Abstract

An optical see-through (OST) display is affected more severely by ambient light than any other type of displays when placed in an outdoor environment with bright illuminance because of its transparency and thus, its inherent color distortion can worsen. It is hard to directly apply existing gamut mapping methods to an OST display because of its morphological gamut characteristic and the effect of ambient light. In this paper, we propose a new robust gamut mapping method which works against bright ambient light. The process is divided into two steps: lightness mapping (LM) and chroma reproduction. LM aligns the lightness level of sRGB gamut with OST gamut and partitions the region of OST gamut based on the relative size of the sRGB gamut and its lightness value. The second step (chroma reproduction) determines an appropriate chroma reproduction method (gamut compression or extension) and a proper direction for gamut mapping based on the characteristics of each region in order to minimize the effects of ambient light. The quality of color reproduction is qualitatively and quantitatively evaluated based on accurate measurements of the displayed colors. It has been experimentally confirmed that the proposed gamut mapping method can reduce color distortion more than the existing parametric gamut mapping algorithms.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. K. Sridharan, J. D. Hincapié-Ramos, D. R. Flatla, and P. Irani, “Color correction for optical see-through displays using display color profiles,” in Proceedings of 19th ACM Symposium on Virtual Reality Software and Technology, (2013)
  2. J. Grubert, Y. Itoh, K. Moser, and J. E. Swan, “A survey of calibration methods for optical see-through head-mounted displays,” IEEE Trans. Visual. Comput. Graphics 24(9), 2649–2662 (2018).
    [Crossref]
  3. J. Peddie, Augmented reality: Where we will all live (Springer, 2017).
  4. K. W. Zhao and J. W. Pan, “Optical design for a see-through head-mounted display with high visibility,” Opt. Express 24(5), 4749–4760 (2016).
    [Crossref]
  5. Y. Itoh, T. Amano, D. Iwai, and G. Klinker, “Gaussian light field: Estimation of viewpoint-dependent blur for optical see-through head-mounted displays,” IEEE Trans. Visual. Comput. Graphics 22(11), 2368–2376 (2016).
    [Crossref]
  6. N. Hassani and M. J. Murdoch, “Investigating color appearance in optical see-through augmented reality,” Color Research & Application 44(4), 492–507 (2019).
    [Crossref]
  7. T. Langlotz, J. Sutton, S. Zollmann, Y. Itoh, and H. Regenbrecht, “Chromaglasses: Computational glasses for compensating colour blindness,” in Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, (ACM, 2018), pp. 1–12.
  8. Y. Itoh, M. Dzitsiuk, T. Amano, and G. Klinker, “Semi-Parametric Color reproduction method for optical see-through head-mounted displays,” IEEE Trans. Visual. Comput. Graphics 21(11), 1269–1278 (2015).
    [Crossref]
  9. C. Menk and R. Koch, “Truthful Color Reproduction in Spatial Augmented Reality Applications,” IEEE Trans. Visual. Comput. Graphics 19(2), 236–248 (2013).
    [Crossref]
  10. K. Rohmer, J. Jendersie, and T. Grosch, “Natural environment illumination: Coherent interactive augmented reality for mobile and non-mobile devices,” IEEE Trans. Visual. Comput. Graphics 23(11), 2474–2484 (2017).
    [Crossref]
  11. T. Langlotz, C. Matthew, and R. Holger, “Real-Time Radiometric Compensation for Optical See-Through Head-Mounted Displays,” IEEE Trans. Visual. Comput. Graphics 22(11), 2385–2394 (2016).
    [Crossref]
  12. K. H. Lee and J. O. Kim, “Visibility enhancement via optimal gamma tone mapping for OST displays under ambient light,” in 2017 IEEE International Conference on Image Processing (ICIP) (IEEE, 2017), pp. 470–474.
  13. J. L. Gabbard, J. E. Swan, J. Zedlitz, and W. W. Winchester, “More than meets the eye: An engineering study to empirically examine the blending of real and virtual color spaces,” in 2010 IEEE Virtual Reality Conference (VR) (IEEE, 2010), pp. 79–86.
  14. J. M. Kim, C. H. Son, C. H. Lee, and Y. H. Ha, “Illuminant adaptive color reproduction based on lightness adaptation and flare for mobile phone,” in 2006 IEEE International Conference on Image Processing (ICIP), (IEEE, 2006), pp. 1513–1516.
  15. M. Y. Lee, C. H. Son, J. M. Kim, C. H. Lee, and Y. H. Ha, “Illumination-level adaptive color reproduction method with lightness adaptation and flare compensation for mobile display,” J. Imaging Sci. Technol. 51(1), 44–52 (2007).
    [Crossref]
  16. K. Devlin, A. Chalmers, and E. Reinhard, “Visual calibration and correction for ambient illumination,” ACM Trans. Appl. Percept. 3(4), 429–452 (2006).
    [Crossref]
  17. J. Morovic and M. R. Luo, “The fundamentals of gamut mapping: A survey,” J. Imaging Sci. Technol. 45(3), 283–290 (2001).
  18. L. Xu, B. Zhao, and M. R. Luo, “Colour gamut mapping between small and large colour gamuts: Part I. gamut compression,” Opt. Express 26(9), 11481–11495 (2018).
    [Crossref]
  19. H. R. Kang, Color technology for electronic imaging devices, SPIE Press (1997).
  20. G. Pettitt, J. Ferri, and J. Thompson, “47.1: Invited Paper: Practical Application of TI DLP® Technology in the Next Generation Head-up Display System,” SID Symp. Digest Tech. Papers 46(1), 700–703 (2015).
    [Crossref]
  21. J. Morovic and M. L. Ronnier, “Gamut mapping algorithms based on psychophysical experiment,” in Color and Imaging Conference (1997).
  22. P. Zolliker and S. Klaus, “Continuity of gamut mapping algorithms,” J. Electron. Imaging 15(1), 013004 (2006).
    [Crossref]
  23. K. M. Braun, R. Balasubramanian, and R. Eschbach, “Development and evaluation of six gamut-mapping algorithms for pictorial images,” in Color and Imaging Conference (1999).
  24. J. Morovic, “To Develop a Universal Gamut Mapping Algorithm,” PhD dissertation, University of Derby (1988).
  25. K. Y. Lee, R. H. Park, and S. W. Lee, “General chromaticity compression function for gamut mapping,” Electron. Lett. 43(5), 276 (2007).
    [Crossref]
  26. N. Bonnier, F. Schmitt, H. Brettel, and S. Berche, “Evaluation of spatial gamut mapping algorithms,” in Color and Imaging Conference (2006).
  27. O. Cakmakci and R. Jannick, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
    [Crossref]
  28. K. K. Lee, J. W. Kim, J. H. Ryu, and J. O. Kim, “Chromaticity Based Local Linear Regression for Color Distortion Estimation of Optical See-Through Displays,” in Proceedings of 2016 IEEE International Symposium on Mixed and Augmented Reality (2016).
  29. E. Kirchner, I. van der Lans, F. Martínez-Verdú, and E. Perales, “Improving color reproduction accuracy of a mobile liquid crystal display,” J. Opt. Soc. Am. A 34(1), 101–110 (2017).
    [Crossref]
  30. E. A. Day, L. Taplin, and R. S. Berns, “Colorimetric characterization of a computer-controlled liquid crystal display,” Color Res. Appl. 29(5), 365–373 (2004).
    [Crossref]
  31. M. D. Fairchild and D. R. Wyble, “Colorimetric characterization of the Apple studio display (flat panel LCD),” Munsell Color Science Laboratory Technical Report (1998).
  32. J. W. Kim, K. K. Lee, J. H. Ryu, and J. O. Kim, “Localized color correction for optical see-through displays via weighted linear regression,” in Proceedings of 22nd ACM Conference on Virtual Reality Software and Technology (2016).
  33. S. Mori, S. Ikeda, A. Plopski, and C. Sandor, “Brightview: Increasing perceived brightness of optical see-through head-mounted displays through unnoticeable incident light reduction,” in 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (IEEE, 2018), pp. 251–258.
  34. J. D. Hincapié-Ramos, L. Ivanchuk, S. K. Sridharan, and P. Irani, “SmartColor: Real-time color correction and contrast for optical see-through head-mounted displays,” in Proceedings of 2014 IEEE International Symposium on Mixed and Augmented Reality (2014).
  35. M. Ashdown, T. Okabe, I. Sato, and Y. Sato, “Robust content-dependent photometric projector compensation,” in 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW, 2006), p. 6.
  36. S. H. Park, S. Yang, and B. U. Lee, “Adaptive chrominance correction for a projector considering image and screen color,” in International Symposium on Visual Computing (2007).
  37. S. Seo, D. Kang, and S. Park, “Real-time adaptable and coherent rendering for outdoor augmented reality,” J. Image Video Proc. 2018(1), 118 (2018).
    [Crossref]
  38. L. Gruber, J. Ventura, and D. Schmalstieg, “Image-space illumination for augmented reality in dynamic environments,” in 2015 IEEE Virtual Reality Conference (VR) (IEEE, 2015), pp. 127–134.

