Abstract

Photonic biosensors offer label-free detection of biomolecules for applications ranging from clinical diagnosis to food quality monitoring. Both sensors based on Mach-Zehnder interferometers and ring resonators are widely used, but are usually read-out using different schemes, making a direct comparison of their fundamental limit of detection challenging. A coherent detection scheme, adapted from optical communication systems, has been recently shown to achieve excellent detection limits, using a simple fixed-wavelength source. Here we present, for the first time, a theoretical model to determine the fundamental limit of detection of such a coherent read-out system, for both interferometric and resonant sensors. Based on this analysis, we provide guidelines for sensor optimization in the presence of optical losses and show that interferometric sensors are preferable over resonant structures when the sensor size is not limited by the available sample volume.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
All-optical phase modulation for integrated interferometric biosensors

Stefania Dante, Daphné Duval, Borja Sepúlveda, Ana Belen González-Guerrero, José Ramón Sendra, and Laura M. Lechuga
Opt. Express 20(7) 7195-7205 (2012)

Improving the detection limit of conformational analysis by utilizing a dual polarization Vernier cascade

J-W. Hoste, P. Soetaert, and P. Bienstman
Opt. Express 24(1) 67-81 (2016)

Handheld imaging photonic crystal biosensor for multiplexed, label-free protein detection

Sabrina Jahns, Marion Bräu, Björn-Ole Meyer, Torben Karrock, Sören B. Gutekunst, Lars Blohm, Christine Selhuber-Unkel, Raymund Buhmann, Yousef Nazirizadeh, and Martina Gerken
Biomed. Opt. Express 6(10) 3724-3736 (2015)

References

  • View by:
  • |
  • |
  • |

  1. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
    [Crossref] [PubMed]
  2. F. Vollmer and L. Yang, “Review label-free detection with high-q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
    [Crossref] [PubMed]
  3. M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6, 463–487 (2012).
    [Crossref]
  4. C. Ciminelli, F. Dell’Olio, D. Conteduca, C. Campanella, and M. Armenise, “High performance SOI microring resonator for biochemical sensing,” Opt. Laser Technol. 59, 60–67 (2014).
    [Crossref]
  5. A. Fernández Gavela, D. Grajales García, J. C. Ramirez, and L. M. Lechuga, “Last advances in silicon-based optical biosensors,” Sensors 16, 285 (2016).
    [Crossref] [PubMed]
  6. B. Chocarro-Ruiz, A. Fernández-Gavela, S. Herranz, and L. M. Lechuga, “Nanophotonic label-free biosensors for environmental monitoring,” Curr. Opin. Biotechnol. 45, 175–183 (2017).
    [Crossref] [PubMed]
  7. J. Arlett, E. Myers, and M. Roukes, “Comparative advantages of mechanical biosensors,” Nat. Nanotechnol. 6, 203–215 (2011).
    [Crossref] [PubMed]
  8. H.-P. Loock and P. D. Wentzell, “Detection limits of chemical sensors: Applications and misapplications,” Sens. Actuators, B 173, 157–163 (2012).
    [Crossref]
  9. J. G. Wangüemert-Pérez, A. Hadij-ElHouati, A. Sánchez-Postigo, J. Leuermann, D.-X. Xu, P. Cheben, A. Ortega-Moñux, and R. Halir, and Í. Molina-Fernández, “Subwavelength structures for silicon photonics biosensing,” Opt. Laser Technol. 109, 437–448 (2019).
    [Crossref]
  10. K. B. Gylfason, C. F. Carlborg, A. Kazmierczak, F. Dortu, H. Sohlström, L. Vivien, C. A. Barrios, W. van der Wijngaart, and G. Stemme, “On-chip temperature compensation in an integrated slot-waveguide ring resonator refractive index sensor array,” Opt. Express 18, 3226–3237 (2010).
    [Crossref] [PubMed]
  11. S. Dante, D. Duval, B. Sepúlveda, A. B. González-Guerrero, J. R. Sendra, and L. M. Lechuga, “All-optical phase modulation for integrated interferometric biosensors,” Opt. Express 20, 7195–7205 (2012).
    [Crossref] [PubMed]
  12. R. Halir, L. Vivien, X. Le Roux, D.-X. Xu, and P. Cheben, “Direct and sensitive phase readout for integrated waveguide sensors,” IEEE Photon. J. 5, 6800906 (2013).
    [Crossref]
  13. J. G. Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D.-X. Xu, and J. H. Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39, 4442–4445 (2014).
    [Crossref]
  14. H. Yan, L. Huang, X. Xu, S. Chakravarty, N. Tang, H. Tian, and R. T. Chen, “Unique surface sensing property and enhanced sensitivity in microring resonator biosensors based on subwavelength grating waveguides,” Opt. Express 24, 29724–29733 (2016).
    [Crossref]
  15. R. J. van Gulik, B. M. de Boer, and P. J. Harmsma, “Refractive index sensing using a three-port interferometer and comparison with ring resonators,” IEEE J. Sel. Top. Quantum Electron. 23, 433–439 (2017).
    [Crossref]
  16. E. Luan, H. Yun, L. Laplatine, Y. Dattner, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Enhanced sensitivity of subwavelength multibox waveguide microring resonator label-free biosensors,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).
    [Crossref]
  17. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020–1028 (2008).
    [Crossref] [PubMed]
  18. J.-W. Hoste, P. Soetaert, and P. Bienstman, “Improving the detection limit of conformational analysis by utilizing a dual polarization vernier cascade,” Opt. Express 24, 67–81 (2016).
    [Crossref] [PubMed]
  19. E. Luan, H. Shoman, D. Ratner, K. Cheung, and L. Chrostowski, “Silicon photonic biosensors using label-free detection,” Sensors 18, 3519 (2018).
    [Crossref]
  20. P. Steglich, M. Hülsemann, B. Dietzel, and A. Mai, “Optical biosensors based on silicon-on-insulator ring resonators: A review,” Molecules 24, 519 (2019).
    [Crossref]
  21. K. Misiakos, I. Raptis, A. Salapatas, E. Makarona, A. Botsialas, M. Hoekman, R. Stoffer, and G. Jobst, “Broad-band mach-zehnder interferometers as high performance refractive index sensors: Theory and monolithic implementation,” Opt. Express 22, 8856–8870 (2014).
    [Crossref] [PubMed]
  22. A. Psarouli, A. Salapatas, A. Botsialas, P. S. Petrou, I. Raptis, E. Makarona, G. Jobst, K. Tukkiniemi, M. Sopanen, R. Stoffer, S. E. Kakabakos, and K. Misiakos, “Monolithically integrated broad-band mach-zehnder interferometers for highly sensitive label-free detection of biomolecules through dual polarization optics,” Sci. Rep.  5, 17600 (2015).
    [Crossref]
  23. L. Gounaridis, P. Groumas, E. Schreuder, R. Heideman, H. Avramopoulos, and C. Kouloumentas, “New set of design rules for resonant refractive index sensors enabled by FFT based processing of the measurement data,” Opt. Express 24, 7611–7632 (2016).
    [Crossref] [PubMed]
  24. L. Gounaridis, P. Groumas, E. Schreuder, G. Tsekenis, A. Marousis, R. Heideman, H. Avramopoulos, and C. Kouloumentas, “High performance refractive index sensor based on low q-factor ring resonators and FFT processing of wavelength scanning data,” Opt. Express 25, 7483–7495 (2017).
    [Crossref] [PubMed]
  25. D. Martens and P. Bienstman, “Comparison between vernier-cascade and MZI as transducer for biosensing with on-chip spectral filter,” Nanophotonics 6, 703–712 (2017).
    [Crossref]
  26. A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
    [Crossref]
  27. A. Brandenburg, R. Krauter, C. Künzel, M. Stefan, and H. Schulte, “Interferometric sensor for detection of surface-bound bioreactions,” Appl. Opt. 39, 6396–6405 (2000).
    [Crossref]
  28. K. E. Zinoviev, A. B. González-Guerrero, C. Domínguez, and L. M. Lechuga, “Integrated bimodal waveguide interferometric biosensor for label-free analysis,” J. Light. Technol. 29, 1926–1930 (2011).
    [Crossref]
  29. S. Dante, D. Duval, D. Fariña, A. B. González-Guerrero, and L. M. Lechuga, “Linear readout of integrated interferometric biosensors using a periodic wavelength modulation,” Laser Photonics Rev. 9, 248–255 (2015).
    [Crossref]
  30. A. B. González-Guerrero, J. Maldonado, S. Herranz, and L. M. Lechuga, “Trends in photonic lab-on-chip interferometric biosensors for point-of-care diagnostics,” Anal. Methods 8, 8380–8394 (2016).
    [Crossref]
  31. P. J. Reyes-Iglesias, Í. Molina-Fernández, A. Moscoso-Mártir, and A. Ortega-Moñux, “High-performance monolithically integrated 120◦ downconverter with relaxed hardware constraints,” Opt. Express 20, 5725–5741 (2012).
    [Crossref] [PubMed]
  32. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
    [Crossref] [PubMed]
  33. K. Qin, S. Hu, S. T. Retterer, I. I. Kravchenko, and S. M. Weiss, “Slow light mach–zehnder interferometer as label-free biosensor with scalable sensitivity,” Opt. Lett. 41, 753–756 (2016).
    [Crossref] [PubMed]
  34. F. Jenkins and H. White, Fundamentals of Optics (MacGraw Hill Book Company, 1957), pp. 211–231.
  35. W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2011).
    [Crossref]
  36. D.-X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, and et al., “Folded cavity soi microring sensors for high sensitivity and real time measurement of biomolecular binding,” Opt. Express 16, 15137–15148 (2008).
    [Crossref] [PubMed]
  37. K. Kikuchi, “Characterization of semiconductor-laser phase noise and estimation of bit-error rate performance with low-speed offline digital coherent receivers,” Opt. Express 20, 5291–5302 (2012).
    [Crossref] [PubMed]
  38. X. Zhou, L. Zhang, and W. Pang, “Performance and noise analysis of optical microresonator-based biochemical sensors using intensity detection,” Opt. Express 24, 18197–18208 (2016).
    [Crossref] [PubMed]
  39. G. P. Agrawal, Fiber-Optic Communication Systems(John Wiley and Sons, Inc., 2002), chap. 3, p. 115, 3rd ed.

