Abstract

Detection and frequency estimation of radio frequency (RF) signals are critical in modern RF systems, including wireless communication and radar. Photonic techniques have made huge progress in solving the problem imposed by the fundamental trade-off between detection range and accuracy. However, neither fiber-based nor integrated photonic RF signal detection and frequency estimation systems have achieved wide range and low error with high sensitivity simultaneously in a single system. In this paper, we demonstrate the first Brillouin opto-electronic oscillator (B-OEO) based on on-chip stimulated Brillouin scattering (SBS) to achieve RF signal detection. The broad tunability and narrowband amplification of on-chip SBS allow for the wide-range and high-accuracy detection. Feeding the unknown RF signal into the B-OEO cavity amplifies the signal which is matched with the oscillation mode to detect low-power RF signals. We are able to detect RF signals from 1.5 to 40 GHz with power levels as low as −67 dBm and a frequency accuracy of ± 3.4 MHz. This result paves the way to compact, fully integrated RF detection and channelization.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter

Hengyun Jiang, David Marpaung, Mattia Pagani, Khu Vu, Duk-Yong Choi, Steve J. Madden, Lianshan Yan, and Benjamin J. Eggleton
Optica 3(1) 30-34 (2016)

Simple photonic-assisted radio frequency down-converter based on optoelectronic oscillator

Hongchen Yu, Minghua Chen, Hongbiao Gao, Cheng Lei, Heng Zhang, Sigang Yang, Hongwei Chen, and Shizhong Xie
Photon. Res. 2(4) B1-B4 (2014)

