weiblen, R.

C. Wei, R. Joseph Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

Jr, A. C. S.

A. C. S. Jr, “Recent progress and novel applications of photonic crystal fibers,” Rep. Prog. Phys. 73(2), 024401 (2010).
[Crossref]

Jung, E.

Kaijage, S. F.

M. S. Islam, J. Sultana, S. Rana, M. R. Islam, M. Faisal, S. F. Kaijage, and D. Abbott, “Extremely low material loss and dispersion flattened topas based circular porous fiber for long distance terahertz wave transmission,” Opt. Fiber Technol. 34, 6–11 (2017).
[Crossref]

S. Rana, M. S. Islam, M. Faisal, K. C. Roy, R. Islam, and S. F. Kaijage, “Single-mode porous fiber for low-loss polarization maintaining terahertz transmission,” Opt. Eng. 55(7), 076114 (2016).
[Crossref]

R. Islam, Md. S. Habib, G. K. M. Hasanuzzaman, R. Ahmad, S. Rana, and S. F. Kaijage, “Extremely high-birefringent asymmetric slotted-core photonic crystal fiber in THz regime,” IEEE Photonics Technol. Lett. 27(21), 2222–2225 (2015).
[Crossref]

S. F. Kaijage, Z. Ouyang, and X. Jin, “Porous-core photonic crystal fiber for low loss terahertz waveguiding,” IEEE Photonics Technol. Lett. 25(15), 1454–1457 (2013).
[Crossref]

Kaltenecker, K. J.

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T.Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4(1), 2706 (2013).
[Crossref]

Kang, C.

Y. S. Lee, S. Kim, I. Maeng, C. Kang, and K. Oh, “Los-loss terahertz pulse transmission through commercially available porous tubes with PTFE,” Proc. SPIE 11206, 112061S (2019).

Kao, T. F.

Karasik, V. E.

G. M. Katyba, K. I. Zaytsev, N. V. Chernomyrdin, I. A. Shikunova, G. A. Komandin, V. B. Anzin, S. P. Lebedev, I. E. Spektor, V. E. Karasik, S. O. Yurchenko, I. V. Reshetov, V. N. Kurlov, and M. Skorobogatiy, “Sapphire photonic crystal waveguides for terahertz sensing in aggressive environments,” Adv. Opt. Mater. 6, 1800573 (2018).
[Crossref]

Katyba, G. M.

G. M. Katyba, N. V. Chernomyrdin, I. N.. Dolganova, A. A. Pronin, I. V. Minin, O. V. Minin, K. I. Zaytsev, and V. N. Kurlov, “Step-index sapphire fiber and its application in a terahertz near-field microscopy,” Proc. SPIE 11164, 11164G (2019).
[Crossref]

G. M. Katyba, K. I. Zaytsev, N. V. Chernomyrdin, I. A. Shikunova, G. A. Komandin, V. B. Anzin, S. P. Lebedev, I. E. Spektor, V. E. Karasik, S. O. Yurchenko, I. V. Reshetov, V. N. Kurlov, and M. Skorobogatiy, “Sapphire photonic crystal waveguides for terahertz sensing in aggressive environments,” Adv. Opt. Mater. 6, 1800573 (2018).
[Crossref]

Kim, J.

M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, “Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers,” Opt. Express 16(1), 7–12 (2008).
[Crossref]

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634–2636 (2002).
[Crossref]

Kim, S.

Y. S. Lee, S. Kim, I. Maeng, C. Kang, and K. Oh, “Los-loss terahertz pulse transmission through commercially available porous tubes with PTFE,” Proc. SPIE 11206, 112061S (2019).

Kinast, J.

Kitai, M. S.

E. V. Fedulova, M. M. Nazarov, A. A. Angeluts, M. S. Kitai, V. I. Sokolov, and A. P. Shkurinov, “Studying of dielectric properties of polymers in the terahertz frequency range,” Proc. SPIE 8337, 83370I (2012).
[Crossref]

Kleine-Ostmann, T.

R. Guo Eva-Maria Stuebling, F. Beltran-Mejua, D. Ulm, T. Kleine-Ostmann, F. Ehrig, and M. Koch, “3D printed terahertz rectangular waveguides of polystyrene and TOPAS: a comparison,” J. Infrared, Millimeter, Terahertz Waves 40(1), 1–4 (2019).
[Crossref]

Knight, J. C.

F. Yu and J. C. Knight, “Negative curvature hollow-core optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 146–155 (2016).
[Crossref]

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[Crossref]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russel, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[Crossref]

Koch, M.

R. Guo Eva-Maria Stuebling, F. Beltran-Mejua, D. Ulm, T. Kleine-Ostmann, F. Ehrig, and M. Koch, “3D printed terahertz rectangular waveguides of polystyrene and TOPAS: a comparison,” J. Infrared, Millimeter, Terahertz Waves 40(1), 1–4 (2019).
[Crossref]

R. B. Kohlhass, A. Rehn, S. Nellen, M. Koch, M. Schell, R. J. B. Dietz, and J. C. Balzer, “Terahertz quasi time-domain spectroscopy based on telecom technology for 1550 nm,” Opt. Express 25(11), 12851–12859 (2017).
[Crossref]

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baramiuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B: Lasers Opt. 68(6), 1085–1094 (1999).
[Crossref]

Kohlhass, R. B.

Komandin, G. A.

G. M. Katyba, K. I. Zaytsev, N. V. Chernomyrdin, I. A. Shikunova, G. A. Komandin, V. B. Anzin, S. P. Lebedev, I. E. Spektor, V. E. Karasik, S. O. Yurchenko, I. V. Reshetov, V. N. Kurlov, and M. Skorobogatiy, “Sapphire photonic crystal waveguides for terahertz sensing in aggressive environments,” Adv. Opt. Mater. 6, 1800573 (2018).
[Crossref]

Kong, D.

S. Mei, D. Kong, L. Wang, T. Ma, Y. Zhu, X. Zhang, Z. He, X. Huang, and Y. Zhang, “Suspended graded-index porous core POF for ultra-flat near-zero dispersion terahertz transmission,” Opt. Fiber Technol. 52, 101946 (2019).
[Crossref]

Kong, D.-P.

D.-D. Wang, C.-L. Mu, D.-P. Kong, and C.-Y. Guo, “High birefringence, low loss, and flattened dispersion photonic crystal fiber for terahertz application,” Chin. Phys. B 28(11), 118701 (2019).
[Crossref]

Koushik, M.

J. Sultana, M. S. Islam, C. M. B. Cordeiro, A. Dinovitser, M. Koushik, B. W.-H. Ng, and D. Abbott, “Terahertz hollow core antiresonant fiber with metamaterial cladding,” Fibers 8(2), 14–00 (2020).
[Crossref]

Kuhlme, B. T.

Kuhlmey, B. T.

A. Stefani, S. C. Fleming, and B. T. Kuhlmey, “Terahertz orbital angular momentum modes with flexible twisted hollow-core anti-resonant fiber,” APL Photonics 3(5), 051708 (2018).
[Crossref]

H. Li, G. Ren, S. Atakaramians, B. T. Kuhlmey, and S. Jian, “Linearly polarized single TM mode terahertz waveguide,” Opt. Lett. 41(17), 4004–4007 (2016).
[Crossref]

X. tang, Z. Yu, X. Tu, J. Chen, A. Argyros, B. T. Kuhlmey, and Y. Shi, “Elliptical metallic hollow fiber inner-coated with non-uniform dielectric layer,” Opt. Express 23(17), 22587–22601 (2015).
[Crossref]

A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fabricating metamaterials using the fiber drawing method,” J. Visualized Exp. 68, e4299 (2012).
[Crossref]

Kukushkin, I. V.

G. E. Tsydynzhapov, P. A. Gusikhin, V. M. Muravev, I. V. Andreev, and I. V. Kukushkin, “New terahertz security body scanner,” 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-terahertz), 2018, (doi: 10.1109/IRMMW-terahertz.2018.8510513).

Kuo, C.-C.

Kurlov, V. N.

G. M. Katyba, N. V. Chernomyrdin, I. N.. Dolganova, A. A. Pronin, I. V. Minin, O. V. Minin, K. I. Zaytsev, and V. N. Kurlov, “Step-index sapphire fiber and its application in a terahertz near-field microscopy,” Proc. SPIE 11164, 11164G (2019).
[Crossref]

G. M. Katyba, K. I. Zaytsev, N. V. Chernomyrdin, I. A. Shikunova, G. A. Komandin, V. B. Anzin, S. P. Lebedev, I. E. Spektor, V. E. Karasik, S. O. Yurchenko, I. V. Reshetov, V. N. Kurlov, and M. Skorobogatiy, “Sapphire photonic crystal waveguides for terahertz sensing in aggressive environments,” Adv. Opt. Mater. 6, 1800573 (2018).
[Crossref]

Kurz, H.

L.-Saval, S. G.

Lai, C.-H.

Lai, W.-L.

Lampin, J.-F.

R. Peretti, F. Braud, E. Peytavit, E. Dubois, and J.-F. Lampin, “Broadband terahertz light–matter interaction enhancement for precise spectroscopy of thin films and micro-samples,” Photonics 5(2), 11 (2018).
[Crossref]

Large, M. C. J.

Lebedev, S. P.

G. M. Katyba, K. I. Zaytsev, N. V. Chernomyrdin, I. A. Shikunova, G. A. Komandin, V. B. Anzin, S. P. Lebedev, I. E. Spektor, V. E. Karasik, S. O. Yurchenko, I. V. Reshetov, V. N. Kurlov, and M. Skorobogatiy, “Sapphire photonic crystal waveguides for terahertz sensing in aggressive environments,” Adv. Opt. Mater. 6, 1800573 (2018).
[Crossref]

Lee, T.

W. Talataisong, R. Ismaeel, T. H. R. Marques, S. A. Mousavi, M. Beresna, M. A. Gouveia, S. R. Sandoghchi, T. Lee, C. M. B. Cordeiro, and G. Brambilla, “Mid-IR Hollow-core microstructured fiber drawn from a 3D printed PETG preform,” Sci. Rep. 8(1), 8113 (2018).
[Crossref]

Lee, W.-J.

Lee, Y. S.

Y. S. Lee, S. Kim, I. Maeng, C. Kang, and K. Oh, “Los-loss terahertz pulse transmission through commercially available porous tubes with PTFE,” Proc. SPIE 11206, 112061S (2019).

Leonhardt, R.

Leon-Saval, S. G.

Li, H.

Li, J.

Li, K.

Li, S.

S. Yang, X. Sheng, G. Zhao, and S. Li, “Simple birefringent terahertz fiber based on elliptical hollow core,” Opt. Fiber Technol. 53, 102064 (2019).
[Crossref]

S. Li, Z. Dai, Z. Wang, P. Qi, Q. Su, X. Gao, C. Gong, and W. Liu, “Simple birefringent terahertz fiber based on elliptical hollow core,” Optik 176, 611–616 (2019).
[Crossref]

M. Mittendorff, S. Li, and T. E. Murphy, “Graphene-based waveguide-integrated terahertz modulator,” ACS Photonics 4(2), 316–321 (2017).
[Crossref]

Li, Y.

J. Lu, C. Yu, H. Chang, H. Chen, Y. Li, C. Pan, and C. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
[Crossref]

Liang, J.

Light, P. S.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
[Crossref]

Lin, H.

H. Lin, W. Withayachumnankul, B. M. Fischer, S. P. Mickan, and D. Abbott, “Gas recognition with terahertz time-domain spectroscopy and spectral catalog: a preliminary study,” Proc. SPIE 6840, 68400X (2007).
[Crossref]

Lin, L.

Liou, J.-H.

Liu, T. A.

Liu, T.-A.

Liu, W.

S. Li, Z. Dai, Z. Wang, P. Qi, Q. Su, X. Gao, C. Gong, and W. Liu, “Simple birefringent terahertz fiber based on elliptical hollow core,” Optik 176, 611–616 (2019).
[Crossref]

J. Yang, J. Zhao, C. Gong, H. Tian, L. Sun, P. Chen, L. Lin, and W. Liu, “3D printed low-loss terahertz waveguide based on kagome photonic crystal structure,” Opt. Express 24(20), 22454–22460 (2016).
[Crossref]

Liu, Y.

Y.-F. Zhu, M.-Y. Chen, and Y. Liu, “Nested low-loss hollow-core fiber,” IEEE J. Sel. Top. Quantum Electron. 26(4), 1–6 (2020).
[Crossref]

Liu, Z.

Z. Liu and H.-Y. Tam, “Fabrication and sensing applications of special microstructured optical fibers,” Sel. Top. on Opt. Fib. Tech. and Appl. vol. 2017. doi:10.5772/intechopen.70755

Losic, D.

M. S. Islam, J. Sultana, C. M. B. Cordeiro, M. J.Nine, A. L. S. Cruz, A. Dinovitser, B. W.-H. Ng, H. E. Heidepriem, D. Losic, and D. Abbott, “Experimental study on glass and polymers: Determining the optimal material for potential use in terahertz technology,” IEEE Access, (Revised version submitted).

Lou, S.

S. Yang, X. Sheng, G. Zhao, S. Lou, and J. Guo, “Anti-deformation low loss double pentagon nested terahertz hollow core fiber,” Opt. Fiber Technol. 56, 102199 (2020).
[Crossref]

S. Yan, S. Lou, X. Wang, T. Zhao, and W. Zhang, “High-birefringence hollow-core anti-resonant THz fiber,” Opt. Quantum Electron. 50(3), 162 (2018).
[Crossref]

Lu, J.

J. Lu, C. Yu, H. Chang, H. Chen, Y. Li, C. Pan, and C. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
[Crossref]

Lu, j. Y.

Lu, J.-T.

Lu, J.-Y.

Luo, J.

Lwin, R.

H. Li, S. Atakaramians, R. Lwin, X. Tang, Z. Yu, A. Argyros, and B. T. Kuhlme, “Flexible single-mode hollow-core terahertz fiber with metamaterial cladding,” Optica 3(9), 941–947 (2016).
[Crossref]

A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fabricating metamaterials using the fiber drawing method,” J. Visualized Exp. 68, e4299 (2012).
[Crossref]

M.-Cardona, J.

E. Reyes-Vera, J. Ú.restrepo, C. Jiménez-Durango, J. M.-Cardona, and N. G.-Cardona, “Design of low-loss and highly birefringent porous-core photonic crystal fiber and its application to terahertz polarization beam splitter,” IEEE Photonics J. 10(4), 1–13 (2018).
[Crossref]

Ma, T.

S. Mei, D. Kong, L. Wang, T. Ma, Y. Zhu, X. Zhang, Z. He, X. Huang, and Y. Zhang, “Suspended graded-index porous core POF for ultra-flat near-zero dispersion terahertz transmission,” Opt. Fiber Technol. 52, 101946 (2019).
[Crossref]

T. Ma, K. Nallapan, H. Guerboukha, and M. Skorobogatiy, “Analog signal processing in the terahertz communication links using waveguide Bragg gratings: example of dispersion compensation,” Opt. Express 25(10), 11009–11026 (2017).
[Crossref]

Maeng, I.