2019 (3)

J. G. Wangüemert-Pérez, A. Hadij-ElHouati, A. Sánchez-Postigo, J. Leuermann, D.-X. Xu, P. Cheben, A. Ortega-Moñux, and R. Halir, and Í. Molina-Fernández, “Subwavelength structures for silicon photonics biosensing,” Opt. Laser Technol. 109, 437–448 (2019).
[Crossref]

E. Luan, H. Yun, L. Laplatine, Y. Dattner, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Enhanced sensitivity of subwavelength multibox waveguide microring resonator label-free biosensors,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).
[Crossref]

P. Steglich, M. Hülsemann, B. Dietzel, and A. Mai, “Optical biosensors based on silicon-on-insulator ring resonators: A review,” Molecules 24, 519 (2019).
[Crossref]

2018 (1)

E. Luan, H. Shoman, D. Ratner, K. Cheung, and L. Chrostowski, “Silicon photonic biosensors using label-free detection,” Sensors 18, 3519 (2018).
[Crossref]

2017 (4)

D. Martens and P. Bienstman, “Comparison between vernier-cascade and MZI as transducer for biosensing with on-chip spectral filter,” Nanophotonics 6, 703–712 (2017).
[Crossref]

R. J. van Gulik, B. M. de Boer, and P. J. Harmsma, “Refractive index sensing using a three-port interferometer and comparison with ring resonators,” IEEE J. Sel. Top. Quantum Electron. 23, 433–439 (2017).
[Crossref]

B. Chocarro-Ruiz, A. Fernández-Gavela, S. Herranz, and L. M. Lechuga, “Nanophotonic label-free biosensors for environmental monitoring,” Curr. Opin. Biotechnol. 45, 175–183 (2017).
[Crossref] [PubMed]

L. Gounaridis, P. Groumas, E. Schreuder, G. Tsekenis, A. Marousis, R. Heideman, H. Avramopoulos, and C. Kouloumentas, “High performance refractive index sensor based on low q-factor ring resonators and FFT processing of wavelength scanning data,” Opt. Express 25, 7483–7495 (2017).
[Crossref] [PubMed]

2016 (7)

A. Fernández Gavela, D. Grajales García, J. C. Ramirez, and L. M. Lechuga, “Last advances in silicon-based optical biosensors,” Sensors 16, 285 (2016).
[Crossref] [PubMed]

A. B. González-Guerrero, J. Maldonado, S. Herranz, and L. M. Lechuga, “Trends in photonic lab-on-chip interferometric biosensors for point-of-care diagnostics,” Anal. Methods 8, 8380–8394 (2016).
[Crossref]

J.-W. Hoste, P. Soetaert, and P. Bienstman, “Improving the detection limit of conformational analysis by utilizing a dual polarization vernier cascade,” Opt. Express 24, 67–81 (2016).
[Crossref] [PubMed]

K. Qin, S. Hu, S. T. Retterer, I. I. Kravchenko, and S. M. Weiss, “Slow light mach–zehnder interferometer as label-free biosensor with scalable sensitivity,” Opt. Lett. 41, 753–756 (2016).
[Crossref] [PubMed]

L. Gounaridis, P. Groumas, E. Schreuder, R. Heideman, H. Avramopoulos, and C. Kouloumentas, “New set of design rules for resonant refractive index sensors enabled by FFT based processing of the measurement data,” Opt. Express 24, 7611–7632 (2016).
[Crossref] [PubMed]

X. Zhou, L. Zhang, and W. Pang, “Performance and noise analysis of optical microresonator-based biochemical sensors using intensity detection,” Opt. Express 24, 18197–18208 (2016).
[Crossref] [PubMed]

H. Yan, L. Huang, X. Xu, S. Chakravarty, N. Tang, H. Tian, and R. T. Chen, “Unique surface sensing property and enhanced sensitivity in microring resonator biosensors based on subwavelength grating waveguides,” Opt. Express 24, 29724–29733 (2016).
[Crossref]

2015 (2)

S. Dante, D. Duval, D. Fariña, A. B. González-Guerrero, and L. M. Lechuga, “Linear readout of integrated interferometric biosensors using a periodic wavelength modulation,” Laser Photonics Rev. 9, 248–255 (2015).
[Crossref]

A. Psarouli, A. Salapatas, A. Botsialas, P. S. Petrou, I. Raptis, E. Makarona, G. Jobst, K. Tukkiniemi, M. Sopanen, R. Stoffer, S. E. Kakabakos, and K. Misiakos, “Monolithically integrated broad-band mach-zehnder interferometers for highly sensitive label-free detection of biomolecules through dual polarization optics,” Sci. Rep.  5, 17600 (2015).
[Crossref]

2014 (3)

2013 (1)

R. Halir, L. Vivien, X. Le Roux, D.-X. Xu, and P. Cheben, “Direct and sensitive phase readout for integrated waveguide sensors,” IEEE Photon. J. 5, 6800906 (2013).
[Crossref]

2012 (6)

F. Vollmer and L. Yang, “Review label-free detection with high-q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
[Crossref] [PubMed]

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6, 463–487 (2012).
[Crossref]

