Abstract

Nonuniform illumination is one of the factors in degrading image performance of geometrical waveguide-based head-up display. The two-dimensional (2-D) waveguide expanding the exit pupil along two orthogonal directions makes illumination uniformization more intractable. To solve this problem, the reasons for nonuniform illumination in 2-D geometrical waveguide were probed and a novel waveguide structure incorporating illumination compensator was proposed. A bilayer illumination compensator was first presented to change the period of rays propagating in waveguide to improve the inter-pupil illumination uniformity and inter-field illumination uniformity. Then optimized coating design for different partially reflective mirrors in horizontal waveguide and the vertical one allowed further improvement of these two kinds of illumination uniformity, raising both up to 70%. A matched catadioptric projection optics using freeform surface was designed and integrated with the resultant 2-D geometrical waveguide, achieving a head-up display with an eye relief of 400 mm, an eyebox of 80 mm × 80 mm and a field of 24° × 15°. A prototype of the proposed 2-D geometrical waveguide display was developed and demonstrated.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Design of a two-dimensional stray-light-free geometrical waveguide head-up display

Luo Gu, Dewen Cheng, Qiwei Wang, Qichao Hou, and Yongtian Wang
Appl. Opt. 57(31) 9246-9256 (2018)

Design of a uniform-illumination binocular waveguide display with diffraction gratings and freeform optics

Zeyang Liu, Yajun Pang, Cheng Pan, and Zhanhua Huang
Opt. Express 25(24) 30720-30731 (2017)

Holographic waveguide heads-up display for longitudinal image magnification and pupil expansion

Colton M. Bigler, Pierre-Alexandre Blanche, and Kalluri Sarma
Appl. Opt. 57(9) 2007-2013 (2018)