2019 (1)

N. Hassani and M. J. Murdoch, “Investigating color appearance in optical see-through augmented reality,” Color Research & Application 44(4), 492–507 (2019).
[Crossref]

2018 (3)

J. Grubert, Y. Itoh, K. Moser, and J. E. Swan, “A survey of calibration methods for optical see-through head-mounted displays,” IEEE Trans. Visual. Comput. Graphics 24(9), 2649–2662 (2018).
[Crossref]

L. Xu, B. Zhao, and M. R. Luo, “Colour gamut mapping between small and large colour gamuts: Part I. gamut compression,” Opt. Express 26(9), 11481–11495 (2018).
[Crossref]

S. Seo, D. Kang, and S. Park, “Real-time adaptable and coherent rendering for outdoor augmented reality,” J. Image Video Proc. 2018(1), 118 (2018).
[Crossref]

2017 (2)

E. Kirchner, I. van der Lans, F. Martínez-Verdú, and E. Perales, “Improving color reproduction accuracy of a mobile liquid crystal display,” J. Opt. Soc. Am. A 34(1), 101–110 (2017).
[Crossref]

K. Rohmer, J. Jendersie, and T. Grosch, “Natural environment illumination: Coherent interactive augmented reality for mobile and non-mobile devices,” IEEE Trans. Visual. Comput. Graphics 23(11), 2474–2484 (2017).
[Crossref]

2016 (3)

T. Langlotz, C. Matthew, and R. Holger, “Real-Time Radiometric Compensation for Optical See-Through Head-Mounted Displays,” IEEE Trans. Visual. Comput. Graphics 22(11), 2385–2394 (2016).
[Crossref]

K. W. Zhao and J. W. Pan, “Optical design for a see-through head-mounted display with high visibility,” Opt. Express 24(5), 4749–4760 (2016).
[Crossref]

Y. Itoh, T. Amano, D. Iwai, and G. Klinker, “Gaussian light field: Estimation of viewpoint-dependent blur for optical see-through head-mounted displays,” IEEE Trans. Visual. Comput. Graphics 22(11), 2368–2376 (2016).
[Crossref]

2015 (2)

Y. Itoh, M. Dzitsiuk, T. Amano, and G. Klinker, “Semi-Parametric Color reproduction method for optical see-through head-mounted displays,” IEEE Trans. Visual. Comput. Graphics 21(11), 1269–1278 (2015).
[Crossref]

G. Pettitt, J. Ferri, and J. Thompson, “47.1: Invited Paper: Practical Application of TI DLP® Technology in the Next Generation Head-up Display System,” SID Symp. Digest Tech. Papers 46(1), 700–703 (2015).
[Crossref]

2013 (1)

C. Menk and R. Koch, “Truthful Color Reproduction in Spatial Augmented Reality Applications,” IEEE Trans. Visual. Comput. Graphics 19(2), 236–248 (2013).
[Crossref]

2007 (2)

M. Y. Lee, C. H. Son, J. M. Kim, C. H. Lee, and Y. H. Ha, “Illumination-level adaptive color reproduction method with lightness adaptation and flare compensation for mobile display,” J. Imaging Sci. Technol. 51(1), 44–52 (2007).
[Crossref]

