Abstract

A method to simultaneously control aberrations and the aperture of an optical system using a single phase-only spatial light modulator was investigated. The experiment was performed using a liquid-crystal-on-silicon spatial light modulator (LCoS-SLM) within an adaptive optics system used for visual testing, although the method has broader applications in adaptive optics field. The performance of the technique was characterized through the estimation of the system’s modulation transfer functions (MTFs) by using a random chart method. MTFs obtained from the phase modulation-based approach were compared with those from using a real aperture (diaphragm). The areas under the MTFs for the two conditions were similar up to 98%, confirming that the low-pass filter effect associated to the size of the entrance pupil was similar for the phase-modulated pupil and the physical pupil. As an example of application, both aberrations and pupil were controlled by a single phase-only modulator to study the through-focus visual performance in real subjects. Limitations and possible enhancements of the presented method were also discussed. The presented technique reduces complexity and cost of adaptive optics systems. It opens the door to new experiments by allowing dynamic modulation of aberrations and apertures of any shape.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Wide-range adaptive optics visual simulator with a tunable lens

Nikolai Suchkov, Enrique J. Fernández, and Pablo Artal
J. Opt. Soc. Am. A 36(5) 722-730 (2019)

Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator

Enrique J. Fernández, Pedro M. Prieto, and Pablo Artal
Opt. Express 17(13) 11013-11025 (2009)

Liquid crystal Adaptive Optics Visual Simulator: Application to testing and design of ophthalmic optical elements

Silvestre Manzanera, Pedro M. Prieto, Diego B. Ayala, Joseph M. Lindacher, and Pablo Artal
Opt. Express 15(24) 16177-16188 (2007)