References

  • View by:
  • |
  • |
  • |

  1. C. Wang, F. Haider, X. Gao, X. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
    [Crossref]
  2. P. S. Devgan, V. J. Urick, and K. J. Williams, “Detection of low-power RF signals using a two laser multimode optoelectronic oscillator,” IEEE Photonics Technol. Lett. 24, 857–859 (2012).
  3. A. M. Sardarabadi, A. J. van der Veen, and A. J. Boonstra, “Spatial Filtering of RF Interference in Radio Astronomy Using a Reference Antenna Array,” IEEE Trans. Signal Process. 64(2), 432–447 (2016).
    [Crossref]
  4. W. B. Sullivan, “Instantaneous frequency measurement receivers for maritime patrol,” J. Electron. Defence 25, 55–62 (2002).
  5. H. Emami, M. Hajihashemi, S. E. Alavi, A. S. M. Supaat, and L. Bui, “Microwave photonics instantaneous frequency measurement receiver based on a Sagnac loop,” Opt. Lett. 43(10), 2233–2236 (2018).
    [Crossref] [PubMed]
  6. G. Wang, T. Hao, W. Li, N. Zhu, and M. Li, “Detection of wideband low-power RF signals using a stimulated Brillouin scattering-based optoelectronic oscillator,” Opt. Commun. 439, 133–136 (2019).
    [Crossref]
  7. Y. Shao, X. Han, M. Li, and M. Zhao, “RF signal detection by a tunable optoelectronic oscillator based on a PS-FBG,” Opt. Lett. 43(6), 1199–1202 (2018).
    [Crossref] [PubMed]
  8. J. Niu, S. Fu, K. Xu, J. Zhou, S. Aditya, J. Wu, P. P. Shum, and J. T. Lin, “Instantaneous microwave frequency measurement based on amplified fiber-optic recirculating delay loop and broadband incoherent light source,” J. Lightwave Technol. 29(1), 78–84 (2011).
    [Crossref]
  9. D. Marpaung, “On-chip photonic-assisted instantaneous microwave frequency measurement system,” IEEE Photonics Technol. Lett. 25(9), 837–840 (2013).
    [Crossref]
  10. J. S. Fandiño and P. Muñoz, “Photonics-based microwave frequency measurement using a double-sideband suppressed-carrier modulation and an InP integrated ring-assisted Mach-Zehnder interferometer filter,” Opt. Lett. 38(21), 4316–4319 (2013).
    [Crossref] [PubMed]
  11. L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
    [Crossref]
  12. M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azaña, “Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip,” Nat. Commun. 7(1), 13004 (2016).
    [Crossref] [PubMed]
  13. M. Pagani, B. Morrison, Y. Zhang, A. Casas-Bedoya, T. Aalto, M. Harjanne, M. Kapulainen, B. J. Eggleton, and D. Marpaung, “Low-error and broadband microwave frequency measurement in a silicon chip,” Optica 2(8), 751–756 (2015).
    [Crossref]
  14. H. Y. Jiang, D. Marpaung, M. Pagani, K. Vu, D. Y. Choi, S. J. Madden, L. S. Yan, and B. J. Eggleton, “Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter,” Optica 3(1), 30–34 (2016).
    [Crossref]
  15. M. Merklein, A. Casas-Bedoya, D. Marpaung, T. F. S. Buttner, M. Pagani, B. Morrison, I. V. Kabakova, and B. J. Eggleton, “Stimulated Brillouin Scattering in Photonic Integrated Circuits: Novel Applications and Devices,” IEEE J. Sel. Top. Quantum Electron. 22(2), 336–346 (2016).
    [Crossref]
  16. M. Merklein, B. Stiller, I. V. Kabakova, U. S. Mutugala, K. Vu, S. J. Madden, B. J. Eggleton, and R. Slavík, “Widely tunable, low phase noise microwave source based on a photonic chip,” Opt. Lett. 41(20), 4633–4636 (2016).
    [Crossref] [PubMed]
  17. N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20(16), 17667–17677 (2012).
    [Crossref] [PubMed]
  18. M. Shi, L. Yi, W. Wei, and W. Hu, “Generation and phase noise analysis of a wide optoelectronic oscillator with ultra-high resolution based on stimulated Brillouin scattering,” Opt. Express 26(13), 16113–16124 (2018).
    [Crossref] [PubMed]
  19. S. Preußler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Brillouin scattering gain bandwidth reduction down to 3.4MHz,” Opt. Express 19(9), 8565–8570 (2011).
    [Crossref] [PubMed]
  20. M. A. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J. E. Bowers, “Ultra-Low-Loss Silicon Waveguides for Heterogeneously Integrated Silicon/III-V Photonics,” Appl. Sci. (Basel) 8(7), 1139–1150 (2018).
    [Crossref]
  21. Y. Fan, R. M. Oldenbeuving, C. G. Roeloffzen, M. Hoekman, D. Geskus, R. G. Heideman, and K. J. Boller, “290 Hz intrinsic linewidth from an integrated optical chip-based widely tunable InP-Si3N4 hybrid laser.,” In CLEO: 2017 Paper Digest JT5C.9, (2017).
  22. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [Crossref] [PubMed]
  23. Y. Ogiso, J. Ozaki, Y. Ueda, N. Kashio, N. Kikuchi, E. Yamada, H. Tanobe, S. Kanazawa, H. Yamazaki, Y. Ohiso, T. Fujii, and M. Kohtoku, “Over 67 GHz bandwidth and 1.5 V InP-based optical IQ modulator with n-i-p-n heterostructure,” J. Lightwave Technol. 35(8), 1450–1455 (2017).
    [Crossref]
  24. M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298(5597), 1401–1403 (2002).
    [Crossref] [PubMed]
  25. C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
    [Crossref] [PubMed]
  26. R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9(3), 199–203 (2015).
    [Crossref]
  27. A. Beling, A. S. Cross, M. Piels, J. Peters, Q. Zhou, J. E. Bowers, and J. C. Campbell, “InP-based waveguide photodiodes heterogeneously integrated on silicon-on-insulator for photonic microwave generation,” Opt. Express 21(22), 25901–25906 (2013).
    [Crossref] [PubMed]
  28. D. Huang, P. Pintus, C. Zhang, P. Morton, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Dynamically reconfigurable integrated optical circulators,” Optica 4(1), 23–30 (2017).
    [Crossref]

2019 (1)

G. Wang, T. Hao, W. Li, N. Zhu, and M. Li, “Detection of wideband low-power RF signals using a stimulated Brillouin scattering-based optoelectronic oscillator,” Opt. Commun. 439, 133–136 (2019).
[Crossref]

2018 (5)

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

M. A. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J. E. Bowers, “Ultra-Low-Loss Silicon Waveguides for Heterogeneously Integrated Silicon/III-V Photonics,” Appl. Sci. (Basel) 8(7), 1139–1150 (2018).
[Crossref]

Y. Shao, X. Han, M. Li, and M. Zhao, “RF signal detection by a tunable optoelectronic oscillator based on a PS-FBG,” Opt. Lett. 43(6), 1199–1202 (2018).
[Crossref] [PubMed]