Y. S. Lee, S. Kim, I. Maeng, C. Kang, and K. Oh, “Los-loss terahertz pulse transmission through commercially available porous tubes with PTFE,” Proc. SPIE 11206, 112061S (2019).

Marchewka, A.

Margushev, Z. C.

M. M. Nazarov, A. V. Shilov, K. A. bzheumikhov, Z. C. Margushev, V. I. Sokolov, A. B. Sotsky, and A. P. Shkurinov, “Eight-capillary cladding THz waveguide with low propagation losses and dispersion,” IEEE Trans. Terahertz Sci. Technol. 8(2), 183–191 (2018).
[Crossref]

Markos, C.

G. K. M. Hasanuzzaman, S. Iezekiel, C. Markos, and M. S. Habib, “Hollow-core fiber with nested anti-resonant tubes for low-loss terahertz guidance,” Opt. Commun. 426, 477–482 (2018).
[Crossref]

Markov, A.

Marques, T. H. R.

W. Talataisong, R. Ismaeel, T. H. R. Marques, S. A. Mousavi, M. Beresna, M. A. Gouveia, S. R. Sandoghchi, T. Lee, C. M. B. Cordeiro, and G. Brambilla, “Mid-IR Hollow-core microstructured fiber drawn from a 3D printed PETG preform,” Sci. Rep. 8(1), 8113 (2018).
[Crossref]

Matsuura, Y.

Mazhorova, A.

McGowan, R. W.

Mei, S.

S. Mei, D. Kong, L. Wang, T. Ma, Y. Zhu, X. Zhang, Z. He, X. Huang, and Y. Zhang, “Suspended graded-index porous core POF for ultra-flat near-zero dispersion terahertz transmission,” Opt. Fiber Technol. 52, 101946 (2019).
[Crossref]

Meiqiong, T.

L. Yu, L. Hao, T. Meiqiong, H. Jiaoqi, L. Wei, D. Jinying, C. Xueping, F. Weiling, and Z. Yang, “The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges,” RSC Adv. 9(17), 9354–9363 (2019).
[Crossref]

Menyuk, C. R.

C. Wei, R. Joseph Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

Miao, R.

Mickan, S. P.

H. Lin, W. Withayachumnankul, B. M. Fischer, S. P. Mickan, and D. Abbott, “Gas recognition with terahertz time-domain spectroscopy and spectral catalog: a preliminary study,” Proc. SPIE 6840, 68400X (2007).
[Crossref]

Migliano, A. C. C.

A. L. S. Cruz, A. C. C. Migliano, and M. A. R. Franco, “Refractive index sensor based on terahertz multimode interference fiber device,” Proc. SPIE 8794, 18794L (2013).
[Crossref]

A. L. S. Cruz, A. C. C. Migliano, J. G. Hayashi, C. M. B. Cordeiro, and M. A. R. Franco, “Highly birefringent polymer terahertz fiber with microstructure of slots in the core,” 22nd International Conference on Plastic Optical Fibers, (2013).

Miles, R. E.

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE 95(8), 1658–1665 (2007).
[Crossref]

Minamide, H.

Minin, I. V.

G. M. Katyba, N. V. Chernomyrdin, I. N.. Dolganova, A. A. Pronin, I. V. Minin, O. V. Minin, K. I. Zaytsev, and V. N. Kurlov, “Step-index sapphire fiber and its application in a terahertz near-field microscopy,” Proc. SPIE 11164, 11164G (2019).
[Crossref]

Minin, O. V.

G. M. Katyba, N. V. Chernomyrdin, I. N.. Dolganova, A. A. Pronin, I. V. Minin, O. V. Minin, K. I. Zaytsev, and V. N. Kurlov, “Step-index sapphire fiber and its application in a terahertz near-field microscopy,” Proc. SPIE 11164, 11164G (2019).
[Crossref]

Mitrofanov, O.

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93(18), 181104 (2008).
[Crossref]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Fabrication of terahertz hollow-glass metallic waveguides with inner dielectric coatings,” J. Appl. Phys. 104(9), 093110 (2008).
[Crossref]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32(20), 2945–2947 (2007).
[Crossref]

Mittendorff, M.

M. Mittendorff, S. Li, and T. E. Murphy, “Graphene-based waveguide-integrated terahertz modulator,” ACS Photonics 4(2), 316–321 (2017).
[Crossref]

Mittleman, D.

K. Wang and D. Mittleman, “Metal wires for terahertz guiding,” Nature 432(7015), 376–379 (2004).
[Crossref]

Mittleman, D. M.

D. M. Mittleman, “Twenty years of terahertz imaging,” Opt. Express 26(8), 9417–9431 (2018).
[Crossref]

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[Crossref]

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baramiuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B: Lasers Opt. 68(6), 1085–1094 (1999).
[Crossref]

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time domain spectroscopy,” Appl. Phys. B: Lasers Opt. 67(3), 379–390 (1998).
[Crossref]

Miyagi, M.

Mohammed, W.

Monro, T. M.

Moon, K.

Morris, D.

Mousavi, S. A.

W. Talataisong, R. Ismaeel, T. H. R. Marques, S. A. Mousavi, M. Beresna, M. A. Gouveia, S. R. Sandoghchi, T. Lee, C. M. B. Cordeiro, and G. Brambilla, “Mid-IR Hollow-core microstructured fiber drawn from a 3D printed PETG preform,” Sci. Rep. 8(1), 8113 (2018).
[Crossref]

Mu, C.-L.

D.-D. Wang, C.-L. Mu, D.-P. Kong, and C.-Y. Guo, “High birefringence, low loss, and flattened dispersion photonic crystal fiber for terahertz application,” Chin. Phys. B 28(11), 118701 (2019).
[Crossref]

Muravev, V. M.

G. E. Tsydynzhapov, P. A. Gusikhin, V. M. Muravev, I. V. Andreev, and I. V. Kukushkin, “New terahertz security body scanner,” 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-terahertz), 2018, (doi: 10.1109/IRMMW-terahertz.2018.8510513).

Murphy, T. E.

M. Mittendorff, S. Li, and T. E. Murphy, “Graphene-based waveguide-integrated terahertz modulator,” ACS Photonics 4(2), 316–321 (2017).
[Crossref]

Naftaly, M.

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE 95(8), 1658–1665 (2007).
[Crossref]

Nagel, M.

Nallapan, K.

Nallappan, K.

Namihira, Y.

Namroodi, L.

H. Pkarzadeh, S. M. rezaei, and L. Namroodi, “Hollow-core photonic crystal fibers for efficient terahertz transmission,” Opt. Commun. 433, 81–88 (2019).
[Crossref]

Nazarov, M. M.

M. M. Nazarov, A. V. Shilov, K. A. bzheumikhov, Z. C. Margushev, V. I. Sokolov, A. B. Sotsky, and A. P. Shkurinov, “Eight-capillary cladding THz waveguide with low propagation losses and dispersion,” IEEE Trans. Terahertz Sci. Technol. 8(2), 183–191 (2018).
[Crossref]

E. V. Fedulova, M. M. Nazarov, A. A. Angeluts, M. S. Kitai, V. I. Sokolov, and A. P. Shkurinov, “Studying of dielectric properties of polymers in the terahertz frequency range,” Proc. SPIE 8337, 83370I (2012).
[Crossref]

Neelamani, R.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baramiuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B: Lasers Opt. 68(6), 1085–1094 (1999).
[Crossref]

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time domain spectroscopy,” Appl. Phys. B: Lasers Opt. 67(3), 379–390 (1998).
[Crossref]

Nellen, S.

Ng, B. W.-H.

J. Sultana, M. S. Islam, C. M. B. Cordeiro, A. Dinovitser, M. Koushik, B. W.-H. Ng, and D. Abbott, “Terahertz hollow core antiresonant fiber with metamaterial cladding,” Fibers 8(2), 14–00 (2020).
[Crossref]

M. S. Islam, J. Sultana, M. Biabanifard, M. J. Nine, Z. Vafapour, C. M. B. Cordeiro, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Tunable localized surface plasmon graphene metasurface for multiband superabsorption and terahertz sensing,” Carbon 158, 559–567 (2020).
[Crossref]

M. S. Islam, J. Sultana, A. A. Rifat, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Terahertz sensing in a hollow-core photonic crystal fiber,” IEEE Sens. J. 18(10), 4073–4080 (2018).
[Crossref]

M. S. Islam, J. Sultana, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “A modified hexagonal photonic crystal fiber for terahertz applications,” Opt. Mater. 79, 336–339 (2018).
[Crossref]

M. S. Islam, J. Sultana, K. Ahmed, A. Dinovitser, M. R. Islam, B. W.-H. Ng, and D. Abbott, “A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime,” IEEE Sens. J. 18(2), 575–582 (2018).
[Crossref]

M. S. Islam, J. Sultana, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “A novel Zeonex based oligoporous-core photonic crystal fiber for polarization preserving terahertz applications,” Opt. Commun. 413(15), 242–248 (2018).
[Crossref]

J. Sultana, Md. S. Islam, K. Ahmed, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Terahertz detection of alcohol using a photonic crystal fiber sensor,” Appl. Opt. 57(10), 2426–2433 (2018).
[Crossref]

M. S. Islam, J. Sultana, A. Dinovitser, B. W.-H. Ng, and D. Abbot, “Zeonex based asymmetrical terahertz photonic crystal fiber for multichannel communication and polarization maintaining applications,” Appl. Opt. 57(4), 666–672 (2018).
[Crossref]

Md. S. Islam, J. Sultana, A. Dinovitser, M. Faisal, M. R. Islam, B. W.-H. Ng, and D. Abbott, “Zeonex-based asymmetrical terahertz photonic crystal fiber for multichannel communication and polarization maintaining applications,” Appl. Opt. 57(4), 666–672 (2018).
[Crossref]

J. Sultana, M. S. Islam, C. M. B. Cordeiro, A. L. S. Cruz, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Five-Capillary Cladding Terahertz Fiber with Low Loss and Single Mode,” 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-terahertz), 2019. DOI: 10.1109/IRMMW-THz.2019.8874476.

M. S. Islam, J. Sultana, C. M. B. Cordeiro, A. L. S. Cruz, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Broadband characterization of glass and polymer materials using THz-TDS,” 44th Int. Conf. on Inf. Mil. and Ter. Waves (IRMMW-THz), DOI: 10.1109/IRMMW-THz.2019.8874013.

J. Sultana, M. S. Islam, C. M. B. Cordeiro, A. L. S. Cruz, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Novel hollow-core anti-resonant terahertz fiber with metamaterial cladding,” 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-terahertz), 2019. DOI: 10.1109/IRMMW-THz.2019.8873836.

M. S. Islam, J. Sultana, C. M. B. Cordeiro, M. J.Nine, A. L. S. Cruz, A. Dinovitser, B. W.-H. Ng, H. E. Heidepriem, D. Losic, and D. Abbott, “Experimental study on glass and polymers: Determining the optimal material for potential use in terahertz technology,” IEEE Access, (Revised version submitted).

M. S. Islam, J. Sultana, M. Biabanifard, M. J. Nine, Z. Vafapour, C. M. B. Cordeiro, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Electrically tunable graphene metasurface for multiband superabsorption and terahertz sensing,” 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-terahertz), 2019, (doi: 10.1109/IRMMW-terahertz.2019.8873851).

Ng, W-R.

Nielsen, K.

Nine, M. J.

M. S. Islam, J. Sultana, M. Biabanifard, M. J. Nine, Z. Vafapour, C. M. B. Cordeiro, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Tunable localized surface plasmon graphene metasurface for multiband superabsorption and terahertz sensing,” Carbon 158, 559–567 (2020).
[Crossref]

M. S. Islam, J. Sultana, M. Biabanifard, M. J. Nine, Z. Vafapour, C. M. B. Cordeiro, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Electrically tunable graphene metasurface for multiband superabsorption and terahertz sensing,” 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-terahertz), 2019, (doi: 10.1109/IRMMW-terahertz.2019.8873851).

Nishizawa, J.-I

Numkam Fokoua, E.

Nuss, M. C.

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time domain spectroscopy,” Appl. Phys. B: Lasers Opt. 67(3), 379–390 (1998).
[Crossref]

Oh, K.

Y. S. Lee, S. Kim, I. Maeng, C. Kang, and K. Oh, “Los-loss terahertz pulse transmission through commercially available porous tubes with PTFE,” Proc. SPIE 11206, 112061S (2019).

Ono, S.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43(No. 2B), L317–L319 (2004).
[Crossref]

Osório, J. H.

A. L. S. Cruz, C. M. B. Cordeiro, G. S. Rodrigues, J. H. Osório, L. E da Silva, and M. A. R. Franco, “Exploring terahertz hollow-core fiber designs manufactured by 3Dprinting,” IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC 2017), Águas de Lindoia, Brazil (2017).

Ouyang, Z.

S. F. Kaijage, Z. Ouyang, and X. Jin, “Porous-core photonic crystal fiber for low loss terahertz waveguiding,” IEEE Photonics Technol. Lett. 25(15), 1454–1457 (2013).
[Crossref]

Pada Pal, B.

A. Barh, B. Pada Pal, G. P. Agrawal, R. K. Varshney, and B. M. Azizur Rahman, “Specialty fibers for terahertz generation and transmission: a review,” IEEE J. Sel. Top. Quantum Electron. 22(2), 365–379 (2016).
[Crossref]

Pan, C.

J. Lu, C. Yu, H. Chang, H. Chen, Y. Li, C. Pan, and C. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
[Crossref]

Pan, C.-L.

Park, H.

M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, “Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers,” Opt. Express 16(1), 7–12 (2008).
[Crossref]

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634–2636 (2002).
[Crossref]

Paul, B. K.

B. K. Paul, Md. S. Islam, S. Sen, K. Ahmed, and M. S. Uddin, “Low material loss and dispersion flattened fiber for single mode THz-wave transmission applications,” Results Phys. 11, 638–642 (2018).
[Crossref]

K. Ahmed, S. Chowdhury, B. K. Paul, Md. S. Islam, S. Sen, Md. I. Islam, and S. Asaduzzaman, “Ultrahigh birefringence, ultralow material loss porous core single-mode fiber for terahertz wave guidance,” Appl. Opt. 56(12), 3477–3483 (2017).
[Crossref]

Paul Mst., B. K.

K. Ahmed, F. Ahmed, S. Roy, B. K. Paul Mst., N. Aktar, D. Vigneswaran, and Md. S. Islam, “Refractive index-based blood components sensing in terahertz spectrum,” IEEE Sens. J. 19(9), 3368–3375 (2019).
[Crossref]

Pedersen, P.

Peng, J.-L.

Peretti, R.

R. Peretti, F. Braud, E. Peytavit, E. Dubois, and J.-F. Lampin, “Broadband terahertz light–matter interaction enhancement for precise spectroscopy of thin films and micro-samples,” Photonics 5(2), 11 (2018).
[Crossref]

Peytavit, E.

R. Peretti, F. Braud, E. Peytavit, E. Dubois, and J.-F. Lampin, “Broadband terahertz light–matter interaction enhancement for precise spectroscopy of thin films and micro-samples,” Photonics 5(2), 11 (2018).
[Crossref]

Pickwell, E.