H.-P. Loock and P. D. Wentzell, “Detection limits of chemical sensors: Applications and misapplications,” Sens. Actuators, B 173, 157–163 (2012).
[Crossref]

K. Kikuchi, “Characterization of semiconductor-laser phase noise and estimation of bit-error rate performance with low-speed offline digital coherent receivers,” Opt. Express 20, 5291–5302 (2012).
[Crossref] [PubMed]

P. J. Reyes-Iglesias, Í. Molina-Fernández, A. Moscoso-Mártir, and A. Ortega-Moñux, “High-performance monolithically integrated 120◦ downconverter with relaxed hardware constraints,” Opt. Express 20, 5725–5741 (2012).
[Crossref] [PubMed]

S. Dante, D. Duval, B. Sepúlveda, A. B. González-Guerrero, J. R. Sendra, and L. M. Lechuga, “All-optical phase modulation for integrated interferometric biosensors,” Opt. Express 20, 7195–7205 (2012).
[Crossref] [PubMed]

2011 (3)

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2011).
[Crossref]

K. E. Zinoviev, A. B. González-Guerrero, C. Domínguez, and L. M. Lechuga, “Integrated bimodal waveguide interferometric biosensor for label-free analysis,” J. Light. Technol. 29, 1926–1930 (2011).
[Crossref]

J. Arlett, E. Myers, and M. Roukes, “Comparative advantages of mechanical biosensors,” Nat. Nanotechnol. 6, 203–215 (2011).
[Crossref] [PubMed]

2010 (1)

2008 (4)

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020–1028 (2008).
[Crossref] [PubMed]

D.-X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, and et al., “Folded cavity soi microring sensors for high sensitivity and real time measurement of biomolecular binding,” Opt. Express 16, 15137–15148 (2008).
[Crossref] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref] [PubMed]

2006 (1)

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

2000 (1)

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication Systems(John Wiley and Sons, Inc., 2002), chap. 3, p. 115, 3rd ed.

Alonso-Ramos, C.

Alvarez, M.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6, 463–487 (2012).
[Crossref]

Arlett, J.

J. Arlett, E. Myers, and M. Roukes, “Comparative advantages of mechanical biosensors,” Nat. Nanotechnol. 6, 203–215 (2011).
[Crossref] [PubMed]

Armenise, M.

C. Ciminelli, F. Dell’Olio, D. Conteduca, C. Campanella, and M. Armenise, “High performance SOI microring resonator for biochemical sensing,” Opt. Laser Technol. 59, 60–67 (2014).
[Crossref]

Avramopoulos, H.

Baets, R.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2011).
[Crossref]

Barrios, C. A.

Bienstman, P.

D. Martens and P. Bienstman, “Comparison between vernier-cascade and MZI as transducer for biosensing with on-chip spectral filter,” Nanophotonics 6, 703–712 (2017).
[Crossref]

J.-W. Hoste, P. Soetaert, and P. Bienstman, “Improving the detection limit of conformational analysis by utilizing a dual polarization vernier cascade,” Opt. Express 24, 67–81 (2016).
[Crossref] [PubMed]

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2011).
[Crossref]

Bogaerts, W.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2011).
[Crossref]

Botsialas, A.

A. Psarouli, A. Salapatas, A. Botsialas, P. S. Petrou, I. Raptis, E. Makarona, G. Jobst, K. Tukkiniemi, M. Sopanen, R. Stoffer, S. E. Kakabakos, and K. Misiakos, “Monolithically integrated broad-band mach-zehnder interferometers for highly sensitive label-free detection of biomolecules through dual polarization optics,” Sci. Rep.  5, 17600 (2015).
[Crossref]

K. Misiakos, I. Raptis, A. Salapatas, E. Makarona, A. Botsialas, M. Hoekman, R. Stoffer, and G. Jobst, “Broad-band mach-zehnder interferometers as high performance refractive index sensors: Theory and monolithic implementation,” Opt. Express 22, 8856–8870 (2014).
[Crossref] [PubMed]

Brandenburg, A.

Campanella, C.

C. Ciminelli, F. Dell’Olio, D. Conteduca, C. Campanella, and M. Armenise, “High performance SOI microring resonator for biochemical sensing,” Opt. Laser Technol. 59, 60–67 (2014).
[Crossref]

Carlborg, C. F.

Chakravarty, S.

Cheben, P.

J. G. Wangüemert-Pérez, A. Hadij-ElHouati, A. Sánchez-Postigo, J. Leuermann, D.-X. Xu, P. Cheben, A. Ortega-Moñux, and R. Halir, and Í. Molina-Fernández, “Subwavelength structures for silicon photonics biosensing,” Opt. Laser Technol. 109, 437–448 (2019).
[Crossref]

J. G. Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D.-X. Xu, and J. H. Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39, 4442–4445 (2014).
[Crossref]

R. Halir, L. Vivien, X. Le Roux, D.-X. Xu, and P. Cheben, “Direct and sensitive phase readout for integrated waveguide sensors,” IEEE Photon. J. 5, 6800906 (2013).
[Crossref]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

Chen, R. T.

Cheung, K.

E. Luan, H. Shoman, D. Ratner, K. Cheung, and L. Chrostowski, “Silicon photonic biosensors using label-free detection,” Sensors 18, 3519 (2018).
[Crossref]

Cheung, K. C.

E. Luan, H. Yun, L. Laplatine, Y. Dattner, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Enhanced sensitivity of subwavelength multibox waveguide microring resonator label-free biosensors,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).
[Crossref]

Chocarro-Ruiz, B.

B. Chocarro-Ruiz, A. Fernández-Gavela, S. Herranz, and L. M. Lechuga, “Nanophotonic label-free biosensors for environmental monitoring,” Curr. Opin. Biotechnol. 45, 175–183 (2017).
[Crossref] [PubMed]

Chrostowski, L.

E. Luan, H. Yun, L. Laplatine, Y. Dattner, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Enhanced sensitivity of subwavelength multibox waveguide microring resonator label-free biosensors,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).
[Crossref]

E. Luan, H. Shoman, D. Ratner, K. Cheung, and L. Chrostowski, “Silicon photonic biosensors using label-free detection,” Sensors 18, 3519 (2018).
[Crossref]

Ciminelli, C.

C. Ciminelli, F. Dell’Olio, D. Conteduca, C. Campanella, and M. Armenise, “High performance SOI microring resonator for biochemical sensing,” Opt. Laser Technol. 59, 60–67 (2014).
[Crossref]

Claes, T.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2011).
[Crossref]

Conteduca, D.

C. Ciminelli, F. Dell’Olio, D. Conteduca, C. Campanella, and M. Armenise, “High performance SOI microring resonator for biochemical sensing,” Opt. Laser Technol. 59, 60–67 (2014).
[Crossref]

Dante, S.

S. Dante, D. Duval, D. Fariña, A. B. González-Guerrero, and L. M. Lechuga, “Linear readout of integrated interferometric biosensors using a periodic wavelength modulation,” Laser Photonics Rev. 9, 248–255 (2015).
[Crossref]

S. Dante, D. Duval, B. Sepúlveda, A. B. González-Guerrero, J. R. Sendra, and L. M. Lechuga, “All-optical phase modulation for integrated interferometric biosensors,” Opt. Express 20, 7195–7205 (2012).
[Crossref] [PubMed]

Dattner, Y.

E. Luan, H. Yun, L. Laplatine, Y. Dattner, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Enhanced sensitivity of subwavelength multibox waveguide microring resonator label-free biosensors,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).
[Crossref]

de Boer, B. M.

R. J. van Gulik, B. M. de Boer, and P. J. Harmsma, “Refractive index sensing using a three-port interferometer and comparison with ring resonators,” IEEE J. Sel. Top. Quantum Electron. 23, 433–439 (2017).
[Crossref]

Delâge, A.