H. Emami, M. Hajihashemi, S. E. Alavi, A. S. M. Supaat, and L. Bui, “Microwave photonics instantaneous frequency measurement receiver based on a Sagnac loop,” Opt. Lett. 43(10), 2233–2236 (2018).
[Crossref] [PubMed]

M. Shi, L. Yi, W. Wei, and W. Hu, “Generation and phase noise analysis of a wide optoelectronic oscillator with ultra-high resolution based on stimulated Brillouin scattering,” Opt. Express 26(13), 16113–16124 (2018).
[Crossref] [PubMed]

2017 (2)

2016 (5)

H. Y. Jiang, D. Marpaung, M. Pagani, K. Vu, D. Y. Choi, S. J. Madden, L. S. Yan, and B. J. Eggleton, “Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter,” Optica 3(1), 30–34 (2016).
[Crossref]

M. Merklein, B. Stiller, I. V. Kabakova, U. S. Mutugala, K. Vu, S. J. Madden, B. J. Eggleton, and R. Slavík, “Widely tunable, low phase noise microwave source based on a photonic chip,” Opt. Lett. 41(20), 4633–4636 (2016).
[Crossref] [PubMed]

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azaña, “Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip,” Nat. Commun. 7(1), 13004 (2016).
[Crossref] [PubMed]

M. Merklein, A. Casas-Bedoya, D. Marpaung, T. F. S. Buttner, M. Pagani, B. Morrison, I. V. Kabakova, and B. J. Eggleton, “Stimulated Brillouin Scattering in Photonic Integrated Circuits: Novel Applications and Devices,” IEEE J. Sel. Top. Quantum Electron. 22(2), 336–346 (2016).
[Crossref]

A. M. Sardarabadi, A. J. van der Veen, and A. J. Boonstra, “Spatial Filtering of RF Interference in Radio Astronomy Using a Reference Antenna Array,” IEEE Trans. Signal Process. 64(2), 432–447 (2016).
[Crossref]

2015 (3)

L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
[Crossref]

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9(3), 199–203 (2015).
[Crossref]

M. Pagani, B. Morrison, Y. Zhang, A. Casas-Bedoya, T. Aalto, M. Harjanne, M. Kapulainen, B. J. Eggleton, and D. Marpaung, “Low-error and broadband microwave frequency measurement in a silicon chip,” Optica 2(8), 751–756 (2015).
[Crossref]

2014 (1)

C. Wang, F. Haider, X. Gao, X. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

2013 (3)

2012 (2)

P. S. Devgan, V. J. Urick, and K. J. Williams, “Detection of low-power RF signals using a two laser multimode optoelectronic oscillator,” IEEE Photonics Technol. Lett. 24, 857–859 (2012).

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20(16), 17667–17677 (2012).
[Crossref] [PubMed]

2011 (2)

2005 (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

2002 (2)

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298(5597), 1401–1403 (2002).
[Crossref] [PubMed]

W. B. Sullivan, “Instantaneous frequency measurement receivers for maritime patrol,” J. Electron. Defence 25, 55–62 (2002).

Aalto, T.

Aditya, S.

Aggoune, H. M.

C. Wang, F. Haider, X. Gao, X. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Alavi, S. E.

Azaña, J.

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azaña, “Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip,” Nat. Commun. 7(1), 13004 (2016).
[Crossref] [PubMed]

Baets, R.

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9(3), 199–203 (2015).
[Crossref]

Baeuerle, B.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Balthasar, G.

Beling, A.

Boltasseva, A.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Boonstra, A. J.

A. M. Sardarabadi, A. J. van der Veen, and A. J. Boonstra, “Spatial Filtering of RF Interference in Radio Astronomy Using a Reference Antenna Array,” IEEE Trans. Signal Process. 64(2), 432–447 (2016).
[Crossref]

Bowers, J. E.

Bui, L.

Burla, M.

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azaña, “Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip,” Nat. Commun. 7(1), 13004 (2016).
[Crossref] [PubMed]

Buttner, T. F. S.

M. Merklein, A. Casas-Bedoya, D. Marpaung, T. F. S. Buttner, M. Pagani, B. Morrison, I. V. Kabakova, and B. J. Eggleton, “Stimulated Brillouin Scattering in Photonic Integrated Circuits: Novel Applications and Devices,” IEEE J. Sel. Top. Quantum Electron. 22(2), 336–346 (2016).
[Crossref]

Campbell, J. C.