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D: Appl. Phys. 39(17), R301–R310 (2006).
[Crossref]

Pkarzadeh, H.

H. Pkarzadeh, S. M. rezaei, and L. Namroodi, “Hollow-core photonic crystal fibers for efficient terahertz transmission,” Opt. Commun. 433, 81–88 (2019).
[Crossref]

Pla, J.

Planken, P. C. M.

Plusquellic, D. F.

Pobre, R.

Poletti, F.

Poli, F.

F. Poli, A. Cucinotta, and S. Selleri, “Photonic crystal fibers properties and applications,” (Springer, 2007).

Ponseca, C. S.

Pronin, A. A.

G. M. Katyba, N. V. Chernomyrdin, I. N.. Dolganova, A. A. Pronin, I. V. Minin, O. V. Minin, K. I. Zaytsev, and V. N. Kurlov, “Step-index sapphire fiber and its application in a terahertz near-field microscopy,” Proc. SPIE 11164, 11164G (2019).
[Crossref]

Qi, P.

S. Li, Z. Dai, Z. Wang, P. Qi, Q. Su, X. Gao, C. Gong, and W. Liu, “Simple birefringent terahertz fiber based on elliptical hollow core,” Optik 176, 611–616 (2019).
[Crossref]

Qu, H.

Quema, A.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43(No. 2B), L317–L319 (2004).
[Crossref]

R.-Rubioc, L.

E. Arrospide, G. Durana, M. Azkune, G. Aldabaldetreku, I. Bikandi, L. R.-Rubioc, and J. Zubiab, “Polymers beyond standard optical fibres – fabrication of microstructured polymer optical fibres,” Polym. Int. 67(9), 1155–1163 (2018).
[Crossref]

Rahman, H.

M. S. Islam, M. R. Islam, M. Faisal, H. Rahman, J. Sultana, S. Rana, and M. R. Islam, “Ultra-low loss hybrid core porous fiber for broadband applications,” Appl. Opt. 56(4), 1232–1237 (2017).
[Crossref]

M. S. Islam, M. R. Islam, M. Faisal, H. Rahman, J. Sultana, and S. Rana, “Extremely low-loss, dispersion flattened porous-core photonic crystal fiber for terahertz regime,” Opt. Eng. 55(7), 076117 (2016).
[Crossref]

M. S. Islam, S. Rana, M. R. Islam, M. Faisal, H. Rahman, and J. Sultana, “Porous-core photonic crystal fiber for ultra-low material loss in terahertz regime,” IET Commun. 10(16), 2179–2183 (2016).
[Crossref]

Rakin, A. S.

S. Rana, A. S. Rakin, Md. R. Hasan, Md. S. Reza, R. Leonhardt, D. Abbott, and Harish Subbaraman, “Low loss and flat dispersion kagome photonic crystal fiber in the terahertz regime,” Opt. Commun. 410, 452–456 (2018).
[Crossref]

Rana, S.

S. Rana, A. S. Rakin, Md. R. Hasan, Md. S. Reza, R. Leonhardt, D. Abbott, and Harish Subbaraman, “Low loss and flat dispersion kagome photonic crystal fiber in the terahertz regime,” Opt. Commun. 410, 452–456 (2018).
[Crossref]

M. S. Islam, M. R. Islam, M. Faisal, H. Rahman, J. Sultana, S. Rana, and M. R. Islam, “Ultra-low loss hybrid core porous fiber for broadband applications,” Appl. Opt. 56(4), 1232–1237 (2017).
[Crossref]

Md. S. Islam, J. Sultana, J. Atai, D. Abbott, S. Rana, and M. R. Islam, “Ultra low-loss hybrid core porous fiber for broadband applications,” Appl. Opt. 56(4), 1232–1237 (2017).
[Crossref]

M. S. Islam, J. Sultana, S. Rana, M. R. Islam, M. Faisal, S. F. Kaijage, and D. Abbott, “Extremely low material loss and dispersion flattened topas based circular porous fiber for long distance terahertz wave transmission,” Opt. Fiber Technol. 34, 6–11 (2017).
[Crossref]

M. S. Islam, S. Rana, M. R. Islam, M. Faisal, H. Rahman, and J. Sultana, “Porous-core photonic crystal fiber for ultra-low material loss in terahertz regime,” IET Commun. 10(16), 2179–2183 (2016).
[Crossref]

S. Rana, M. S. Islam, M. Faisal, K. C. Roy, R. Islam, and S. F. Kaijage, “Single-mode porous fiber for low-loss polarization maintaining terahertz transmission,” Opt. Eng. 55(7), 076114 (2016).
[Crossref]

M. S. Islam, M. R. Islam, M. Faisal, H. Rahman, J. Sultana, and S. Rana, “Extremely low-loss, dispersion flattened porous-core photonic crystal fiber for terahertz regime,” Opt. Eng. 55(7), 076117 (2016).
[Crossref]

R. Islam, Md. S. Habib, G. K. M. Hasanuzzaman, R. Ahmad, S. Rana, and S. F. Kaijage, “Extremely high-birefringent asymmetric slotted-core photonic crystal fiber in THz regime,” IEEE Photonics Technol. Lett. 27(21), 2222–2225 (2015).
[Crossref]

Rasmussen, H. K.

Raymer, M. G.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref]

Razzak, S. M. A.

Rehn, A.

Ren, G.

Ren, L.

Ren, L.-y.

Reshetov, I. V.

G. M. Katyba, K. I. Zaytsev, N. V. Chernomyrdin, I. A. Shikunova, G. A. Komandin, V. B. Anzin, S. P. Lebedev, I. E. Spektor, V. E. Karasik, S. O. Yurchenko, I. V. Reshetov, V. N. Kurlov, and M. Skorobogatiy, “Sapphire photonic crystal waveguides for terahertz sensing in aggressive environments,” Adv. Opt. Mater. 6, 1800573 (2018).
[Crossref]

Reyes-Vera, E.

E. Reyes-Vera, J. Ú.restrepo, C. Jiménez-Durango, J. M.-Cardona, and N. G.-Cardona, “Design of low-loss and highly birefringent porous-core photonic crystal fiber and its application to terahertz polarization beam splitter,” IEEE Photonics J. 10(4), 1–13 (2018).
[Crossref]

Reza, Md. S.

S. Rana, A. S. Rakin, Md. R. Hasan, Md. S. Reza, R. Leonhardt, D. Abbott, and Harish Subbaraman, “Low loss and flat dispersion kagome photonic crystal fiber in the terahertz regime,” Opt. Commun. 410, 452–456 (2018).
[Crossref]

rezaei, S. M.

H. Pkarzadeh, S. M. rezaei, and L. Namroodi, “Hollow-core photonic crystal fibers for efficient terahertz transmission,” Opt. Commun. 433, 81–88 (2019).
[Crossref]

Rifat, A. A.

M. S. Islam, J. Sultana, A. A. Rifat, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Terahertz sensing in a hollow-core photonic crystal fiber,” IEEE Sens. J. 18(10), 4073–4080 (2018).
[Crossref]

Roberts, P. J.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref]

Robertson, I. D.

Y. Zhang and I. D. Robertson, “Single-mode terahertz Bragg fiber design using a modal filtering approach,” IEEE Trans. Microwave Theory Tech. 58(7), 1985–1992 (2010).
[Crossref]

Rodrigues, G. S.

A. L. S. Cruz, C. M. B. Cordeiro, G. S. Rodrigues, J. H. Osório, L. E da Silva, and M. A. R. Franco, “Exploring terahertz hollow-core fiber designs manufactured by 3Dprinting,” IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC 2017), Águas de Lindoia, Brazil (2017).

Roy, K. C.

S. Rana, M. S. Islam, M. Faisal, K. C. Roy, R. Islam, and S. F. Kaijage, “Single-mode porous fiber for low-loss polarization maintaining terahertz transmission,” Opt. Eng. 55(7), 076114 (2016).
[Crossref]

Roy, S.

K. Ahmed, F. Ahmed, S. Roy, B. K. Paul Mst., N. Aktar, D. Vigneswaran, and Md. S. Islam, “Refractive index-based blood components sensing in terahertz spectrum,” IEEE Sens. J. 19(9), 3368–3375 (2019).
[Crossref]

Rozé, M.

Rudd, J. V.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baramiuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B: Lasers Opt. 68(6), 1085–1094 (1999).
[Crossref]

Russel, P. St. J.

R. Beravat, G. K. L. Wong Michael, H. Frosz, X. M. Xi, and P. St. J. Russel, “Twist-induced guidance in coreless photonic crystal fiber: a helical channel for light,” Sci. Adv. 2(11), e1601421 (2016).
[Crossref]

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref]

Sandoghchi, S. R.

W. Talataisong, R. Ismaeel, T. H. R. Marques, S. A. Mousavi, M. Beresna, M. A. Gouveia, S. R. Sandoghchi, T. Lee, C. M. B. Cordeiro, and G. Brambilla, “Mid-IR Hollow-core microstructured fiber drawn from a 3D printed PETG preform,” Sci. Rep. 8(1), 8113 (2018).
[Crossref]

Sarukura, N.

C. S. Ponseca, R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Opt. Lett. 33(9), 902–904 (2008).
[Crossref]

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43(No. 2B), L317–L319 (2004).
[Crossref]

Schell, M.

Selleri, S.

F. Poli, A. Cucinotta, and S. Selleri, “Photonic crystal fibers properties and applications,” (Springer, 2007).

Sen, S.

B. K. Paul, Md. S. Islam, S. Sen, K. Ahmed, and M. S. Uddin, “Low material loss and dispersion flattened fiber for single mode THz-wave transmission applications,” Results Phys. 11, 638–642 (2018).
[Crossref]

K. Ahmed, S. Chowdhury, B. K. Paul, Md. S. Islam, S. Sen, Md. I. Islam, and S. Asaduzzaman, “Ultrahigh birefringence, ultralow material loss porous core single-mode fiber for terahertz wave guidance,” Appl. Opt. 56(12), 3477–3483 (2017).
[Crossref]

Serrao, V. A.

A. L. S. Cruz, V. A. Serrao, C. L. Barbosa, C. M. B. Cordeiro, A. Argyros, X. Tang, and M. A. R. Franco, “3D Printed hollow-core fiber with negative curvature for terahertz applications,” J. Microw. Optoelectron. Electromagn. Appl. 14, 45–53 (2015).

Setti, V.

V. Setti, L. Vincetti, and A. Argyros, “Flexible tube lattice fibers for terahertz applications,” Opt. Express 21(3), 3388–3399 (2013).
[Crossref]

L. Vicentti and V. Setti, “Elliptical hollow core tube lattice fibers for terahertz applications,” Opt. Fiber Technol. 19(1), 31–34 (2013).
[Crossref]

L. Vincetti and V. Setti, “Elliptical hollow-core tube lattice for terahertz applications,” Opt. Fiber Technol. 19(1), 31–34 (2013).
[Crossref]

L. Vicentti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18(22), 23133–23146 (2010).
[Crossref]

Shahraam, A. V.

S. Atakaramians, A. V. Shahraam, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photonics 5(2), 169–215 (2013).
[Crossref]

Sheng, X.

S. Yang, X. Sheng, G. Zhao, S. Lou, and J. Guo, “Anti-deformation low loss double pentagon nested terahertz hollow core fiber,” Opt. Fiber Technol. 56, 102199 (2020).
[Crossref]

S. Yang, X. Sheng, G. Zhao, Y. Wang, and Y. Yu, “Novel pentagram THz hollow-core anti-resonant fiber using a 3D printer,” J. Infrared, Millimeter, Terahertz Waves 40(7), 720–730 (2019).
[Crossref]

S. Yang, X. Sheng, G. Zhao, and S. Li, “Simple birefringent terahertz fiber based on elliptical hollow core,” Opt. Fiber Technol. 53, 102064 (2019).
[Crossref]

Shi, Y.

Shi, Y.-W.

Shi, Z.

Z. Shi, L. Song, and T. Zhang, “Optical and electrical characterization of pure PMMA for terahertz wide-band metamaterial absorbers,” J. Infrared, Millimeter, Terahertz Waves 40(1), 80–91 (2019).
[Crossref]

Shi-Hua, M.

C. Hua, M. Shi-Hua, Y. W.-Xing, W. X.-Mei, and W. X.-Zhou, “The diagnosis of human liver cancer by using THz fiber-scanning near-field imaging,” Chin. Phys. Lett. 30(3), 030702 (2013).
[Crossref]

Shikunova, I. A.

G. M. Katyba, K. I. Zaytsev, N. V. Chernomyrdin, I. A. Shikunova, G. A. Komandin, V. B. Anzin, S. P. Lebedev, I. E. Spektor, V. E. Karasik, S. O. Yurchenko, I. V. Reshetov, V. N. Kurlov, and M. Skorobogatiy, “Sapphire photonic crystal waveguides for terahertz sensing in aggressive environments,” Adv. Opt. Mater. 6, 1800573 (2018).
[Crossref]

Shilov, A. V.

M. M. Nazarov, A. V. Shilov, K. A. bzheumikhov, Z. C. Margushev, V. I. Sokolov, A. B. Sotsky, and A. P. Shkurinov, “Eight-capillary cladding THz waveguide with low propagation losses and dispersion,” IEEE Trans. Terahertz Sci. Technol. 8(2), 183–191 (2018).
[Crossref]

Shkurinov, A. P.

M. M. Nazarov, A. V. Shilov, K. A. bzheumikhov, Z. C. Margushev, V. I. Sokolov, A. B. Sotsky, and A. P. Shkurinov, “Eight-capillary cladding THz waveguide with low propagation losses and dispersion,” IEEE Trans. Terahertz Sci. Technol. 8(2), 183–191 (2018).
[Crossref]

E. V. Fedulova, M. M. Nazarov, A. A. Angeluts, M. S. Kitai, V. I. Sokolov, and A. P. Shkurinov, “Studying of dielectric properties of polymers in the terahertz frequency range,” Proc. SPIE 8337, 83370I (2012).
[Crossref]

Siegel, P. H.

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microwave Theory Tech. 52(10), 2438–2447 (2004).
[Crossref]

Skorobogativ, M.

Skorobogatiy, M.