References

  • View by:
  • |
  • |
  • |

  1. J. Y. Wang and D. E. Silva, “Wave-front interpretation with Zernike polynomials,” Appl. Opt. 19, 1510–1518 (1980).
    [Crossref] [PubMed]
  2. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
    [Crossref]
  3. H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8, 631–643 (2001).
    [Crossref] [PubMed]
  4. N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, and D. R. Williams, “Use of a microelectromechanical mirror for adaptive optics in the human eye,” Opt. Lett. 27, 1537–1539 (2002).
    [Crossref]
  5. E. J. Fernández and P. Artal, “Membrane deformable mirror for adaptive optics: performance limits in visual optics,” Opt. Express 11, 1056–1069 (2003).
    [Crossref] [PubMed]
  6. D. T. Miller, L. N. Thibos, and X. Hong, “Requirements for segmented correctors for diffraction-limited performance in the human eye,” Opt. Express 13, 275–289 (2005).
    [Crossref] [PubMed]
  7. E. Dalimier and C. Dainty, “Comparative analysis of deformable mirrors for ocular adaptive optics,” Opt. Express 13, 4275–4285 (2005).
    [Crossref] [PubMed]
  8. E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, “Chromatic aberration correction of the human eye for retinal imaging in the near infrared,” Opt. Express 14, 6213–6225 (2006).
    [Crossref] [PubMed]
  9. E. J. Fernández and P. Artal, “Ocular aberrations up to the infrared range: from 632.8 to 1070 nm,” Opt. Express 16, 21199–21208 (2008).
    [Crossref] [PubMed]
  10. E. J. Fernández, “Adaptive optics for visual simulation,” ISRN Opt. 2012, 1–13 (2012).
    [Crossref]
  11. S. Manzanera, P. M. Prieto, D. B. Ayala, J. M. Lindacher, and P. Artal, “Liquid crystal Adaptive Optics Visual Simulator: Application to testing and design of ophthalmic optical elements,” Opt. Express 15, 16177–16188 (2007).
    [Crossref] [PubMed]
  12. C. Schwarz, P. M. Prieto, E. J. Fernández, and P. Artal, “Binocular adaptive optics vision analyzer with full control over the complex pupil functions,” Opt. Lett. 36, 4779–4781 (2011).
    [Crossref] [PubMed]
  13. E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Považay, and W. Drexler, “Adaptive optics with a magnetic deformable mirror: applications in the human eye,” Opt Express 14, 8900–8917 (2006).
    [Crossref] [PubMed]
  14. E. J. Fernández, P. M. Prieto, and P. Artal, “Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator,” Opt. Express 17, 11013–11025 (2009).
    [Crossref] [PubMed]
  15. E. J. Fernández, I. Iglesias, and P. Artal, “Closed-loop adaptive optics in the human eye,” Opt. Lett. 26, 746–748 (2001).
    [Crossref]
  16. L. N. Thibos and A. Bradley, “Use of liquid-crystal adaptive-optics to alter the refractive state of the eye,” Optom. Vis. Sci. 74, 581–587 (1997).
    [Crossref] [PubMed]
  17. F. Vargas-Martín, P. M. Prieto, and P. Artal, “Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance,” J. Opt. Soc. Am. A 15, 2552–2562 (1998).
    [Crossref]
  18. L. Chen, P. B. Kruger, H. Hofer, B. Singer, and D. R. Williams, “Accommodation with higher-order monochromatic aberrations corrected with adaptive optics,” J. Opt. Soc. Am. A 23, 1–8 (2006).
    [Crossref]
  19. E. A. Rossi, P. Weiser, J. Tarrant, and A. Roorda, “Visual performance in emmetropia and low myopia after correction of high-order aberrations,” J. Vis. 7(8), 14 (2007).
    [Crossref]
  20. S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13), 1 (2008).
    [Crossref]
  21. C. Schwarz, S. Manzanera, P. M. Prieto, E. J. Fernández, and P. Artal, “Comparison of binocular through-focus visual acuity with monovision and a small aperture inlay,” Biomed. Opt. Express 5, 3355–3366 (2014).
    [Crossref] [PubMed]
  22. L. Sawides, E. Gambra, D. Pascual, C. Dorronsoro, and S. Marcos, “Visual performance with real-life tasks under Adaptive-Optics ocular aberration correction,” J. Vis. 10(5), 19 (2010).
    [Crossref]
  23. K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator,” J. Cataract. Refract. Surg. 35, 1885–1892 (2009).
    [Crossref] [PubMed]
  24. E. J. Fernández, P. M. Prieto, and P. Artal, “Binocular adaptive optics visual simulator,” Opt. Lett. 34, 2628–2630 (2009).
    [Crossref] [PubMed]
  25. E. A. Villegas, E. Alcón, S. Mirabet, I. Yago, J. M. Marín, and P. Artal, “Extended depth of focus with induced spherical aberration in light-adjustable intraocular lenses,” Am. J. Ophthalmol. 157, 142–149 (2014).
    [Crossref]
  26. P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4, 281–287 (2004).
    [Crossref] [PubMed]
  27. L. Chen, P. Artal, D. Gutierrez, and D. R. Williams, “Neural compensation for the best aberration correction,” J. Vis. 7(10), 9 (2007).
    [Crossref] [PubMed]
  28. L. Sawides, S. Marcos, S. Ravikumar, L. N. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12), 22 (2010).
    [Crossref]
  29. J. L. Martinez, E. J. Fernández, P. M. Prieto, and P. Artal, “Chromatic aberration control with liquid crystal spatial phase modulators,” Opt. Express 25, 9793–9801 (2017).
    [Crossref] [PubMed]
  30. C. Cánovas, P. M. Prieto, S. Manzanera, A. Mira, and P. Artal, “Hybrid adaptive-optics visual simulator,” Opt. Lett. 35, 196–198 (2010).
    [Crossref] [PubMed]
  31. P. M. Prieto, E. J. Fernández, S. Manzanera, and P. Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12, 4059–4071 (2004).
    [Crossref] [PubMed]
  32. C. Schwarz, S. Manzanera, P. M. Prieto, P. Piers, P. Artal, C. Cánovas, and H. Weeber, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vision 14, 1–11 (2014).
  33. S. Manzanera, P. M. Prieto, A. Benito, J. Tabernero, and P. Artal, “Location of achromatizing pupil position and first Purkinje reflection in a normal population,” Investig. Ophthalmol. Vis. Sci. 56, 962–966 (2015).
    [Crossref]
  34. R. W. Bowman, A. J. Wright, and M. J. Padgett, “An SLM-based Shack-Hartmann wavefront sensor for aberration correction in optical tweezers,” J. Opt. 12, 124004 (2010).
    [Crossref]
  35. A. Radhakrishnan, C. Dorronsoro, and S. Marcos, “Differences in visual quality with orientation of a rotationally asymmetric bifocal intraocular lens design,” J. Cataract. Refract. Surg. 42, 1276–1287 (2016).
    [Crossref] [PubMed]
  36. F. W. Campbell and A. H. Gregory, “Effect of size of pupil on visual acuity,” Nature 187, 1121–1123 (1960).
    [Crossref] [PubMed]
  37. F. Campbell, “The depth of field of the human eye,” Opt. Acta: Int. J. Opt. 4, 157–164 (1957).
    [Crossref]
  38. K. N. Ogle and J. T. Schwartz, “Depth of focus of the human eye,” J. Opt. Soc. Am. 49, 273–280 (1959).
    [Crossref] [PubMed]
  39. D. A. Atchison, W. N. Charman, and R. L. Woods, “Subjective depth of focus of the eye,” Optom. Vis. Sci. 74, 511–520 (1997).
    [Crossref] [PubMed]
  40. B. Wang and K. J. Ciuffreda, “Depth-of-focus of the human eye: theory and clinical implications,” Surv. Ophthalmol. 51, 75–85 (2006).
    [Crossref] [PubMed]
  41. R. T. Hennessy, T. Iida, K. Shiina, and H. Leibowitz, “The effect of pupil size on accommodation,” Vis. Res. 16, 587–589 (1976).
    [Crossref] [PubMed]
  42. B. Winn, D. Whitaker, D. B. Elliott, and N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Investig. Ophthalmol. Vis. Sci. 35, 1132–1137 (1994).
  43. E. J. Fernández, C. Schwarz, P. M. Prieto, S. Manzanera, and P. Artal, “Impact on stereo-acuity of two presbyopia correction approaches: monovision and small aperture inlay,” Biomed. Opt. Express 4, 822–830 (2013).
    [Crossref] [PubMed]
  44. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Opt. 38, 5004–5013 (1999).
    [Crossref]
  45. V. Arrizón, “Complex modulation with a twisted-nematic liquid-crystal spatial light modulator: double-pixel approach,” Opt. Lett. 28, 1359–1361 (2003).
    [Crossref] [PubMed]
  46. E. G. van Putten, I. M. Vellekoop, and A. P. Mosk, “Spatial amplitude and phase modulation using commercial twisted nematic LCDs,” Appl. Opt. 47, 2076–2081 (2008).
    [Crossref] [PubMed]
  47. J. A. Davis, K. O. Valadéz, and D. M. Cottrell, “Encoding amplitude and phase information onto a binary phase-only spatial light modulator,” Appl. Opt. 42, 2003–2008 (2003).
    [Crossref] [PubMed]
  48. V. Bagnoud and J. D. Zuegel, “Independent phase and amplitude control of a laser beam by use of a single-phase-only spatial light modulator,” Opt. Lett. 29, 295–297 (2004).
    [Crossref] [PubMed]
  49. T. W. Clark, R. F. Offer, S. Franke-Arnold, A. S. Arnold, and N. Radwell, “Comparison of beam generation techniques using a phase only spatial light modulator,” Opt. Express 24, 6249–6264 (2016).
    [Crossref] [PubMed]
  50. J. L. Martínez Fuentes and I. Moreno, “Random technique to encode complex valued holograms with on axis reconstruction onto phase-only displays,” Opt. Express 26, 5875–5889 (2018).
    [Crossref]
  51. Q. Ren and R. Birngruber, “Axicon : a new laser beam delivery wystem for corneal surgery,” J. Quantum Electron. 26, 2305–2308 (1990).
    [Crossref]
  52. N. Davidson, A. A. Friesem, and E. Hasman, “Holographic axilens: high resolution and long focal depth,” Opt. letters 16, 523–525 (1991).
    [Crossref]
  53. V. V. Kotlyar, A. A. Kovalev, R. V. Skidanov, O. Y. Moiseev, and V. A. Soifer, “Diffraction of a finite-radius plane wave and a Gaussian beam by a helical axicon and a spiral phase plate,” J. Opt. Soc. Am. A 24, 1955–1964 (2007).
    [Crossref]
  54. J. H. Wirth, A. T. Watnik, and G. A. Swartzlander, “Experimental observations of a laser suppression imaging system using pupil-plane phase elements,” Appl. Opt. 56, 9205–9211 (2017).
    [Crossref] [PubMed]
  55. J. Ren, W. Wang, and W. Yang, “Micro-patterned liquid crystal Pancharatnam-Berry axilens,” Chin. Opt. Lett. 16, 062301 (2018).
    [Crossref]
  56. N. Suchkov, E. J. Fernández, and P. Artal, “Wide-range adaptive optics visual simulator with a tunable lens,” J. Opt. Soc. Am. A 36(5), 722–730 (2019).
  57. J. Albero, I. Moreno, and J. Campos, “Enhancement of the broadband modulation diffraction efficiency of liquid-crystal displays,” Opt. Lett. 37, 52–54 (2012).
    [Crossref] [PubMed]
  58. H. Kubota and H. Ohzu, “Method of measurement of response function by means of random chart,” J. Opt. Soc. Am. 47, 666–667 (1957).
    [Crossref]
  59. A. Daniels, G. D. Boreman, A. D. Ducharme, and E. Sapir, “Random transparency targets for modulation transfer function measurement in the visible and infrared regions,” Opt. Eng. 34, 860–868 (1995).
    [Crossref]
  60. Q. H. Hong, A. H. Lettington, and J. Macdonald, “Measuring the MTF for focal plane arrays using random noise targets,” Meas. Sci. Technol. 7, 1087–1091 (1996).
    [Crossref]
  61. S. M. Backman, A. J. Makynen, T. T. Kolehmainen, and K. M. Ojala, “Random target method for fast MTF inspection,” Opt. Express 12, 2610–2615 (2004).
    [Crossref] [PubMed]
  62. E. Levy, D. Peles, M. Opher-Lipson, and S. G. Lipson, “Modulation transfer function of a lens measured with a random target method,” Appl. Opt. 38, 679–683 (1999).
    [Crossref]
  63. A. Travinsky and Z. Ninkov, “Measurement of Modulation Transfer Function using Digital Micromirror Devices,” in Imaging and Applied Optics, vol. 2018 (2018), pp. 1–2.
  64. M. Bach, “The Freiburg visual acuity test - automatic measurement of visual acuity,” Optom. Vis. Sci. 73, 49–53 (1996).
    [Crossref] [PubMed]
  65. S. Marcos, E. Moreno, and R. Navarro, “The depth-of-field of the human eye from objective and subjective measurements,” Vis. Res. 39, 2039–2049 (1999).
    [Crossref] [PubMed]
  66. H. Ripps, N. B. Chin, I. M. Siegel, and G. M. Breinin, “The effect of pupil size on accommodation, convergence, and the AC/A ratio,” Investig. Ophthalmology 1, 127–135 (1962).
  67. S. G. de Groot and J. W. Gebhard, “Pupil size as determined by adapting luminance,” J. Opt. Soc. Am. 42, 492–495 (1952).
    [Crossref] [PubMed]
  68. V. Arrizón, “Optimum on-axis computer-generated hologram encoded into low-resolution phase-modulation devices,” Opt. Lett. 28, 2521–2523 (2007).
    [Crossref]

2019 (1)

2018 (2)

2017 (2)

2016 (2)

T. W. Clark, R. F. Offer, S. Franke-Arnold, A. S. Arnold, and N. Radwell, “Comparison of beam generation techniques using a phase only spatial light modulator,” Opt. Express 24, 6249–6264 (2016).
[Crossref] [PubMed]

A. Radhakrishnan, C. Dorronsoro, and S. Marcos, “Differences in visual quality with orientation of a rotationally asymmetric bifocal intraocular lens design,” J. Cataract. Refract. Surg. 42, 1276–1287 (2016).
[Crossref] [PubMed]

2015 (1)

S. Manzanera, P. M. Prieto, A. Benito, J. Tabernero, and P. Artal, “Location of achromatizing pupil position and first Purkinje reflection in a normal population,” Investig. Ophthalmol. Vis. Sci. 56, 962–966 (2015).
[Crossref]

2014 (3)

C. Schwarz, S. Manzanera, P. M. Prieto, P. Piers, P. Artal, C. Cánovas, and H. Weeber, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vision 14, 1–11 (2014).