Casas-Bedoya, A.

M. Merklein, A. Casas-Bedoya, D. Marpaung, T. F. S. Buttner, M. Pagani, B. Morrison, I. V. Kabakova, and B. J. Eggleton, “Stimulated Brillouin Scattering in Photonic Integrated Circuits: Novel Applications and Devices,” IEEE J. Sel. Top. Quantum Electron. 22(2), 336–346 (2016).
[Crossref]

M. Pagani, B. Morrison, Y. Zhang, A. Casas-Bedoya, T. Aalto, M. Harjanne, M. Kapulainen, B. J. Eggleton, and D. Marpaung, “Low-error and broadband microwave frequency measurement in a silicon chip,” Optica 2(8), 751–756 (2015).
[Crossref]

Chelladurai, D.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Cheng, B.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Choi, D. Y.

Chrostowski, L.

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azaña, “Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip,” Nat. Commun. 7(1), 13004 (2016).
[Crossref] [PubMed]

Cross, A. S.

Cui, T.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Dalton, L. R.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Devgan, P. S.

P. S. Devgan, V. J. Urick, and K. J. Williams, “Detection of low-power RF signals using a two laser multimode optoelectronic oscillator,” IEEE Photonics Technol. Lett. 24, 857–859 (2012).

Dong, J.

L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
[Crossref]

Eggleton, B. J.

Elder, D. L.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Emami, H.

Erben, C.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298(5597), 1401–1403 (2002).
[Crossref] [PubMed]

Fandiño, J. S.

Fedoryshyn, Y.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Fletcher, S.

C. Wang, F. Haider, X. Gao, X. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Freude, W.

Fu, S.

Fujii, T.

Gao, D.

L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
[Crossref]

Gao, X.

C. Wang, F. Haider, X. Gao, X. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Gill, D. M.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298(5597), 1401–1403 (2002).
[Crossref] [PubMed]

Gopalan, P.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298(5597), 1401–1403 (2002).
[Crossref] [PubMed]

Haas, H.

C. Wang, F. Haider, X. Gao, X. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Haffner, C.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Haider, F.

C. Wang, F. Haider, X. Gao, X. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Hajihashemi, M.

Han, X.

Hao, T.

G. Wang, T. Hao, W. Li, N. Zhu, and M. Li, “Detection of wideband low-power RF signals using a stimulated Brillouin scattering-based optoelectronic oscillator,” Opt. Commun. 439, 133–136 (2019).
[Crossref]

Harjanne, M.

He, M.

L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
[Crossref]

Heber, J. D.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298(5597), 1401–1403 (2002).
[Crossref] [PubMed]

Heni, W.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Hepsaydir, E.

C. Wang, F. Haider, X. Gao, X. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Hillerkuss, D.

Hu, W.

Huang, D.

M. A. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J. E. Bowers, “Ultra-Low-Loss Silicon Waveguides for Heterogeneously Integrated Silicon/III-V Photonics,” Appl. Sci. (Basel) 8(7), 1139–1150 (2018).
[Crossref]

D. Huang, P. Pintus, C. Zhang, P. Morton, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Dynamically reconfigurable integrated optical circulators,” Optica 4(1), 23–30 (2017).
[Crossref]

Jamshidi, K.

Jiang, F.

L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
[Crossref]

Jiang, H. Y.

Jordan, M.

Josten, A.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Kabakova, I. V.

M. Merklein, A. Casas-Bedoya, D. Marpaung, T. F. S. Buttner, M. Pagani, B. Morrison, I. V. Kabakova, and B. J. Eggleton, “Stimulated Brillouin Scattering in Photonic Integrated Circuits: Novel Applications and Devices,” IEEE J. Sel. Top. Quantum Electron. 22(2), 336–346 (2016).
[Crossref]

M. Merklein, B. Stiller, I. V. Kabakova, U. S. Mutugala, K. Vu, S. J. Madden, B. J. Eggleton, and R. Slavík, “Widely tunable, low phase noise microwave source based on a photonic chip,” Opt. Lett. 41(20), 4633–4636 (2016).
[Crossref] [PubMed]

Kanazawa, S.

Kapulainen, M.

Kashio, N.

