Abstract

Three-dimensional (3D) printing of imaging-quality optics has been challenging due to the tight tolerances on surface shape and roughness. We report on manufacturing such optics with Print optical Technology, which is based on modified ink-jet printing. We demonstrate for the first time a 3D-printed singlet lens with a surface profile deviation of ±500 nm within a 12-mm aperture diameter. Its RMS surface roughness is below 1 nm without surface polishing. The printed lens exhibits an imaging resolution of some 140 lp mm 1 at 100-mm focal length in the visible region.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Realizing freeform lenses using an optics 3D-printer for industrial based tailored irradiance distribution

Bisrat G. Assefa, Toni Saastamoinen, Markku Pekkarinen, Ville Nissinen, Joris Biskop, Markku Kuittinen, Jari Turunen, and Jyrki Saarinen
OSA Continuum 2(3) 690-702 (2019)

Tailoring lens functionality by 3D laser printing

Shlomi Lightman, Gilad Hurvitz, Raz Gvishi, and Ady Arie
Appl. Opt. 56(32) 9038-9043 (2017)

3D printed fiber optic faceplates by custom controlled fused deposition modeling

Ye Wang, John Gawedzinski, Michal E. Pawlowski, and Tomasz S. Tkaczyk
Opt. Express 26(12) 15362-15376 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. D. Lytle, “Polymeric optics,” in Handbook of Optics, E. W. V. Stryland, D. R. Williams, and W. L. Wolfe, eds. (McGraw-Hill, 1995), pp. 34.1.
  2. P. Tolley, “Pushing the polymer envelope,” Proc. SPIE 5872, 58720F (2005).
    [Crossref]
  3. F. Fang, N. Zhang, and X. Zhang, “Precision injection molding of freeform optics,” Adv. Opt. Techn. 5, 303–324 (2016).
  4. S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3d-printed eagle eye: compound microlens system for foveated imaging,” Sci. Adv. 3, e1602655 (2017).
    [Crossref] [PubMed]
  5. C. Liberale, G. Cojoc, P. Candeloro, G. Das, F. Gentile, F. D. Angelis, and E. D. Fabrizio, “Micro-optics fabrication on top of optical fibers using two-photon lithography,” IEEE Photon. Technol. Lett. 22, 474–476 (2010).
    [Crossref]
  6. X. Chen, W. Liu, B. Dong, J. Lee, H. O. T. Ware, H. F. Zhang, and C. Sun, “High-speed 3d printing of millimeter-size customized aspheric imaging lenses with sub 7 nm surface roughness,” Adv. Mater. 30, 1705683 (2018).
    [Crossref]
  7. W. M. Lee, A. Upadhya, P. J. Reece, and T. G. Phan, “Fabricating low cost and high performance elastomer lenses using hanging droplets,” Opt. Express 5, 1626–1635 (2014).
    [Crossref]
  8. Y.-L. Sung, J. Jeang, C.-H. Lee, and W.-C. Shih, “Fabricating optical lenses by inkjet printing and heat-assisted in situ curing of polydimethylsiloxane for smartphone microscopy,” J. Biomed. Opt. 20, 047005 (2015).
    [Crossref] [PubMed]
  9. B. G. Assefa, T. Saastamoinen, J. Biskop, M. Kuittinen, J. Turunen, and J. Saarinen, “3d printed plano-freeform optics for non-coherent discontinuous beam shaping,” Opt. Rev. 25, 456–462 (2018).
    [Crossref]
  10. B. G. Assefa, T. Saastamoinen, M. Pekkarinen, J. Biskop, V. Nissinen, M. Kuittinen, J. Turunen, and J. Saarinen, “Realizing freeform optics using 3d-printer for industrial based tailored irradiance distribution,” OSA Continuum 2, 690–702 (2019).
    [Crossref]
  11. K. Blessing and R. van de Vrie, “Print head, upgrade kit for a conventional inkjet printer, printer and method for printing optical structures,” U.S. Patent Application No. 13/924 (March14, 2012).
  12. N. Vaidya and O. Solgaard, “3d printed optics with nanometer scale surface roughness,” Microsys. Nanoeng. 4, 18 (2018).
    [Crossref]
  13. H. Stenberg, P. Stenberg, L. Takkunen, M. Kuittinen, M. Suvanto, and T. T. Pakkanen, “Low-cost replication of self-organized sub-micron structures into polymer films,” Express Polym. Lett. 9, 95–104 (2015).
    [Crossref]
  14. Schott Optics, “Pocket catalog 2018 optical glass ENG-SCHOTT AG,” https://www.schott.com/d/advanced_optics/c36214d9-13c4-468c-bf40-8d438b89f532/1.16/schott-optical-glass-pocket-catalog-jan-2018-row.pdf ).
  15. RUBERT, “Roughness parameters,” http://www.rubert.co.uk/faqs/roughness-parameters/ .
  16. H. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982).
    [Crossref]
  17. K. Creath and J. C. Wyant, “Holographic and speckle tests,” in Optical Shop Testing, D. Malacara, ed. (Wiley, 1992).
  18. Z. Cui, C. Lu, B. Yang, J. Shen, X. Su, and H. Yang, “The research on syntheses and properties of novel epoxy/polymercaptan curing optical resins with high refractive indices,” Polymer 42, 10095–10100 (2001).
    [Crossref]