C. Schwarz, S. Manzanera, P. M. Prieto, E. J. Fernández, and P. Artal, “Comparison of binocular through-focus visual acuity with monovision and a small aperture inlay,” Biomed. Opt. Express 5, 3355–3366 (2014).
[Crossref] [PubMed]

E. A. Villegas, E. Alcón, S. Mirabet, I. Yago, J. M. Marín, and P. Artal, “Extended depth of focus with induced spherical aberration in light-adjustable intraocular lenses,” Am. J. Ophthalmol. 157, 142–149 (2014).
[Crossref]

2013 (1)

2012 (2)

2011 (1)

2010 (4)

L. Sawides, E. Gambra, D. Pascual, C. Dorronsoro, and S. Marcos, “Visual performance with real-life tasks under Adaptive-Optics ocular aberration correction,” J. Vis. 10(5), 19 (2010).
[Crossref]

L. Sawides, S. Marcos, S. Ravikumar, L. N. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12), 22 (2010).
[Crossref]

R. W. Bowman, A. J. Wright, and M. J. Padgett, “An SLM-based Shack-Hartmann wavefront sensor for aberration correction in optical tweezers,” J. Opt. 12, 124004 (2010).
[Crossref]

C. Cánovas, P. M. Prieto, S. Manzanera, A. Mira, and P. Artal, “Hybrid adaptive-optics visual simulator,” Opt. Lett. 35, 196–198 (2010).
[Crossref] [PubMed]

2009 (3)

2008 (3)

2007 (5)

2006 (4)

E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Považay, and W. Drexler, “Adaptive optics with a magnetic deformable mirror: applications in the human eye,” Opt Express 14, 8900–8917 (2006).
[Crossref] [PubMed]

E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, “Chromatic aberration correction of the human eye for retinal imaging in the near infrared,” Opt. Express 14, 6213–6225 (2006).
[Crossref] [PubMed]

L. Chen, P. B. Kruger, H. Hofer, B. Singer, and D. R. Williams, “Accommodation with higher-order monochromatic aberrations corrected with adaptive optics,” J. Opt. Soc. Am. A 23, 1–8 (2006).
[Crossref]

B. Wang and K. J. Ciuffreda, “Depth-of-focus of the human eye: theory and clinical implications,” Surv. Ophthalmol. 51, 75–85 (2006).
[Crossref] [PubMed]

2005 (2)

2004 (4)

2003 (3)

2002 (1)

2001 (2)

1999 (3)

1998 (1)

1997 (3)

L. N. Thibos and A. Bradley, “Use of liquid-crystal adaptive-optics to alter the refractive state of the eye,” Optom. Vis. Sci. 74, 581–587 (1997).
[Crossref] [PubMed]

J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[Crossref]

D. A. Atchison, W. N. Charman, and R. L. Woods, “Subjective depth of focus of the eye,” Optom. Vis. Sci. 74, 511–520 (1997).
[Crossref] [PubMed]

1996 (2)

M. Bach, “The Freiburg visual acuity test - automatic measurement of visual acuity,” Optom. Vis. Sci. 73, 49–53 (1996).
[Crossref] [PubMed]

Q. H. Hong, A. H. Lettington, and J. Macdonald, “Measuring the MTF for focal plane arrays using random noise targets,” Meas. Sci. Technol. 7, 1087–1091 (1996).
[Crossref]

1995 (1)

A. Daniels, G. D. Boreman, A. D. Ducharme, and E. Sapir, “Random transparency targets for modulation transfer function measurement in the visible and infrared regions,” Opt. Eng. 34, 860–868 (1995).
[Crossref]

1994 (1)

B. Winn, D. Whitaker, D. B. Elliott, and N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Investig. Ophthalmol. Vis. Sci. 35, 1132–1137 (1994).

1991 (1)

N. Davidson, A. A. Friesem, and E. Hasman, “Holographic axilens: high resolution and long focal depth,” Opt. letters 16, 523–525 (1991).
[Crossref]

1990 (1)

Q. Ren and R. Birngruber, “Axicon : a new laser beam delivery wystem for corneal surgery,” J. Quantum Electron. 26, 2305–2308 (1990).
[Crossref]

1980 (1)

1976 (1)

R. T. Hennessy, T. Iida, K. Shiina, and H. Leibowitz, “The effect of pupil size on accommodation,” Vis. Res. 16, 587–589 (1976).
[Crossref] [PubMed]

1962 (1)

H. Ripps, N. B. Chin, I. M. Siegel, and G. M. Breinin, “The effect of pupil size on accommodation, convergence, and the AC/A ratio,” Investig. Ophthalmology 1, 127–135 (1962).

1960 (1)

F. W. Campbell and A. H. Gregory, “Effect of size of pupil on visual acuity,” Nature 187, 1121–1123 (1960).
[Crossref] [PubMed]

1959 (1)

1957 (2)

1952 (1)

Albero, J.

Alcón, E.

E. A. Villegas, E. Alcón, S. Mirabet, I. Yago, J. M. Marín, and P. Artal, “Extended depth of focus with induced spherical aberration in light-adjustable intraocular lenses,” Am. J. Ophthalmol. 157, 142–149 (2014).
[Crossref]

Arnold, A. S.

Arrizón, V.

Artal, P.

N. Suchkov, E. J. Fernández, and P. Artal, “Wide-range adaptive optics visual simulator with a tunable lens,” J. Opt. Soc. Am. A 36(5), 722–730 (2019).

J. L. Martinez, E. J. Fernández, P. M. Prieto, and P. Artal, “Chromatic aberration control with liquid crystal spatial phase modulators,” Opt. Express 25, 9793–9801 (2017).
[Crossref] [PubMed]

S. Manzanera, P. M. Prieto, A. Benito, J. Tabernero, and P. Artal, “Location of achromatizing pupil position and first Purkinje reflection in a normal population,” Investig. Ophthalmol. Vis. Sci. 56, 962–966 (2015).
[Crossref]

C. Schwarz, S. Manzanera, P. M. Prieto, P. Piers, P. Artal, C. Cánovas, and H. Weeber, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vision 14, 1–11 (2014).