Katz, H. E.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298(5597), 1401–1403 (2002).
[Crossref] [PubMed]

Kikuchi, N.

Kinsey, N.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Kohtoku, M.

Komljenovic, T.

M. A. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J. E. Bowers, “Ultra-Low-Loss Silicon Waveguides for Heterogeneously Integrated Silicon/III-V Photonics,” Appl. Sci. (Basel) 8(7), 1139–1150 (2018).
[Crossref]

Koos, C.

Kuyken, B.

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9(3), 199–203 (2015).
[Crossref]

Lee, M.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298(5597), 1401–1403 (2002).
[Crossref] [PubMed]

Leuthold, J.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20(16), 17667–17677 (2012).
[Crossref] [PubMed]

Li, M.

G. Wang, T. Hao, W. Li, N. Zhu, and M. Li, “Detection of wideband low-power RF signals using a stimulated Brillouin scattering-based optoelectronic oscillator,” Opt. Commun. 439, 133–136 (2019).
[Crossref]

Y. Shao, X. Han, M. Li, and M. Zhao, “RF signal detection by a tunable optoelectronic oscillator based on a PS-FBG,” Opt. Lett. 43(6), 1199–1202 (2018).
[Crossref] [PubMed]

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azaña, “Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip,” Nat. Commun. 7(1), 13004 (2016).
[Crossref] [PubMed]

Li, W.

G. Wang, T. Hao, W. Li, N. Zhu, and M. Li, “Detection of wideband low-power RF signals using a stimulated Brillouin scattering-based optoelectronic oscillator,” Opt. Commun. 439, 133–136 (2019).
[Crossref]

Lin, J. T.

Lindenmann, N.

Lipson, M.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Liu, L.

L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
[Crossref]

Madden, S. J.

Malik, A.

M. A. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J. E. Bowers, “Ultra-Low-Loss Silicon Waveguides for Heterogeneously Integrated Silicon/III-V Photonics,” Appl. Sci. (Basel) 8(7), 1139–1150 (2018).
[Crossref]

Marpaung, D.

H. Y. Jiang, D. Marpaung, M. Pagani, K. Vu, D. Y. Choi, S. J. Madden, L. S. Yan, and B. J. Eggleton, “Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter,” Optica 3(1), 30–34 (2016).
[Crossref]

M. Merklein, A. Casas-Bedoya, D. Marpaung, T. F. S. Buttner, M. Pagani, B. Morrison, I. V. Kabakova, and B. J. Eggleton, “Stimulated Brillouin Scattering in Photonic Integrated Circuits: Novel Applications and Devices,” IEEE J. Sel. Top. Quantum Electron. 22(2), 336–346 (2016).
[Crossref]

M. Pagani, B. Morrison, Y. Zhang, A. Casas-Bedoya, T. Aalto, M. Harjanne, M. Kapulainen, B. J. Eggleton, and D. Marpaung, “Low-error and broadband microwave frequency measurement in a silicon chip,” Optica 2(8), 751–756 (2015).
[Crossref]

D. Marpaung, “On-chip photonic-assisted instantaneous microwave frequency measurement system,” IEEE Photonics Technol. Lett. 25(9), 837–840 (2013).
[Crossref]

McGee, D. J.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298(5597), 1401–1403 (2002).
[Crossref] [PubMed]

Merklein, M.

M. Merklein, B. Stiller, I. V. Kabakova, U. S. Mutugala, K. Vu, S. J. Madden, B. J. Eggleton, and R. Slavík, “Widely tunable, low phase noise microwave source based on a photonic chip,” Opt. Lett. 41(20), 4633–4636 (2016).
[Crossref] [PubMed]

M. Merklein, A. Casas-Bedoya, D. Marpaung, T. F. S. Buttner, M. Pagani, B. Morrison, I. V. Kabakova, and B. J. Eggleton, “Stimulated Brillouin Scattering in Photonic Integrated Circuits: Novel Applications and Devices,” IEEE J. Sel. Top. Quantum Electron. 22(2), 336–346 (2016).
[Crossref]

Min, S.

L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
[Crossref]

Mizumoto, T.

Morrison, B.