2019 (1)

2018 (3)

N. Vaidya and O. Solgaard, “3d printed optics with nanometer scale surface roughness,” Microsys. Nanoeng. 4, 18 (2018).
[Crossref]

X. Chen, W. Liu, B. Dong, J. Lee, H. O. T. Ware, H. F. Zhang, and C. Sun, “High-speed 3d printing of millimeter-size customized aspheric imaging lenses with sub 7 nm surface roughness,” Adv. Mater. 30, 1705683 (2018).
[Crossref]

B. G. Assefa, T. Saastamoinen, J. Biskop, M. Kuittinen, J. Turunen, and J. Saarinen, “3d printed plano-freeform optics for non-coherent discontinuous beam shaping,” Opt. Rev. 25, 456–462 (2018).
[Crossref]

2017 (1)

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3d-printed eagle eye: compound microlens system for foveated imaging,” Sci. Adv. 3, e1602655 (2017).
[Crossref] [PubMed]

2016 (1)

F. Fang, N. Zhang, and X. Zhang, “Precision injection molding of freeform optics,” Adv. Opt. Techn. 5, 303–324 (2016).

2015 (2)

Y.-L. Sung, J. Jeang, C.-H. Lee, and W.-C. Shih, “Fabricating optical lenses by inkjet printing and heat-assisted in situ curing of polydimethylsiloxane for smartphone microscopy,” J. Biomed. Opt. 20, 047005 (2015).
[Crossref] [PubMed]

H. Stenberg, P. Stenberg, L. Takkunen, M. Kuittinen, M. Suvanto, and T. T. Pakkanen, “Low-cost replication of self-organized sub-micron structures into polymer films,” Express Polym. Lett. 9, 95–104 (2015).
[Crossref]

2014 (1)

W. M. Lee, A. Upadhya, P. J. Reece, and T. G. Phan, “Fabricating low cost and high performance elastomer lenses using hanging droplets,” Opt. Express 5, 1626–1635 (2014).
[Crossref]

2010 (1)

C. Liberale, G. Cojoc, P. Candeloro, G. Das, F. Gentile, F. D. Angelis, and E. D. Fabrizio, “Micro-optics fabrication on top of optical fibers using two-photon lithography,” IEEE Photon. Technol. Lett. 22, 474–476 (2010).
[Crossref]

2005 (1)

P. Tolley, “Pushing the polymer envelope,” Proc. SPIE 5872, 58720F (2005).
[Crossref]

2001 (1)

Z. Cui, C. Lu, B. Yang, J. Shen, X. Su, and H. Yang, “The research on syntheses and properties of novel epoxy/polymercaptan curing optical resins with high refractive indices,” Polymer 42, 10095–10100 (2001).
[Crossref]

1982 (1)

Angelis, F. D.

C. Liberale, G. Cojoc, P. Candeloro, G. Das, F. Gentile, F. D. Angelis, and E. D. Fabrizio, “Micro-optics fabrication on top of optical fibers using two-photon lithography,” IEEE Photon. Technol. Lett. 22, 474–476 (2010).
[Crossref]

Arzenbacher, K.

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3d-printed eagle eye: compound microlens system for foveated imaging,” Sci. Adv. 3, e1602655 (2017).
[Crossref] [PubMed]

Assefa, B. G.