Delge, A.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

Dell’Olio, F.

C. Ciminelli, F. Dell’Olio, D. Conteduca, C. Campanella, and M. Armenise, “High performance SOI microring resonator for biochemical sensing,” Opt. Laser Technol. 59, 60–67 (2014).
[Crossref]

Densmore, A.

D.-X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, and et al., “Folded cavity soi microring sensors for high sensitivity and real time measurement of biomolecular binding,” Opt. Express 16, 15137–15148 (2008).
[Crossref] [PubMed]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

Dietzel, B.

P. Steglich, M. Hülsemann, B. Dietzel, and A. Mai, “Optical biosensors based on silicon-on-insulator ring resonators: A review,” Molecules 24, 519 (2019).
[Crossref]

Domínguez, C.

K. E. Zinoviev, A. B. González-Guerrero, C. Domínguez, and L. M. Lechuga, “Integrated bimodal waveguide interferometric biosensor for label-free analysis,” J. Light. Technol. 29, 1926–1930 (2011).
[Crossref]

Dortu, F.

Dumon, P.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2011).
[Crossref]

Duval, D.

S. Dante, D. Duval, D. Fariña, A. B. González-Guerrero, and L. M. Lechuga, “Linear readout of integrated interferometric biosensors using a periodic wavelength modulation,” Laser Photonics Rev. 9, 248–255 (2015).
[Crossref]

S. Dante, D. Duval, B. Sepúlveda, A. B. González-Guerrero, J. R. Sendra, and L. M. Lechuga, “All-optical phase modulation for integrated interferometric biosensors,” Opt. Express 20, 7195–7205 (2012).
[Crossref] [PubMed]

Estevez, M. C.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6, 463–487 (2012).
[Crossref]

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref] [PubMed]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020–1028 (2008).
[Crossref] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref] [PubMed]

Fariña, D.

S. Dante, D. Duval, D. Fariña, A. B. González-Guerrero, and L. M. Lechuga, “Linear readout of integrated interferometric biosensors using a periodic wavelength modulation,” Laser Photonics Rev. 9, 248–255 (2015).
[Crossref]

Fernández Gavela, A.

A. Fernández Gavela, D. Grajales García, J. C. Ramirez, and L. M. Lechuga, “Last advances in silicon-based optical biosensors,” Sensors 16, 285 (2016).
[Crossref] [PubMed]

Fernández-Gavela, A.

B. Chocarro-Ruiz, A. Fernández-Gavela, S. Herranz, and L. M. Lechuga, “Nanophotonic label-free biosensors for environmental monitoring,” Curr. Opin. Biotechnol. 45, 175–183 (2017).
[Crossref] [PubMed]

González-Guerrero, A. B.

A. B. González-Guerrero, J. Maldonado, S. Herranz, and L. M. Lechuga, “Trends in photonic lab-on-chip interferometric biosensors for point-of-care diagnostics,” Anal. Methods 8, 8380–8394 (2016).
[Crossref]

S. Dante, D. Duval, D. Fariña, A. B. González-Guerrero, and L. M. Lechuga, “Linear readout of integrated interferometric biosensors using a periodic wavelength modulation,” Laser Photonics Rev. 9, 248–255 (2015).
[Crossref]

S. Dante, D. Duval, B. Sepúlveda, A. B. González-Guerrero, J. R. Sendra, and L. M. Lechuga, “All-optical phase modulation for integrated interferometric biosensors,” Opt. Express 20, 7195–7205 (2012).
[Crossref] [PubMed]

K. E. Zinoviev, A. B. González-Guerrero, C. Domínguez, and L. M. Lechuga, “Integrated bimodal waveguide interferometric biosensor for label-free analysis,” J. Light. Technol. 29, 1926–1930 (2011).
[Crossref]

Gounaridis, L.

Grajales García, D.

A. Fernández Gavela, D. Grajales García, J. C. Ramirez, and L. M. Lechuga, “Last advances in silicon-based optical biosensors,” Sensors 16, 285 (2016).
[Crossref] [PubMed]

Groumas, P.

Gylfason, K. B.

Hadij-ElHouati, A.

J. G. Wangüemert-Pérez, A. Hadij-ElHouati, A. Sánchez-Postigo, J. Leuermann, D.-X. Xu, P. Cheben, A. Ortega-Moñux, and R. Halir, and Í. Molina-Fernández, “Subwavelength structures for silicon photonics biosensing,” Opt. Laser Technol. 109, 437–448 (2019).
[Crossref]

Halir, R.

J. G. Wangüemert-Pérez, A. Hadij-ElHouati, A. Sánchez-Postigo, J. Leuermann, D.-X. Xu, P. Cheben, A. Ortega-Moñux, and R. Halir, and Í. Molina-Fernández, “Subwavelength structures for silicon photonics biosensing,” Opt. Laser Technol. 109, 437–448 (2019).
[Crossref]

J. G. Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D.-X. Xu, and J. H. Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39, 4442–4445 (2014).
[Crossref]

R. Halir, L. Vivien, X. Le Roux, D.-X. Xu, and P. Cheben, “Direct and sensitive phase readout for integrated waveguide sensors,” IEEE Photon. J. 5, 6800906 (2013).
[Crossref]

Harmsma, P. J.

R. J. van Gulik, B. M. de Boer, and P. J. Harmsma, “Refractive index sensing using a three-port interferometer and comparison with ring resonators,” IEEE J. Sel. Top. Quantum Electron. 23, 433–439 (2017).
[Crossref]

Heideman, R.

Herranz, S.

B. Chocarro-Ruiz, A. Fernández-Gavela, S. Herranz, and L. M. Lechuga, “Nanophotonic label-free biosensors for environmental monitoring,” Curr. Opin. Biotechnol. 45, 175–183 (2017).
[Crossref] [PubMed]

A. B. González-Guerrero, J. Maldonado, S. Herranz, and L. M. Lechuga, “Trends in photonic lab-on-chip interferometric biosensors for point-of-care diagnostics,” Anal. Methods 8, 8380–8394 (2016).
[Crossref]

Heyn, P. D.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2011).
[Crossref]

Hoekman, M.

Hoste, J.-W.

Hu, S.

Huang, L.

Hülsemann, M.

P. Steglich, M. Hülsemann, B. Dietzel, and A. Mai, “Optical biosensors based on silicon-on-insulator ring resonators: A review,” Molecules 24, 519 (2019).
[Crossref]

Janz, S.

D.-X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, and et al., “Folded cavity soi microring sensors for high sensitivity and real time measurement of biomolecular binding,” Opt. Express 16, 15137–15148 (2008).
[Crossref] [PubMed]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

Jenkins, F.

F. Jenkins and H. White, Fundamentals of Optics (MacGraw Hill Book Company, 1957), pp. 211–231.

Jobst, G.

A. Psarouli, A. Salapatas, A. Botsialas, P. S. Petrou, I. Raptis, E. Makarona, G. Jobst, K. Tukkiniemi, M. Sopanen, R. Stoffer, S. E. Kakabakos, and K. Misiakos, “Monolithically integrated broad-band mach-zehnder interferometers for highly sensitive label-free detection of biomolecules through dual polarization optics,” Sci. Rep.  5, 17600 (2015).
[Crossref]

K. Misiakos, I. Raptis, A. Salapatas, E. Makarona, A. Botsialas, M. Hoekman, R. Stoffer, and G. Jobst, “Broad-band mach-zehnder interferometers as high performance refractive index sensors: Theory and monolithic implementation,” Opt. Express 22, 8856–8870 (2014).
[Crossref] [PubMed]

Kakabakos, S. E.