K. Y. Lee, R. H. Park, and S. W. Lee, “General chromaticity compression function for gamut mapping,” Electron. Lett. 43(5), 276 (2007).
[Crossref]

2006 (3)

O. Cakmakci and R. Jannick, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
[Crossref]

P. Zolliker and S. Klaus, “Continuity of gamut mapping algorithms,” J. Electron. Imaging 15(1), 013004 (2006).
[Crossref]

K. Devlin, A. Chalmers, and E. Reinhard, “Visual calibration and correction for ambient illumination,” ACM Trans. Appl. Percept. 3(4), 429–452 (2006).
[Crossref]

2004 (1)

E. A. Day, L. Taplin, and R. S. Berns, “Colorimetric characterization of a computer-controlled liquid crystal display,” Color Res. Appl. 29(5), 365–373 (2004).
[Crossref]

2001 (1)

J. Morovic and M. R. Luo, “The fundamentals of gamut mapping: A survey,” J. Imaging Sci. Technol. 45(3), 283–290 (2001).

Amano, T.

Y. Itoh, T. Amano, D. Iwai, and G. Klinker, “Gaussian light field: Estimation of viewpoint-dependent blur for optical see-through head-mounted displays,” IEEE Trans. Visual. Comput. Graphics 22(11), 2368–2376 (2016).
[Crossref]

Y. Itoh, M. Dzitsiuk, T. Amano, and G. Klinker, “Semi-Parametric Color reproduction method for optical see-through head-mounted displays,” IEEE Trans. Visual. Comput. Graphics 21(11), 1269–1278 (2015).
[Crossref]

Ashdown, M.

M. Ashdown, T. Okabe, I. Sato, and Y. Sato, “Robust content-dependent photometric projector compensation,” in 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW, 2006), p. 6.

Balasubramanian, R.

K. M. Braun, R. Balasubramanian, and R. Eschbach, “Development and evaluation of six gamut-mapping algorithms for pictorial images,” in Color and Imaging Conference (1999).

Berche, S.

N. Bonnier, F. Schmitt, H. Brettel, and S. Berche, “Evaluation of spatial gamut mapping algorithms,” in Color and Imaging Conference (2006).

Berns, R. S.

E. A. Day, L. Taplin, and R. S. Berns, “Colorimetric characterization of a computer-controlled liquid crystal display,” Color Res. Appl. 29(5), 365–373 (2004).
[Crossref]

Bonnier, N.

N. Bonnier, F. Schmitt, H. Brettel, and S. Berche, “Evaluation of spatial gamut mapping algorithms,” in Color and Imaging Conference (2006).

Braun, K. M.

K. M. Braun, R. Balasubramanian, and R. Eschbach, “Development and evaluation of six gamut-mapping algorithms for pictorial images,” in Color and Imaging Conference (1999).

Brettel, H.

N. Bonnier, F. Schmitt, H. Brettel, and S. Berche, “Evaluation of spatial gamut mapping algorithms,” in Color and Imaging Conference (2006).

Cakmakci, O.

O. Cakmakci and R. Jannick, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
[Crossref]

Chalmers, A.

K. Devlin, A. Chalmers, and E. Reinhard, “Visual calibration and correction for ambient illumination,” ACM Trans. Appl. Percept. 3(4), 429–452 (2006).
[Crossref]

Day, E. A.

E. A. Day, L. Taplin, and R. S. Berns, “Colorimetric characterization of a computer-controlled liquid crystal display,” Color Res. Appl. 29(5), 365–373 (2004).
[Crossref]

Devlin, K.

K. Devlin, A. Chalmers, and E. Reinhard, “Visual calibration and correction for ambient illumination,” ACM Trans. Appl. Percept. 3(4), 429–452 (2006).
[Crossref]

Dzitsiuk, M.

Y. Itoh, M. Dzitsiuk, T. Amano, and G. Klinker, “Semi-Parametric Color reproduction method for optical see-through head-mounted displays,” IEEE Trans. Visual. Comput. Graphics 21(11), 1269–1278 (2015).
[Crossref]

Eschbach, R.

K. M. Braun, R. Balasubramanian, and R. Eschbach, “Development and evaluation of six gamut-mapping algorithms for pictorial images,” in Color and Imaging Conference (1999).

Fairchild, M. D.

M. D. Fairchild and D. R. Wyble, “Colorimetric characterization of the Apple studio display (flat panel LCD),” Munsell Color Science Laboratory Technical Report (1998).

Ferri, J.

G. Pettitt, J. Ferri, and J. Thompson, “47.1: Invited Paper: Practical Application of TI DLP® Technology in the Next Generation Head-up Display System,” SID Symp. Digest Tech. Papers 46(1), 700–703 (2015).
[Crossref]

Flatla, D. R.

S. K. Sridharan, J. D. Hincapié-Ramos, D. R. Flatla, and P. Irani, “Color correction for optical see-through displays using display color profiles,” in Proceedings of 19th ACM Symposium on Virtual Reality Software and Technology, (2013)

Gabbard, J. L.

J. L. Gabbard, J. E. Swan, J. Zedlitz, and W. W. Winchester, “More than meets the eye: An engineering study to empirically examine the blending of real and virtual color spaces,” in 2010 IEEE Virtual Reality Conference (VR) (IEEE, 2010), pp. 79–86.

Grosch, T.

K. Rohmer, J. Jendersie, and T. Grosch, “Natural environment illumination: Coherent interactive augmented reality for mobile and non-mobile devices,” IEEE Trans. Visual. Comput. Graphics 23(11), 2474–2484 (2017).
[Crossref]

Gruber, L.

L. Gruber, J. Ventura, and D. Schmalstieg, “Image-space illumination for augmented reality in dynamic environments,” in 2015 IEEE Virtual Reality Conference (VR) (IEEE, 2015), pp. 127–134.

Grubert, J.

J. Grubert, Y. Itoh, K. Moser, and J. E. Swan, “A survey of calibration methods for optical see-through head-mounted displays,” IEEE Trans. Visual. Comput. Graphics 24(9), 2649–2662 (2018).
[Crossref]

Ha, Y. H.