G. M. Katyba, K. I. Zaytsev, N. V. Chernomyrdin, I. A. Shikunova, G. A. Komandin, V. B. Anzin, S. P. Lebedev, I. E. Spektor, V. E. Karasik, S. O. Yurchenko, I. V. Reshetov, V. N. Kurlov, and M. Skorobogatiy, “Sapphire photonic crystal waveguides for terahertz sensing in aggressive environments,” Adv. Opt. Mater. 6, 1800573 (2018).
[Crossref]

J. Li, K. Nallappan, H. Guerboukha, and M. Skorobogatiy, “3D printed hollow-core terahertz Bragg waveguides with defect layers for surface sensing applications,” Opt. Express 25(4), 4126–4144 (2017).
[Crossref]

J. Li, K. Nallappan, H. Guerboukha, and M. Skorobogatiy, “3D printed hollow core terahertz Bragg waveguides with defect layers for surface sensing applications,” Opt. Express 25(4), 4126–4144 (2017).
[Crossref]

T. Ma, K. Nallapan, H. Guerboukha, and M. Skorobogatiy, “Analog signal processing in the terahertz communication links using waveguide Bragg gratings: example of dispersion compensation,” Opt. Express 25(10), 11009–11026 (2017).
[Crossref]

A. Markov, H. Guerboukha, and M. Skorobogatiy, “Hybrid metal wire-dielectric terahertz waveguides: challenges and opportunities,” J. Opt. Soc. Am. B 31(11), 2587–2600 (2014).
[Crossref]

A. Markov and M. Skorobogatiy, “Two-wire terahertz fibers with porous dielectric support,” Opt. Express 21(10), 12728–12743 (2013).
[Crossref]

G. Yan, A. Markov, Y. Chinifooroshan, S. M. Tripathi, W. J. Bock, and M. Skorobogatiy, “Resonant THz sensor for paper quality monitoring using THz fiber Bragg gratings,” Opt. Lett. 38(13), 2200–2202 (2013).
[Crossref]

A. Dupuis, K. Stoeffer, B. Ung, C. Dubois, and M. Skorobogatiy, “Transmission measurements of hollow-core terahertz Bragg fibers,” J. Opt. Soc. Am. B 28(4), 896–907 (2011).
[Crossref]

M. Rozé, B. Ung, A. Mazhorova, M. Walther, and M. Skorobogatiy, “Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance,” Opt. Express 19(10), 9127–9138 (2011).
[Crossref]

A. Depuis, A. Mazhorova, F. Désévédavy, M. Rozé, and M. Skorobogatiy, “Spectral characterization of porous dielectric subwavelength THz fibers fabricated using a microstructured molding technique,” Opt. Express 18(13), 13813–13827 (2010).
[Crossref]

A. Dupuis, J.-F. Allard, D. Morris, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method,” Opt. Express 17(10), 8012–8028 (2009).
[Crossref]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss terahertz guiding,” Opt. Express 16(9), 6340–6351 (2008).
[Crossref]

A. Hassani and M. Skorobogatiy, “Surface Plasmon Resonance-like integrated sensor at terahertz frequencies for gaseous analytes,” Opt. Express 16(25), 20206–20214 (2008).
[Crossref]

A. Markov, S. Gorgutsa, H. Qu, and M. Skorobogatiy, “Practical metal-wire THz waveguides,” arXiv:1206.2984, 2012.

Sokolov, V. I.

M. M. Nazarov, A. V. Shilov, K. A. bzheumikhov, Z. C. Margushev, V. I. Sokolov, A. B. Sotsky, and A. P. Shkurinov, “Eight-capillary cladding THz waveguide with low propagation losses and dispersion,” IEEE Trans. Terahertz Sci. Technol. 8(2), 183–191 (2018).
[Crossref]

E. V. Fedulova, M. M. Nazarov, A. A. Angeluts, M. S. Kitai, V. I. Sokolov, and A. P. Shkurinov, “Studying of dielectric properties of polymers in the terahertz frequency range,” Proc. SPIE 8337, 83370I (2012).
[Crossref]

Song, L.

Z. Shi, L. Song, and T. Zhang, “Optical and electrical characterization of pure PMMA for terahertz wide-band metamaterial absorbers,” J. Infrared, Millimeter, Terahertz Waves 40(1), 80–91 (2019).
[Crossref]

Sotsky, A. B.

M. M. Nazarov, A. V. Shilov, K. A. bzheumikhov, Z. C. Margushev, V. I. Sokolov, A. B. Sotsky, and A. P. Shkurinov, “Eight-capillary cladding THz waveguide with low propagation losses and dispersion,” IEEE Trans. Terahertz Sci. Technol. 8(2), 183–191 (2018).
[Crossref]

Spektor, I. E.

G. M. Katyba, K. I. Zaytsev, N. V. Chernomyrdin, I. A. Shikunova, G. A. Komandin, V. B. Anzin, S. P. Lebedev, I. E. Spektor, V. E. Karasik, S. O. Yurchenko, I. V. Reshetov, V. N. Kurlov, and M. Skorobogatiy, “Sapphire photonic crystal waveguides for terahertz sensing in aggressive environments,” Adv. Opt. Mater. 6, 1800573 (2018).
[Crossref]

St. J. Russel, P.

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russel, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[Crossref]

St. Russel, P.

P. St. Russel, R. Beravat, and G. K. L. Wong, “Helically twisted photonic crystal fibres,” Philos. Trans. R. Soc., A 375(2087), 20150440 (2017).
[Crossref]

Stefani, A.

A. Stefani, S. C. Fleming, and B. T. Kuhlmey, “Terahertz orbital angular momentum modes with flexible twisted hollow-core anti-resonant fiber,” APL Photonics 3(5), 051708 (2018).
[Crossref]

Stoeffer, K.

Stoeffler, K.

Su, Q.

S. Li, Z. Dai, Z. Wang, P. Qi, Q. Su, X. Gao, C. Gong, and W. Liu, “Simple birefringent terahertz fiber based on elliptical hollow core,” Optik 176, 611–616 (2019).
[Crossref]

Su Li, Z.

Subbaraman, Harish

S. Rana, A. S. Rakin, Md. R. Hasan, Md. S. Reza, R. Leonhardt, D. Abbott, and Harish Subbaraman, “Low loss and flat dispersion kagome photonic crystal fiber in the terahertz regime,” Opt. Commun. 410, 452–456 (2018).
[Crossref]

Sultana, J.

J. Sultana, M. S. Islam, C. M. B. Cordeiro, A. Dinovitser, M. Koushik, B. W.-H. Ng, and D. Abbott, “Terahertz hollow core antiresonant fiber with metamaterial cladding,” Fibers 8(2), 14–00 (2020).
[Crossref]

M. S. Islam, J. Sultana, M. Biabanifard, M. J. Nine, Z. Vafapour, C. M. B. Cordeiro, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Tunable localized surface plasmon graphene metasurface for multiband superabsorption and terahertz sensing,” Carbon 158, 559–567 (2020).
[Crossref]

J. Sultana, M. R. Islam, M. Faisal, and Md. K. Abu Talha, “Design and analysis of a Zeonex based diamond-shaped core kagome lattice photonic crystal fiber for T-ray wave transmission,” Opt. Fiber Technol. 47, 55–60 (2019).
[Crossref]

M. S. Islam, J. Sultana, K. Ahmed, A. Dinovitser, M. R. Islam, B. W.-H. Ng, and D. Abbott, “A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime,” IEEE Sens. J. 18(2), 575–582 (2018).
[Crossref]

M. S. Islam, J. Sultana, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “A modified hexagonal photonic crystal fiber for terahertz applications,” Opt. Mater. 79, 336–339 (2018).
[Crossref]

M. S. Islam, J. Sultana, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “A novel Zeonex based oligoporous-core photonic crystal fiber for polarization preserving terahertz applications,” Opt. Commun. 413(15), 242–248 (2018).
[Crossref]

M. S. Islam, J. Sultana, A. A. Rifat, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Terahertz sensing in a hollow-core photonic crystal fiber,” IEEE Sens. J. 18(10), 4073–4080 (2018).
[Crossref]

J. Sultana, M. S. Islam, and D. Abbott, “High numerical aperture, highly birefringent novel photonic crystal fibre for medical imaging applications,” Electron. Lett. 54(2), 61–62 (2018).
[Crossref]

J. Sultana, Md. S. Islam, K. Ahmed, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Terahertz detection of alcohol using a photonic crystal fiber sensor,” Appl. Opt. 57(10), 2426–2433 (2018).
[Crossref]

Md. S. Islam, J. Sultana, A. Dinovitser, M. Faisal, M. R. Islam, B. W.-H. Ng, and D. Abbott, “Zeonex-based asymmetrical terahertz photonic crystal fiber for multichannel communication and polarization maintaining applications,” Appl. Opt. 57(4), 666–672 (2018).
[Crossref]

M. S. Islam, J. Sultana, A. Dinovitser, B. W.-H. Ng, and D. Abbot, “Zeonex based asymmetrical terahertz photonic crystal fiber for multichannel communication and polarization maintaining applications,” Appl. Opt. 57(4), 666–672 (2018).
[Crossref]

J. Sultana, Md. S. Islam, M. Faisal, M. R. Islam, B. W. -H. Ng, H. E. Heidepriem, and D. Abbot, “Highly birefringent elliptical core photonic crystal fiber for terahertz application,” Opt. Commun. 407, 92–96 (2018).
[Crossref]

Md. S. Islam, J. Sultana, J. Atai, M. R. Islam, and D. Abbott, “Design and characterization of a low-loss, dispersion-flattened photonic crystal fiber for T-Ray wave propagation,” Optik 145, 398–406 (2017).
[Crossref]

M. S. Islam, M. R. Islam, M. Faisal, H. Rahman, J. Sultana, S. Rana, and M. R. Islam, “Ultra-low loss hybrid core porous fiber for broadband applications,” Appl. Opt. 56(4), 1232–1237 (2017).
[Crossref]

Md. S. Islam, J. Sultana, J. Atai, D. Abbott, S. Rana, and M. R. Islam, “Ultra low-loss hybrid core porous fiber for broadband applications,” Appl. Opt. 56(4), 1232–1237 (2017).
[Crossref]

M. S. Islam, J. Sultana, S. Rana, M. R. Islam, M. Faisal, S. F. Kaijage, and D. Abbott, “Extremely low material loss and dispersion flattened topas based circular porous fiber for long distance terahertz wave transmission,” Opt. Fiber Technol. 34, 6–11 (2017).
[Crossref]

M. S. Islam, S. Rana, M. R. Islam, M. Faisal, H. Rahman, and J. Sultana, “Porous-core photonic crystal fiber for ultra-low material loss in terahertz regime,” IET Commun. 10(16), 2179–2183 (2016).
[Crossref]

M. S. Islam, M. R. Islam, M. Faisal, H. Rahman, J. Sultana, and S. Rana, “Extremely low-loss, dispersion flattened porous-core photonic crystal fiber for terahertz regime,” Opt. Eng. 55(7), 076117 (2016).
[Crossref]

J. Sultana, M. S. Islam, C. M. B. Cordeiro, A. L. S. Cruz, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Novel hollow-core anti-resonant terahertz fiber with metamaterial cladding,” 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-terahertz), 2019. DOI: 10.1109/IRMMW-THz.2019.8873836.

M. S. Islam, J. Sultana, C. M. B. Cordeiro, M. J.Nine, A. L. S. Cruz, A. Dinovitser, B. W.-H. Ng, H. E. Heidepriem, D. Losic, and D. Abbott, “Experimental study on glass and polymers: Determining the optimal material for potential use in terahertz technology,” IEEE Access, (Revised version submitted).

J. Sultana, M. S. Islam, C. M. B. Cordeiro, A. L. S. Cruz, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Five-Capillary Cladding Terahertz Fiber with Low Loss and Single Mode,” 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-terahertz), 2019. DOI: 10.1109/IRMMW-THz.2019.8874476.

M. S. Islam, J. Sultana, C. M. B. Cordeiro, A. L. S. Cruz, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Broadband characterization of glass and polymer materials using THz-TDS,” 44th Int. Conf. on Inf. Mil. and Ter. Waves (IRMMW-THz), DOI: 10.1109/IRMMW-THz.2019.8874013.

M. S. Islam, J. Sultana, M. Biabanifard, M. J. Nine, Z. Vafapour, C. M. B. Cordeiro, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Electrically tunable graphene metasurface for multiband superabsorption and terahertz sensing,” 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-terahertz), 2019, (doi: 10.1109/IRMMW-terahertz.2019.8873851).

Sun, B.-S.

Sun, C.

J. Lu, C. Yu, H. Chang, H. Chen, Y. Li, C. Pan, and C. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
[Crossref]

Sun, C. K.

Sun, C.-K.

Sun, L.

T.Kuhlmey, B.

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T.Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4(1), 2706 (2013).
[Crossref]

Takahashi, H.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43(No. 2B), L317–L319 (2004).
[Crossref]

Takeda, E.

Talataisong, W.

W. Talataisong, R. Ismaeel, T. H. R. Marques, S. A. Mousavi, M. Beresna, M. A. Gouveia, S. R. Sandoghchi, T. Lee, C. M. B. Cordeiro, and G. Brambilla, “Mid-IR Hollow-core microstructured fiber drawn from a 3D printed PETG preform,” Sci. Rep. 8(1), 8113 (2018).
[Crossref]

W. Talataisong, R. Ismaeel, M. Beresna, and G. Brambilla, “Suspended-core microstructured polymer optical fibers and potential applications in sensing,” Appl. Phys. Lett. 80(15), 2634–2636 (2002).
[Crossref]

Tam, H.-Y.

Z. Liu and H.-Y. Tam, “Fabrication and sensing applications of special microstructured optical fibers,” Sel. Top. on Opt. Fib. Tech. and Appl. vol. 2017. doi:10.5772/intechopen.70755

Tamura, K.

Tang, X.

H. Li, S. Atakaramians, R. Lwin, X. Tang, Z. Yu, A. Argyros, and B. T. Kuhlme, “Flexible single-mode hollow-core terahertz fiber with metamaterial cladding,” Optica 3(9), 941–947 (2016).
[Crossref]

X. tang, Z. Yu, X. Tu, J. Chen, A. Argyros, B. T. Kuhlmey, and Y. Shi, “Elliptical metallic hollow fiber inner-coated with non-uniform dielectric layer,” Opt. Express 23(17), 22587–22601 (2015).
[Crossref]

A. L. S. Cruz, V. A. Serrao, C. L. Barbosa, C. M. B. Cordeiro, A. Argyros, X. Tang, and M. A. R. Franco, “3D Printed hollow-core fiber with negative curvature for terahertz applications,” J. Microw. Optoelectron. Electromagn. Appl. 14, 45–53 (2015).

A. L. S. Cruz, A. Argyros, X. Tang, C. M. B. Cordeiro, and M. A. R. Franco, “3D-Printed Terahertz Bragg Fiber,” 40th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW 2015), Hong Kong, Aug 2015.

Tang, X.-L.

Tian, F.

Tian, H.

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Tripathi, S. M.

Tsai, Y.-F.

Tseng, T.-F.

Tsydynzhapov, G. E.

G. E. Tsydynzhapov, P. A. Gusikhin, V. M. Muravev, I. V. Andreev, and I. V. Kukushkin, “New terahertz security body scanner,” 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-terahertz), 2018, (doi: 10.1109/IRMMW-terahertz.2018.8510513).

Tu, X.

Tuniz, A.

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T.Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4(1), 2706 (2013).
[Crossref]

A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fabricating metamaterials using the fiber drawing method,” J. Visualized Exp. 68, e4299 (2012).
[Crossref]

Ú.restrepo, J.

E. Reyes-Vera, J. Ú.restrepo, C. Jiménez-Durango, J. M.-Cardona, and N. G.-Cardona, “Design of low-loss and highly birefringent porous-core photonic crystal fiber and its application to terahertz polarization beam splitter,” IEEE Photonics J. 10(4), 1–13 (2018).
[Crossref]

Uddin, M. S.