E. A. Villegas, E. Alcón, S. Mirabet, I. Yago, J. M. Marín, and P. Artal, “Extended depth of focus with induced spherical aberration in light-adjustable intraocular lenses,” Am. J. Ophthalmol. 157, 142–149 (2014).
[Crossref]

C. Schwarz, S. Manzanera, P. M. Prieto, E. J. Fernández, and P. Artal, “Comparison of binocular through-focus visual acuity with monovision and a small aperture inlay,” Biomed. Opt. Express 5, 3355–3366 (2014).
[Crossref] [PubMed]

E. J. Fernández, C. Schwarz, P. M. Prieto, S. Manzanera, and P. Artal, “Impact on stereo-acuity of two presbyopia correction approaches: monovision and small aperture inlay,” Biomed. Opt. Express 4, 822–830 (2013).
[Crossref] [PubMed]

C. Schwarz, P. M. Prieto, E. J. Fernández, and P. Artal, “Binocular adaptive optics vision analyzer with full control over the complex pupil functions,” Opt. Lett. 36, 4779–4781 (2011).
[Crossref] [PubMed]

C. Cánovas, P. M. Prieto, S. Manzanera, A. Mira, and P. Artal, “Hybrid adaptive-optics visual simulator,” Opt. Lett. 35, 196–198 (2010).
[Crossref] [PubMed]

E. J. Fernández, P. M. Prieto, and P. Artal, “Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator,” Opt. Express 17, 11013–11025 (2009).
[Crossref] [PubMed]

E. J. Fernández, P. M. Prieto, and P. Artal, “Binocular adaptive optics visual simulator,” Opt. Lett. 34, 2628–2630 (2009).
[Crossref] [PubMed]

E. J. Fernández and P. Artal, “Ocular aberrations up to the infrared range: from 632.8 to 1070 nm,” Opt. Express 16, 21199–21208 (2008).
[Crossref] [PubMed]

S. Manzanera, P. M. Prieto, D. B. Ayala, J. M. Lindacher, and P. Artal, “Liquid crystal Adaptive Optics Visual Simulator: Application to testing and design of ophthalmic optical elements,” Opt. Express 15, 16177–16188 (2007).
[Crossref] [PubMed]

L. Chen, P. Artal, D. Gutierrez, and D. R. Williams, “Neural compensation for the best aberration correction,” J. Vis. 7(10), 9 (2007).
[Crossref] [PubMed]

E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, “Chromatic aberration correction of the human eye for retinal imaging in the near infrared,” Opt. Express 14, 6213–6225 (2006).
[Crossref] [PubMed]

P. M. Prieto, E. J. Fernández, S. Manzanera, and P. Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12, 4059–4071 (2004).
[Crossref] [PubMed]

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4, 281–287 (2004).
[Crossref] [PubMed]

E. J. Fernández and P. Artal, “Membrane deformable mirror for adaptive optics: performance limits in visual optics,” Opt. Express 11, 1056–1069 (2003).
[Crossref] [PubMed]

E. J. Fernández, I. Iglesias, and P. Artal, “Closed-loop adaptive optics in the human eye,” Opt. Lett. 26, 746–748 (2001).
[Crossref]

F. Vargas-Martín, P. M. Prieto, and P. Artal, “Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance,” J. Opt. Soc. Am. A 15, 2552–2562 (1998).
[Crossref]

Atchison, D. A.

D. A. Atchison, W. N. Charman, and R. L. Woods, “Subjective depth of focus of the eye,” Optom. Vis. Sci. 74, 511–520 (1997).
[Crossref] [PubMed]

Ayala, D. B.

Bach, M.

M. Bach, “The Freiburg visual acuity test - automatic measurement of visual acuity,” Optom. Vis. Sci. 73, 49–53 (1996).
[Crossref] [PubMed]

Backman, S. M.

Bagnoud, V.

Benito, A.

S. Manzanera, P. M. Prieto, A. Benito, J. Tabernero, and P. Artal, “Location of achromatizing pupil position and first Purkinje reflection in a normal population,” Investig. Ophthalmol. Vis. Sci. 56, 962–966 (2015).
[Crossref]

Bierden, P.

Birngruber, R.

Q. Ren and R. Birngruber, “Axicon : a new laser beam delivery wystem for corneal surgery,” J. Quantum Electron. 26, 2305–2308 (1990).
[Crossref]

Boreman, G. D.

A. Daniels, G. D. Boreman, A. D. Ducharme, and E. Sapir, “Random transparency targets for modulation transfer function measurement in the visible and infrared regions,” Opt. Eng. 34, 860–868 (1995).
[Crossref]

Bowman, R. W.

R. W. Bowman, A. J. Wright, and M. J. Padgett, “An SLM-based Shack-Hartmann wavefront sensor for aberration correction in optical tweezers,” J. Opt. 12, 124004 (2010).
[Crossref]

Bradley, A.

L. Sawides, S. Marcos, S. Ravikumar, L. N. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12), 22 (2010).
[Crossref]

L. N. Thibos and A. Bradley, “Use of liquid-crystal adaptive-optics to alter the refractive state of the eye,” Optom. Vis. Sci. 74, 581–587 (1997).
[Crossref] [PubMed]

Breinin, G. M.

H. Ripps, N. B. Chin, I. M. Siegel, and G. M. Breinin, “The effect of pupil size on accommodation, convergence, and the AC/A ratio,” Investig. Ophthalmology 1, 127–135 (1962).

Campbell, F.

F. Campbell, “The depth of field of the human eye,” Opt. Acta: Int. J. Opt. 4, 157–164 (1957).
[Crossref]

Campbell, F. W.

F. W. Campbell and A. H. Gregory, “Effect of size of pupil on visual acuity,” Nature 187, 1121–1123 (1960).
[Crossref] [PubMed]

Campos, J.

Cánovas, C.

C. Schwarz, S. Manzanera, P. M. Prieto, P. Piers, P. Artal, C. Cánovas, and H. Weeber, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vision 14, 1–11 (2014).

C. Cánovas, P. M. Prieto, S. Manzanera, A. Mira, and P. Artal, “Hybrid adaptive-optics visual simulator,” Opt. Lett. 35, 196–198 (2010).
[Crossref] [PubMed]

Charman, W. N.

D. A. Atchison, W. N. Charman, and R. L. Woods, “Subjective depth of focus of the eye,” Optom. Vis. Sci. 74, 511–520 (1997).
[Crossref] [PubMed]

Chateau, N.

K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator,” J. Cataract. Refract. Surg. 35, 1885–1892 (2009).
[Crossref] [PubMed]

Chen, L.

Chin, N. B.

H. Ripps, N. B. Chin, I. M. Siegel, and G. M. Breinin, “The effect of pupil size on accommodation, convergence, and the AC/A ratio,” Investig. Ophthalmology 1, 127–135 (1962).

Ciuffreda, K. J.

B. Wang and K. J. Ciuffreda, “Depth-of-focus of the human eye: theory and clinical implications,” Surv. Ophthalmol. 51, 75–85 (2006).
[Crossref] [PubMed]

Clark, T. W.

Cottrell, D. M.

Dainty, C.

Dalimier, E.

Daniels, A.

A. Daniels, G. D. Boreman, A. D. Ducharme, and E. Sapir, “Random transparency targets for modulation transfer function measurement in the visible and infrared regions,” Opt. Eng. 34, 860–868 (1995).
[Crossref]

Davidson, N.

N. Davidson, A. A. Friesem, and E. Hasman, “Holographic axilens: high resolution and long focal depth,” Opt. letters 16, 523–525 (1991).
[Crossref]

Davis, J. A.

de Groot, S. G.

Doble, N.

Dorronsoro, C.

A. Radhakrishnan, C. Dorronsoro, and S. Marcos, “Differences in visual quality with orientation of a rotationally asymmetric bifocal intraocular lens design,” J. Cataract. Refract. Surg. 42, 1276–1287 (2016).
[Crossref] [PubMed]

L. Sawides, E. Gambra, D. Pascual, C. Dorronsoro, and S. Marcos, “Visual performance with real-life tasks under Adaptive-Optics ocular aberration correction,” J. Vis. 10(5), 19 (2010).
[Crossref]

S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13), 1 (2008).
[Crossref]

Drexler, W.