References

  • View by:
  • |
  • |
  • |

  1. B. Kress and T. Starner, “A review of head-mounted displays (HMD) technologies and applications for consumer electronics,” Proc. SPIE 8720, 87200A (2013).
    [Crossref]
  2. H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
    [Crossref]
  3. K. Aiki and S. Nakano, “Illumination optical device and virtual image display,” U. S. Patent 8,820,996 B2 (2 Sep 2014).
  4. “ORA-2,” http://www.optinvent.com/our_products/ora-2/ (5 April 2019).
  5. M. Homan, “The use of optical waveguide in head-up display (HUD) applications,” Proc. SPIE 8736, 87360E (2013).
    [Crossref]
  6. “AeroHUD,” http://digilens-dev.825mediatesting.com/products/aerohud/ (5 April 2019).
  7. “Magic Leap One,” http://www.magicleap.com (5 April 2019).
  8. A. Frommer, “Lumus optical technology for AR,” SID Symposium Digest of Technical Papers48, 134–135 (2017).
  9. R. D. Tekolste and M. Klug, “Methods and systems for generating virtual content display with a virtual or augmented reality apparatus,” U. S. Patent 2015/0346490 A1 (3 Dec 2015).
  10. V. Karar and S. Ghosh, “Attention tunneling: effects of limiting field of view due to beam combiner frame of head-up display,” J. Disp. Technol. 10(7), 582–589 (2014).
    [Crossref]
  11. M. O. Freeman, “MEMS scanned laser head-up display,” Proc. SPIE 7930, 79300G (2011).
    [Crossref]
  12. J. A. Betancur, G. Osorio, and A. Mejía, Proc. SPIE8736, 87360F (2013).
  13. M. K. Hedili, M. O. Freeman, and H. Urey, “Microlens array-based high-gain screen design for direct projection head-up displays,” Appl. Opt. 52(6), 1351–1357 (2013).
    [Crossref] [PubMed]
  14. C.-P. Weng and G.-D. J. Su, “Using micro-projectors to realize large screen head-up display,” Proc. SPIE 8486, 84860I (2012).
    [Crossref]
  15. L. Shen, O. Carrasco-Zevallos, B. Keller, C. Viehland, G. Waterman, P. S. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography,” Biomed. Opt. Express 7(5), 1711–1726 (2016).
    [Crossref] [PubMed]
  16. H. Peng, D. Cheng, J. Han, C. Xu, W. Song, L. Ha, J. Yang, Q. Hu, and Y. Wang, “Design and fabrication of a holographic head-up display with asymmetric field of view,” Appl. Opt. 53(29), H177–H185 (2014).
    [Crossref] [PubMed]
  17. Y. Ohe, M. Kume, Y. Demachi, T. Taguchi, and K. Ichimura, “Application of a novel photopolymer to a holographic head-up display,” Polym. Adv. Technol. 10(9), 544–553 (1999).
    [Crossref]
  18. H. Moussa, I. E. Hafidi, and L. Tupinier, “Diffractive head-up display device provided with a device for adjusting the position of the virtual image,” U. S. Patent 8,351,123 B2 (8 Jan 2013).
  19. E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Y. I. Matusevich, and L. P. Krul, “PMMA-PQ photopolymers for head-up-displays,” IEEE Photonics Technol. Lett. 21(12), 784–786 (2009).
    [Crossref]
  20. G. Pettitt, J. Ferri, and J. Thompson, “Practical application of TI DLP® technology in the next generation head-up display system,” SID Symposium Digest of Technical Papers46, 700–703 (2015).
  21. C. M. Bigler, P.-A. Blanche, and K. Sarma, “Holographic waveguide heads-up display for longitudinal image magnification and pupil expansion,” Appl. Opt. 57(9), 2007–2013 (2018).
    [Crossref] [PubMed]
  22. Z. Liu, Y. Pang, C. Pan, and Z. Huang, “Design of a uniform-illumination binocular waveguide display with diffraction gratings and freeform optics,” Opt. Express 25(24), 30720–30731 (2017).
    [Crossref] [PubMed]
  23. Y. Wu, C. P. Chen, L. Zhou, Y. Li, B. Yu, and H. Jin, “Design of see-through near-eye display for presbyopia,” Opt. Express 25(8), 8937–8949 (2017).
    [Crossref] [PubMed]
  24. L. Zhou, C. P. Chen, Y. Wu, Z. Zhang, K. Wang, B. Yu, and Y. Li, “See-through near-eye displays enabling vision correction,” Opt. Express 25(3), 2130–2142 (2017).
    [Crossref] [PubMed]
  25. Y. Amitai, “Extremely Compact high-performance HMDs based on substrate-guided optical element,” SID Symposium Digest of Technical Papers, 35, 310–313 (2004).
    [Crossref]
  26. Y. Amitai, “A two-dimensional aperture expander for ultra-compact, high-performance head-worn displays,” SID Symposium Digest of Technical Papers, 36, 360–363 (2005).
    [Crossref]
  27. M. Tanaka and Y. Arita, “A new optical system for low-profile HUD by using a prism waveguide,” Proc. SPIE 9839, 9839 (2016).
  28. L. Gu, D. Cheng, Q. Wang, Q. Hou, and Y. Wang, “Design of a two-dimensional stray-light-free geometrical waveguide head-up display,” Appl. Opt. 57(31), 9246–9256 (2018).
    [Crossref] [PubMed]
  29. V. K. Vinod Karar and S. G. Smarajit Ghosh, “Estimation of tunneling effect caused by luminance non-uniformity in head-up displays,” Chin. Opt. Lett. 12(1), 013301 (2014).
    [Crossref]
  30. S. A. E. Aerospace Standard, AS8055, “Minimum Performance Standard for Airborne Head Up Display (HUD),” (2008).
  31. Q. Wang, D. Cheng, Q. Hou, Y. Hu, and Y. Wang, “Stray light and tolerance analysis of an ultrathin waveguide display,” Appl. Opt. 54(28), 8354–8362 (2015).
    [Crossref] [PubMed]

2018 (2)

2017 (3)

2016 (2)

2015 (1)

2014 (3)

2013 (3)

B. Kress and T. Starner, “A review of head-mounted displays (HMD) technologies and applications for consumer electronics,” Proc. SPIE 8720, 87200A (2013).
[Crossref]

M. Homan, “The use of optical waveguide in head-up display (HUD) applications,” Proc. SPIE 8736, 87360E (2013).
[Crossref]

M. K. Hedili, M. O. Freeman, and H. Urey, “Microlens array-based high-gain screen design for direct projection head-up displays,” Appl. Opt. 52(6), 1351–1357 (2013).
[Crossref] [PubMed]

2012 (1)

C.-P. Weng and G.-D. J. Su, “Using micro-projectors to realize large screen head-up display,” Proc. SPIE 8486, 84860I (2012).
[Crossref]

2011 (1)

M. O. Freeman, “MEMS scanned laser head-up display,” Proc. SPIE 7930, 79300G (2011).
[Crossref]

2009 (2)

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Y. I. Matusevich, and L. P. Krul, “PMMA-PQ photopolymers for head-up-displays,” IEEE Photonics Technol. Lett. 21(12), 784–786 (2009).
[Crossref]

1999 (1)

Y. Ohe, M. Kume, Y. Demachi, T. Taguchi, and K. Ichimura, “Application of a novel photopolymer to a holographic head-up display,” Polym. Adv. Technol. 10(9), 544–553 (1999).
[Crossref]

Aiki, K.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Akutsu, K.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Amitai, Y.