M. Merklein, A. Casas-Bedoya, D. Marpaung, T. F. S. Buttner, M. Pagani, B. Morrison, I. V. Kabakova, and B. J. Eggleton, “Stimulated Brillouin Scattering in Photonic Integrated Circuits: Novel Applications and Devices,” IEEE J. Sel. Top. Quantum Electron. 22(2), 336–346 (2016).
[Crossref]

M. Pagani, B. Morrison, Y. Zhang, A. Casas-Bedoya, T. Aalto, M. Harjanne, M. Kapulainen, B. J. Eggleton, and D. Marpaung, “Low-error and broadband microwave frequency measurement in a silicon chip,” Optica 2(8), 751–756 (2015).
[Crossref]

Morton, P.

Muñoz, P.

Mutugala, U. S.

Niu, J.

Ogiso, Y.

Ohiso, Y.

Ozaki, J.

Pagani, M.

Peters, J.

M. A. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J. E. Bowers, “Ultra-Low-Loss Silicon Waveguides for Heterogeneously Integrated Silicon/III-V Photonics,” Appl. Sci. (Basel) 8(7), 1139–1150 (2018).
[Crossref]

A. Beling, A. S. Cross, M. Piels, J. Peters, Q. Zhou, J. E. Bowers, and J. C. Campbell, “InP-based waveguide photodiodes heterogeneously integrated on silicon-on-insulator for photonic microwave generation,” Opt. Express 21(22), 25901–25906 (2013).
[Crossref] [PubMed]

Piels, M.

Pintus, P.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Preußler, S.

Saha, S.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Sardarabadi, A. M.

A. M. Sardarabadi, A. J. van der Veen, and A. J. Boonstra, “Spatial Filtering of RF Interference in Radio Astronomy Using a Reference Antenna Array,” IEEE Trans. Signal Process. 64(2), 432–447 (2016).
[Crossref]

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Schmogrow, R.

Schneider, T.

Shalaev, V. M.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Shao, Y.

Shi, M.

Shoji, Y.

Shum, P. P.

Slavík, R.

Stiller, B.

Sullivan, W. B.

W. B. Sullivan, “Instantaneous frequency measurement receivers for maritime patrol,” J. Electron. Defence 25, 55–62 (2002).

Supaat, A. S. M.

Tanobe, H.

Tran, M. A.

M. A. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J. E. Bowers, “Ultra-Low-Loss Silicon Waveguides for Heterogeneously Integrated Silicon/III-V Photonics,” Appl. Sci. (Basel) 8(7), 1139–1150 (2018).
[Crossref]

Ueda, Y.

Urick, V. J.

P. S. Devgan, V. J. Urick, and K. J. Williams, “Detection of low-power RF signals using a two laser multimode optoelectronic oscillator,” IEEE Photonics Technol. Lett. 24, 857–859 (2012).

van der Veen, A. J.

A. M. Sardarabadi, A. J. van der Veen, and A. J. Boonstra, “Spatial Filtering of RF Interference in Radio Astronomy Using a Reference Antenna Array,” IEEE Trans. Signal Process. 64(2), 432–447 (2016).
[Crossref]

Van Laer, R.

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9(3), 199–203 (2015).
[Crossref]

Van Thourhout, D.

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9(3), 199–203 (2015).
[Crossref]

Vu, K.

Wang, C.

C. Wang, F. Haider, X. Gao, X. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Wang, G.

G. Wang, T. Hao, W. Li, N. Zhu, and M. Li, “Detection of wideband low-power RF signals using a stimulated Brillouin scattering-based optoelectronic oscillator,” Opt. Commun. 439, 133–136 (2019).
[Crossref]

Wang, X.

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azaña, “Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip,” Nat. Commun. 7(1), 13004 (2016).
[Crossref] [PubMed]

Watanabe, T.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Wei, W.

Wiatrek, A.

Williams, K. J.

P. S. Devgan, V. J. Urick, and K. J. Williams, “Detection of low-power RF signals using a two laser multimode optoelectronic oscillator,” IEEE Photonics Technol. Lett. 24, 857–859 (2012).

Wu, J.

Xu, K.

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Yamada, E.

Yamazaki, H.

Yan, L. S.

Yan, S.

L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
[Crossref]

Yang, Y.

C. Wang, F. Haider, X. Gao, X. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Yi, L.

You, X.

C. Wang, F. Haider, X. Gao, X. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Yuan, D.

C. Wang, F. Haider, X. Gao, X. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Zhang, C.

Zhang, Y.

Zhao, M.