E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Považay, and W. Drexler, “Adaptive optics with a magnetic deformable mirror: applications in the human eye,” Opt Express 14, 8900–8917 (2006).
[Crossref] [PubMed]

E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, “Chromatic aberration correction of the human eye for retinal imaging in the near infrared,” Opt. Express 14, 6213–6225 (2006).
[Crossref] [PubMed]

Ducharme, A. D.

A. Daniels, G. D. Boreman, A. D. Ducharme, and E. Sapir, “Random transparency targets for modulation transfer function measurement in the visible and infrared regions,” Opt. Eng. 34, 860–868 (1995).
[Crossref]

Elliott, D. B.

B. Winn, D. Whitaker, D. B. Elliott, and N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Investig. Ophthalmol. Vis. Sci. 35, 1132–1137 (1994).

Fernández, E. J.

N. Suchkov, E. J. Fernández, and P. Artal, “Wide-range adaptive optics visual simulator with a tunable lens,” J. Opt. Soc. Am. A 36(5), 722–730 (2019).

J. L. Martinez, E. J. Fernández, P. M. Prieto, and P. Artal, “Chromatic aberration control with liquid crystal spatial phase modulators,” Opt. Express 25, 9793–9801 (2017).
[Crossref] [PubMed]

C. Schwarz, S. Manzanera, P. M. Prieto, E. J. Fernández, and P. Artal, “Comparison of binocular through-focus visual acuity with monovision and a small aperture inlay,” Biomed. Opt. Express 5, 3355–3366 (2014).
[Crossref] [PubMed]

E. J. Fernández, C. Schwarz, P. M. Prieto, S. Manzanera, and P. Artal, “Impact on stereo-acuity of two presbyopia correction approaches: monovision and small aperture inlay,” Biomed. Opt. Express 4, 822–830 (2013).
[Crossref] [PubMed]

E. J. Fernández, “Adaptive optics for visual simulation,” ISRN Opt. 2012, 1–13 (2012).
[Crossref]

C. Schwarz, P. M. Prieto, E. J. Fernández, and P. Artal, “Binocular adaptive optics vision analyzer with full control over the complex pupil functions,” Opt. Lett. 36, 4779–4781 (2011).
[Crossref] [PubMed]

E. J. Fernández, P. M. Prieto, and P. Artal, “Binocular adaptive optics visual simulator,” Opt. Lett. 34, 2628–2630 (2009).
[Crossref] [PubMed]

E. J. Fernández, P. M. Prieto, and P. Artal, “Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator,” Opt. Express 17, 11013–11025 (2009).
[Crossref] [PubMed]

E. J. Fernández and P. Artal, “Ocular aberrations up to the infrared range: from 632.8 to 1070 nm,” Opt. Express 16, 21199–21208 (2008).
[Crossref] [PubMed]

E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, “Chromatic aberration correction of the human eye for retinal imaging in the near infrared,” Opt. Express 14, 6213–6225 (2006).
[Crossref] [PubMed]

E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Považay, and W. Drexler, “Adaptive optics with a magnetic deformable mirror: applications in the human eye,” Opt Express 14, 8900–8917 (2006).
[Crossref] [PubMed]

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4, 281–287 (2004).
[Crossref] [PubMed]

P. M. Prieto, E. J. Fernández, S. Manzanera, and P. Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12, 4059–4071 (2004).
[Crossref] [PubMed]

E. J. Fernández and P. Artal, “Membrane deformable mirror for adaptive optics: performance limits in visual optics,” Opt. Express 11, 1056–1069 (2003).
[Crossref] [PubMed]

E. J. Fernández, I. Iglesias, and P. Artal, “Closed-loop adaptive optics in the human eye,” Opt. Lett. 26, 746–748 (2001).
[Crossref]

Franke-Arnold, S.

Friesem, A. A.

N. Davidson, A. A. Friesem, and E. Hasman, “Holographic axilens: high resolution and long focal depth,” Opt. letters 16, 523–525 (1991).
[Crossref]

Gambra, E.

L. Sawides, E. Gambra, D. Pascual, C. Dorronsoro, and S. Marcos, “Visual performance with real-life tasks under Adaptive-Optics ocular aberration correction,” J. Vis. 10(5), 19 (2010).
[Crossref]

S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13), 1 (2008).
[Crossref]

Gebhard, J. W.

Gregory, A. H.

F. W. Campbell and A. H. Gregory, “Effect of size of pupil on visual acuity,” Nature 187, 1121–1123 (1960).
[Crossref] [PubMed]

Gutierrez, D.

L. Chen, P. Artal, D. Gutierrez, and D. R. Williams, “Neural compensation for the best aberration correction,” J. Vis. 7(10), 9 (2007).
[Crossref] [PubMed]

Hasman, E.

N. Davidson, A. A. Friesem, and E. Hasman, “Holographic axilens: high resolution and long focal depth,” Opt. letters 16, 523–525 (1991).
[Crossref]

Hennessy, R. T.

R. T. Hennessy, T. Iida, K. Shiina, and H. Leibowitz, “The effect of pupil size on accommodation,” Vis. Res. 16, 587–589 (1976).
[Crossref] [PubMed]

Hermann, B.

E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Považay, and W. Drexler, “Adaptive optics with a magnetic deformable mirror: applications in the human eye,” Opt Express 14, 8900–8917 (2006).
[Crossref] [PubMed]

E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, “Chromatic aberration correction of the human eye for retinal imaging in the near infrared,” Opt. Express 14, 6213–6225 (2006).
[Crossref] [PubMed]

Hofer, H.

Hong, Q. H.

Q. H. Hong, A. H. Lettington, and J. Macdonald, “Measuring the MTF for focal plane arrays using random noise targets,” Meas. Sci. Technol. 7, 1087–1091 (1996).
[Crossref]

Hong, X.

Iglesias, I.

Iida, T.

R. T. Hennessy, T. Iida, K. Shiina, and H. Leibowitz, “The effect of pupil size on accommodation,” Vis. Res. 16, 587–589 (1976).
[Crossref] [PubMed]

Kolehmainen, T. T.

Kotlyar, V. V.

Kovalev, A. A.

Krueger, R. R.

K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator,” J. Cataract. Refract. Surg. 35, 1885–1892 (2009).
[Crossref] [PubMed]

Kruger, P. B.

Kubota, H.

Leibowitz, H.

R. T. Hennessy, T. Iida, K. Shiina, and H. Leibowitz, “The effect of pupil size on accommodation,” Vis. Res. 16, 587–589 (1976).
[Crossref] [PubMed]

Lettington, A. H.

Q. H. Hong, A. H. Lettington, and J. Macdonald, “Measuring the MTF for focal plane arrays using random noise targets,” Meas. Sci. Technol. 7, 1087–1091 (1996).
[Crossref]

Levy, E.

Liang, J.

Lindacher, J. M.

Lipson, S. G.

Macdonald, J.

Q. H. Hong, A. H. Lettington, and J. Macdonald, “Measuring the MTF for focal plane arrays using random noise targets,” Meas. Sci. Technol. 7, 1087–1091 (1996).
[Crossref]

Makynen, A. J.

Manzanera, S.

S. Manzanera, P. M. Prieto, A. Benito, J. Tabernero, and P. Artal, “Location of achromatizing pupil position and first Purkinje reflection in a normal population,” Investig. Ophthalmol. Vis. Sci. 56, 962–966 (2015).
[Crossref]

C. Schwarz, S. Manzanera, P. M. Prieto, P. Piers, P. Artal, C. Cánovas, and H. Weeber, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vision 14, 1–11 (2014).