A. Psarouli, A. Salapatas, A. Botsialas, P. S. Petrou, I. Raptis, E. Makarona, G. Jobst, K. Tukkiniemi, M. Sopanen, R. Stoffer, S. E. Kakabakos, and K. Misiakos, “Monolithically integrated broad-band mach-zehnder interferometers for highly sensitive label-free detection of biomolecules through dual polarization optics,” Sci. Rep.  5, 17600 (2015).
[Crossref]

Kazmierczak, A.

Kikuchi, K.

Kouloumentas, C.

Krauter, R.

Kravchenko, I. I.

Künzel, C.

Lamontagne, B.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

Laplatine, L.

E. Luan, H. Yun, L. Laplatine, Y. Dattner, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Enhanced sensitivity of subwavelength multibox waveguide microring resonator label-free biosensors,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).
[Crossref]

Lapointe, J.

D.-X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, and et al., “Folded cavity soi microring sensors for high sensitivity and real time measurement of biomolecular binding,” Opt. Express 16, 15137–15148 (2008).
[Crossref] [PubMed]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

Lechuga, L. M.

B. Chocarro-Ruiz, A. Fernández-Gavela, S. Herranz, and L. M. Lechuga, “Nanophotonic label-free biosensors for environmental monitoring,” Curr. Opin. Biotechnol. 45, 175–183 (2017).
[Crossref] [PubMed]

A. Fernández Gavela, D. Grajales García, J. C. Ramirez, and L. M. Lechuga, “Last advances in silicon-based optical biosensors,” Sensors 16, 285 (2016).
[Crossref] [PubMed]

A. B. González-Guerrero, J. Maldonado, S. Herranz, and L. M. Lechuga, “Trends in photonic lab-on-chip interferometric biosensors for point-of-care diagnostics,” Anal. Methods 8, 8380–8394 (2016).
[Crossref]

S. Dante, D. Duval, D. Fariña, A. B. González-Guerrero, and L. M. Lechuga, “Linear readout of integrated interferometric biosensors using a periodic wavelength modulation,” Laser Photonics Rev. 9, 248–255 (2015).
[Crossref]

S. Dante, D. Duval, B. Sepúlveda, A. B. González-Guerrero, J. R. Sendra, and L. M. Lechuga, “All-optical phase modulation for integrated interferometric biosensors,” Opt. Express 20, 7195–7205 (2012).
[Crossref] [PubMed]

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6, 463–487 (2012).
[Crossref]

K. E. Zinoviev, A. B. González-Guerrero, C. Domínguez, and L. M. Lechuga, “Integrated bimodal waveguide interferometric biosensor for label-free analysis,” J. Light. Technol. 29, 1926–1930 (2011).
[Crossref]

Leuermann, J.

J. G. Wangüemert-Pérez, A. Hadij-ElHouati, A. Sánchez-Postigo, J. Leuermann, D.-X. Xu, P. Cheben, A. Ortega-Moñux, and R. Halir, and Í. Molina-Fernández, “Subwavelength structures for silicon photonics biosensing,” Opt. Laser Technol. 109, 437–448 (2019).
[Crossref]

Loock, H.-P.

H.-P. Loock and P. D. Wentzell, “Detection limits of chemical sensors: Applications and misapplications,” Sens. Actuators, B 173, 157–163 (2012).
[Crossref]

Lopinski, G.

Luan, E.

E. Luan, H. Yun, L. Laplatine, Y. Dattner, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Enhanced sensitivity of subwavelength multibox waveguide microring resonator label-free biosensors,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).
[Crossref]

E. Luan, H. Shoman, D. Ratner, K. Cheung, and L. Chrostowski, “Silicon photonic biosensors using label-free detection,” Sensors 18, 3519 (2018).
[Crossref]

Mai, A.

P. Steglich, M. Hülsemann, B. Dietzel, and A. Mai, “Optical biosensors based on silicon-on-insulator ring resonators: A review,” Molecules 24, 519 (2019).
[Crossref]

Makarona, E.

A. Psarouli, A. Salapatas, A. Botsialas, P. S. Petrou, I. Raptis, E. Makarona, G. Jobst, K. Tukkiniemi, M. Sopanen, R. Stoffer, S. E. Kakabakos, and K. Misiakos, “Monolithically integrated broad-band mach-zehnder interferometers for highly sensitive label-free detection of biomolecules through dual polarization optics,” Sci. Rep.  5, 17600 (2015).
[Crossref]

K. Misiakos, I. Raptis, A. Salapatas, E. Makarona, A. Botsialas, M. Hoekman, R. Stoffer, and G. Jobst, “Broad-band mach-zehnder interferometers as high performance refractive index sensors: Theory and monolithic implementation,” Opt. Express 22, 8856–8870 (2014).
[Crossref] [PubMed]

Maldonado, J.

A. B. González-Guerrero, J. Maldonado, S. Herranz, and L. M. Lechuga, “Trends in photonic lab-on-chip interferometric biosensors for point-of-care diagnostics,” Anal. Methods 8, 8380–8394 (2016).
[Crossref]

Marousis, A.

Martens, D.

D. Martens and P. Bienstman, “Comparison between vernier-cascade and MZI as transducer for biosensing with on-chip spectral filter,” Nanophotonics 6, 703–712 (2017).
[Crossref]

McKinnon, R.

Mischki, T.

Misiakos, K.

A. Psarouli, A. Salapatas, A. Botsialas, P. S. Petrou, I. Raptis, E. Makarona, G. Jobst, K. Tukkiniemi, M. Sopanen, R. Stoffer, S. E. Kakabakos, and K. Misiakos, “Monolithically integrated broad-band mach-zehnder interferometers for highly sensitive label-free detection of biomolecules through dual polarization optics,” Sci. Rep.  5, 17600 (2015).
[Crossref]

K. Misiakos, I. Raptis, A. Salapatas, E. Makarona, A. Botsialas, M. Hoekman, R. Stoffer, and G. Jobst, “Broad-band mach-zehnder interferometers as high performance refractive index sensors: Theory and monolithic implementation,” Opt. Express 22, 8856–8870 (2014).
[Crossref] [PubMed]

Molina-Fernández, I.

Molina-Fernández, Í.

Moscoso-Mártir, A.

Myers, E.

J. Arlett, E. Myers, and M. Roukes, “Comparative advantages of mechanical biosensors,” Nat. Nanotechnol. 6, 203–215 (2011).
[Crossref] [PubMed]

Ortega-Moñux, A.

Pang, W.

Pérez-Galacho, D.

Petrou, P. S.

A. Psarouli, A. Salapatas, A. Botsialas, P. S. Petrou, I. Raptis, E. Makarona, G. Jobst, K. Tukkiniemi, M. Sopanen, R. Stoffer, S. E. Kakabakos, and K. Misiakos, “Monolithically integrated broad-band mach-zehnder interferometers for highly sensitive label-free detection of biomolecules through dual polarization optics,” Sci. Rep.  5, 17600 (2015).
[Crossref]

Post, E.

D.-X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, and et al., “Folded cavity soi microring sensors for high sensitivity and real time measurement of biomolecular binding,” Opt. Express 16, 15137–15148 (2008).
[Crossref] [PubMed]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

Psarouli, A.

A. Psarouli, A. Salapatas, A. Botsialas, P. S. Petrou, I. Raptis, E. Makarona, G. Jobst, K. Tukkiniemi, M. Sopanen, R. Stoffer, S. E. Kakabakos, and K. Misiakos, “Monolithically integrated broad-band mach-zehnder interferometers for highly sensitive label-free detection of biomolecules through dual polarization optics,” Sci. Rep.  5, 17600 (2015).
[Crossref]

Qin, K.

Ramirez, J. C.

A. Fernández Gavela, D. Grajales García, J. C. Ramirez, and L. M. Lechuga, “Last advances in silicon-based optical biosensors,” Sensors 16, 285 (2016).
[Crossref] [PubMed]

Raptis, I.