M. Y. Lee, C. H. Son, J. M. Kim, C. H. Lee, and Y. H. Ha, “Illumination-level adaptive color reproduction method with lightness adaptation and flare compensation for mobile display,” J. Imaging Sci. Technol. 51(1), 44–52 (2007).
[Crossref]

J. M. Kim, C. H. Son, C. H. Lee, and Y. H. Ha, “Illuminant adaptive color reproduction based on lightness adaptation and flare for mobile phone,” in 2006 IEEE International Conference on Image Processing (ICIP), (IEEE, 2006), pp. 1513–1516.

Hassani, N.

N. Hassani and M. J. Murdoch, “Investigating color appearance in optical see-through augmented reality,” Color Research & Application 44(4), 492–507 (2019).
[Crossref]

Hincapié-Ramos, J. D.

S. K. Sridharan, J. D. Hincapié-Ramos, D. R. Flatla, and P. Irani, “Color correction for optical see-through displays using display color profiles,” in Proceedings of 19th ACM Symposium on Virtual Reality Software and Technology, (2013)

J. D. Hincapié-Ramos, L. Ivanchuk, S. K. Sridharan, and P. Irani, “SmartColor: Real-time color correction and contrast for optical see-through head-mounted displays,” in Proceedings of 2014 IEEE International Symposium on Mixed and Augmented Reality (2014).

Holger, R.

T. Langlotz, C. Matthew, and R. Holger, “Real-Time Radiometric Compensation for Optical See-Through Head-Mounted Displays,” IEEE Trans. Visual. Comput. Graphics 22(11), 2385–2394 (2016).
[Crossref]

Ikeda, S.

S. Mori, S. Ikeda, A. Plopski, and C. Sandor, “Brightview: Increasing perceived brightness of optical see-through head-mounted displays through unnoticeable incident light reduction,” in 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (IEEE, 2018), pp. 251–258.

Irani, P.

J. D. Hincapié-Ramos, L. Ivanchuk, S. K. Sridharan, and P. Irani, “SmartColor: Real-time color correction and contrast for optical see-through head-mounted displays,” in Proceedings of 2014 IEEE International Symposium on Mixed and Augmented Reality (2014).

S. K. Sridharan, J. D. Hincapié-Ramos, D. R. Flatla, and P. Irani, “Color correction for optical see-through displays using display color profiles,” in Proceedings of 19th ACM Symposium on Virtual Reality Software and Technology, (2013)

Itoh, Y.

J. Grubert, Y. Itoh, K. Moser, and J. E. Swan, “A survey of calibration methods for optical see-through head-mounted displays,” IEEE Trans. Visual. Comput. Graphics 24(9), 2649–2662 (2018).
[Crossref]

Y. Itoh, T. Amano, D. Iwai, and G. Klinker, “Gaussian light field: Estimation of viewpoint-dependent blur for optical see-through head-mounted displays,” IEEE Trans. Visual. Comput. Graphics 22(11), 2368–2376 (2016).
[Crossref]

Y. Itoh, M. Dzitsiuk, T. Amano, and G. Klinker, “Semi-Parametric Color reproduction method for optical see-through head-mounted displays,” IEEE Trans. Visual. Comput. Graphics 21(11), 1269–1278 (2015).
[Crossref]

T. Langlotz, J. Sutton, S. Zollmann, Y. Itoh, and H. Regenbrecht, “Chromaglasses: Computational glasses for compensating colour blindness,” in Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, (ACM, 2018), pp. 1–12.

Ivanchuk, L.

J. D. Hincapié-Ramos, L. Ivanchuk, S. K. Sridharan, and P. Irani, “SmartColor: Real-time color correction and contrast for optical see-through head-mounted displays,” in Proceedings of 2014 IEEE International Symposium on Mixed and Augmented Reality (2014).

Iwai, D.

Y. Itoh, T. Amano, D. Iwai, and G. Klinker, “Gaussian light field: Estimation of viewpoint-dependent blur for optical see-through head-mounted displays,” IEEE Trans. Visual. Comput. Graphics 22(11), 2368–2376 (2016).
[Crossref]

Jannick, R.

O. Cakmakci and R. Jannick, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
[Crossref]

Jendersie, J.

K. Rohmer, J. Jendersie, and T. Grosch, “Natural environment illumination: Coherent interactive augmented reality for mobile and non-mobile devices,” IEEE Trans. Visual. Comput. Graphics 23(11), 2474–2484 (2017).
[Crossref]

Kang, D.

S. Seo, D. Kang, and S. Park, “Real-time adaptable and coherent rendering for outdoor augmented reality,” J. Image Video Proc. 2018(1), 118 (2018).
[Crossref]

Kang, H. R.

H. R. Kang, Color technology for electronic imaging devices, SPIE Press (1997).

Kim, J. M.

M. Y. Lee, C. H. Son, J. M. Kim, C. H. Lee, and Y. H. Ha, “Illumination-level adaptive color reproduction method with lightness adaptation and flare compensation for mobile display,” J. Imaging Sci. Technol. 51(1), 44–52 (2007).
[Crossref]

J. M. Kim, C. H. Son, C. H. Lee, and Y. H. Ha, “Illuminant adaptive color reproduction based on lightness adaptation and flare for mobile phone,” in 2006 IEEE International Conference on Image Processing (ICIP), (IEEE, 2006), pp. 1513–1516.

Kim, J. O.

K. H. Lee and J. O. Kim, “Visibility enhancement via optimal gamma tone mapping for OST displays under ambient light,” in 2017 IEEE International Conference on Image Processing (ICIP) (IEEE, 2017), pp. 470–474.

K. K. Lee, J. W. Kim, J. H. Ryu, and J. O. Kim, “Chromaticity Based Local Linear Regression for Color Distortion Estimation of Optical See-Through Displays,” in Proceedings of 2016 IEEE International Symposium on Mixed and Augmented Reality (2016).

J. W. Kim, K. K. Lee, J. H. Ryu, and J. O. Kim, “Localized color correction for optical see-through displays via weighted linear regression,” in Proceedings of 22nd ACM Conference on Virtual Reality Software and Technology (2016).

Kim, J. W.

J. W. Kim, K. K. Lee, J. H. Ryu, and J. O. Kim, “Localized color correction for optical see-through displays via weighted linear regression,” in Proceedings of 22nd ACM Conference on Virtual Reality Software and Technology (2016).