C. Schwarz, S. Manzanera, P. M. Prieto, E. J. Fernández, and P. Artal, “Comparison of binocular through-focus visual acuity with monovision and a small aperture inlay,” Biomed. Opt. Express 5, 3355–3366 (2014).
[Crossref] [PubMed]

E. J. Fernández, C. Schwarz, P. M. Prieto, S. Manzanera, and P. Artal, “Impact on stereo-acuity of two presbyopia correction approaches: monovision and small aperture inlay,” Biomed. Opt. Express 4, 822–830 (2013).
[Crossref] [PubMed]

C. Cánovas, P. M. Prieto, S. Manzanera, A. Mira, and P. Artal, “Hybrid adaptive-optics visual simulator,” Opt. Lett. 35, 196–198 (2010).
[Crossref] [PubMed]

S. Manzanera, P. M. Prieto, D. B. Ayala, J. M. Lindacher, and P. Artal, “Liquid crystal Adaptive Optics Visual Simulator: Application to testing and design of ophthalmic optical elements,” Opt. Express 15, 16177–16188 (2007).
[Crossref] [PubMed]

P. M. Prieto, E. J. Fernández, S. Manzanera, and P. Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12, 4059–4071 (2004).
[Crossref] [PubMed]

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4, 281–287 (2004).
[Crossref] [PubMed]

Marcos, S.

A. Radhakrishnan, C. Dorronsoro, and S. Marcos, “Differences in visual quality with orientation of a rotationally asymmetric bifocal intraocular lens design,” J. Cataract. Refract. Surg. 42, 1276–1287 (2016).
[Crossref] [PubMed]

L. Sawides, E. Gambra, D. Pascual, C. Dorronsoro, and S. Marcos, “Visual performance with real-life tasks under Adaptive-Optics ocular aberration correction,” J. Vis. 10(5), 19 (2010).
[Crossref]

L. Sawides, S. Marcos, S. Ravikumar, L. N. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12), 22 (2010).
[Crossref]

S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13), 1 (2008).
[Crossref]

S. Marcos, E. Moreno, and R. Navarro, “The depth-of-field of the human eye from objective and subjective measurements,” Vis. Res. 39, 2039–2049 (1999).
[Crossref] [PubMed]

Marín, J. M.

E. A. Villegas, E. Alcón, S. Mirabet, I. Yago, J. M. Marín, and P. Artal, “Extended depth of focus with induced spherical aberration in light-adjustable intraocular lenses,” Am. J. Ophthalmol. 157, 142–149 (2014).
[Crossref]

Martinez, J. L.

Martínez Fuentes, J. L.

Miller, D. T.

Mira, A.

Mirabet, S.

E. A. Villegas, E. Alcón, S. Mirabet, I. Yago, J. M. Marín, and P. Artal, “Extended depth of focus with induced spherical aberration in light-adjustable intraocular lenses,” Am. J. Ophthalmol. 157, 142–149 (2014).
[Crossref]

Moiseev, O. Y.

Moreno, E.

S. Marcos, E. Moreno, and R. Navarro, “The depth-of-field of the human eye from objective and subjective measurements,” Vis. Res. 39, 2039–2049 (1999).
[Crossref] [PubMed]

Moreno, I.

Mosk, A. P.

Navarro, R.

S. Marcos, E. Moreno, and R. Navarro, “The depth-of-field of the human eye from objective and subjective measurements,” Vis. Res. 39, 2039–2049 (1999).
[Crossref] [PubMed]

Ninkov, Z.

A. Travinsky and Z. Ninkov, “Measurement of Modulation Transfer Function using Digital Micromirror Devices,” in Imaging and Applied Optics, vol. 2018 (2018), pp. 1–2.

Offer, R. F.

Ogle, K. N.

Ohzu, H.

Ojala, K. M.

Olivier, S.

Opher-Lipson, M.

Padgett, M. J.

R. W. Bowman, A. J. Wright, and M. J. Padgett, “An SLM-based Shack-Hartmann wavefront sensor for aberration correction in optical tweezers,” J. Opt. 12, 124004 (2010).
[Crossref]

Pascual, D.

L. Sawides, E. Gambra, D. Pascual, C. Dorronsoro, and S. Marcos, “Visual performance with real-life tasks under Adaptive-Optics ocular aberration correction,” J. Vis. 10(5), 19 (2010).
[Crossref]

Peles, D.

Phillips, N. J.

B. Winn, D. Whitaker, D. B. Elliott, and N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Investig. Ophthalmol. Vis. Sci. 35, 1132–1137 (1994).

Piers, P.

C. Schwarz, S. Manzanera, P. M. Prieto, P. Piers, P. Artal, C. Cánovas, and H. Weeber, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vision 14, 1–11 (2014).

Považay, B.

E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Považay, and W. Drexler, “Adaptive optics with a magnetic deformable mirror: applications in the human eye,” Opt Express 14, 8900–8917 (2006).
[Crossref] [PubMed]

E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, “Chromatic aberration correction of the human eye for retinal imaging in the near infrared,” Opt. Express 14, 6213–6225 (2006).
[Crossref] [PubMed]

Prieto, P. M.

J. L. Martinez, E. J. Fernández, P. M. Prieto, and P. Artal, “Chromatic aberration control with liquid crystal spatial phase modulators,” Opt. Express 25, 9793–9801 (2017).
[Crossref] [PubMed]

S. Manzanera, P. M. Prieto, A. Benito, J. Tabernero, and P. Artal, “Location of achromatizing pupil position and first Purkinje reflection in a normal population,” Investig. Ophthalmol. Vis. Sci. 56, 962–966 (2015).
[Crossref]

C. Schwarz, S. Manzanera, P. M. Prieto, P. Piers, P. Artal, C. Cánovas, and H. Weeber, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vision 14, 1–11 (2014).

C. Schwarz, S. Manzanera, P. M. Prieto, E. J. Fernández, and P. Artal, “Comparison of binocular through-focus visual acuity with monovision and a small aperture inlay,” Biomed. Opt. Express 5, 3355–3366 (2014).
[Crossref] [PubMed]

E. J. Fernández, C. Schwarz, P. M. Prieto, S. Manzanera, and P. Artal, “Impact on stereo-acuity of two presbyopia correction approaches: monovision and small aperture inlay,” Biomed. Opt. Express 4, 822–830 (2013).
[Crossref] [PubMed]

C. Schwarz, P. M. Prieto, E. J. Fernández, and P. Artal, “Binocular adaptive optics vision analyzer with full control over the complex pupil functions,” Opt. Lett. 36, 4779–4781 (2011).
[Crossref] [PubMed]

C. Cánovas, P. M. Prieto, S. Manzanera, A. Mira, and P. Artal, “Hybrid adaptive-optics visual simulator,” Opt. Lett. 35, 196–198 (2010).
[Crossref] [PubMed]

E. J. Fernández, P. M. Prieto, and P. Artal, “Binocular adaptive optics visual simulator,” Opt. Lett. 34, 2628–2630 (2009).
[Crossref] [PubMed]

E. J. Fernández, P. M. Prieto, and P. Artal, “Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator,” Opt. Express 17, 11013–11025 (2009).
[Crossref] [PubMed]

S. Manzanera, P. M. Prieto, D. B. Ayala, J. M. Lindacher, and P. Artal, “Liquid crystal Adaptive Optics Visual Simulator: Application to testing and design of ophthalmic optical elements,” Opt. Express 15, 16177–16188 (2007).
[Crossref] [PubMed]

P. M. Prieto, E. J. Fernández, S. Manzanera, and P. Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12, 4059–4071 (2004).
[Crossref] [PubMed]

F. Vargas-Martín, P. M. Prieto, and P. Artal, “Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance,” J. Opt. Soc. Am. A 15, 2552–2562 (1998).
[Crossref]

Radhakrishnan, A.

A. Radhakrishnan, C. Dorronsoro, and S. Marcos, “Differences in visual quality with orientation of a rotationally asymmetric bifocal intraocular lens design,” J. Cataract. Refract. Surg. 42, 1276–1287 (2016).
[Crossref] [PubMed]

Radwell, N.