B. G. Assefa, T. Saastamoinen, M. Pekkarinen, J. Biskop, V. Nissinen, M. Kuittinen, J. Turunen, and J. Saarinen, “Realizing freeform optics using 3d-printer for industrial based tailored irradiance distribution,” OSA Continuum 2, 690–702 (2019).
[Crossref]

B. G. Assefa, T. Saastamoinen, J. Biskop, M. Kuittinen, J. Turunen, and J. Saarinen, “3d printed plano-freeform optics for non-coherent discontinuous beam shaping,” Opt. Rev. 25, 456–462 (2018).
[Crossref]

Biskop, J.

B. G. Assefa, T. Saastamoinen, M. Pekkarinen, J. Biskop, V. Nissinen, M. Kuittinen, J. Turunen, and J. Saarinen, “Realizing freeform optics using 3d-printer for industrial based tailored irradiance distribution,” OSA Continuum 2, 690–702 (2019).
[Crossref]

B. G. Assefa, T. Saastamoinen, J. Biskop, M. Kuittinen, J. Turunen, and J. Saarinen, “3d printed plano-freeform optics for non-coherent discontinuous beam shaping,” Opt. Rev. 25, 456–462 (2018).
[Crossref]

Blessing, K.

K. Blessing and R. van de Vrie, “Print head, upgrade kit for a conventional inkjet printer, printer and method for printing optical structures,” U.S. Patent Application No. 13/924 (March14, 2012).

Candeloro, P.

C. Liberale, G. Cojoc, P. Candeloro, G. Das, F. Gentile, F. D. Angelis, and E. D. Fabrizio, “Micro-optics fabrication on top of optical fibers using two-photon lithography,” IEEE Photon. Technol. Lett. 22, 474–476 (2010).
[Crossref]

Chen, X.

X. Chen, W. Liu, B. Dong, J. Lee, H. O. T. Ware, H. F. Zhang, and C. Sun, “High-speed 3d printing of millimeter-size customized aspheric imaging lenses with sub 7 nm surface roughness,” Adv. Mater. 30, 1705683 (2018).
[Crossref]

Cojoc, G.

C. Liberale, G. Cojoc, P. Candeloro, G. Das, F. Gentile, F. D. Angelis, and E. D. Fabrizio, “Micro-optics fabrication on top of optical fibers using two-photon lithography,” IEEE Photon. Technol. Lett. 22, 474–476 (2010).
[Crossref]

Creath, K.

K. Creath and J. C. Wyant, “Holographic and speckle tests,” in Optical Shop Testing, D. Malacara, ed. (Wiley, 1992).

Cui, Z.

Z. Cui, C. Lu, B. Yang, J. Shen, X. Su, and H. Yang, “The research on syntheses and properties of novel epoxy/polymercaptan curing optical resins with high refractive indices,” Polymer 42, 10095–10100 (2001).
[Crossref]

Das, G.

C. Liberale, G. Cojoc, P. Candeloro, G. Das, F. Gentile, F. D. Angelis, and E. D. Fabrizio, “Micro-optics fabrication on top of optical fibers using two-photon lithography,” IEEE Photon. Technol. Lett. 22, 474–476 (2010).
[Crossref]

Dong, B.

X. Chen, W. Liu, B. Dong, J. Lee, H. O. T. Ware, H. F. Zhang, and C. Sun, “High-speed 3d printing of millimeter-size customized aspheric imaging lenses with sub 7 nm surface roughness,” Adv. Mater. 30, 1705683 (2018).
[Crossref]

Fabrizio, E. D.

C. Liberale, G. Cojoc, P. Candeloro, G. Das, F. Gentile, F. D. Angelis, and E. D. Fabrizio, “Micro-optics fabrication on top of optical fibers using two-photon lithography,” IEEE Photon. Technol. Lett. 22, 474–476 (2010).
[Crossref]

Fang, F.

F. Fang, N. Zhang, and X. Zhang, “Precision injection molding of freeform optics,” Adv. Opt. Techn. 5, 303–324 (2016).

Gentile, F.

C. Liberale, G. Cojoc, P. Candeloro, G. Das, F. Gentile, F. D. Angelis, and E. D. Fabrizio, “Micro-optics fabrication on top of optical fibers using two-photon lithography,” IEEE Photon. Technol. Lett. 22, 474–476 (2010).
[Crossref]

Giessen, H.

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3d-printed eagle eye: compound microlens system for foveated imaging,” Sci. Adv. 3, e1602655 (2017).
[Crossref] [PubMed]

Gissibl, T.