B. K. Paul, Md. S. Islam, S. Sen, K. Ahmed, and M. S. Uddin, “Low material loss and dispersion flattened fiber for single mode THz-wave transmission applications,” Results Phys. 11, 638–642 (2018).
[Crossref]

Ulm, D.

R. Guo Eva-Maria Stuebling, F. Beltran-Mejua, D. Ulm, T. Kleine-Ostmann, F. Ehrig, and M. Koch, “3D printed terahertz rectangular waveguides of polystyrene and TOPAS: a comparison,” J. Infrared, Millimeter, Terahertz Waves 40(1), 1–4 (2019).
[Crossref]

Ung, B.

Uthman, M.

Vafapour, Z.

M. S. Islam, J. Sultana, M. Biabanifard, M. J. Nine, Z. Vafapour, C. M. B. Cordeiro, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Tunable localized surface plasmon graphene metasurface for multiband superabsorption and terahertz sensing,” Carbon 158, 559–567 (2020).
[Crossref]

M. S. Islam, J. Sultana, M. Biabanifard, M. J. Nine, Z. Vafapour, C. M. B. Cordeiro, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Electrically tunable graphene metasurface for multiband superabsorption and terahertz sensing,” 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-terahertz), 2019, (doi: 10.1109/IRMMW-terahertz.2019.8873851).

van Eijkelenborg, M. A.

C. S. Ponseca, R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Opt. Lett. 33(9), 902–904 (2008).
[Crossref]

G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Opt. Fiber Technol. 10(4), 325–335 (2004).
[Crossref]

Van Putten, L. D.

Varshney, R. K.

A. Barh, B. Pada Pal, G. P. Agrawal, R. K. Varshney, and B. M. Azizur Rahman, “Specialty fibers for terahertz generation and transmission: a review,” IEEE J. Sel. Top. Quantum Electron. 22(2), 365–379 (2016).
[Crossref]

Vicentti, L.

L. Vicentti and V. Setti, “Elliptical hollow core tube lattice fibers for terahertz applications,” Opt. Fiber Technol. 19(1), 31–34 (2013).
[Crossref]

L. Vicentti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18(22), 23133–23146 (2010).
[Crossref]

L. Vicentti, “Hollow core photonic band gap fiber for THz applications,” Microw. Opt. Technol. Lett. 51(7), 1711–1714 (2009).
[Crossref]

L. Vicentti, “Hollow-core photonic band gap fiber for terahertz applications,” Microw. Opt. Technol. Lett. 51(7), 1711–1714 (2009).
[Crossref]

Vigneswaran, D.

K. Ahmed, F. Ahmed, S. Roy, B. K. Paul Mst., N. Aktar, D. Vigneswaran, and Md. S. Islam, “Refractive index-based blood components sensing in terahertz spectrum,” IEEE Sens. J. 19(9), 3368–3375 (2019).
[Crossref]

Vincentti, L.

L. Vincentti, “Numericl analysis of plastic hollow core microstructure fiber for terahertz applications,” Opt. Fiber Technol. 15(4), 398–401 (2009).
[Crossref]

Vincetti, L.

V. Setti, L. Vincetti, and A. Argyros, “Flexible tube lattice fibers for terahertz applications,” Opt. Express 21(3), 3388–3399 (2013).
[Crossref]

L. Vincetti and V. Setti, “Elliptical hollow-core tube lattice for terahertz applications,” Opt. Fiber Technol. 19(1), 31–34 (2013).
[Crossref]

W.-Xing, Y.

C. Hua, M. Shi-Hua, Y. W.-Xing, W. X.-Mei, and W. X.-Zhou, “The diagnosis of human liver cancer by using THz fiber-scanning near-field imaging,” Chin. Phys. Lett. 30(3), 030702 (2013).
[Crossref]

Wallace, V. P.

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D: Appl. Phys. 39(17), R301–R310 (2006).
[Crossref]

Walther, M.

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T.Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4(1), 2706 (2013).
[Crossref]

M. Rozé, B. Ung, A. Mazhorova, M. Walther, and M. Skorobogatiy, “Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance,” Opt. Express 19(10), 9127–9138 (2011).
[Crossref]

Wang, D.-D.

D.-D. Wang, C.-L. Mu, D.-P. Kong, and C.-Y. Guo, “High birefringence, low loss, and flattened dispersion photonic crystal fiber for terahertz application,” Chin. Phys. B 28(11), 118701 (2019).
[Crossref]

Wang, H.

Y.-F. Zhu, M.-Y. Chen, H. Wang, H.-B. Yao, Y.-K. Zhang, and J.-C. Yang, “Design and analysis of a low-loss suspended core terahertz fiber and its application to polarization splitter,” IEEE Photonics J. 5(6), 7101410 (2013).
[Crossref]

Wang, K.

K. Wang and D. Mittleman, “Metal wires for terahertz guiding,” Nature 432(7015), 376–379 (2004).
[Crossref]

Wang, L.

S. Mei, D. Kong, L. Wang, T. Ma, Y. Zhu, X. Zhang, Z. He, X. Huang, and Y. Zhang, “Suspended graded-index porous core POF for ultra-flat near-zero dispersion terahertz transmission,” Opt. Fiber Technol. 52, 101946 (2019).
[Crossref]

Y. Zhang, K. Li, L. Wang, L. Ren, W. Zhao, and R. Miao, “Casting preforms for microstructured polymer optical fibre fabrication,” Opt. Express 14(12), 5541–5547 (2006).
[Crossref]

Wang, X.

S. Yan, S. Lou, X. Wang, T. Zhao, and W. Zhang, “High-birefringence hollow-core anti-resonant THz fiber,” Opt. Quantum Electron. 50(3), 162 (2018).
[Crossref]

Wang, Y.

S. Yang, X. Sheng, G. Zhao, Y. Wang, and Y. Yu, “Novel pentagram THz hollow-core anti-resonant fiber using a 3D printer,” J. Infrared, Millimeter, Terahertz Waves 40(7), 720–730 (2019).
[Crossref]

Wang, Z.

S. Li, Z. Dai, Z. Wang, P. Qi, Q. Su, X. Gao, C. Gong, and W. Liu, “Simple birefringent terahertz fiber based on elliptical hollow core,” Optik 176, 611–616 (2019).
[Crossref]

Wei, C.

C. Wei, R. Joseph Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

Wei, L.

L. Yu, L. Hao, T. Meiqiong, H. Jiaoqi, L. Wei, D. Jinying, C. Xueping, F. Weiling, and Z. Yang, “The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges,” RSC Adv. 9(17), 9354–9363 (2019).
[Crossref]

Wei, T.

Z. Chen, L. Yuan, G. Hefferman, and T. Wei, “Terahertz fiber bragg grating for distributed sensing,” IEEE Photonics Technol. Lett. 27(10), 1084–1087 (2015).
[Crossref]

G. Hefferman, Z. Chen, L. Yuan, and T. Wei, “Phase-shifted terahertz fiber bragg grating for strain sensing with large dynamic range,” IEEE Photonics Technol. Lett. 27(15), 1649–1652 (2015).
[Crossref]

Weiling, F.

L. Yu, L. Hao, T. Meiqiong, H. Jiaoqi, L. Wei, D. Jinying, C. Xueping, F. Weiling, and Z. Yang, “The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges,” RSC Adv. 9(17), 9354–9363 (2019).
[Crossref]

Williams, B. S.

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
[Crossref]

Withayachumnankul, W.

H. Lin, W. Withayachumnankul, B. M. Fischer, S. P. Mickan, and D. Abbott, “Gas recognition with terahertz time-domain spectroscopy and spectral catalog: a preliminary study,” Proc. SPIE 6840, 68400X (2007).
[Crossref]

Wong, G. K. L.

P. St. Russel, R. Beravat, and G. K. L. Wong, “Helically twisted photonic crystal fibres,” Philos. Trans. R. Soc., A 375(2087), 20150440 (2017).
[Crossref]

Wong Michael, G. K. L.

R. Beravat, G. K. L. Wong Michael, H. Frosz, X. M. Xi, and P. St. J. Russel, “Twist-induced guidance in coreless photonic crystal fiber: a helical channel for light,” Sci. Adv. 2(11), e1601421 (2016).
[Crossref]

Wu, B.

H. Xiao, H. Li, B. Wu, and S. Jian, “Polarization-maintaining terahertz bandgap fiber with a quasi-elliptical hollow-core,” Opt. Laser Technol. 105, 276–280 (2018).
[Crossref]

Wu, Z.

X.-Mei, W.

C. Hua, M. Shi-Hua, Y. W.-Xing, W. X.-Mei, and W. X.-Zhou, “The diagnosis of human liver cancer by using THz fiber-scanning near-field imaging,” Chin. Phys. Lett. 30(3), 030702 (2013).
[Crossref]

X.-Zhou, W.

C. Hua, M. Shi-Hua, Y. W.-Xing, W. X.-Mei, and W. X.-Zhou, “The diagnosis of human liver cancer by using THz fiber-scanning near-field imaging,” Chin. Phys. Lett. 30(3), 030702 (2013).
[Crossref]

Xi, X. M.

R. Beravat, G. K. L. Wong Michael, H. Frosz, X. M. Xi, and P. St. J. Russel, “Twist-induced guidance in coreless photonic crystal fiber: a helical channel for light,” Sci. Adv. 2(11), e1601421 (2016).
[Crossref]

Xiao, H.

H. Xiao, H. Li, B. Wu, and S. Jian, “Polarization-maintaining terahertz bandgap fiber with a quasi-elliptical hollow-core,” Opt. Laser Technol. 105, 276–280 (2018).
[Crossref]

Xin, H.

Xueping, C.

L. Yu, L. Hao, T. Meiqiong, H. Jiaoqi, L. Wei, D. Jinying, C. Xueping, F. Weiling, and Z. Yang, “The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges,” RSC Adv. 9(17), 9354–9363 (2019).
[Crossref]

Yan, G.

Yan, S.

S. Yan, S. Lou, X. Wang, T. Zhao, and W. Zhang, “High-birefringence hollow-core anti-resonant THz fiber,” Opt. Quantum Electron. 50(3), 162 (2018).
[Crossref]

Yang, J.

Yang, J.-C.

Y.-F. Zhu, M.-Y. Chen, H. Wang, H.-B. Yao, Y.-K. Zhang, and J.-C. Yang, “Design and analysis of a low-loss suspended core terahertz fiber and its application to polarization splitter,” IEEE Photonics J. 5(6), 7101410 (2013).
[Crossref]

Yang, S.

S. Yang, X. Sheng, G. Zhao, S. Lou, and J. Guo, “Anti-deformation low loss double pentagon nested terahertz hollow core fiber,” Opt. Fiber Technol. 56, 102199 (2020).
[Crossref]

S. Yang, X. Sheng, G. Zhao, Y. Wang, and Y. Yu, “Novel pentagram THz hollow-core anti-resonant fiber using a 3D printer,” J. Infrared, Millimeter, Terahertz Waves 40(7), 720–730 (2019).
[Crossref]

S. Yang, X. Sheng, G. Zhao, and S. Li, “Simple birefringent terahertz fiber based on elliptical hollow core,” Opt. Fiber Technol. 53, 102064 (2019).
[Crossref]

Yang, T.

Yang, Z.

L. Yu, L. Hao, T. Meiqiong, H. Jiaoqi, L. Wei, D. Jinying, C. Xueping, F. Weiling, and Z. Yang, “The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges,” RSC Adv. 9(17), 9354–9363 (2019).
[Crossref]

Yao, H.-B.

Y.-F. Zhu, M.-Y. Chen, H. Wang, H.-B. Yao, Y.-K. Zhang, and J.-C. Yang, “Design and analysis of a low-loss suspended core terahertz fiber and its application to polarization splitter,” IEEE Photonics J. 5(6), 7101410 (2013).
[Crossref]

You, B.

You, C.-P.

Yu, C.

J. Lu, C. Yu, H. Chang, H. Chen, Y. Li, C. Pan, and C. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
[Crossref]

Yu, C.-P.

Yu, F.

F. Yu and J. C. Knight, “Negative curvature hollow-core optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 146–155 (2016).
[Crossref]

Yu, L.

L. Yu, L. Hao, T. Meiqiong, H. Jiaoqi, L. Wei, D. Jinying, C. Xueping, F. Weiling, and Z. Yang, “The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges,” RSC Adv. 9(17), 9354–9363 (2019).
[Crossref]

Yu, Y.

S. Yang, X. Sheng, G. Zhao, Y. Wang, and Y. Yu, “Novel pentagram THz hollow-core anti-resonant fiber using a 3D printer,” J. Infrared, Millimeter, Terahertz Waves 40(7), 720–730 (2019).
[Crossref]

Yu, Z.

Yuan, L.

G. Hefferman, Z. Chen, L. Yuan, and T. Wei, “Phase-shifted terahertz fiber bragg grating for strain sensing with large dynamic range,” IEEE Photonics Technol. Lett. 27(15), 1649–1652 (2015).
[Crossref]

Z. Chen, L. Yuan, G. Hefferman, and T. Wei, “Terahertz fiber bragg grating for distributed sensing,” IEEE Photonics Technol. Lett. 27(10), 1084–1087 (2015).
[Crossref]

Yudasari, N.

Yurchenko, S. O.

G. M. Katyba, K. I. Zaytsev, N. V. Chernomyrdin, I. A. Shikunova, G. A. Komandin, V. B. Anzin, S. P. Lebedev, I. E. Spektor, V. E. Karasik, S. O. Yurchenko, I. V. Reshetov, V. N. Kurlov, and M. Skorobogatiy, “Sapphire photonic crystal waveguides for terahertz sensing in aggressive environments,” Adv. Opt. Mater. 6, 1800573 (2018).
[Crossref]

Zagari, J.

G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Opt. Fiber Technol. 10(4), 325–335 (2004).
[Crossref]

Zaytsev, K. I.

G. M. Katyba, N. V. Chernomyrdin, I. N.. Dolganova, A. A. Pronin, I. V. Minin, O. V. Minin, K. I. Zaytsev, and V. N. Kurlov, “Step-index sapphire fiber and its application in a terahertz near-field microscopy,” Proc. SPIE 11164, 11164G (2019).
[Crossref]

G. M. Katyba, K. I. Zaytsev, N. V. Chernomyrdin, I. A. Shikunova, G. A. Komandin, V. B. Anzin, S. P. Lebedev, I. E. Spektor, V. E. Karasik, S. O. Yurchenko, I. V. Reshetov, V. N. Kurlov, and M. Skorobogatiy, “Sapphire photonic crystal waveguides for terahertz sensing in aggressive environments,” Adv. Opt. Mater. 6, 1800573 (2018).
[Crossref]

Zeng, X.

Zhang, T.

Z. Shi, L. Song, and T. Zhang, “Optical and electrical characterization of pure PMMA for terahertz wide-band metamaterial absorbers,” J. Infrared, Millimeter, Terahertz Waves 40(1), 80–91 (2019).
[Crossref]

Zhang, W.

S. Yan, S. Lou, X. Wang, T. Zhao, and W. Zhang, “High-birefringence hollow-core anti-resonant THz fiber,” Opt. Quantum Electron. 50(3), 162 (2018).
[Crossref]

Zhang, X.