Y. Amitai, “Extremely Compact high-performance HMDs based on substrate-guided optical element,” SID Symposium Digest of Technical Papers, 35, 310–313 (2004).
[Crossref]

Y. Amitai, “A two-dimensional aperture expander for ultra-compact, high-performance head-worn displays,” SID Symposium Digest of Technical Papers, 36, 360–363 (2005).
[Crossref]

Arita, Y.

M. Tanaka and Y. Arita, “A new optical system for low-profile HUD by using a prism waveguide,” Proc. SPIE 9839, 9839 (2016).

Betancur, J. A.

J. A. Betancur, G. Osorio, and A. Mejía, Proc. SPIE8736, 87360F (2013).

Bigler, C. M.

Blanche, P.-A.

Carrasco-Zevallos, O.

Chen, C. P.

Cheng, D.

Demachi, Y.

Y. Ohe, M. Kume, Y. Demachi, T. Taguchi, and K. Ichimura, “Application of a novel photopolymer to a holographic head-up display,” Polym. Adv. Technol. 10(9), 544–553 (1999).
[Crossref]

Ferri, J.

G. Pettitt, J. Ferri, and J. Thompson, “Practical application of TI DLP® technology in the next generation head-up display system,” SID Symposium Digest of Technical Papers46, 700–703 (2015).

Freeman, M. O.

Frommer, A.

A. Frommer, “Lumus optical technology for AR,” SID Symposium Digest of Technical Papers48, 134–135 (2017).

Ghosh, S.

V. Karar and S. Ghosh, “Attention tunneling: effects of limiting field of view due to beam combiner frame of head-up display,” J. Disp. Technol. 10(7), 582–589 (2014).
[Crossref]

Gu, L.

Ha, L.

Hahn, P. S.

Han, J.

Hedili, M. K.

Homan, M.

M. Homan, “The use of optical waveguide in head-up display (HUD) applications,” Proc. SPIE 8736, 87360E (2013).
[Crossref]

Hou, Q.

Hu, Q.

Hu, Y.

Huang, Z.

Ichimura, K.

Y. Ohe, M. Kume, Y. Demachi, T. Taguchi, and K. Ichimura, “Application of a novel photopolymer to a holographic head-up display,” Polym. Adv. Technol. 10(9), 544–553 (1999).
[Crossref]

Izatt, J. A.

Jin, H.

Karar, V.

V. Karar and S. Ghosh, “Attention tunneling: effects of limiting field of view due to beam combiner frame of head-up display,” J. Disp. Technol. 10(7), 582–589 (2014).
[Crossref]

Keller, B.

Kowarschik, R.

E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Y. I. Matusevich, and L. P. Krul, “PMMA-PQ photopolymers for head-up-displays,” IEEE Photonics Technol. Lett. 21(12), 784–786 (2009).
[Crossref]

Kress, B.

B. Kress and T. Starner, “A review of head-mounted displays (HMD) technologies and applications for consumer electronics,” Proc. SPIE 8720, 87200A (2013).
[Crossref]

Krul, L. P.

E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Y. I. Matusevich, and L. P. Krul, “PMMA-PQ photopolymers for head-up-displays,” IEEE Photonics Technol. Lett. 21(12), 784–786 (2009).
[Crossref]

Kume, M.

Y. Ohe, M. Kume, Y. Demachi, T. Taguchi, and K. Ichimura, “Application of a novel photopolymer to a holographic head-up display,” Polym. Adv. Technol. 10(9), 544–553 (1999).
[Crossref]

Kuo, A. N.

Kuwahara, M.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Li, Y.

Liu, Z.

Mahilny, U. V.

E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Y. I. Matusevich, and L. P. Krul, “PMMA-PQ photopolymers for head-up-displays,” IEEE Photonics Technol. Lett. 21(12), 784–786 (2009).
[Crossref]

Marmysh, D. N.

E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Y. I. Matusevich, and L. P. Krul, “PMMA-PQ photopolymers for head-up-displays,” IEEE Photonics Technol. Lett. 21(12), 784–786 (2009).
[Crossref]

Matsumura, I.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Matusevich, V.