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3d-printed eagle eye: compound microlens system for foveated imaging,” Sci. Adv. 3, e1602655 (2017).
[Crossref] [PubMed]

Herkommer, A. M.

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3d-printed eagle eye: compound microlens system for foveated imaging,” Sci. Adv. 3, e1602655 (2017).
[Crossref] [PubMed]

Ina, H.

Jeang, J.

Y.-L. Sung, J. Jeang, C.-H. Lee, and W.-C. Shih, “Fabricating optical lenses by inkjet printing and heat-assisted in situ curing of polydimethylsiloxane for smartphone microscopy,” J. Biomed. Opt. 20, 047005 (2015).
[Crossref] [PubMed]

Kobayashi, S.

Kuittinen, M.

B. G. Assefa, T. Saastamoinen, M. Pekkarinen, J. Biskop, V. Nissinen, M. Kuittinen, J. Turunen, and J. Saarinen, “Realizing freeform optics using 3d-printer for industrial based tailored irradiance distribution,” OSA Continuum 2, 690–702 (2019).
[Crossref]

B. G. Assefa, T. Saastamoinen, J. Biskop, M. Kuittinen, J. Turunen, and J. Saarinen, “3d printed plano-freeform optics for non-coherent discontinuous beam shaping,” Opt. Rev. 25, 456–462 (2018).
[Crossref]

H. Stenberg, P. Stenberg, L. Takkunen, M. Kuittinen, M. Suvanto, and T. T. Pakkanen, “Low-cost replication of self-organized sub-micron structures into polymer films,” Express Polym. Lett. 9, 95–104 (2015).
[Crossref]

Lee, C.-H.

Y.-L. Sung, J. Jeang, C.-H. Lee, and W.-C. Shih, “Fabricating optical lenses by inkjet printing and heat-assisted in situ curing of polydimethylsiloxane for smartphone microscopy,” J. Biomed. Opt. 20, 047005 (2015).
[Crossref] [PubMed]

Lee, J.

X. Chen, W. Liu, B. Dong, J. Lee, H. O. T. Ware, H. F. Zhang, and C. Sun, “High-speed 3d printing of millimeter-size customized aspheric imaging lenses with sub 7 nm surface roughness,” Adv. Mater. 30, 1705683 (2018).
[Crossref]

Lee, W. M.

W. M. Lee, A. Upadhya, P. J. Reece, and T. G. Phan, “Fabricating low cost and high performance elastomer lenses using hanging droplets,” Opt. Express 5, 1626–1635 (2014).
[Crossref]

Liberale, C.

C. Liberale, G. Cojoc, P. Candeloro, G. Das, F. Gentile, F. D. Angelis, and E. D. Fabrizio, “Micro-optics fabrication on top of optical fibers using two-photon lithography,” IEEE Photon. Technol. Lett. 22, 474–476 (2010).
[Crossref]

Liu, W.

X. Chen, W. Liu, B. Dong, J. Lee, H. O. T. Ware, H. F. Zhang, and C. Sun, “High-speed 3d printing of millimeter-size customized aspheric imaging lenses with sub 7 nm surface roughness,” Adv. Mater. 30, 1705683 (2018).
[Crossref]

Lu, C.

Z. Cui, C. Lu, B. Yang, J. Shen, X. Su, and H. Yang, “The research on syntheses and properties of novel epoxy/polymercaptan curing optical resins with high refractive indices,” Polymer 42, 10095–10100 (2001).
[Crossref]

Lytle, J. D.

J. D. Lytle, “Polymeric optics,” in Handbook of Optics, E. W. V. Stryland, D. R. Williams, and W. L. Wolfe, eds. (McGraw-Hill, 1995), pp. 34.1.

Nissinen, V.

Pakkanen, T. T.

H. Stenberg, P. Stenberg, L. Takkunen, M. Kuittinen, M. Suvanto, and T. T. Pakkanen, “Low-cost replication of self-organized sub-micron structures into polymer films,” Express Polym. Lett. 9, 95–104 (2015).
[Crossref]

Pekkarinen, M.

Phan, T. G.

W. M. Lee, A. Upadhya, P. J. Reece, and T. G. Phan, “Fabricating low cost and high performance elastomer lenses using hanging droplets,” Opt. Express 5, 1626–1635 (2014).
[Crossref]

Reece, P. J.

W. M. Lee, A. Upadhya, P. J. Reece, and T. G. Phan, “Fabricating low cost and high performance elastomer lenses using hanging droplets,” Opt. Express 5, 1626–1635 (2014).
[Crossref]

Saarinen, J.