A. Psarouli, A. Salapatas, A. Botsialas, P. S. Petrou, I. Raptis, E. Makarona, G. Jobst, K. Tukkiniemi, M. Sopanen, R. Stoffer, S. E. Kakabakos, and K. Misiakos, “Monolithically integrated broad-band mach-zehnder interferometers for highly sensitive label-free detection of biomolecules through dual polarization optics,” Sci. Rep.  5, 17600 (2015).
[Crossref]

K. Misiakos, I. Raptis, A. Salapatas, E. Makarona, A. Botsialas, M. Hoekman, R. Stoffer, and G. Jobst, “Broad-band mach-zehnder interferometers as high performance refractive index sensors: Theory and monolithic implementation,” Opt. Express 22, 8856–8870 (2014).
[Crossref] [PubMed]

Ratner, D.

E. Luan, H. Shoman, D. Ratner, K. Cheung, and L. Chrostowski, “Silicon photonic biosensors using label-free detection,” Sensors 18, 3519 (2018).
[Crossref]

Ratner, D. M.

E. Luan, H. Yun, L. Laplatine, Y. Dattner, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Enhanced sensitivity of subwavelength multibox waveguide microring resonator label-free biosensors,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).
[Crossref]

Retterer, S. T.

Reyes-Iglesias, P. J.

Roukes, M.

J. Arlett, E. Myers, and M. Roukes, “Comparative advantages of mechanical biosensors,” Nat. Nanotechnol. 6, 203–215 (2011).
[Crossref] [PubMed]

Roux, X. Le

R. Halir, L. Vivien, X. Le Roux, D.-X. Xu, and P. Cheben, “Direct and sensitive phase readout for integrated waveguide sensors,” IEEE Photon. J. 5, 6800906 (2013).
[Crossref]

Salapatas, A.

A. Psarouli, A. Salapatas, A. Botsialas, P. S. Petrou, I. Raptis, E. Makarona, G. Jobst, K. Tukkiniemi, M. Sopanen, R. Stoffer, S. E. Kakabakos, and K. Misiakos, “Monolithically integrated broad-band mach-zehnder interferometers for highly sensitive label-free detection of biomolecules through dual polarization optics,” Sci. Rep.  5, 17600 (2015).
[Crossref]

K. Misiakos, I. Raptis, A. Salapatas, E. Makarona, A. Botsialas, M. Hoekman, R. Stoffer, and G. Jobst, “Broad-band mach-zehnder interferometers as high performance refractive index sensors: Theory and monolithic implementation,” Opt. Express 22, 8856–8870 (2014).
[Crossref] [PubMed]

Sánchez-Postigo, A.

J. G. Wangüemert-Pérez, A. Hadij-ElHouati, A. Sánchez-Postigo, J. Leuermann, D.-X. Xu, P. Cheben, A. Ortega-Moñux, and R. Halir, and Í. Molina-Fernández, “Subwavelength structures for silicon photonics biosensing,” Opt. Laser Technol. 109, 437–448 (2019).
[Crossref]

Schmid, J.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

Schmid, J. H.

Schreuder, E.

Schulte, H.

Selvaraja, S. K.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2011).
[Crossref]

Sendra, J. R.

Sepúlveda, B.

Shoman, H.

E. Luan, H. Shoman, D. Ratner, K. Cheung, and L. Chrostowski, “Silicon photonic biosensors using label-free detection,” Sensors 18, 3519 (2018).
[Crossref]

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref] [PubMed]

Soetaert, P.

Sohlström, H.

Sopanen, M.

A. Psarouli, A. Salapatas, A. Botsialas, P. S. Petrou, I. Raptis, E. Makarona, G. Jobst, K. Tukkiniemi, M. Sopanen, R. Stoffer, S. E. Kakabakos, and K. Misiakos, “Monolithically integrated broad-band mach-zehnder interferometers for highly sensitive label-free detection of biomolecules through dual polarization optics,” Sci. Rep.  5, 17600 (2015).
[Crossref]

Stefan, M.

Steglich, P.

P. Steglich, M. Hülsemann, B. Dietzel, and A. Mai, “Optical biosensors based on silicon-on-insulator ring resonators: A review,” Molecules 24, 519 (2019).
[Crossref]

Stemme, G.

Stoffer, R.

A. Psarouli, A. Salapatas, A. Botsialas, P. S. Petrou, I. Raptis, E. Makarona, G. Jobst, K. Tukkiniemi, M. Sopanen, R. Stoffer, S. E. Kakabakos, and K. Misiakos, “Monolithically integrated broad-band mach-zehnder interferometers for highly sensitive label-free detection of biomolecules through dual polarization optics,” Sci. Rep.  5, 17600 (2015).
[Crossref]

K. Misiakos, I. Raptis, A. Salapatas, E. Makarona, A. Botsialas, M. Hoekman, R. Stoffer, and G. Jobst, “Broad-band mach-zehnder interferometers as high performance refractive index sensors: Theory and monolithic implementation,” Opt. Express 22, 8856–8870 (2014).
[Crossref] [PubMed]

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref] [PubMed]

Tang, N.

Thourhout, D. V.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2011).
[Crossref]

Tian, H.

Tsekenis, G.

Tukkiniemi, K.

A. Psarouli, A. Salapatas, A. Botsialas, P. S. Petrou, I. Raptis, E. Makarona, G. Jobst, K. Tukkiniemi, M. Sopanen, R. Stoffer, S. E. Kakabakos, and K. Misiakos, “Monolithically integrated broad-band mach-zehnder interferometers for highly sensitive label-free detection of biomolecules through dual polarization optics,” Sci. Rep.  5, 17600 (2015).
[Crossref]

Vaerenbergh, T. V.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2011).
[Crossref]

van der Wijngaart, W.

van Gulik, R. J.

R. J. van Gulik, B. M. de Boer, and P. J. Harmsma, “Refractive index sensing using a three-port interferometer and comparison with ring resonators,” IEEE J. Sel. Top. Quantum Electron. 23, 433–439 (2017).
[Crossref]

Vivien, L.

Vollmer, F.

F. Vollmer and L. Yang, “Review label-free detection with high-q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
[Crossref] [PubMed]

Vos, K. D.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2011).
[Crossref]

Waldron, P.

D.-X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, and et al., “Folded cavity soi microring sensors for high sensitivity and real time measurement of biomolecular binding,” Opt. Express 16, 15137–15148 (2008).
[Crossref] [PubMed]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

Wangüemert-Pérez, J. G.

J. G. Wangüemert-Pérez, A. Hadij-ElHouati, A. Sánchez-Postigo, J. Leuermann, D.-X. Xu, P. Cheben, A. Ortega-Moñux, and R. Halir, and Í. Molina-Fernández, “Subwavelength structures for silicon photonics biosensing,” Opt. Laser Technol. 109, 437–448 (2019).
[Crossref]

J. G. Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D.-X. Xu, and J. H. Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39, 4442–4445 (2014).
[Crossref]

Weiss, S. M.

Wentzell, P. D.

H.-P. Loock and P. D. Wentzell, “Detection limits of chemical sensors: Applications and misapplications,” Sens. Actuators, B 173, 157–163 (2012).
[Crossref]

White, H.

F. Jenkins and H. White, Fundamentals of Optics (MacGraw Hill Book Company, 1957), pp. 211–231.

White, I. M.

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020–1028 (2008).
[Crossref] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref] [PubMed]

Xu, D.-X.