K. K. Lee, J. W. Kim, J. H. Ryu, and J. O. Kim, “Chromaticity Based Local Linear Regression for Color Distortion Estimation of Optical See-Through Displays,” in Proceedings of 2016 IEEE International Symposium on Mixed and Augmented Reality (2016).

Kirchner, E.

Klaus, S.

P. Zolliker and S. Klaus, “Continuity of gamut mapping algorithms,” J. Electron. Imaging 15(1), 013004 (2006).
[Crossref]

Klinker, G.

Y. Itoh, T. Amano, D. Iwai, and G. Klinker, “Gaussian light field: Estimation of viewpoint-dependent blur for optical see-through head-mounted displays,” IEEE Trans. Visual. Comput. Graphics 22(11), 2368–2376 (2016).
[Crossref]

Y. Itoh, M. Dzitsiuk, T. Amano, and G. Klinker, “Semi-Parametric Color reproduction method for optical see-through head-mounted displays,” IEEE Trans. Visual. Comput. Graphics 21(11), 1269–1278 (2015).
[Crossref]

Koch, R.

C. Menk and R. Koch, “Truthful Color Reproduction in Spatial Augmented Reality Applications,” IEEE Trans. Visual. Comput. Graphics 19(2), 236–248 (2013).
[Crossref]

Langlotz, T.

T. Langlotz, C. Matthew, and R. Holger, “Real-Time Radiometric Compensation for Optical See-Through Head-Mounted Displays,” IEEE Trans. Visual. Comput. Graphics 22(11), 2385–2394 (2016).
[Crossref]

T. Langlotz, J. Sutton, S. Zollmann, Y. Itoh, and H. Regenbrecht, “Chromaglasses: Computational glasses for compensating colour blindness,” in Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, (ACM, 2018), pp. 1–12.

Lee, B. U.

S. H. Park, S. Yang, and B. U. Lee, “Adaptive chrominance correction for a projector considering image and screen color,” in International Symposium on Visual Computing (2007).

Lee, C. H.

M. Y. Lee, C. H. Son, J. M. Kim, C. H. Lee, and Y. H. Ha, “Illumination-level adaptive color reproduction method with lightness adaptation and flare compensation for mobile display,” J. Imaging Sci. Technol. 51(1), 44–52 (2007).
[Crossref]

J. M. Kim, C. H. Son, C. H. Lee, and Y. H. Ha, “Illuminant adaptive color reproduction based on lightness adaptation and flare for mobile phone,” in 2006 IEEE International Conference on Image Processing (ICIP), (IEEE, 2006), pp. 1513–1516.

Lee, K. H.

K. H. Lee and J. O. Kim, “Visibility enhancement via optimal gamma tone mapping for OST displays under ambient light,” in 2017 IEEE International Conference on Image Processing (ICIP) (IEEE, 2017), pp. 470–474.

Lee, K. K.

J. W. Kim, K. K. Lee, J. H. Ryu, and J. O. Kim, “Localized color correction for optical see-through displays via weighted linear regression,” in Proceedings of 22nd ACM Conference on Virtual Reality Software and Technology (2016).

K. K. Lee, J. W. Kim, J. H. Ryu, and J. O. Kim, “Chromaticity Based Local Linear Regression for Color Distortion Estimation of Optical See-Through Displays,” in Proceedings of 2016 IEEE International Symposium on Mixed and Augmented Reality (2016).

Lee, K. Y.

K. Y. Lee, R. H. Park, and S. W. Lee, “General chromaticity compression function for gamut mapping,” Electron. Lett. 43(5), 276 (2007).
[Crossref]

Lee, M. Y.

M. Y. Lee, C. H. Son, J. M. Kim, C. H. Lee, and Y. H. Ha, “Illumination-level adaptive color reproduction method with lightness adaptation and flare compensation for mobile display,” J. Imaging Sci. Technol. 51(1), 44–52 (2007).
[Crossref]

Lee, S. W.

K. Y. Lee, R. H. Park, and S. W. Lee, “General chromaticity compression function for gamut mapping,” Electron. Lett. 43(5), 276 (2007).
[Crossref]

Luo, M. R.

L. Xu, B. Zhao, and M. R. Luo, “Colour gamut mapping between small and large colour gamuts: Part I. gamut compression,” Opt. Express 26(9), 11481–11495 (2018).
[Crossref]

J. Morovic and M. R. Luo, “The fundamentals of gamut mapping: A survey,” J. Imaging Sci. Technol. 45(3), 283–290 (2001).

Martínez-Verdú, F.

Matthew, C.

T. Langlotz, C. Matthew, and R. Holger, “Real-Time Radiometric Compensation for Optical See-Through Head-Mounted Displays,” IEEE Trans. Visual. Comput. Graphics 22(11), 2385–2394 (2016).
[Crossref]

Menk, C.

C. Menk and R. Koch, “Truthful Color Reproduction in Spatial Augmented Reality Applications,” IEEE Trans. Visual. Comput. Graphics 19(2), 236–248 (2013).
[Crossref]

Mori, S.

S. Mori, S. Ikeda, A. Plopski, and C. Sandor, “Brightview: Increasing perceived brightness of optical see-through head-mounted displays through unnoticeable incident light reduction,” in 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (IEEE, 2018), pp. 251–258.

Morovic, J.

J. Morovic and M. R. Luo, “The fundamentals of gamut mapping: A survey,” J. Imaging Sci. Technol. 45(3), 283–290 (2001).

J. Morovic and M. L. Ronnier, “Gamut mapping algorithms based on psychophysical experiment,” in Color and Imaging Conference (1997).

J. Morovic, “To Develop a Universal Gamut Mapping Algorithm,” PhD dissertation, University of Derby (1988).

Moser, K.

J. Grubert, Y. Itoh, K. Moser, and J. E. Swan, “A survey of calibration methods for optical see-through head-mounted displays,” IEEE Trans. Visual. Comput. Graphics 24(9), 2649–2662 (2018).
[Crossref]

Murdoch, M. J.

N. Hassani and M. J. Murdoch, “Investigating color appearance in optical see-through augmented reality,” Color Research & Application 44(4), 492–507 (2019).
[Crossref]

Okabe, T.