S. Mei, D. Kong, L. Wang, T. Ma, Y. Zhu, X. Zhang, Z. He, X. Huang, and Y. Zhang, “Suspended graded-index porous core POF for ultra-flat near-zero dispersion terahertz transmission,” Opt. Fiber Technol. 52, 101946 (2019).
[Crossref]

Zhang, X.-C.

D. Abbott and X.-C. Zhang, “T-ray imaging, sensing, and retection,” Proc. IEEE 95(8), 1509–1513 (2007).
[Crossref]

Zhang, Y.

S. Mei, D. Kong, L. Wang, T. Ma, Y. Zhu, X. Zhang, Z. He, X. Huang, and Y. Zhang, “Suspended graded-index porous core POF for ultra-flat near-zero dispersion terahertz transmission,” Opt. Fiber Technol. 52, 101946 (2019).
[Crossref]

Y. Zhang and I. D. Robertson, “Single-mode terahertz Bragg fiber design using a modal filtering approach,” IEEE Trans. Microwave Theory Tech. 58(7), 1985–1992 (2010).
[Crossref]

Y. Zhang, K. Li, L. Wang, L. Ren, W. Zhao, and R. Miao, “Casting preforms for microstructured polymer optical fibre fabrication,” Opt. Express 14(12), 5541–5547 (2006).
[Crossref]

Zhang, Y.-K.

Y.-F. Zhu, M.-Y. Chen, H. Wang, H.-B. Yao, Y.-K. Zhang, and J.-C. Yang, “Design and analysis of a low-loss suspended core terahertz fiber and its application to polarization splitter,” IEEE Photonics J. 5(6), 7101410 (2013).
[Crossref]

Zhangm, J.

T.-In Jeon, J. Zhangm, and D. Grischkowsky, “Terahertz sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005).
[Crossref]

Zhao, G.

S. Yang, X. Sheng, G. Zhao, S. Lou, and J. Guo, “Anti-deformation low loss double pentagon nested terahertz hollow core fiber,” Opt. Fiber Technol. 56, 102199 (2020).
[Crossref]

S. Yang, X. Sheng, G. Zhao, Y. Wang, and Y. Yu, “Novel pentagram THz hollow-core anti-resonant fiber using a 3D printer,” J. Infrared, Millimeter, Terahertz Waves 40(7), 720–730 (2019).
[Crossref]

S. Yang, X. Sheng, G. Zhao, and S. Li, “Simple birefringent terahertz fiber based on elliptical hollow core,” Opt. Fiber Technol. 53, 102064 (2019).
[Crossref]

Zhao, J.

Zhao, T.

S. Yan, S. Lou, X. Wang, T. Zhao, and W. Zhang, “High-birefringence hollow-core anti-resonant THz fiber,” Opt. Quantum Electron. 50(3), 162 (2018).
[Crossref]

Zhao, W.

Zhu, Y.

S. Mei, D. Kong, L. Wang, T. Ma, Y. Zhu, X. Zhang, Z. He, X. Huang, and Y. Zhang, “Suspended graded-index porous core POF for ultra-flat near-zero dispersion terahertz transmission,” Opt. Fiber Technol. 52, 101946 (2019).
[Crossref]

Zhu, Y.-F.

Y.-F. Zhu, M.-Y. Chen, and Y. Liu, “Nested low-loss hollow-core fiber,” IEEE J. Sel. Top. Quantum Electron. 26(4), 1–6 (2020).
[Crossref]

Y.-F. Zhu, M.-Y. Chen, H. Wang, H.-B. Yao, Y.-K. Zhang, and J.-C. Yang, “Design and analysis of a low-loss suspended core terahertz fiber and its application to polarization splitter,” IEEE Photonics J. 5(6), 7101410 (2013).
[Crossref]

Ziolkowski, R. W.

Zubiab, J.

E. Arrospide, G. Durana, M. Azkune, G. Aldabaldetreku, I. Bikandi, L. R.-Rubioc, and J. Zubiab, “Polymers beyond standard optical fibres – fabrication of microstructured polymer optical fibres,” Polym. Int. 67(9), 1155–1163 (2018).
[Crossref]

ACS Photonics (1)

M. Mittendorff, S. Li, and T. E. Murphy, “Graphene-based waveguide-integrated terahertz modulator,” ACS Photonics 4(2), 316–321 (2017).
[Crossref]

Adv. Opt. Mater. (1)

G. M. Katyba, K. I. Zaytsev, N. V. Chernomyrdin, I. A. Shikunova, G. A. Komandin, V. B. Anzin, S. P. Lebedev, I. E. Spektor, V. E. Karasik, S. O. Yurchenko, I. V. Reshetov, V. N. Kurlov, and M. Skorobogatiy, “Sapphire photonic crystal waveguides for terahertz sensing in aggressive environments,” Adv. Opt. Mater. 6, 1800573 (2018).
[Crossref]

Adv. Opt. Photonics (2)

S. Atakaramians, A. V. Shahraam, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photonics 5(2), 169–215 (2013).
[Crossref]

C. Wei, R. Joseph Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

APL Photonics (1)

A. Stefani, S. C. Fleming, and B. T. Kuhlmey, “Terahertz orbital angular momentum modes with flexible twisted hollow-core anti-resonant fiber,” APL Photonics 3(5), 051708 (2018).
[Crossref]

Appl. Opt. (12)

X. Jiang, D. Chen, and G. Hu, “Suspended hollow core fiber for terahertz wave guiding,” Appl. Opt. 52(4), 770–774 (2013).
[Crossref]

X. Jiang, D. Chen, and G. Hu, “Suspended hollow core fiber for terahertz wave guideing,” Appl. Opt. 52(4), 770–774 (2013).
[Crossref]

N. Chen, J. Liang, and L.-y. Ren, “High-birefringence, low loss porous fiber for single-mode terahertz-wave guidance,” Appl. Opt. 52(21), 5297–5302 (2013).
[Crossref]

B.-S. Sun, X.-L. Tang, X. Zeng, and Y.-W. Shi, “Characterization of cylindrical terahertz metallic hollow waveguide with multiple dielectric layers,” Appl. Opt. 51(30), 7276–7285 (2012).
[Crossref]

M. S. Islam, M. R. Islam, M. Faisal, H. Rahman, J. Sultana, S. Rana, and M. R. Islam, “Ultra-low loss hybrid core porous fiber for broadband applications,” Appl. Opt. 56(4), 1232–1237 (2017).
[Crossref]

Md. S. Islam, J. Sultana, J. Atai, D. Abbott, S. Rana, and M. R. Islam, “Ultra low-loss hybrid core porous fiber for broadband applications,” Appl. Opt. 56(4), 1232–1237 (2017).
[Crossref]

K. Ahmed, S. Chowdhury, B. K. Paul, Md. S. Islam, S. Sen, Md. I. Islam, and S. Asaduzzaman, “Ultrahigh birefringence, ultralow material loss porous core single-mode fiber for terahertz wave guidance,” Appl. Opt. 56(12), 3477–3483 (2017).
[Crossref]

Md. S. Islam, J. Sultana, A. Dinovitser, M. Faisal, M. R. Islam, B. W.-H. Ng, and D. Abbott, “Zeonex-based asymmetrical terahertz photonic crystal fiber for multichannel communication and polarization maintaining applications,” Appl. Opt. 57(4), 666–672 (2018).
[Crossref]

M. S. Islam, J. Sultana, A. Dinovitser, B. W.-H. Ng, and D. Abbot, “Zeonex based asymmetrical terahertz photonic crystal fiber for multichannel communication and polarization maintaining applications,” Appl. Opt. 57(4), 666–672 (2018).
[Crossref]

J. Sultana, Md. S. Islam, K. Ahmed, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Terahertz detection of alcohol using a photonic crystal fiber sensor,” Appl. Opt. 57(10), 2426–2433 (2018).
[Crossref]

M. Faisal and Md. S. Islam, “Extremely high birefringent terahertz fiber using a suspended elliptic core with slotted airholes,” Appl. Opt. 57(13), 3340–3347 (2018).
[Crossref]

L. D. Van Putten, J. Gorecki, E. Numkam Fokoua, V. Apostolopoulos, and F. Poletti, “3D-printed polymer anti-resonant wave-guides for short-reach terahertz applications,” Appl. Opt. 57(14), 3953–3958 (2018).
[Crossref]

Appl. Phys. B: Lasers Opt. (2)

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baramiuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B: Lasers Opt. 68(6), 1085–1094 (1999).
[Crossref]

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time domain spectroscopy,” Appl. Phys. B: Lasers Opt. 67(3), 379–390 (1998).
[Crossref]

Appl. Phys. Lett. (6)

T.-In Jeon, J. Zhangm, and D. Grischkowsky, “Terahertz sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005).
[Crossref]

J.-Y. Lu, C.-M. Chiu, C.-C. Kuo, C.-H. Lai, and H.-C. Chang, “Terahertz scanning imaging with a subwavelength plastic fiber,” Appl. Phys. Lett. 92(8), 084102 (2008).
[Crossref]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93(18), 181104 (2008).
[Crossref]

W. Talataisong, R. Ismaeel, M. Beresna, and G. Brambilla, “Suspended-core microstructured polymer optical fibers and potential applications in sensing,” Appl. Phys. Lett. 80(15), 2634–2636 (2002).
[Crossref]

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634–2636 (2002).
[Crossref]

J. Lu, C. Yu, H. Chang, H. Chen, Y. Li, C. Pan, and C. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
[Crossref]

Carbon (1)

M. S. Islam, J. Sultana, M. Biabanifard, M. J. Nine, Z. Vafapour, C. M. B. Cordeiro, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Tunable localized surface plasmon graphene metasurface for multiband superabsorption and terahertz sensing,” Carbon 158, 559–567 (2020).
[Crossref]

Chin. Phys. B (1)

D.-D. Wang, C.-L. Mu, D.-P. Kong, and C.-Y. Guo, “High birefringence, low loss, and flattened dispersion photonic crystal fiber for terahertz application,” Chin. Phys. B 28(11), 118701 (2019).
[Crossref]

Chin. Phys. Lett. (1)

C. Hua, M. Shi-Hua, Y. W.-Xing, W. X.-Mei, and W. X.-Zhou, “The diagnosis of human liver cancer by using THz fiber-scanning near-field imaging,” Chin. Phys. Lett. 30(3), 030702 (2013).
[Crossref]

Electron. Lett. (1)

J. Sultana, M. S. Islam, and D. Abbott, “High numerical aperture, highly birefringent novel photonic crystal fibre for medical imaging applications,” Electron. Lett. 54(2), 61–62 (2018).
[Crossref]

Fibers (2)

J. Sultana, M. S. Islam, C. M. B. Cordeiro, A. Dinovitser, M. Koushik, B. W.-H. Ng, and D. Abbott, “Terahertz hollow core antiresonant fiber with metamaterial cladding,” Fibers 8(2), 14–00 (2020).
[Crossref]

A. L. S. Cruz, C. M. B. Cordeiro, and M. A. R. Franco, “3D printed hollow-core terahertz fibers,” Fibers 6(3), 43 (2018).
[Crossref]

IEEE J. Quantum Electron. (1)

Md S. Islam, M. Faisal, and S. M. A. Razzak, “Dispersion flattened porous-core honeycomb lattice terahertz fiber for ultra low loss transmission,” IEEE J. Quantum Electron. 53(6), 1–8 (2017).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

Y.-F. Zhu, M.-Y. Chen, and Y. Liu, “Nested low-loss hollow-core fiber,” IEEE J. Sel. Top. Quantum Electron. 26(4), 1–6 (2020).
[Crossref]

F. Yu and J. C. Knight, “Negative curvature hollow-core optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 146–155 (2016).
[Crossref]

A. Barh, B. Pada Pal, G. P. Agrawal, R. K. Varshney, and B. M. Azizur Rahman, “Specialty fibers for terahertz generation and transmission: a review,” IEEE J. Sel. Top. Quantum Electron. 22(2), 365–379 (2016).
[Crossref]

IEEE Photonics J. (2)

E. Reyes-Vera, J. Ú.restrepo, C. Jiménez-Durango, J. M.-Cardona, and N. G.-Cardona, “Design of low-loss and highly birefringent porous-core photonic crystal fiber and its application to terahertz polarization beam splitter,” IEEE Photonics J. 10(4), 1–13 (2018).
[Crossref]

Y.-F. Zhu, M.-Y. Chen, H. Wang, H.-B. Yao, Y.-K. Zhang, and J.-C. Yang, “Design and analysis of a low-loss suspended core terahertz fiber and its application to polarization splitter,” IEEE Photonics J. 5(6), 7101410 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (4)

R. Islam, Md. S. Habib, G. K. M. Hasanuzzaman, R. Ahmad, S. Rana, and S. F. Kaijage, “Extremely high-birefringent asymmetric slotted-core photonic crystal fiber in THz regime,” IEEE Photonics Technol. Lett. 27(21), 2222–2225 (2015).
[Crossref]

G. Hefferman, Z. Chen, L. Yuan, and T. Wei, “Phase-shifted terahertz fiber bragg grating for strain sensing with large dynamic range,” IEEE Photonics Technol. Lett. 27(15), 1649–1652 (2015).
[Crossref]

Z. Chen, L. Yuan, G. Hefferman, and T. Wei, “Terahertz fiber bragg grating for distributed sensing,” IEEE Photonics Technol. Lett. 27(10), 1084–1087 (2015).
[Crossref]

S. F. Kaijage, Z. Ouyang, and X. Jin, “Porous-core photonic crystal fiber for low loss terahertz waveguiding,” IEEE Photonics Technol. Lett. 25(15), 1454–1457 (2013).
[Crossref]

IEEE Sens. J. (3)

M. S. Islam, J. Sultana, A. A. Rifat, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Terahertz sensing in a hollow-core photonic crystal fiber,” IEEE Sens. J. 18(10), 4073–4080 (2018).
[Crossref]

M. S. Islam, J. Sultana, K. Ahmed, A. Dinovitser, M. R. Islam, B. W.-H. Ng, and D. Abbott, “A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime,” IEEE Sens. J. 18(2), 575–582 (2018).
[Crossref]

K. Ahmed, F. Ahmed, S. Roy, B. K. Paul Mst., N. Aktar, D. Vigneswaran, and Md. S. Islam, “Refractive index-based blood components sensing in terahertz spectrum,” IEEE Sens. J. 19(9), 3368–3375 (2019).
[Crossref]

IEEE Trans. Microwave Theory Tech. (2)

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microwave Theory Tech. 52(10), 2438–2447 (2004).
[Crossref]

Y. Zhang and I. D. Robertson, “Single-mode terahertz Bragg fiber design using a modal filtering approach,” IEEE Trans. Microwave Theory Tech. 58(7), 1985–1992 (2010).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

M. M. Nazarov, A. V. Shilov, K. A. bzheumikhov, Z. C. Margushev, V. I. Sokolov, A. B. Sotsky, and A. P. Shkurinov, “Eight-capillary cladding THz waveguide with low propagation losses and dispersion,” IEEE Trans. Terahertz Sci. Technol. 8(2), 183–191 (2018).
[Crossref]

IET Commun. (1)

M. S. Islam, S. Rana, M. R. Islam, M. Faisal, H. Rahman, and J. Sultana, “Porous-core photonic crystal fiber for ultra-low material loss in terahertz regime,” IET Commun. 10(16), 2179–2183 (2016).
[Crossref]

ISRN Opt. (1)

A. Argyros, “Microstructures in polymer fibres for optical fibres, terahertz waveguides, and fibre-based metamaterials,” ISRN Opt. 2013, 1–22 (2013).
[Crossref]

J. Appl. Phys. (1)

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Fabrication of terahertz hollow-glass metallic waveguides with inner dielectric coatings,” J. Appl. Phys. 104(9), 093110 (2008).
[Crossref]

J. Infrared, Millimeter, Terahertz Waves (3)

S. Yang, X. Sheng, G. Zhao, Y. Wang, and Y. Yu, “Novel pentagram THz hollow-core anti-resonant fiber using a 3D printer,” J. Infrared, Millimeter, Terahertz Waves 40(7), 720–730 (2019).
[Crossref]

Z. Shi, L. Song, and T. Zhang, “Optical and electrical characterization of pure PMMA for terahertz wide-band metamaterial absorbers,” J. Infrared, Millimeter, Terahertz Waves 40(1), 80–91 (2019).
[Crossref]

R. Guo Eva-Maria Stuebling, F. Beltran-Mejua, D. Ulm, T. Kleine-Ostmann, F. Ehrig, and M. Koch, “3D printed terahertz rectangular waveguides of polystyrene and TOPAS: a comparison,” J. Infrared, Millimeter, Terahertz Waves 40(1), 1–4 (2019).
[Crossref]

J. Lightwave Technol. (5)

J. Microw. Optoelectron. Electromagn. Appl. (1)

A. L. S. Cruz, V. A. Serrao, C. L. Barbosa, C. M. B. Cordeiro, A. Argyros, X. Tang, and M. A. R. Franco, “3D Printed hollow-core fiber with negative curvature for terahertz applications,” J. Microw. Optoelectron. Electromagn. Appl. 14, 45–53 (2015).