J. G. Wangüemert-Pérez, A. Hadij-ElHouati, A. Sánchez-Postigo, J. Leuermann, D.-X. Xu, P. Cheben, A. Ortega-Moñux, and R. Halir, and Í. Molina-Fernández, “Subwavelength structures for silicon photonics biosensing,” Opt. Laser Technol. 109, 437–448 (2019).
[Crossref]

J. G. Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D.-X. Xu, and J. H. Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39, 4442–4445 (2014).
[Crossref]

R. Halir, L. Vivien, X. Le Roux, D.-X. Xu, and P. Cheben, “Direct and sensitive phase readout for integrated waveguide sensors,” IEEE Photon. J. 5, 6800906 (2013).
[Crossref]

D.-X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, and et al., “Folded cavity soi microring sensors for high sensitivity and real time measurement of biomolecular binding,” Opt. Express 16, 15137–15148 (2008).
[Crossref] [PubMed]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

Xu, X.

Yan, H.

Yang, L.

F. Vollmer and L. Yang, “Review label-free detection with high-q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
[Crossref] [PubMed]

Yun, H.

E. Luan, H. Yun, L. Laplatine, Y. Dattner, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Enhanced sensitivity of subwavelength multibox waveguide microring resonator label-free biosensors,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).
[Crossref]

Zhang, L.

Zhou, X.

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref] [PubMed]

Zinoviev, K. E.

K. E. Zinoviev, A. B. González-Guerrero, C. Domínguez, and L. M. Lechuga, “Integrated bimodal waveguide interferometric biosensor for label-free analysis,” J. Light. Technol. 29, 1926–1930 (2011).
[Crossref]

Anal. Chim. Acta (2)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref] [PubMed]

Anal. Methods (1)

A. B. González-Guerrero, J. Maldonado, S. Herranz, and L. M. Lechuga, “Trends in photonic lab-on-chip interferometric biosensors for point-of-care diagnostics,” Anal. Methods 8, 8380–8394 (2016).
[Crossref]

Appl. Opt. (1)

Curr. Opin. Biotechnol. (1)

B. Chocarro-Ruiz, A. Fernández-Gavela, S. Herranz, and L. M. Lechuga, “Nanophotonic label-free biosensors for environmental monitoring,” Curr. Opin. Biotechnol. 45, 175–183 (2017).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (2)

R. J. van Gulik, B. M. de Boer, and P. J. Harmsma, “Refractive index sensing using a three-port interferometer and comparison with ring resonators,” IEEE J. Sel. Top. Quantum Electron. 23, 433–439 (2017).
[Crossref]

E. Luan, H. Yun, L. Laplatine, Y. Dattner, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Enhanced sensitivity of subwavelength multibox waveguide microring resonator label-free biosensors,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).
[Crossref]

IEEE Photon. J. (1)

R. Halir, L. Vivien, X. Le Roux, D.-X. Xu, and P. Cheben, “Direct and sensitive phase readout for integrated waveguide sensors,” IEEE Photon. J. 5, 6800906 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (1)

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520–2522 (2006).
[Crossref]

J. Light. Technol. (1)

K. E. Zinoviev, A. B. González-Guerrero, C. Domínguez, and L. M. Lechuga, “Integrated bimodal waveguide interferometric biosensor for label-free analysis,” J. Light. Technol. 29, 1926–1930 (2011).
[Crossref]

Laser Photonics Rev. (3)

S. Dante, D. Duval, D. Fariña, A. B. González-Guerrero, and L. M. Lechuga, “Linear readout of integrated interferometric biosensors using a periodic wavelength modulation,” Laser Photonics Rev. 9, 248–255 (2015).
[Crossref]

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6, 463–487 (2012).
[Crossref]

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2011).
[Crossref]

Molecules (1)

P. Steglich, M. Hülsemann, B. Dietzel, and A. Mai, “Optical biosensors based on silicon-on-insulator ring resonators: A review,” Molecules 24, 519 (2019).
[Crossref]

Nanophotonics (2)

D. Martens and P. Bienstman, “Comparison between vernier-cascade and MZI as transducer for biosensing with on-chip spectral filter,” Nanophotonics 6, 703–712 (2017).
[Crossref]

F. Vollmer and L. Yang, “Review label-free detection with high-q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

J. Arlett, E. Myers, and M. Roukes, “Comparative advantages of mechanical biosensors,” Nat. Nanotechnol. 6, 203–215 (2011).
[Crossref] [PubMed]

Opt. Express (12)

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020–1028 (2008).
[Crossref] [PubMed]

D.-X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, and et al., “Folded cavity soi microring sensors for high sensitivity and real time measurement of biomolecular binding,” Opt. Express 16, 15137–15148 (2008).
[Crossref] [PubMed]

K. B. Gylfason, C. F. Carlborg, A. Kazmierczak, F. Dortu, H. Sohlström, L. Vivien, C. A. Barrios, W. van der Wijngaart, and G. Stemme, “On-chip temperature compensation in an integrated slot-waveguide ring resonator refractive index sensor array,” Opt. Express 18, 3226–3237 (2010).
[Crossref] [PubMed]

K. Kikuchi, “Characterization of semiconductor-laser phase noise and estimation of bit-error rate performance with low-speed offline digital coherent receivers,” Opt. Express 20, 5291–5302 (2012).
[Crossref] [PubMed]

P. J. Reyes-Iglesias, Í. Molina-Fernández, A. Moscoso-Mártir, and A. Ortega-Moñux, “High-performance monolithically integrated 120◦ downconverter with relaxed hardware constraints,” Opt. Express 20, 5725–5741 (2012).
[Crossref] [PubMed]

S. Dante, D. Duval, B. Sepúlveda, A. B. González-Guerrero, J. R. Sendra, and L. M. Lechuga, “All-optical phase modulation for integrated interferometric biosensors,” Opt. Express 20, 7195–7205 (2012).
[Crossref] [PubMed]

K. Misiakos, I. Raptis, A. Salapatas, E. Makarona, A. Botsialas, M. Hoekman, R. Stoffer, and G. Jobst, “Broad-band mach-zehnder interferometers as high performance refractive index sensors: Theory and monolithic implementation,” Opt. Express 22, 8856–8870 (2014).
[Crossref] [PubMed]

L. Gounaridis, P. Groumas, E. Schreuder, R. Heideman, H. Avramopoulos, and C. Kouloumentas, “New set of design rules for resonant refractive index sensors enabled by FFT based processing of the measurement data,” Opt. Express 24, 7611–7632 (2016).
[Crossref] [PubMed]

X. Zhou, L. Zhang, and W. Pang, “Performance and noise analysis of optical microresonator-based biochemical sensors using intensity detection,” Opt. Express 24, 18197–18208 (2016).
[Crossref] [PubMed]

H. Yan, L. Huang, X. Xu, S. Chakravarty, N. Tang, H. Tian, and R. T. Chen, “Unique surface sensing property and enhanced sensitivity in microring resonator biosensors based on subwavelength grating waveguides,” Opt. Express 24, 29724–29733 (2016).
[Crossref]

L. Gounaridis, P. Groumas, E. Schreuder, G. Tsekenis, A. Marousis, R. Heideman, H. Avramopoulos, and C. Kouloumentas, “High performance refractive index sensor based on low q-factor ring resonators and FFT processing of wavelength scanning data,” Opt. Express 25, 7483–7495 (2017).
[Crossref] [PubMed]

J.-W. Hoste, P. Soetaert, and P. Bienstman, “Improving the detection limit of conformational analysis by utilizing a dual polarization vernier cascade,” Opt. Express 24, 67–81 (2016).
[Crossref] [PubMed]

Opt. Laser Technol. (2)

J. G. Wangüemert-Pérez, A. Hadij-ElHouati, A. Sánchez-Postigo, J. Leuermann, D.-X. Xu, P. Cheben, A. Ortega-Moñux, and R. Halir, and Í. Molina-Fernández, “Subwavelength structures for silicon photonics biosensing,” Opt. Laser Technol. 109, 437–448 (2019).
[Crossref]