Zhou, J.

Zhou, Q.

Zhu, N.

G. Wang, T. Hao, W. Li, N. Zhu, and M. Li, “Detection of wideband low-power RF signals using a stimulated Brillouin scattering-based optoelectronic oscillator,” Opt. Commun. 439, 133–136 (2019).
[Crossref]

Appl. Sci. (Basel) (1)

M. A. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J. E. Bowers, “Ultra-Low-Loss Silicon Waveguides for Heterogeneously Integrated Silicon/III-V Photonics,” Appl. Sci. (Basel) 8(7), 1139–1150 (2018).
[Crossref]

IEEE Commun. Mag. (1)

C. Wang, F. Haider, X. Gao, X. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Merklein, A. Casas-Bedoya, D. Marpaung, T. F. S. Buttner, M. Pagani, B. Morrison, I. V. Kabakova, and B. J. Eggleton, “Stimulated Brillouin Scattering in Photonic Integrated Circuits: Novel Applications and Devices,” IEEE J. Sel. Top. Quantum Electron. 22(2), 336–346 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (2)

D. Marpaung, “On-chip photonic-assisted instantaneous microwave frequency measurement system,” IEEE Photonics Technol. Lett. 25(9), 837–840 (2013).
[Crossref]

P. S. Devgan, V. J. Urick, and K. J. Williams, “Detection of low-power RF signals using a two laser multimode optoelectronic oscillator,” IEEE Photonics Technol. Lett. 24, 857–859 (2012).

IEEE Trans. Signal Process. (1)

A. M. Sardarabadi, A. J. van der Veen, and A. J. Boonstra, “Spatial Filtering of RF Interference in Radio Astronomy Using a Reference Antenna Array,” IEEE Trans. Signal Process. 64(2), 432–447 (2016).
[Crossref]

J. Electron. Defence (1)

W. B. Sullivan, “Instantaneous frequency measurement receivers for maritime patrol,” J. Electron. Defence 25, 55–62 (2002).

J. Lightwave Technol. (2)

Nat. Commun. (1)

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azaña, “Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip,” Nat. Commun. 7(1), 13004 (2016).
[Crossref] [PubMed]

Nat. Photonics (1)

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9(3), 199–203 (2015).
[Crossref]

Nature (2)

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Opt. Commun. (2)

L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
[Crossref]

G. Wang, T. Hao, W. Li, N. Zhu, and M. Li, “Detection of wideband low-power RF signals using a stimulated Brillouin scattering-based optoelectronic oscillator,” Opt. Commun. 439, 133–136 (2019).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Optica (3)

Science (1)

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298(5597), 1401–1403 (2002).
[Crossref] [PubMed]

Other (1)

Y. Fan, R. M. Oldenbeuving, C. G. Roeloffzen, M. Hoekman, D. Geskus, R. G. Heideman, and K. J. Boller, “290 Hz intrinsic linewidth from an integrated optical chip-based widely tunable InP-Si3N4 hybrid laser.,” In CLEO: 2017 Paper Digest JT5C.9, (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Conventional photonic RF signals detection and frequency measurement system with power-to-frequency mapping and (b) the here demonstrated photonic RF signal detection and frequency measurement system based on an OEO cavity.
Fig. 2
Fig. 2 Conceptual diagram of the proposed photonic RF signal detection and frequency estimation scheme.
Fig. 3
Fig. 3 Experimental setup. PC, Polarization controller; PM, Phase modulator; EDFA, Erbium-doped fiber amplifier; OBPF, Optical band-pass filter; LN-EDFA, Low noise EDFA; PD, Photodetector.
Fig. 4
Fig. 4 Measured spectrum of the input (inset) and detected RF signals with the same input power of −52 dBm and frequencies of 16.129 and 16.131 GHz.
Fig. 5
Fig. 5 Measured spectrum with different input RF signal power level at a frequency of 16.129 GHz.
Fig. 6
Fig. 6 Measured spectrum of the input and detected RF signals with the same input power of −52 dBm at the frequency of 39.379 and 39.381 GHz.
Fig. 7
Fig. 7 Measured spectrum with different input RF signal power at the frequency of 39.379 GHz.
Fig. 8
Fig. 8 Gain for RF signals at different frequencies.
Fig. 9
Fig. 9 Normalized output RF signal power oscillation mode and side modes for different frequency bands.