E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Y. I. Matusevich, and L. P. Krul, “PMMA-PQ photopolymers for head-up-displays,” IEEE Photonics Technol. Lett. 21(12), 784–786 (2009).
[Crossref]

Matusevich, Y. I.

E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Y. I. Matusevich, and L. P. Krul, “PMMA-PQ photopolymers for head-up-displays,” IEEE Photonics Technol. Lett. 21(12), 784–786 (2009).
[Crossref]

Mejía, A.

J. A. Betancur, G. Osorio, and A. Mejía, Proc. SPIE8736, 87360F (2013).

Mukawa, H.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Nakano, S.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Ohe, Y.

Y. Ohe, M. Kume, Y. Demachi, T. Taguchi, and K. Ichimura, “Application of a novel photopolymer to a holographic head-up display,” Polym. Adv. Technol. 10(9), 544–553 (1999).
[Crossref]

Osorio, G.

J. A. Betancur, G. Osorio, and A. Mejía, Proc. SPIE8736, 87360F (2013).

Pan, C.

Pang, Y.

Peng, H.

Pettitt, G.

G. Pettitt, J. Ferri, and J. Thompson, “Practical application of TI DLP® technology in the next generation head-up display system,” SID Symposium Digest of Technical Papers46, 700–703 (2015).

Sarma, K.

Shen, L.

Smarajit Ghosh, S. G.

Song, W.

Starner, T.

B. Kress and T. Starner, “A review of head-mounted displays (HMD) technologies and applications for consumer electronics,” Proc. SPIE 8720, 87200A (2013).
[Crossref]

Su, G.-D. J.

C.-P. Weng and G.-D. J. Su, “Using micro-projectors to realize large screen head-up display,” Proc. SPIE 8486, 84860I (2012).
[Crossref]

Taguchi, T.

Y. Ohe, M. Kume, Y. Demachi, T. Taguchi, and K. Ichimura, “Application of a novel photopolymer to a holographic head-up display,” Polym. Adv. Technol. 10(9), 544–553 (1999).
[Crossref]

Tanaka, M.

M. Tanaka and Y. Arita, “A new optical system for low-profile HUD by using a prism waveguide,” Proc. SPIE 9839, 9839 (2016).

Thompson, J.

G. Pettitt, J. Ferri, and J. Thompson, “Practical application of TI DLP® technology in the next generation head-up display system,” SID Symposium Digest of Technical Papers46, 700–703 (2015).

Tolstik, E.

E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Y. I. Matusevich, and L. P. Krul, “PMMA-PQ photopolymers for head-up-displays,” IEEE Photonics Technol. Lett. 21(12), 784–786 (2009).
[Crossref]

Toth, C. A.

Urey, H.

Viehland, C.

Vinod Karar, V. K.

Wang, K.

Wang, Q.

Wang, Y.

Waterman, G.

Weng, C.-P.

C.-P. Weng and G.-D. J. Su, “Using micro-projectors to realize large screen head-up display,” Proc. SPIE 8486, 84860I (2012).
[Crossref]

Winkler, A.

E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Y. I. Matusevich, and L. P. Krul, “PMMA-PQ photopolymers for head-up-displays,” IEEE Photonics Technol. Lett. 21(12), 784–786 (2009).
[Crossref]

Wu, Y.

Xu, C.

Yang, J.

Yoshida, T.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Yu, B.

Zhang, Z.

Zhou, L.

Appl. Opt. (5)

Biomed. Opt. Express (1)

Chin. Opt. Lett. (1)

IEEE Photonics Technol. Lett. (1)

E. Tolstik, A. Winkler, V. Matusevich, R. Kowarschik, U. V. Mahilny, D. N. Marmysh, Y. I. Matusevich, and L. P. Krul, “PMMA-PQ photopolymers for head-up-displays,” IEEE Photonics Technol. Lett. 21(12), 784–786 (2009).
[Crossref]

J. Disp. Technol. (1)

V. Karar and S. Ghosh, “Attention tunneling: effects of limiting field of view due to beam combiner frame of head-up display,” J. Disp. Technol. 10(7), 582–589 (2014).
[Crossref]

J. Soc. Inf. Disp. (1)

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Opt. Express (3)

Polym. Adv. Technol. (1)

Y. Ohe, M. Kume, Y. Demachi, T. Taguchi, and K. Ichimura, “Application of a novel photopolymer to a holographic head-up display,” Polym. Adv. Technol. 10(9), 544–553 (1999).
[Crossref]

Proc. SPIE (5)

C.-P. Weng and G.-D. J. Su, “Using micro-projectors to realize large screen head-up display,” Proc. SPIE 8486, 84860I (2012).
[Crossref]

M. Tanaka and Y. Arita, “A new optical system for low-profile HUD by using a prism waveguide,” Proc. SPIE 9839, 9839 (2016).