M. Ashdown, T. Okabe, I. Sato, and Y. Sato, “Robust content-dependent photometric projector compensation,” in 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW, 2006), p. 6.

Pan, J. W.

Park, R. H.

K. Y. Lee, R. H. Park, and S. W. Lee, “General chromaticity compression function for gamut mapping,” Electron. Lett. 43(5), 276 (2007).
[Crossref]

Park, S.

S. Seo, D. Kang, and S. Park, “Real-time adaptable and coherent rendering for outdoor augmented reality,” J. Image Video Proc. 2018(1), 118 (2018).
[Crossref]

Park, S. H.

S. H. Park, S. Yang, and B. U. Lee, “Adaptive chrominance correction for a projector considering image and screen color,” in International Symposium on Visual Computing (2007).

Peddie, J.

J. Peddie, Augmented reality: Where we will all live (Springer, 2017).

Perales, E.

Pettitt, G.

G. Pettitt, J. Ferri, and J. Thompson, “47.1: Invited Paper: Practical Application of TI DLP® Technology in the Next Generation Head-up Display System,” SID Symp. Digest Tech. Papers 46(1), 700–703 (2015).
[Crossref]

Plopski, A.

S. Mori, S. Ikeda, A. Plopski, and C. Sandor, “Brightview: Increasing perceived brightness of optical see-through head-mounted displays through unnoticeable incident light reduction,” in 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (IEEE, 2018), pp. 251–258.

Regenbrecht, H.

T. Langlotz, J. Sutton, S. Zollmann, Y. Itoh, and H. Regenbrecht, “Chromaglasses: Computational glasses for compensating colour blindness,” in Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, (ACM, 2018), pp. 1–12.

Reinhard, E.

K. Devlin, A. Chalmers, and E. Reinhard, “Visual calibration and correction for ambient illumination,” ACM Trans. Appl. Percept. 3(4), 429–452 (2006).
[Crossref]

Rohmer, K.

K. Rohmer, J. Jendersie, and T. Grosch, “Natural environment illumination: Coherent interactive augmented reality for mobile and non-mobile devices,” IEEE Trans. Visual. Comput. Graphics 23(11), 2474–2484 (2017).
[Crossref]

Ronnier, M. L.

J. Morovic and M. L. Ronnier, “Gamut mapping algorithms based on psychophysical experiment,” in Color and Imaging Conference (1997).

Ryu, J. H.

J. W. Kim, K. K. Lee, J. H. Ryu, and J. O. Kim, “Localized color correction for optical see-through displays via weighted linear regression,” in Proceedings of 22nd ACM Conference on Virtual Reality Software and Technology (2016).

K. K. Lee, J. W. Kim, J. H. Ryu, and J. O. Kim, “Chromaticity Based Local Linear Regression for Color Distortion Estimation of Optical See-Through Displays,” in Proceedings of 2016 IEEE International Symposium on Mixed and Augmented Reality (2016).

Sandor, C.

S. Mori, S. Ikeda, A. Plopski, and C. Sandor, “Brightview: Increasing perceived brightness of optical see-through head-mounted displays through unnoticeable incident light reduction,” in 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (IEEE, 2018), pp. 251–258.

Sato, I.

M. Ashdown, T. Okabe, I. Sato, and Y. Sato, “Robust content-dependent photometric projector compensation,” in 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW, 2006), p. 6.

Sato, Y.

M. Ashdown, T. Okabe, I. Sato, and Y. Sato, “Robust content-dependent photometric projector compensation,” in 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW, 2006), p. 6.

Schmalstieg, D.

L. Gruber, J. Ventura, and D. Schmalstieg, “Image-space illumination for augmented reality in dynamic environments,” in 2015 IEEE Virtual Reality Conference (VR) (IEEE, 2015), pp. 127–134.

Schmitt, F.

N. Bonnier, F. Schmitt, H. Brettel, and S. Berche, “Evaluation of spatial gamut mapping algorithms,” in Color and Imaging Conference (2006).

Seo, S.

S. Seo, D. Kang, and S. Park, “Real-time adaptable and coherent rendering for outdoor augmented reality,” J. Image Video Proc. 2018(1), 118 (2018).
[Crossref]

Son, C. H.

M. Y. Lee, C. H. Son, J. M. Kim, C. H. Lee, and Y. H. Ha, “Illumination-level adaptive color reproduction method with lightness adaptation and flare compensation for mobile display,” J. Imaging Sci. Technol. 51(1), 44–52 (2007).
[Crossref]

J. M. Kim, C. H. Son, C. H. Lee, and Y. H. Ha, “Illuminant adaptive color reproduction based on lightness adaptation and flare for mobile phone,” in 2006 IEEE International Conference on Image Processing (ICIP), (IEEE, 2006), pp. 1513–1516.

Sridharan, S. K.

S. K. Sridharan, J. D. Hincapié-Ramos, D. R. Flatla, and P. Irani, “Color correction for optical see-through displays using display color profiles,” in Proceedings of 19th ACM Symposium on Virtual Reality Software and Technology, (2013)

J. D. Hincapié-Ramos, L. Ivanchuk, S. K. Sridharan, and P. Irani, “SmartColor: Real-time color correction and contrast for optical see-through head-mounted displays,” in Proceedings of 2014 IEEE International Symposium on Mixed and Augmented Reality (2014).

Sutton, J.

T. Langlotz, J. Sutton, S. Zollmann, Y. Itoh, and H. Regenbrecht, “Chromaglasses: Computational glasses for compensating colour blindness,” in Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, (ACM, 2018), pp. 1–12.

Swan, J. E.

J. Grubert, Y. Itoh, K. Moser, and J. E. Swan, “A survey of calibration methods for optical see-through head-mounted displays,” IEEE Trans. Visual. Comput. Graphics 24(9), 2649–2662 (2018).
[Crossref]

J. L. Gabbard, J. E. Swan, J. Zedlitz, and W. W. Winchester, “More than meets the eye: An engineering study to empirically examine the blending of real and virtual color spaces,” in 2010 IEEE Virtual Reality Conference (VR) (IEEE, 2010), pp. 79–86.

Taplin, L.