Ravikumar, S.

L. Sawides, S. Marcos, S. Ravikumar, L. N. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12), 22 (2010).
[Crossref]

Ren, J.

Ren, Q.

Q. Ren and R. Birngruber, “Axicon : a new laser beam delivery wystem for corneal surgery,” J. Quantum Electron. 26, 2305–2308 (1990).
[Crossref]

Ripps, H.

H. Ripps, N. B. Chin, I. M. Siegel, and G. M. Breinin, “The effect of pupil size on accommodation, convergence, and the AC/A ratio,” Investig. Ophthalmology 1, 127–135 (1962).

Rocha, K. M.

K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator,” J. Cataract. Refract. Surg. 35, 1885–1892 (2009).
[Crossref] [PubMed]

Roorda, A.

E. A. Rossi, P. Weiser, J. Tarrant, and A. Roorda, “Visual performance in emmetropia and low myopia after correction of high-order aberrations,” J. Vis. 7(8), 14 (2007).
[Crossref]

Rossi, E. A.

E. A. Rossi, P. Weiser, J. Tarrant, and A. Roorda, “Visual performance in emmetropia and low myopia after correction of high-order aberrations,” J. Vis. 7(8), 14 (2007).
[Crossref]

Sapir, E.

A. Daniels, G. D. Boreman, A. D. Ducharme, and E. Sapir, “Random transparency targets for modulation transfer function measurement in the visible and infrared regions,” Opt. Eng. 34, 860–868 (1995).
[Crossref]

Sawides, L.

L. Sawides, S. Marcos, S. Ravikumar, L. N. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12), 22 (2010).
[Crossref]

L. Sawides, E. Gambra, D. Pascual, C. Dorronsoro, and S. Marcos, “Visual performance with real-life tasks under Adaptive-Optics ocular aberration correction,” J. Vis. 10(5), 19 (2010).
[Crossref]

S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13), 1 (2008).
[Crossref]

Schwartz, J. T.

Schwarz, C.

Shiina, K.

R. T. Hennessy, T. Iida, K. Shiina, and H. Leibowitz, “The effect of pupil size on accommodation,” Vis. Res. 16, 587–589 (1976).
[Crossref] [PubMed]

Siegel, I. M.

H. Ripps, N. B. Chin, I. M. Siegel, and G. M. Breinin, “The effect of pupil size on accommodation, convergence, and the AC/A ratio,” Investig. Ophthalmology 1, 127–135 (1962).

Silva, D. E.

Singer, B.

Skidanov, R. V.

Soifer, V. A.

Suchkov, N.

Swartzlander, G. A.

Tabernero, J.

S. Manzanera, P. M. Prieto, A. Benito, J. Tabernero, and P. Artal, “Location of achromatizing pupil position and first Purkinje reflection in a normal population,” Investig. Ophthalmol. Vis. Sci. 56, 962–966 (2015).
[Crossref]

Tarrant, J.

E. A. Rossi, P. Weiser, J. Tarrant, and A. Roorda, “Visual performance in emmetropia and low myopia after correction of high-order aberrations,” J. Vis. 7(8), 14 (2007).
[Crossref]

Thibos, L. N.

L. Sawides, S. Marcos, S. Ravikumar, L. N. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12), 22 (2010).
[Crossref]

D. T. Miller, L. N. Thibos, and X. Hong, “Requirements for segmented correctors for diffraction-limited performance in the human eye,” Opt. Express 13, 275–289 (2005).
[Crossref] [PubMed]

L. N. Thibos and A. Bradley, “Use of liquid-crystal adaptive-optics to alter the refractive state of the eye,” Optom. Vis. Sci. 74, 581–587 (1997).
[Crossref] [PubMed]

Travinsky, A.

A. Travinsky and Z. Ninkov, “Measurement of Modulation Transfer Function using Digital Micromirror Devices,” in Imaging and Applied Optics, vol. 2018 (2018), pp. 1–2.

Unterhuber, A.

E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Považay, and W. Drexler, “Adaptive optics with a magnetic deformable mirror: applications in the human eye,” Opt Express 14, 8900–8917 (2006).
[Crossref] [PubMed]

E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, “Chromatic aberration correction of the human eye for retinal imaging in the near infrared,” Opt. Express 14, 6213–6225 (2006).
[Crossref] [PubMed]

Vabre, L.

K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator,” J. Cataract. Refract. Surg. 35, 1885–1892 (2009).
[Crossref] [PubMed]

E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Považay, and W. Drexler, “Adaptive optics with a magnetic deformable mirror: applications in the human eye,” Opt Express 14, 8900–8917 (2006).
[Crossref] [PubMed]

Valadéz, K. O.

van Putten, E. G.

Vargas-Martín, F.

Vellekoop, I. M.

Villegas, E. A.

E. A. Villegas, E. Alcón, S. Mirabet, I. Yago, J. M. Marín, and P. Artal, “Extended depth of focus with induced spherical aberration in light-adjustable intraocular lenses,” Am. J. Ophthalmol. 157, 142–149 (2014).
[Crossref]

Wang, B.

B. Wang and K. J. Ciuffreda, “Depth-of-focus of the human eye: theory and clinical implications,” Surv. Ophthalmol. 51, 75–85 (2006).
[Crossref] [PubMed]

Wang, J. Y.

Wang, W.

Watnik, A. T.

Webster, M.

L. Sawides, S. Marcos, S. Ravikumar, L. N. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12), 22 (2010).
[Crossref]

Weeber, H.

C. Schwarz, S. Manzanera, P. M. Prieto, P. Piers, P. Artal, C. Cánovas, and H. Weeber, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vision 14, 1–11 (2014).

Weiser, P.

E. A. Rossi, P. Weiser, J. Tarrant, and A. Roorda, “Visual performance in emmetropia and low myopia after correction of high-order aberrations,” J. Vis. 7(8), 14 (2007).
[Crossref]

Whitaker, D.

B. Winn, D. Whitaker, D. B. Elliott, and N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Investig. Ophthalmol. Vis. Sci. 35, 1132–1137 (1994).

Williams, D. R.

Winn, B.

B. Winn, D. Whitaker, D. B. Elliott, and N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Investig. Ophthalmol. Vis. Sci. 35, 1132–1137 (1994).

Wirth, J. H.

Woods, R. L.

D. A. Atchison, W. N. Charman, and R. L. Woods, “Subjective depth of focus of the eye,” Optom. Vis. Sci. 74, 511–520 (1997).
[Crossref] [PubMed]

Wright, A. J.

R. W. Bowman, A. J. Wright, and M. J. Padgett, “An SLM-based Shack-Hartmann wavefront sensor for aberration correction in optical tweezers,” J. Opt. 12, 124004 (2010).
[Crossref]

Yago, I.

E. A. Villegas, E. Alcón, S. Mirabet, I. Yago, J. M. Marín, and P. Artal, “Extended depth of focus with induced spherical aberration in light-adjustable intraocular lenses,” Am. J. Ophthalmol. 157, 142–149 (2014).
[Crossref]

Yamauchi, Y.

Yang, W.

Yoon, G.

Yoon, G. Y.

Yzuel, M. J.

Zuegel, J. D.

Am. J. Ophthalmol. (1)

E. A. Villegas, E. Alcón, S. Mirabet, I. Yago, J. M. Marín, and P. Artal, “Extended depth of focus with induced spherical aberration in light-adjustable intraocular lenses,” Am. J. Ophthalmol. 157, 142–149 (2014).
[Crossref]

Appl. Opt. (6)

Biomed. Opt. Express (2)

Chin. Opt. Lett. (1)

Investig. Ophthalmol. Vis. Sci. (2)

S. Manzanera, P. M. Prieto, A. Benito, J. Tabernero, and P. Artal, “Location of achromatizing pupil position and first Purkinje reflection in a normal population,” Investig. Ophthalmol. Vis. Sci. 56, 962–966 (2015).
[Crossref]

B. Winn, D. Whitaker, D. B. Elliott, and N. J. Phillips, “Factors affecting light-adapted pupil size in normal human subjects,” Investig. Ophthalmol. Vis. Sci. 35, 1132–1137 (1994).