M. O. Freeman, “MEMS scanned laser head-up display,” Proc. SPIE 7930, 79300G (2011).
[Crossref]

M. Homan, “The use of optical waveguide in head-up display (HUD) applications,” Proc. SPIE 8736, 87360E (2013).
[Crossref]

B. Kress and T. Starner, “A review of head-mounted displays (HMD) technologies and applications for consumer electronics,” Proc. SPIE 8720, 87200A (2013).
[Crossref]

Other (12)

“AeroHUD,” http://digilens-dev.825mediatesting.com/products/aerohud/ (5 April 2019).

“Magic Leap One,” http://www.magicleap.com (5 April 2019).

A. Frommer, “Lumus optical technology for AR,” SID Symposium Digest of Technical Papers48, 134–135 (2017).

R. D. Tekolste and M. Klug, “Methods and systems for generating virtual content display with a virtual or augmented reality apparatus,” U. S. Patent 2015/0346490 A1 (3 Dec 2015).

J. A. Betancur, G. Osorio, and A. Mejía, Proc. SPIE8736, 87360F (2013).

K. Aiki and S. Nakano, “Illumination optical device and virtual image display,” U. S. Patent 8,820,996 B2 (2 Sep 2014).

“ORA-2,” http://www.optinvent.com/our_products/ora-2/ (5 April 2019).

S. A. E. Aerospace Standard, AS8055, “Minimum Performance Standard for Airborne Head Up Display (HUD),” (2008).

Y. Amitai, “Extremely Compact high-performance HMDs based on substrate-guided optical element,” SID Symposium Digest of Technical Papers, 35, 310–313 (2004).
[Crossref]

Y. Amitai, “A two-dimensional aperture expander for ultra-compact, high-performance head-worn displays,” SID Symposium Digest of Technical Papers, 36, 360–363 (2005).
[Crossref]

H. Moussa, I. E. Hafidi, and L. Tupinier, “Diffractive head-up display device provided with a device for adjusting the position of the virtual image,” U. S. Patent 8,351,123 B2 (8 Jan 2013).

G. Pettitt, J. Ferri, and J. Thompson, “Practical application of TI DLP® technology in the next generation head-up display system,” SID Symposium Digest of Technical Papers46, 700–703 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1 (a) Primitive structure of the 2-D geometrical waveguide based HUD. (b) Structure of the vertical waveguide. (c) Schematic diagram of the 2-D geometrical waveguide based HUD.
Fig. 2
Fig. 2 Illumination distribution across the eyebox of the primitive 2-D waveguide at designated field of (a) (−6°, −6.4°) and (b) (6°, −6.4°).
Fig. 3
Fig. 3 Distribution of (a) sampled eye pupils and (b) sampled fields.
Fig. 4
Fig. 4 Simulated results of the illumination distribution from fields of (a) (−12°, 0), (b) (−6°, 0), (c) (0, 0), (d) (6°, 0), (e) (12°, 0) and (f) from typical pupils for primitive horizontal waveguide. Unit of illumination is W/mm2.
Fig. 5
Fig. 5 (a) Case of uniform illumination distribution. (b) Two cases of nonuniform illumination distribution. (c) Simulation result of the low illumination.
Fig. 6
Fig. 6 Schematic diagram for the improvement of illumination uniformity.
Fig. 7
Fig. 7 Structure of the horizontal waveguide with addition of bilayer illumination compensator.
Fig. 8
Fig. 8 Simulated results of the illumination distribution from fields of (a) (−12°, 0), (b) (−6°, 0), (c) (0, 0), (d) (6°, 0), (e) (12°, 0) and (f) from typical pupils for horizontal waveguide with bilayer illumination compensator. Unit of illumination is W/mm2.
Fig. 9
Fig. 9 Simulated results of the illumination distribution from fields of (a) (−12°, 0), (b) (−6°, 0), (c) (0, 0), (d) (6°, 0), (e) (12°, 0) and (f) from typical pupils for horizontal waveguide with bilayer illumination compensator and coating optimization. Unit of illumination is W/mm2.
Fig. 10
Fig. 10 Structure of the vertical waveguide with addition of monolayer illumination compensator.
Fig. 11
Fig. 11 Simulated results of the illumination distribution from fields of (a) (0, −7.5°), (b) (0, −3.75°), (c) (0, 0), (d) (0, 3.75°), (e) (0, 7.5°) and (f) from typical pupils for vertical waveguide with monolayer illumination compensator and coating optimization. Unit of illumination is W/mm2.
Fig. 12
Fig. 12 Sampled eye pupils and sampled fields over the 2-D expanded eyebox.
Fig. 13
Fig. 13 Inter-Pupil illumination uniformity across the eyebox of the 2-D waveguide before optimization (a) and after optimization (b). Inter-Field illumination uniformity across the eyebox of the 2-D waveguide before optimization (c) and after optimization (d).
Fig. 14
Fig. 14 Inter-Pupil illumination uniformity and Inter-Field illumination uniformity across eyebox of the 2-D geometrical waveguide before and after optimization.
Fig. 15
Fig. 15 (a) 2-D layout of the projection optics in tangential plane and sagittal plane. (b) Integration of the optimized 2-D waveguide and catadioptric projection optics with freeform. (c) Prototype of the proposed design.
Fig. 16
Fig. 16 Display results from the prototype of the proposed design viewed at different positions of eye pupil. (a) (0, 0), (b) (−0.5h, 0.5v), (c) (0.5h, 0.5v), (d) (−0.5h, −0.5v), (e) (0.5h, −0.5v), (f) (−0.9h, 0.9v), (g) (0.9h, 0.9v), (h) (−0.9h, −0.9v), (i) (0.9h, −0.9v) where h is the half of EPDx and v is the half of EPDy.
Fig. 17
Fig. 17 Quantitative evaluation on the Inter-Pupil illumination uniformity from typical fields and Inter-Field illumination uniformity from typical pupils for the fabricated prototype.