J. Opt. Soc. Am. B (6)

J. Phys. D: Appl. Phys. (1)

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D: Appl. Phys. 39(17), R301–R310 (2006).
[Crossref]

J. Visualized Exp. (1)

A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fabricating metamaterials using the fiber drawing method,” J. Visualized Exp. 68, e4299 (2012).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43(No. 2B), L317–L319 (2004).
[Crossref]

Microw. Opt. Technol. Lett. (2)

L. Vicentti, “Hollow-core photonic band gap fiber for terahertz applications,” Microw. Opt. Technol. Lett. 51(7), 1711–1714 (2009).
[Crossref]

L. Vicentti, “Hollow core photonic band gap fiber for THz applications,” Microw. Opt. Technol. Lett. 51(7), 1711–1714 (2009).
[Crossref]

Nat. Commun. (1)

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T.Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4(1), 2706 (2013).
[Crossref]

Nat. Photonics (2)

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Nature (2)

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[Crossref]

K. Wang and D. Mittleman, “Metal wires for terahertz guiding,” Nature 432(7015), 376–379 (2004).
[Crossref]

Opt. Commun. (7)

J. Sultana, Md. S. Islam, M. Faisal, M. R. Islam, B. W. -H. Ng, H. E. Heidepriem, and D. Abbot, “Highly birefringent elliptical core photonic crystal fiber for terahertz application,” Opt. Commun. 407, 92–96 (2018).
[Crossref]

M. S. Islam, J. Sultana, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “A novel Zeonex based oligoporous-core photonic crystal fiber for polarization preserving terahertz applications,” Opt. Commun. 413(15), 242–248 (2018).
[Crossref]

Md. A. Habib, Md. S. Anower, and Md. R. Hasan, “Highly birefringent and low effective material loss microstructure fiber for THz wave guidance,” Opt. Commun. 423, 140–144 (2018).
[Crossref]

S. Rana, A. S. Rakin, Md. R. Hasan, Md. S. Reza, R. Leonhardt, D. Abbott, and Harish Subbaraman, “Low loss and flat dispersion kagome photonic crystal fiber in the terahertz regime,” Opt. Commun. 410, 452–456 (2018).
[Crossref]

S. Atakaramians, S. Afshar, V. B. M. Fischer, D. Abbot, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282(1), 36–38 (2009).
[Crossref]

G. K. M. Hasanuzzaman, S. Iezekiel, C. Markos, and M. S. Habib, “Hollow-core fiber with nested anti-resonant tubes for low-loss terahertz guidance,” Opt. Commun. 426, 477–482 (2018).
[Crossref]

H. Pkarzadeh, S. M. rezaei, and L. Namroodi, “Hollow-core photonic crystal fibers for efficient terahertz transmission,” Opt. Commun. 433, 81–88 (2019).
[Crossref]

Opt. Eng. (3)

S. Rana, M. S. Islam, M. Faisal, K. C. Roy, R. Islam, and S. F. Kaijage, “Single-mode porous fiber for low-loss polarization maintaining terahertz transmission,” Opt. Eng. 55(7), 076114 (2016).
[Crossref]

R. Islam, “Dispersion flattened, low-loss porous fiber for single-mode terahertz wave guidance,” Opt. Eng. 54(5), 055102 (2015).
[Crossref]

M. S. Islam, M. R. Islam, M. Faisal, H. Rahman, J. Sultana, and S. Rana, “Extremely low-loss, dispersion flattened porous-core photonic crystal fiber for terahertz regime,” Opt. Eng. 55(7), 076117 (2016).
[Crossref]

Opt. Express (41)

J. A. Harrington, R. George, and P. Pedersen, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12(21), 5263–5268 (2004).
[Crossref]

E. Gerecht, K. O. Douglass, and D. F. Plusquellic, “Chirped-pulse terahertz spectroscopy for broadband trace gas sensing,” Opt. Express 19(9), 8973–8984 (2011).
[Crossref]

M. Rozé, B. Ung, A. Mazhorova, M. Walther, and M. Skorobogatiy, “Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance,” Opt. Express 19(10), 9127–9138 (2011).
[Crossref]

J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in Kagome hollow-core microstructured fibers,” Opt. Express 19(19), 18470–18478 (2011).
[Crossref]

J. Anthony, R. Leonhardt, S. G. L.-Saval, and A. Argyros, “Terahertz propagation in kagome hollow-core microstructured fibers,” Opt. Express 19(19), 18470–18478 (2011).
[Crossref]

H. Chen, W.-J. Lee, H.-Y. Huang, C.-M. Chiu, Y.-F. Tsai, T.-F. Tseng, J.-T. Lu, W.-L. Lai, and C.-K. Sun, “Performance of THz fiber-scanning near-field microscopy to diagnose breast tumors,” Opt. Express 19(20), 19523–19531 (2011).
[Crossref]

H. Chen, T.-H. Chen, T.-F. Tseng, J.-T. Lu, C.-C. Kuo, S.-C. Fu, W.-J. Lee, Y.-F. Tsai, Y. Y. Huang, E. Y. Chuang, Y.-J. Hwang, and C.-K. Sun, “High-sensitivity in vivo THz transmission imaging of early human breast cancer in a subcutaneous xenograft mouse model,” Opt. Express 19(22), 21552–21562 (2011).
[Crossref]

B. You, J.-Y. Lu, C.-P. You, T.-A. Liu, and J.-L. Peng, “Terahertz refractive index sensors using dielectric pipe waveguides,” Opt. Express 20(6), 5858–5866 (2012).
[Crossref]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss terahertz guiding,” Opt. Express 16(9), 6340–6351 (2008).
[Crossref]

S. Atakaramians, S. Afshar V., H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbot, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16(12), 8845–8854 (2008).
[Crossref]

Z. Wu, J. Kinast, M. E. Gehm, and H. Xin, “Rapid and inexpensive fabrication of terahertz electromagnetic bandgap structures,” Opt. Express 16(21), 16442–16451 (2008).
[Crossref]

C.-H. Lai, B. You, j. Y. Lu, T. A. Liu, J.-L. Peng, C.-K. Sun, and H.-c. Chang, “Modal characteristics of anti-resonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18(1), 309–322 (2010).
[Crossref]

D. Chen and H. Chen, “A novel low-loss Terahertz waveguide: Polymer tube,” Opt. Express 18(4), 3762–3767 (2010).
[Crossref]

A. Depuis, A. Mazhorova, F. Désévédavy, M. Rozé, and M. Skorobogatiy, “Spectral characterization of porous dielectric subwavelength THz fibers fabricated using a microstructured molding technique,” Opt. Express 18(13), 13813–13827 (2010).
[Crossref]

B. You, J.-Y. Lu, J.-H. Liou, C.-P. Yu, H.-Z. Chen, T.-A. Liu, and J.-L. Peng, “Subwavelength film sensing based on terahertz anti-resonant reflecting hollow waveguides,” Opt. Express 18(18), 19353–19360 (2010).
[Crossref]

L. Vicentti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18(22), 23133–23146 (2010).
[Crossref]

Z. Wu, W-R. Ng, M. E. Gehm, and H. Xin, “Terahertz electromagnetic crystal waveguide fabricated by polymer jetting rapid prototyping,” Opt. Express 19(5), 3962–3972 (2011).
[Crossref]

A. Hassani and M. Skorobogatiy, “Surface Plasmon Resonance-like integrated sensor at terahertz frequencies for gaseous analytes,” Opt. Express 16(25), 20206–20214 (2008).
[Crossref]

A. Dupuis, J.-F. Allard, D. Morris, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method,” Opt. Express 17(10), 8012–8028 (2009).
[Crossref]

K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[Crossref]

K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[Crossref]

S. Atakaramians, S. Afshar V., H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbot, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express 17(16), 14053–14062 (2009).
[Crossref]

S. Atakaramians, S. Afshar V., H. E.-Heidepriem, M. Nagel, B. M. Fischer, D. Abbot, and T. M. Monro, “Terahertz porous fibers: design, fabrication and experimental characterization,” Opt. Express 17(16), 14053–14062 (2009).
[Crossref]

B. You, T.-A. Liu, J.-L. Peng, C.-L. Pan, and J.-Y. Lu, “A terahertz plastic wire based evanescent field sensor for high sensitivity liquid detection,” Opt. Express 17(23), 20675–20683 (2009).
[Crossref]

Y. Zhang, K. Li, L. Wang, L. Ren, W. Zhao, and R. Miao, “Casting preforms for microstructured polymer optical fibre fabrication,” Opt. Express 14(12), 5541–5547 (2006).
[Crossref]

M. Nagel, A. Marchewka, and H. Kurz, “Low-index discontinuity terahertz waveguides,” Opt. Express 14(21), 9944 (2006).
[Crossref]

A. Argyros and J. Pla, “Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared,” Opt. Express 15(12), 7713–7719 (2007).
[Crossref]

M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, “Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers,” Opt. Express 16(1), 7–12 (2008).
[Crossref]

Y. Cao, K. Nallappan, H. Guerboukha, T. Gervais, and M. Skorobogativ, “Additive manufacturing of resonant fluidic sensors based on photonic bandgap waveguides for terahertz applications,” Opt. Express 27(20), 27663–27681 (2019).
[Crossref]

J. Yang, J. Zhao, C. Gong, H. Tian, L. Sun, P. Chen, L. Lin, and W. Liu, “3D printed low-loss terahertz waveguide based on kagome photonic crystal structure,” Opt. Express 24(20), 22454–22460 (2016).
[Crossref]

T. Ma, K. Nallapan, H. Guerboukha, and M. Skorobogatiy, “Analog signal processing in the terahertz communication links using waveguide Bragg gratings: example of dispersion compensation,” Opt. Express 25(10), 11009–11026 (2017).
[Crossref]

R. B. Kohlhass, A. Rehn, S. Nellen, M. Koch, M. Schell, R. J. B. Dietz, and J. C. Balzer, “Terahertz quasi time-domain spectroscopy based on telecom technology for 1550 nm,” Opt. Express 25(11), 12851–12859 (2017).
[Crossref]

D. M. Mittleman, “Twenty years of terahertz imaging,” Opt. Express 26(8), 9417–9431 (2018).
[Crossref]

N. Yudasari, J. Anthony, and R. Leonhardt, “Terahertz pulse propagation in 3D-printed waveguide with metal wires component,” Opt. Express 22(21), 26042–26054 (2014).
[Crossref]

X. tang, Z. Yu, X. Tu, J. Chen, A. Argyros, B. T. Kuhlmey, and Y. Shi, “Elliptical metallic hollow fiber inner-coated with non-uniform dielectric layer,” Opt. Express 23(17), 22587–22601 (2015).
[Crossref]

J. Anthony, R. Leonhardt, and A. Argyros, “Hybrid hollow-core fibers with embedded wires as terahertz waveguides,” Opt. Express 21(3), 2903–2912 (2013).
[Crossref]

V. Setti, L. Vincetti, and A. Argyros, “Flexible tube lattice fibers for terahertz applications,” Opt. Express 21(3), 3388–3399 (2013).
[Crossref]

A. Markov and M. Skorobogatiy, “Two-wire terahertz fibers with porous dielectric support,” Opt. Express 21(10), 12728–12743 (2013).
[Crossref]

H. Bao, K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Fabrication and characterization of porous-core honeycomb bandgap terahertz fibers,” Opt. Express 20(28), 29507–29517 (2012).
[Crossref]

J. Li, K. Nallappan, H. Guerboukha, and M. Skorobogatiy, “3D printed hollow-core terahertz Bragg waveguides with defect layers for surface sensing applications,” Opt. Express 25(4), 4126–4144 (2017).
[Crossref]

J. Li, K. Nallappan, H. Guerboukha, and M. Skorobogatiy, “3D printed hollow core terahertz Bragg waveguides with defect layers for surface sensing applications,” Opt. Express 25(4), 4126–4144 (2017).
[Crossref]

Opt. Fiber Technol. (10)

G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Opt. Fiber Technol. 10(4), 325–335 (2004).
[Crossref]

L. Vicentti and V. Setti, “Elliptical hollow core tube lattice fibers for terahertz applications,” Opt. Fiber Technol. 19(1), 31–34 (2013).
[Crossref]

M. S. Islam, J. Sultana, S. Rana, M. R. Islam, M. Faisal, S. F. Kaijage, and D. Abbott, “Extremely low material loss and dispersion flattened topas based circular porous fiber for long distance terahertz wave transmission,” Opt. Fiber Technol. 34, 6–11 (2017).
[Crossref]

Md. A. Habib and Md. S. Anower, “Design and numerical analysis of highly birefringent single mode fiber in Thz regime,” Opt. Fiber Technol. 47, 197–203 (2019).
[Crossref]

L. Vincentti, “Numericl analysis of plastic hollow core microstructure fiber for terahertz applications,” Opt. Fiber Technol. 15(4), 398–401 (2009).
[Crossref]

S. Mei, D. Kong, L. Wang, T. Ma, Y. Zhu, X. Zhang, Z. He, X. Huang, and Y. Zhang, “Suspended graded-index porous core POF for ultra-flat near-zero dispersion terahertz transmission,” Opt. Fiber Technol. 52, 101946 (2019).
[Crossref]