E. A. Day, L. Taplin, and R. S. Berns, “Colorimetric characterization of a computer-controlled liquid crystal display,” Color Res. Appl. 29(5), 365–373 (2004).
[Crossref]

Thompson, J.

G. Pettitt, J. Ferri, and J. Thompson, “47.1: Invited Paper: Practical Application of TI DLP® Technology in the Next Generation Head-up Display System,” SID Symp. Digest Tech. Papers 46(1), 700–703 (2015).
[Crossref]

van der Lans, I.

Ventura, J.

L. Gruber, J. Ventura, and D. Schmalstieg, “Image-space illumination for augmented reality in dynamic environments,” in 2015 IEEE Virtual Reality Conference (VR) (IEEE, 2015), pp. 127–134.

Winchester, W. W.

J. L. Gabbard, J. E. Swan, J. Zedlitz, and W. W. Winchester, “More than meets the eye: An engineering study to empirically examine the blending of real and virtual color spaces,” in 2010 IEEE Virtual Reality Conference (VR) (IEEE, 2010), pp. 79–86.

Wyble, D. R.

M. D. Fairchild and D. R. Wyble, “Colorimetric characterization of the Apple studio display (flat panel LCD),” Munsell Color Science Laboratory Technical Report (1998).

Xu, L.

Yang, S.

S. H. Park, S. Yang, and B. U. Lee, “Adaptive chrominance correction for a projector considering image and screen color,” in International Symposium on Visual Computing (2007).

Zedlitz, J.

J. L. Gabbard, J. E. Swan, J. Zedlitz, and W. W. Winchester, “More than meets the eye: An engineering study to empirically examine the blending of real and virtual color spaces,” in 2010 IEEE Virtual Reality Conference (VR) (IEEE, 2010), pp. 79–86.

Zhao, B.

Zhao, K. W.

Zolliker, P.

P. Zolliker and S. Klaus, “Continuity of gamut mapping algorithms,” J. Electron. Imaging 15(1), 013004 (2006).
[Crossref]

Zollmann, S.

T. Langlotz, J. Sutton, S. Zollmann, Y. Itoh, and H. Regenbrecht, “Chromaglasses: Computational glasses for compensating colour blindness,” in Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, (ACM, 2018), pp. 1–12.

ACM Trans. Appl. Percept. (1)

K. Devlin, A. Chalmers, and E. Reinhard, “Visual calibration and correction for ambient illumination,” ACM Trans. Appl. Percept. 3(4), 429–452 (2006).
[Crossref]

Color Res. Appl. (1)

E. A. Day, L. Taplin, and R. S. Berns, “Colorimetric characterization of a computer-controlled liquid crystal display,” Color Res. Appl. 29(5), 365–373 (2004).
[Crossref]

Color Research & Application (1)

N. Hassani and M. J. Murdoch, “Investigating color appearance in optical see-through augmented reality,” Color Research & Application 44(4), 492–507 (2019).
[Crossref]

Electron. Lett. (1)

K. Y. Lee, R. H. Park, and S. W. Lee, “General chromaticity compression function for gamut mapping,” Electron. Lett. 43(5), 276 (2007).
[Crossref]

IEEE Trans. Visual. Comput. Graphics (6)

J. Grubert, Y. Itoh, K. Moser, and J. E. Swan, “A survey of calibration methods for optical see-through head-mounted displays,” IEEE Trans. Visual. Comput. Graphics 24(9), 2649–2662 (2018).
[Crossref]

Y. Itoh, T. Amano, D. Iwai, and G. Klinker, “Gaussian light field: Estimation of viewpoint-dependent blur for optical see-through head-mounted displays,” IEEE Trans. Visual. Comput. Graphics 22(11), 2368–2376 (2016).
[Crossref]

Y. Itoh, M. Dzitsiuk, T. Amano, and G. Klinker, “Semi-Parametric Color reproduction method for optical see-through head-mounted displays,” IEEE Trans. Visual. Comput. Graphics 21(11), 1269–1278 (2015).
[Crossref]

C. Menk and R. Koch, “Truthful Color Reproduction in Spatial Augmented Reality Applications,” IEEE Trans. Visual. Comput. Graphics 19(2), 236–248 (2013).
[Crossref]

K. Rohmer, J. Jendersie, and T. Grosch, “Natural environment illumination: Coherent interactive augmented reality for mobile and non-mobile devices,” IEEE Trans. Visual. Comput. Graphics 23(11), 2474–2484 (2017).
[Crossref]

T. Langlotz, C. Matthew, and R. Holger, “Real-Time Radiometric Compensation for Optical See-Through Head-Mounted Displays,” IEEE Trans. Visual. Comput. Graphics 22(11), 2385–2394 (2016).
[Crossref]

J. Disp. Technol. (1)

O. Cakmakci and R. Jannick, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
[Crossref]

J. Electron. Imaging (1)

P. Zolliker and S. Klaus, “Continuity of gamut mapping algorithms,” J. Electron. Imaging 15(1), 013004 (2006).
[Crossref]

J. Image Video Proc. (1)

S. Seo, D. Kang, and S. Park, “Real-time adaptable and coherent rendering for outdoor augmented reality,” J. Image Video Proc. 2018(1), 118 (2018).
[Crossref]

J. Imaging Sci. Technol. (2)

M. Y. Lee, C. H. Son, J. M. Kim, C. H. Lee, and Y. H. Ha, “Illumination-level adaptive color reproduction method with lightness adaptation and flare compensation for mobile display,” J. Imaging Sci. Technol. 51(1), 44–52 (2007).
[Crossref]

J. Morovic and M. R. Luo, “The fundamentals of gamut mapping: A survey,” J. Imaging Sci. Technol. 45(3), 283–290 (2001).

J. Opt. Soc. Am. A (1)

Opt. Express (2)

SID Symp. Digest Tech. Papers (1)

G. Pettitt, J. Ferri, and J. Thompson, “47.1: Invited Paper: Practical Application of TI DLP® Technology in the Next Generation Head-up Display System,” SID Symp. Digest Tech. Papers 46(1), 700–703 (2015).
[Crossref]

Other (19)

J. Morovic and M. L. Ronnier, “Gamut mapping algorithms based on psychophysical experiment,” in Color and Imaging Conference (1997).