B. G. Assefa, T. Saastamoinen, M. Pekkarinen, J. Biskop, V. Nissinen, M. Kuittinen, J. Turunen, and J. Saarinen, “Realizing freeform optics using 3d-printer for industrial based tailored irradiance distribution,” OSA Continuum 2, 690–702 (2019).
[Crossref]

B. G. Assefa, T. Saastamoinen, J. Biskop, M. Kuittinen, J. Turunen, and J. Saarinen, “3d printed plano-freeform optics for non-coherent discontinuous beam shaping,” Opt. Rev. 25, 456–462 (2018).
[Crossref]

Saastamoinen, T.

B. G. Assefa, T. Saastamoinen, M. Pekkarinen, J. Biskop, V. Nissinen, M. Kuittinen, J. Turunen, and J. Saarinen, “Realizing freeform optics using 3d-printer for industrial based tailored irradiance distribution,” OSA Continuum 2, 690–702 (2019).
[Crossref]

B. G. Assefa, T. Saastamoinen, J. Biskop, M. Kuittinen, J. Turunen, and J. Saarinen, “3d printed plano-freeform optics for non-coherent discontinuous beam shaping,” Opt. Rev. 25, 456–462 (2018).
[Crossref]

Shen, J.

Z. Cui, C. Lu, B. Yang, J. Shen, X. Su, and H. Yang, “The research on syntheses and properties of novel epoxy/polymercaptan curing optical resins with high refractive indices,” Polymer 42, 10095–10100 (2001).
[Crossref]

Shih, W.-C.

Y.-L. Sung, J. Jeang, C.-H. Lee, and W.-C. Shih, “Fabricating optical lenses by inkjet printing and heat-assisted in situ curing of polydimethylsiloxane for smartphone microscopy,” J. Biomed. Opt. 20, 047005 (2015).
[Crossref] [PubMed]

Solgaard, O.

N. Vaidya and O. Solgaard, “3d printed optics with nanometer scale surface roughness,” Microsys. Nanoeng. 4, 18 (2018).
[Crossref]

Stenberg, H.

H. Stenberg, P. Stenberg, L. Takkunen, M. Kuittinen, M. Suvanto, and T. T. Pakkanen, “Low-cost replication of self-organized sub-micron structures into polymer films,” Express Polym. Lett. 9, 95–104 (2015).
[Crossref]

Stenberg, P.

H. Stenberg, P. Stenberg, L. Takkunen, M. Kuittinen, M. Suvanto, and T. T. Pakkanen, “Low-cost replication of self-organized sub-micron structures into polymer films,” Express Polym. Lett. 9, 95–104 (2015).
[Crossref]

Su, X.

Z. Cui, C. Lu, B. Yang, J. Shen, X. Su, and H. Yang, “The research on syntheses and properties of novel epoxy/polymercaptan curing optical resins with high refractive indices,” Polymer 42, 10095–10100 (2001).
[Crossref]

Sun, C.

X. Chen, W. Liu, B. Dong, J. Lee, H. O. T. Ware, H. F. Zhang, and C. Sun, “High-speed 3d printing of millimeter-size customized aspheric imaging lenses with sub 7 nm surface roughness,” Adv. Mater. 30, 1705683 (2018).
[Crossref]

Sung, Y.-L.

Y.-L. Sung, J. Jeang, C.-H. Lee, and W.-C. Shih, “Fabricating optical lenses by inkjet printing and heat-assisted in situ curing of polydimethylsiloxane for smartphone microscopy,” J. Biomed. Opt. 20, 047005 (2015).
[Crossref] [PubMed]

Suvanto, M.

H. Stenberg, P. Stenberg, L. Takkunen, M. Kuittinen, M. Suvanto, and T. T. Pakkanen, “Low-cost replication of self-organized sub-micron structures into polymer films,” Express Polym. Lett. 9, 95–104 (2015).
[Crossref]

Takeda, H.

Takkunen, L.

H. Stenberg, P. Stenberg, L. Takkunen, M. Kuittinen, M. Suvanto, and T. T. Pakkanen, “Low-cost replication of self-organized sub-micron structures into polymer films,” Express Polym. Lett. 9, 95–104 (2015).
[Crossref]

Thiele, S.