C. Ciminelli, F. Dell’Olio, D. Conteduca, C. Campanella, and M. Armenise, “High performance SOI microring resonator for biochemical sensing,” Opt. Laser Technol. 59, 60–67 (2014).
[Crossref]

Opt. Lett. (2)

Sci. Rep (1)

A. Psarouli, A. Salapatas, A. Botsialas, P. S. Petrou, I. Raptis, E. Makarona, G. Jobst, K. Tukkiniemi, M. Sopanen, R. Stoffer, S. E. Kakabakos, and K. Misiakos, “Monolithically integrated broad-band mach-zehnder interferometers for highly sensitive label-free detection of biomolecules through dual polarization optics,” Sci. Rep.  5, 17600 (2015).
[Crossref]

Sens. Actuators, B (1)

H.-P. Loock and P. D. Wentzell, “Detection limits of chemical sensors: Applications and misapplications,” Sens. Actuators, B 173, 157–163 (2012).
[Crossref]

Sensors (2)

A. Fernández Gavela, D. Grajales García, J. C. Ramirez, and L. M. Lechuga, “Last advances in silicon-based optical biosensors,” Sensors 16, 285 (2016).
[Crossref] [PubMed]

E. Luan, H. Shoman, D. Ratner, K. Cheung, and L. Chrostowski, “Silicon photonic biosensors using label-free detection,” Sensors 18, 3519 (2018).
[Crossref]

Other (2)

F. Jenkins and H. White, Fundamentals of Optics (MacGraw Hill Book Company, 1957), pp. 211–231.

G. P. Agrawal, Fiber-Optic Communication Systems(John Wiley and Sons, Inc., 2002), chap. 3, p. 115, 3rd ed.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic cross-section of a strip waveguide used for bulk sensing: changes in the refractive index of the aqueous cladding (nc) produce variations in the effective index of the propagating mode (ns). (b) In surface sensing applications, changes in the effective index of the propagating mode are either due to variations in the thickness of the adsorbed layer (h) or its mass density (ρs).
Fig. 2
Fig. 2 Schematic of an interferometric sensing system with (a) conventional and (b) coherent phase read-out. In the conventional approach, the simple power combiner at the output discards some of the phase information. The coherent approach uses a 2 × 4 coupler to combine the signals from the sensing and reference arms, providing complete information about the phase difference between them. (c) Schematic of a coherently detected ring-resonator based sensor. All the TIAs in the figure are considered identical with current noise density ηTIA.
Fig. 3
Fig. 3 Graphical representation of the coherent read-out signal. The continuous and dashed vectors show, respectively, the sensor readings in the complex plane without and with analyte, i.e. the reading follows a path in the complex plane marked as the line Δic. The circles represent the uncertainty region of the sensor readings due to the intrinsic system noise with standard deviation σ.
Fig. 4
Fig. 4 Limit of detection of the coherently detected Mach-Zehnder interferometer shown in Fig. 2(b) as function of the length of the interferometer arms for a system with the parameters given in Table 1.
Fig. 5
Fig. 5 (a) Limit of detection of a coherently detected ring on resonance in logarithmic scale as a function of roundtrip losses, αL and the transmission coefficient, t, for the system parameters given in Table 1. (b) Limit of detection for the two fixed values of αL shown in panel a. (c) Limit of detection for critical coupling, t = eαL, with the ring on and off resonance, and for t = 0, for which the ring becomes simply a waveguide and the system is thus equivalent to a Mach-Zehnder interferometer.
Fig. 6
Fig. 6 Schematic illustration of the influence of laser noise for (a) interferometric and (b) ring resonator based sensors. The ring is assumed to be on resonance (∢ic ~ 0). The solid blue line shows the trajectory of the sensor signal in the complex plane. The RIN (σRIN) is orthogonal to the signal movement, so it will have no impact on the LOD, whereas the phase noise (σPN) is parallel to the signal change, so it will degrade the LOD.

Tables (3)

Tables Icon

Table 1 Biosensor system parameters for a typical silicon-wire based setup in the near-infrared for TM polarization.

Tables Icon

Table 2 Optimum lengths and limits of detection for coherent phase read-out.

Tables Icon

Table 3 Phase Noise Parameters

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

S wg = n s Γ ,
S a = | i n s | ,
S = | i Γ | = | i n s | n s Γ = S a S wg .
LOD = Δ Γ min = 3 σ S wg S a .
H r = a r / a 0 = e j 2 π n r L / λ 0 H s ( n s ) = a s / a 0 = e j 2 π n s L / λ 0 e α L ,
i 0 = R | a r / 2 + a s / 2 | 2 = R P 0 [ 1 + e 2 α L + 2 e α L cos ( 2 π ( n s n r ) L / λ 0 ) ] / 4 ,
S a conv = R P 0 π L e α L / λ 0 | sin ( 2 π ( n s n r ) L / λ 0 ) | ,
i c = i I + j i Q = | i c | e j i c = R a s a r * = R | a 0 | 2 H r * H s = ( R P 0 / 2 ) e j 2 π ( n s n r ) L / λ 0 e α L ,
S a coh = R P 0 π L e α L / λ 0 .
σ = σ I = σ Q = σ shot 2 + σ TIA 2 σ shot 2 = q R a 0 2 ( | H r | 2 + | H s | 2 ) B l = q R P 0 ( 1 + e 2 α L ) B l / 2 , σ TIA 2 = η TIA 2 B l
LOD MZ = 3 λ 0 2 S wg π 2 η TIA 2 + q R P 0 ( 1 + e 2 α L ) R P 0 e α L B l L = 3 λ 0 S wg π 1 L SNR ,
H r = 1 , H s ( n s ) = e j ϕ e α L t e j ϕ 1 e α L t e j ϕ ,
LOD RR = 3 λ 0 2 S wg π | 1 t e j ϕ α L | 2 1 t 2 2 η TIA 2 + q R P 0 ( 1 + | e α L t e j ϕ 1 t e j ϕ α L | 2 ) R P 0 e α L B l L .
H s , r ( ω ) H s , r ( ω 0 ) e j ( ω ω 0 ) τ s , r ,
a s , r ( t ) = P 0 2 H s , r ( ω 0 ) e j ψ ( t τ s , r )
i c ( t ) = | i c | e j i c ( t ) = R P 0 2 H s ( ω 0 ) H r * ( ω 0 ) e j Δ ψ ( t )
σ Δ ψ = 2 Δ τ π Δ v B l
σ PN = | i c | σ Δ ψ = R P 0 | H s ( ω o ) | | H r ( ω o ) | Δ τ π Δ v B l
a s , r ( t ) = P 0 2 H s , r ( ω 0 ) ( 1 + 1 2 r ( t τ s , r ) )
i c ( t ) = R P 0 2 H s ( ω 0 ) H r * ( ω 0 ) ( 1 + 1 2 r ( t τ s ) + 1 2 r ( t τ r ) )
σ R I N = R P 0 2 | H s ( ω 0 ) | | H r ( ω 0 ) | S R I N 2 B l
i c = P 0 R ( t e j ϕ α L ) 2 ( t e j ϕ α L 1 ) .
S a = π L P 0 Re α L ( 1 t 2 ) λ | 1 t e j ϕ α L | 2 .
σ shot 2 = q B l R P 0 2 ( 1 + | e α L t e j ϕ 1 t e j ϕ α L | 2 ) ,
a 0 ( t ) = P 0 2 ( 1 + 1 2 r ( t ) )
| a 0 ( t ) | 2 = P 0 2 ( 1 + r ( t ) + 1 4 r 2 ( t ) ) P 0 2 ( 1 + r ( t ) )
a s , r ( t ) = A s , r ( 1 + 1 2 r s , r ( t ) )
i c ( t ) = R a s a r * R A s A r * ( 1 + 1 2 r s ( t ) + 1 2 r r ( t ) )

Metrics