L. Vincetti and V. Setti, “Elliptical hollow-core tube lattice for terahertz applications,” Opt. Fiber Technol. 19(1), 31–34 (2013).
[Crossref]

S. Yang, X. Sheng, G. Zhao, and S. Li, “Simple birefringent terahertz fiber based on elliptical hollow core,” Opt. Fiber Technol. 53, 102064 (2019).
[Crossref]

J. Sultana, M. R. Islam, M. Faisal, and Md. K. Abu Talha, “Design and analysis of a Zeonex based diamond-shaped core kagome lattice photonic crystal fiber for T-ray wave transmission,” Opt. Fiber Technol. 47, 55–60 (2019).
[Crossref]

S. Yang, X. Sheng, G. Zhao, S. Lou, and J. Guo, “Anti-deformation low loss double pentagon nested terahertz hollow core fiber,” Opt. Fiber Technol. 56, 102199 (2020).
[Crossref]

Opt. Laser Technol. (1)

H. Xiao, H. Li, B. Wu, and S. Jian, “Polarization-maintaining terahertz bandgap fiber with a quasi-elliptical hollow-core,” Opt. Laser Technol. 105, 276–280 (2018).
[Crossref]

Opt. Lett. (10)

R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett. 24(20), 1431–1433 (1999).
[Crossref]

C. S. Ponseca, R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Opt. Lett. 33(9), 902–904 (2008).
[Crossref]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32(20), 2945–2947 (2007).
[Crossref]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
[Crossref]

L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31(3), 308–310 (2006).
[Crossref]

C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y.-j. Huang, H.-c. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34(21), 3457–3459 (2009).
[Crossref]

X.-L. Tang, Y.-W. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, “Transmission characteristics of terahertz hollow fiber with an absorptive dielectric inner-coating film,” Opt. Lett. 34(14), 2231–2233 (2009).
[Crossref]

F. Gérôme, R. Jamier, J.-L. Auguste, G. Humbert, and J.-M. Blondy, “Simplified hollow-core photonic crystal fiber,” Opt. Lett. 35(8), 1157–1159 (2010).
[Crossref]

H. Li, G. Ren, S. Atakaramians, B. T. Kuhlmey, and S. Jian, “Linearly polarized single TM mode terahertz waveguide,” Opt. Lett. 41(17), 4004–4007 (2016).
[Crossref]

G. Yan, A. Markov, Y. Chinifooroshan, S. M. Tripathi, W. J. Bock, and M. Skorobogatiy, “Resonant THz sensor for paper quality monitoring using THz fiber Bragg gratings,” Opt. Lett. 38(13), 2200–2202 (2013).
[Crossref]

Opt. Mater. (1)

M. S. Islam, J. Sultana, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “A modified hexagonal photonic crystal fiber for terahertz applications,” Opt. Mater. 79, 336–339 (2018).
[Crossref]

Opt. Quantum Electron. (1)

S. Yan, S. Lou, X. Wang, T. Zhao, and W. Zhang, “High-birefringence hollow-core anti-resonant THz fiber,” Opt. Quantum Electron. 50(3), 162 (2018).
[Crossref]

Optica (1)

Optik (2)

S. Li, Z. Dai, Z. Wang, P. Qi, Q. Su, X. Gao, C. Gong, and W. Liu, “Simple birefringent terahertz fiber based on elliptical hollow core,” Optik 176, 611–616 (2019).
[Crossref]

Md. S. Islam, J. Sultana, J. Atai, M. R. Islam, and D. Abbott, “Design and characterization of a low-loss, dispersion-flattened photonic crystal fiber for T-Ray wave propagation,” Optik 145, 398–406 (2017).
[Crossref]

Philos. Trans. R. Soc., A (1)

P. St. Russel, R. Beravat, and G. K. L. Wong, “Helically twisted photonic crystal fibres,” Philos. Trans. R. Soc., A 375(2087), 20150440 (2017).
[Crossref]

Photonics (1)

R. Peretti, F. Braud, E. Peytavit, E. Dubois, and J.-F. Lampin, “Broadband terahertz light–matter interaction enhancement for precise spectroscopy of thin films and micro-samples,” Photonics 5(2), 11 (2018).
[Crossref]

Polym. Int. (1)

E. Arrospide, G. Durana, M. Azkune, G. Aldabaldetreku, I. Bikandi, L. R.-Rubioc, and J. Zubiab, “Polymers beyond standard optical fibres – fabrication of microstructured polymer optical fibres,” Polym. Int. 67(9), 1155–1163 (2018).
[Crossref]

Proc. IEEE (2)

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE 95(8), 1658–1665 (2007).
[Crossref]

D. Abbott and X.-C. Zhang, “T-ray imaging, sensing, and retection,” Proc. IEEE 95(8), 1509–1513 (2007).
[Crossref]

Proc. SPIE (5)

H. Lin, W. Withayachumnankul, B. M. Fischer, S. P. Mickan, and D. Abbott, “Gas recognition with terahertz time-domain spectroscopy and spectral catalog: a preliminary study,” Proc. SPIE 6840, 68400X (2007).
[Crossref]

Y. S. Lee, S. Kim, I. Maeng, C. Kang, and K. Oh, “Los-loss terahertz pulse transmission through commercially available porous tubes with PTFE,” Proc. SPIE 11206, 112061S (2019).

E. V. Fedulova, M. M. Nazarov, A. A. Angeluts, M. S. Kitai, V. I. Sokolov, and A. P. Shkurinov, “Studying of dielectric properties of polymers in the terahertz frequency range,” Proc. SPIE 8337, 83370I (2012).
[Crossref]

G. M. Katyba, N. V. Chernomyrdin, I. N.. Dolganova, A. A. Pronin, I. V. Minin, O. V. Minin, K. I. Zaytsev, and V. N. Kurlov, “Step-index sapphire fiber and its application in a terahertz near-field microscopy,” Proc. SPIE 11164, 11164G (2019).
[Crossref]

A. L. S. Cruz, A. C. C. Migliano, and M. A. R. Franco, “Refractive index sensor based on terahertz multimode interference fiber device,” Proc. SPIE 8794, 18794L (2013).
[Crossref]

Rep. Prog. Phys. (2)

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[Crossref]

A. C. S. Jr, “Recent progress and novel applications of photonic crystal fibers,” Rep. Prog. Phys. 73(2), 024401 (2010).
[Crossref]

Results Phys. (1)

B. K. Paul, Md. S. Islam, S. Sen, K. Ahmed, and M. S. Uddin, “Low material loss and dispersion flattened fiber for single mode THz-wave transmission applications,” Results Phys. 11, 638–642 (2018).
[Crossref]

RSC Adv. (1)

L. Yu, L. Hao, T. Meiqiong, H. Jiaoqi, L. Wei, D. Jinying, C. Xueping, F. Weiling, and Z. Yang, “The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges,” RSC Adv. 9(17), 9354–9363 (2019).
[Crossref]

Sci. Adv. (1)

R. Beravat, G. K. L. Wong Michael, H. Frosz, X. M. Xi, and P. St. J. Russel, “Twist-induced guidance in coreless photonic crystal fiber: a helical channel for light,” Sci. Adv. 2(11), e1601421 (2016).
[Crossref]

Sci. Rep. (2)

H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss terahertz guiding,” Sci. Rep. 5(1), 7620 (2015).
[Crossref]

W. Talataisong, R. Ismaeel, T. H. R. Marques, S. A. Mousavi, M. Beresna, M. A. Gouveia, S. R. Sandoghchi, T. Lee, C. M. B. Cordeiro, and G. Brambilla, “Mid-IR Hollow-core microstructured fiber drawn from a 3D printed PETG preform,” Sci. Rep. 8(1), 8113 (2018).
[Crossref]

Science (3)

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russel, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[Crossref]

Other (13)

G. P. Agrawal, “Fiber-Optic Communication Systems, Third Edition,” (John Wiley & Sons, Inc., 2002).

F. Poli, A. Cucinotta, and S. Selleri, “Photonic crystal fibers properties and applications,” (Springer, 2007).

G. E. Tsydynzhapov, P. A. Gusikhin, V. M. Muravev, I. V. Andreev, and I. V. Kukushkin, “New terahertz security body scanner,” 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-terahertz), 2018, (doi: 10.1109/IRMMW-terahertz.2018.8510513).

M. S. Islam, J. Sultana, M. Biabanifard, M. J. Nine, Z. Vafapour, C. M. B. Cordeiro, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Electrically tunable graphene metasurface for multiband superabsorption and terahertz sensing,” 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-terahertz), 2019, (doi: 10.1109/IRMMW-terahertz.2019.8873851).

A. L. S. Cruz, C. M. B. Cordeiro, G. S. Rodrigues, J. H. Osório, L. E da Silva, and M. A. R. Franco, “Exploring terahertz hollow-core fiber designs manufactured by 3Dprinting,” IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC 2017), Águas de Lindoia, Brazil (2017).

J. Sultana, M. S. Islam, C. M. B. Cordeiro, A. L. S. Cruz, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Five-Capillary Cladding Terahertz Fiber with Low Loss and Single Mode,” 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-terahertz), 2019. DOI: 10.1109/IRMMW-THz.2019.8874476.

J. Sultana, M. S. Islam, C. M. B. Cordeiro, A. L. S. Cruz, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Novel hollow-core anti-resonant terahertz fiber with metamaterial cladding,” 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-terahertz), 2019. DOI: 10.1109/IRMMW-THz.2019.8873836.

A. L. S. Cruz, A. Argyros, X. Tang, C. M. B. Cordeiro, and M. A. R. Franco, “3D-Printed Terahertz Bragg Fiber,” 40th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW 2015), Hong Kong, Aug 2015.

A. Markov, S. Gorgutsa, H. Qu, and M. Skorobogatiy, “Practical metal-wire THz waveguides,” arXiv:1206.2984, 2012.

A. L. S. Cruz, A. C. C. Migliano, J. G. Hayashi, C. M. B. Cordeiro, and M. A. R. Franco, “Highly birefringent polymer terahertz fiber with microstructure of slots in the core,” 22nd International Conference on Plastic Optical Fibers, (2013).

M. S. Islam, J. Sultana, C. M. B. Cordeiro, A. L. S. Cruz, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Broadband characterization of glass and polymer materials using THz-TDS,” 44th Int. Conf. on Inf. Mil. and Ter. Waves (IRMMW-THz), DOI: 10.1109/IRMMW-THz.2019.8874013.

M. S. Islam, J. Sultana, C. M. B. Cordeiro, M. J.Nine, A. L. S. Cruz, A. Dinovitser, B. W.-H. Ng, H. E. Heidepriem, D. Losic, and D. Abbott, “Experimental study on glass and polymers: Determining the optimal material for potential use in terahertz technology,” IEEE Access, (Revised version submitted).

Z. Liu and H.-Y. Tam, “Fabrication and sensing applications of special microstructured optical fibers,” Sel. Top. on Opt. Fib. Tech. and Appl. vol. 2017. doi:10.5772/intechopen.70755

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. Absorption coefficients of materials at terahertz, (i) Zeonex, Topas, HDPE, Teflon, Silica, BK7 and uv-resin [177,178], (ii) Teflon, Picarin, TPX, COC, and PP [179], and (iii) HDPE, polystyrene, polycarbonate, and perspex (PMMA) [180,181].
Fig. 2.
Fig. 2. Representative sketches of terahertz optical fibers with corresponding guidance mechanism indicated.
Fig. 3.
Fig. 3. Optical fiber categories. (i) solid rod fiber, (ii) Microstructured optical fiber, (iii) Porous fiber, (iv) Suspended porous-core fiber, (v) Suspended slotted core fiber, (vi) Hollow-core bandgap fiber, (vii) Hollow-core tube fiber, (viii) Hollow-core fiber with negative curvature, (ix) Hollow-core fiber based on anti-resonances and inhibited coupling, (x) Hollow-core nested anti-resonant nodeless fiber, (xi) 3D printed hollow-core fiber based on anti-resonances and inhibited coupling, and (xii) Bragg fiber.
Fig. 4.
Fig. 4. Porous-core and slotted-core terahertz optical fiber designs and absorption loss as function of core diameter and porosity. (a)-(b) Microstructured porous-core terahertz fiber design and its absorption loss [59]. (c)-(d) Sloted-core terahertz fiber design and its absorption loss [148].
Fig. 5.
Fig. 5. Suspended-core terahertz fibers. (a) Subwavelength core [74]. (b) Hollow-core [149]. (c) Graded porous-core [74]. (d) Slotted-core [151].
Fig. 6.
Fig. 6. Hollow-core terahertz fiber based on anti-resonant effect. (a-b) Simplest dielectric tube terahertz waveguide [99]. (c-d) Negative curvature hollow-core tube lattice terahertz waveguide [152].
Fig. 7.
Fig. 7. Hollow-core terahertz Bragg fiber, design and its spectral transmission loss. (a)-(b) Manufactured by rolling two polymer layers [108]. (c)-(d) Fabricated by 3D printing [109].
Fig. 8.
Fig. 8. Hollow core terahertz waveguides with metallic wires and coating. (i) Single metallic cladded waveguide, (ii-iii) hybrid cladded waveguide, (iv) metamaterial cladding [121], (v) two-wire dielectric cladding [111,112,114]; (vi) three wire dielectric cladding [37], (vii-viii) cladding with multiple metal wire inclusions [37,111,121].
Fig. 9.
Fig. 9. Terahertz optical fiber fabrication methods. Various geometries of optical fiber fabricated by, (a) drilling [58,123,124,130]; (b) stack and draw [134137,140,141]; (c) sacrificial-polymer method [83,139], preform-molding/fiber-inflation technique [83,133], and extrusion [55]; (d) 3D printing [105,125,127,142,143].
Fig. 10.
Fig. 10. Characterization methods of terahertz optical fiber. (a) THz-TDS setup where the waveguide placed in between emitter and detector [55,127]; (b) THz-TDS setup by using high resistive silicon lenses [99,113,125], (c) a four lens setup of THz-TDS [182], (d) a CW-THz setup [183].
Fig. 11.
Fig. 11. Low losses Terahertz optical fibers. (i) PCF like fiber with microstructured core [147]. (ii) Graded-index core fiber [74]. (iii) Asymmetrical terahertz fiber [9]. (iv) Antiresonant terahertz fiber [102].
Fig. 12.
Fig. 12. Application of terahertz optical fiber in sensing and imaging. (i) Micro-fluid sensor based on 3D printed Bragg fiber [74,166]; (ii) Sensitivity of the pipe sensor to different samples: water, HCl, acetone and ammonia [159].
Fig. 13.
Fig. 13. Schematic of the all-terahertz fiber scanning near-field microscope. Here, (ii) and (iii) are terahertz near-field absorption coefficient images of the breast tissue sections, cancerous and normal samples, respectively. Also, (iv) and (v) are photomicrographs of the corresponding breast tissue.

Tables (3)

Tables Icon

Table 1. Terahertz optical fibers main features.

Tables Icon

Table 2. Selected experimentally demonstrated terahertz optical fibers.

Tables Icon

Table 3. Selected numerically studied terahertz optical fibers.

Metrics