K. M. Braun, R. Balasubramanian, and R. Eschbach, “Development and evaluation of six gamut-mapping algorithms for pictorial images,” in Color and Imaging Conference (1999).

J. Morovic, “To Develop a Universal Gamut Mapping Algorithm,” PhD dissertation, University of Derby (1988).

H. R. Kang, Color technology for electronic imaging devices, SPIE Press (1997).

T. Langlotz, J. Sutton, S. Zollmann, Y. Itoh, and H. Regenbrecht, “Chromaglasses: Computational glasses for compensating colour blindness,” in Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, (ACM, 2018), pp. 1–12.

K. H. Lee and J. O. Kim, “Visibility enhancement via optimal gamma tone mapping for OST displays under ambient light,” in 2017 IEEE International Conference on Image Processing (ICIP) (IEEE, 2017), pp. 470–474.

J. L. Gabbard, J. E. Swan, J. Zedlitz, and W. W. Winchester, “More than meets the eye: An engineering study to empirically examine the blending of real and virtual color spaces,” in 2010 IEEE Virtual Reality Conference (VR) (IEEE, 2010), pp. 79–86.

J. M. Kim, C. H. Son, C. H. Lee, and Y. H. Ha, “Illuminant adaptive color reproduction based on lightness adaptation and flare for mobile phone,” in 2006 IEEE International Conference on Image Processing (ICIP), (IEEE, 2006), pp. 1513–1516.

S. K. Sridharan, J. D. Hincapié-Ramos, D. R. Flatla, and P. Irani, “Color correction for optical see-through displays using display color profiles,” in Proceedings of 19th ACM Symposium on Virtual Reality Software and Technology, (2013)

J. Peddie, Augmented reality: Where we will all live (Springer, 2017).

L. Gruber, J. Ventura, and D. Schmalstieg, “Image-space illumination for augmented reality in dynamic environments,” in 2015 IEEE Virtual Reality Conference (VR) (IEEE, 2015), pp. 127–134.

K. K. Lee, J. W. Kim, J. H. Ryu, and J. O. Kim, “Chromaticity Based Local Linear Regression for Color Distortion Estimation of Optical See-Through Displays,” in Proceedings of 2016 IEEE International Symposium on Mixed and Augmented Reality (2016).

N. Bonnier, F. Schmitt, H. Brettel, and S. Berche, “Evaluation of spatial gamut mapping algorithms,” in Color and Imaging Conference (2006).

M. D. Fairchild and D. R. Wyble, “Colorimetric characterization of the Apple studio display (flat panel LCD),” Munsell Color Science Laboratory Technical Report (1998).

J. W. Kim, K. K. Lee, J. H. Ryu, and J. O. Kim, “Localized color correction for optical see-through displays via weighted linear regression,” in Proceedings of 22nd ACM Conference on Virtual Reality Software and Technology (2016).

S. Mori, S. Ikeda, A. Plopski, and C. Sandor, “Brightview: Increasing perceived brightness of optical see-through head-mounted displays through unnoticeable incident light reduction,” in 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (IEEE, 2018), pp. 251–258.

J. D. Hincapié-Ramos, L. Ivanchuk, S. K. Sridharan, and P. Irani, “SmartColor: Real-time color correction and contrast for optical see-through head-mounted displays,” in Proceedings of 2014 IEEE International Symposium on Mixed and Augmented Reality (2014).

M. Ashdown, T. Okabe, I. Sato, and Y. Sato, “Robust content-dependent photometric projector compensation,” in 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW, 2006), p. 6.

S. H. Park, S. Yang, and B. U. Lee, “Adaptive chrominance correction for a projector considering image and screen color,” in International Symposium on Visual Computing (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. Color distortion on an OST display; (a) sRGB image, (b) camera-captured version in outdoor environment, (c) camera-captured version of the actually displayed image on the OST display, (d) gamut distortion of the OST display in outdoor environment
Fig. 2.
Fig. 2. OST display gamut in CIE Lab color space of (a) Moverio BT-2000, and (b) Moverio BT-300
Fig. 3.
Fig. 3. Gamut compression under ambient light (a) BT-2000, and (b) BT-300
Fig. 4.
Fig. 4. (a) The first step lightness mapping process of the proposed method, (b) equal area strain for LM process
Fig. 5.
Fig. 5. (a), (b) distinct compression ratios, depending on the location of the source gamut color, (c) the compression direction along the value area in TPLCC algorithm
Fig. 6.
Fig. 6. Linear gamut extension for wide gamut
Fig. 7.
Fig. 7. Practical experimental setup
Fig. 8.
Fig. 8. Varying OST display gamut with ambient light.
Fig. 9.
Fig. 9. The measured gamut and the estimated gamut of BT-300
Fig. 10.
Fig. 10. The color reproduction error by gamut mapping for BT-300 in AL 1.
Fig. 11.
Fig. 11. Subjective visual quality of gamut mapping for BT-300 in AL 3, (a) input image, (b) the proposed method, (c) CARISMA, (d) SGDA. Note that (b) ∼ (d) are images actually taken by the eye camera in Fig. 7.
Fig. 12.
Fig. 12. Subjective visual quality of gamut mapping for BT-300 in AL 5, (a) input image, (b) the proposed method, (c) CARISMA, (d) SGDA. Note that (b) ∼ (d) are images actually taken by the eye camera in Fig. 7.
Fig. 13.
Fig. 13. Subjective visual quality of gamut mapping for BT-2000 in AL 3, (a) input image, (b) the proposed method, (c) CARISMA, (d) SGDA. Note that (b) ∼ (d) are images actually taken by the eye camera in Fig. 7.

Tables (3)

Tables Icon

Table 1. Intensities of ambient light used in experiment

Tables Icon

Table 2. Average color reproduction error with ΔE and ΔC for BT-300

Tables Icon

Table 3. Average color reproduction error with ΔE and ΔC for BT-2000

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

t L = o 2 + s ( D o 1 D o 2 D i 1 D i 2 )
t = s r C
r C = { r d 2 r d + 2 2 , ( f o r e n c l o s e d p a r t ) r d 2 2 , ( f o r n o n e n c l o s e d p a r t )
t L = s ( D o D i )