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3d-printed eagle eye: compound microlens system for foveated imaging,” Sci. Adv. 3, e1602655 (2017).
[Crossref] [PubMed]

Tolley, P.

P. Tolley, “Pushing the polymer envelope,” Proc. SPIE 5872, 58720F (2005).
[Crossref]

Turunen, J.

B. G. Assefa, T. Saastamoinen, M. Pekkarinen, J. Biskop, V. Nissinen, M. Kuittinen, J. Turunen, and J. Saarinen, “Realizing freeform optics using 3d-printer for industrial based tailored irradiance distribution,” OSA Continuum 2, 690–702 (2019).
[Crossref]

B. G. Assefa, T. Saastamoinen, J. Biskop, M. Kuittinen, J. Turunen, and J. Saarinen, “3d printed plano-freeform optics for non-coherent discontinuous beam shaping,” Opt. Rev. 25, 456–462 (2018).
[Crossref]

Upadhya, A.

W. M. Lee, A. Upadhya, P. J. Reece, and T. G. Phan, “Fabricating low cost and high performance elastomer lenses using hanging droplets,” Opt. Express 5, 1626–1635 (2014).
[Crossref]

Vaidya, N.

N. Vaidya and O. Solgaard, “3d printed optics with nanometer scale surface roughness,” Microsys. Nanoeng. 4, 18 (2018).
[Crossref]

van de Vrie, R.

K. Blessing and R. van de Vrie, “Print head, upgrade kit for a conventional inkjet printer, printer and method for printing optical structures,” U.S. Patent Application No. 13/924 (March14, 2012).

Ware, H. O. T.

X. Chen, W. Liu, B. Dong, J. Lee, H. O. T. Ware, H. F. Zhang, and C. Sun, “High-speed 3d printing of millimeter-size customized aspheric imaging lenses with sub 7 nm surface roughness,” Adv. Mater. 30, 1705683 (2018).
[Crossref]

Wyant, J. C.

K. Creath and J. C. Wyant, “Holographic and speckle tests,” in Optical Shop Testing, D. Malacara, ed. (Wiley, 1992).

Yang, B.

Z. Cui, C. Lu, B. Yang, J. Shen, X. Su, and H. Yang, “The research on syntheses and properties of novel epoxy/polymercaptan curing optical resins with high refractive indices,” Polymer 42, 10095–10100 (2001).
[Crossref]

Yang, H.

Z. Cui, C. Lu, B. Yang, J. Shen, X. Su, and H. Yang, “The research on syntheses and properties of novel epoxy/polymercaptan curing optical resins with high refractive indices,” Polymer 42, 10095–10100 (2001).
[Crossref]

Zhang, H. F.

X. Chen, W. Liu, B. Dong, J. Lee, H. O. T. Ware, H. F. Zhang, and C. Sun, “High-speed 3d printing of millimeter-size customized aspheric imaging lenses with sub 7 nm surface roughness,” Adv. Mater. 30, 1705683 (2018).
[Crossref]

Zhang, N.

F. Fang, N. Zhang, and X. Zhang, “Precision injection molding of freeform optics,” Adv. Opt. Techn. 5, 303–324 (2016).

Zhang, X.

F. Fang, N. Zhang, and X. Zhang, “Precision injection molding of freeform optics,” Adv. Opt. Techn. 5, 303–324 (2016).

Adv. Mater. (1)

X. Chen, W. Liu, B. Dong, J. Lee, H. O. T. Ware, H. F. Zhang, and C. Sun, “High-speed 3d printing of millimeter-size customized aspheric imaging lenses with sub 7 nm surface roughness,” Adv. Mater. 30, 1705683 (2018).
[Crossref]

Adv. Opt. Techn. (1)

F. Fang, N. Zhang, and X. Zhang, “Precision injection molding of freeform optics,” Adv. Opt. Techn. 5, 303–324 (2016).

Express Polym. Lett. (1)

H. Stenberg, P. Stenberg, L. Takkunen, M. Kuittinen, M. Suvanto, and T. T. Pakkanen, “Low-cost replication of self-organized sub-micron structures into polymer films,” Express Polym. Lett. 9, 95–104 (2015).
[Crossref]

IEEE Photon. Technol. Lett. (1)

C. Liberale, G. Cojoc, P. Candeloro, G. Das, F. Gentile, F. D. Angelis, and E. D. Fabrizio, “Micro-optics fabrication on top of optical fibers using two-photon lithography,” IEEE Photon. Technol. Lett. 22, 474–476 (2010).
[Crossref]