Tables (9)

Tables Icon

Table 1 Optical parameters to characterize the primitive 2-D geometrical waveguide

Tables Icon

Table 2 Structural parameters to characterize the primitive 2-D geometrical waveguide

Tables Icon

Table 3 Inter-Pupil illumination uniformity of the primitive horizontal waveguide

Tables Icon

Table 4 Inter-Pupil illumination uniformity of the horizontal waveguide with bilayer illumination compensator

Tables Icon

Table 5 Inter-Pupil illumination uniformity of the horizontal waveguide with bilayer compensator and coating optimization

Tables Icon

Table 6 Inter-Pupil illumination uniformity of the primitive vertical waveguide

Tables Icon

Table 7 Inter-Field illumination uniformity of the primitive vertical waveguide

Tables Icon

Table 8 Inter-Pupil illumination uniformity of the vertical waveguide with monolayer illumination compensator and coating optimization

Tables Icon

Table 9 Inter-Field illumination uniformity of the vertical waveguide with monolayer illumination compensator and coating optimization

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

R i =( 1 R i ) R i+1 ,
E= I max I min I max + I min ,
Luminance Uniformity Variation (%) = L max L min L max + L min ×100,
E Ii = E 0 R i .
E IIi = E 0 ( 1 R i ) 2 R i .
E I( i+1 ) = E 0 ( 1 R i ) 3 R i+1 .
E II( i+1 ) = E 0 ( 1 R i ) 3 ( 1 R i+1 ) 2 R i+1 .
{ E I6 = ( 1 R 1 ) 3 ( 1 R 2 ) 3 ( 1 R 3 ) 3 ( 1 R 4 ) 3 ( 1 R 5 ) 3 R 6 E II6 = ( 1 R 1 ) 3 ( 1 R 2 ) 3 ( 1 R 3 ) 3 ( 1 R 4 ) 3 ( 1 R 5 ) 3 ( 1 R 6 ) 2 R 6 E I8 = ( 1 R 1 ) 3 ( 1 R 2 ) 3 ( 1 R 3 ) 3 ( 1 R 4 ) 3 ( 1 R 5 ) 3 ( 1 R 6 ) 3 ( 1 R 7 ) 3 R 8 E II8 = ( 1 R 1 ) 3 ( 1 R 2 ) 3 ( 1 R 3 ) 3 ( 1 R 4 ) 3 ( 1 R 5 ) 3 ( 1 R 6 ) 3 ( 1 R 7 ) 3 ( 1 R 8 ) 2 R 8 .
3θ>90°+ ω max
3θ<90°+ ω min
H= 2Dsin( 2θω ) cosω .
{ T =2d×tan( 2θ ω ) T + =2d×tan( 2θ ω + ) ,

Metrics