J. Biomed. Opt. (1)

Y.-L. Sung, J. Jeang, C.-H. Lee, and W.-C. Shih, “Fabricating optical lenses by inkjet printing and heat-assisted in situ curing of polydimethylsiloxane for smartphone microscopy,” J. Biomed. Opt. 20, 047005 (2015).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

Microsys. Nanoeng. (1)

N. Vaidya and O. Solgaard, “3d printed optics with nanometer scale surface roughness,” Microsys. Nanoeng. 4, 18 (2018).
[Crossref]

Opt. Express (1)

W. M. Lee, A. Upadhya, P. J. Reece, and T. G. Phan, “Fabricating low cost and high performance elastomer lenses using hanging droplets,” Opt. Express 5, 1626–1635 (2014).
[Crossref]

Opt. Rev. (1)

B. G. Assefa, T. Saastamoinen, J. Biskop, M. Kuittinen, J. Turunen, and J. Saarinen, “3d printed plano-freeform optics for non-coherent discontinuous beam shaping,” Opt. Rev. 25, 456–462 (2018).
[Crossref]

OSA Continuum (1)

Polymer (1)

Z. Cui, C. Lu, B. Yang, J. Shen, X. Su, and H. Yang, “The research on syntheses and properties of novel epoxy/polymercaptan curing optical resins with high refractive indices,” Polymer 42, 10095–10100 (2001).
[Crossref]

Proc. SPIE (1)

P. Tolley, “Pushing the polymer envelope,” Proc. SPIE 5872, 58720F (2005).
[Crossref]

Sci. Adv. (1)

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3d-printed eagle eye: compound microlens system for foveated imaging,” Sci. Adv. 3, e1602655 (2017).
[Crossref] [PubMed]

Other (5)

J. D. Lytle, “Polymeric optics,” in Handbook of Optics, E. W. V. Stryland, D. R. Williams, and W. L. Wolfe, eds. (McGraw-Hill, 1995), pp. 34.1.

K. Blessing and R. van de Vrie, “Print head, upgrade kit for a conventional inkjet printer, printer and method for printing optical structures,” U.S. Patent Application No. 13/924 (March14, 2012).

K. Creath and J. C. Wyant, “Holographic and speckle tests,” in Optical Shop Testing, D. Malacara, ed. (Wiley, 1992).

Schott Optics, “Pocket catalog 2018 optical glass ENG-SCHOTT AG,” https://www.schott.com/d/advanced_optics/c36214d9-13c4-468c-bf40-8d438b89f532/1.16/schott-optical-glass-pocket-catalog-jan-2018-row.pdf ).

RUBERT, “Roughness parameters,” http://www.rubert.co.uk/faqs/roughness-parameters/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Surface roughness of 3D printed lens. (a) A 2D map of the surface over an small area (60 μm×50 μm). (b) Cross-sectional surface profile at the center in nanometer scale.
Fig. 2
Fig. 2 Null-test Mach-Zehnder interferometer.
Fig. 3
Fig. 3 Phase-difference retrieval procedure. (a) Normalized interferogram Inorm, (b) Fourier transform of Inorm and the cropping area (the rectangle; the circle contains the retained Fourier peak). (c) Wrapped phase (in radians) after inverse Fourier transform. (d) Unwrapped phase.
Fig. 4
Fig. 4 An example of a sliced layer image pixels after the error correction. The white pixels are left unprinted to compensate for the shape error. The diameter of the compensated area is ∼12 mm.
Fig. 5
Fig. 5 (a) A 3D printed lens (F# = 8.4) with 25 mm clear aperture. (b) Surface profile error before iteration. (c) Surface deviation after five iterations.
Fig. 6
Fig. 6 Images of a USAF 1951-1X MTF resolution target with (a) the 3D printed lens and (b) the commercial reference lens with 12 mm aperture diameter using a green band-pass filter. Magnified images of Groups 6 and 7 of the resolution target with (c) 3D-printed and (d) commercial lens. Magnified images of Group 7 in (e) and (g), and cross-sectional intensity profiles in (f), the red line marks the results with the printed lens and light blue with the reference lens.
Fig. 7
Fig. 7 Ideal MTF resolution simulations and experimental results for the N-BK7 and LUX-Opticlear lenses using ∅ 10mm aperture at λ = 546 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I norm = I I 1 I 2 2 I 1 I 2 .

Metrics