Investig. Ophthalmology (1)

H. Ripps, N. B. Chin, I. M. Siegel, and G. M. Breinin, “The effect of pupil size on accommodation, convergence, and the AC/A ratio,” Investig. Ophthalmology 1, 127–135 (1962).

ISRN Opt. (1)

E. J. Fernández, “Adaptive optics for visual simulation,” ISRN Opt. 2012, 1–13 (2012).
[Crossref]

J. Cataract. Refract. Surg. (2)

A. Radhakrishnan, C. Dorronsoro, and S. Marcos, “Differences in visual quality with orientation of a rotationally asymmetric bifocal intraocular lens design,” J. Cataract. Refract. Surg. 42, 1276–1287 (2016).
[Crossref] [PubMed]

K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator,” J. Cataract. Refract. Surg. 35, 1885–1892 (2009).
[Crossref] [PubMed]

J. Opt. (1)

R. W. Bowman, A. J. Wright, and M. J. Padgett, “An SLM-based Shack-Hartmann wavefront sensor for aberration correction in optical tweezers,” J. Opt. 12, 124004 (2010).
[Crossref]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (5)

J. Quantum Electron. (1)

Q. Ren and R. Birngruber, “Axicon : a new laser beam delivery wystem for corneal surgery,” J. Quantum Electron. 26, 2305–2308 (1990).
[Crossref]

J. Vis. (6)

E. A. Rossi, P. Weiser, J. Tarrant, and A. Roorda, “Visual performance in emmetropia and low myopia after correction of high-order aberrations,” J. Vis. 7(8), 14 (2007).
[Crossref]

S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13), 1 (2008).
[Crossref]

L. Sawides, E. Gambra, D. Pascual, C. Dorronsoro, and S. Marcos, “Visual performance with real-life tasks under Adaptive-Optics ocular aberration correction,” J. Vis. 10(5), 19 (2010).
[Crossref]

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4, 281–287 (2004).
[Crossref] [PubMed]

L. Chen, P. Artal, D. Gutierrez, and D. R. Williams, “Neural compensation for the best aberration correction,” J. Vis. 7(10), 9 (2007).
[Crossref] [PubMed]

L. Sawides, S. Marcos, S. Ravikumar, L. N. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12), 22 (2010).
[Crossref]

J. Vision (1)

C. Schwarz, S. Manzanera, P. M. Prieto, P. Piers, P. Artal, C. Cánovas, and H. Weeber, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vision 14, 1–11 (2014).

Meas. Sci. Technol. (1)

Q. H. Hong, A. H. Lettington, and J. Macdonald, “Measuring the MTF for focal plane arrays using random noise targets,” Meas. Sci. Technol. 7, 1087–1091 (1996).
[Crossref]

Nature (1)

F. W. Campbell and A. H. Gregory, “Effect of size of pupil on visual acuity,” Nature 187, 1121–1123 (1960).
[Crossref] [PubMed]

Opt Express (1)

E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Považay, and W. Drexler, “Adaptive optics with a magnetic deformable mirror: applications in the human eye,” Opt Express 14, 8900–8917 (2006).
[Crossref] [PubMed]

Opt. Acta: Int. J. Opt. (1)

F. Campbell, “The depth of field of the human eye,” Opt. Acta: Int. J. Opt. 4, 157–164 (1957).
[Crossref]

Opt. Eng. (1)

A. Daniels, G. D. Boreman, A. D. Ducharme, and E. Sapir, “Random transparency targets for modulation transfer function measurement in the visible and infrared regions,” Opt. Eng. 34, 860–868 (1995).
[Crossref]

Opt. Express (13)

H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8, 631–643 (2001).
[Crossref] [PubMed]

S. Manzanera, P. M. Prieto, D. B. Ayala, J. M. Lindacher, and P. Artal, “Liquid crystal Adaptive Optics Visual Simulator: Application to testing and design of ophthalmic optical elements,” Opt. Express 15, 16177–16188 (2007).
[Crossref] [PubMed]

E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, “Chromatic aberration correction of the human eye for retinal imaging in the near infrared,” Opt. Express 14, 6213–6225 (2006).
[Crossref] [PubMed]

E. J. Fernández and P. Artal, “Ocular aberrations up to the infrared range: from 632.8 to 1070 nm,” Opt. Express 16, 21199–21208 (2008).
[Crossref] [PubMed]

E. J. Fernández, P. M. Prieto, and P. Artal, “Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator,” Opt. Express 17, 11013–11025 (2009).
[Crossref] [PubMed]

E. J. Fernández and P. Artal, “Membrane deformable mirror for adaptive optics: performance limits in visual optics,” Opt. Express 11, 1056–1069 (2003).
[Crossref] [PubMed]

S. M. Backman, A. J. Makynen, T. T. Kolehmainen, and K. M. Ojala, “Random target method for fast MTF inspection,” Opt. Express 12, 2610–2615 (2004).
[Crossref] [PubMed]

P. M. Prieto, E. J. Fernández, S. Manzanera, and P. Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12, 4059–4071 (2004).
[Crossref] [PubMed]

D. T. Miller, L. N. Thibos, and X. Hong, “Requirements for segmented correctors for diffraction-limited performance in the human eye,” Opt. Express 13, 275–289 (2005).
[Crossref] [PubMed]

E. Dalimier and C. Dainty, “Comparative analysis of deformable mirrors for ocular adaptive optics,” Opt. Express 13, 4275–4285 (2005).
[Crossref] [PubMed]

J. L. Martínez Fuentes and I. Moreno, “Random technique to encode complex valued holograms with on axis reconstruction onto phase-only displays,” Opt. Express 26, 5875–5889 (2018).
[Crossref]

T. W. Clark, R. F. Offer, S. Franke-Arnold, A. S. Arnold, and N. Radwell, “Comparison of beam generation techniques using a phase only spatial light modulator,” Opt. Express 24, 6249–6264 (2016).
[Crossref] [PubMed]

J. L. Martinez, E. J. Fernández, P. M. Prieto, and P. Artal, “Chromatic aberration control with liquid crystal spatial phase modulators,” Opt. Express 25, 9793–9801 (2017).
[Crossref] [PubMed]

Opt. Lett. (9)

V. Arrizón, “Complex modulation with a twisted-nematic liquid-crystal spatial light modulator: double-pixel approach,” Opt. Lett. 28, 1359–1361 (2003).
[Crossref] [PubMed]

V. Arrizón, “Optimum on-axis computer-generated hologram encoded into low-resolution phase-modulation devices,” Opt. Lett. 28, 2521–2523 (2007).
[Crossref]

V. Bagnoud and J. D. Zuegel, “Independent phase and amplitude control of a laser beam by use of a single-phase-only spatial light modulator,” Opt. Lett. 29, 295–297 (2004).
[Crossref] [PubMed]

E. J. Fernández, P. M. Prieto, and P. Artal, “Binocular adaptive optics visual simulator,” Opt. Lett. 34, 2628–2630 (2009).
[Crossref] [PubMed]

C. Cánovas, P. M. Prieto, S. Manzanera, A. Mira, and P. Artal, “Hybrid adaptive-optics visual simulator,” Opt. Lett. 35, 196–198 (2010).
[Crossref] [PubMed]

C. Schwarz, P. M. Prieto, E. J. Fernández, and P. Artal, “Binocular adaptive optics vision analyzer with full control over the complex pupil functions,” Opt. Lett. 36, 4779–4781 (2011).
[Crossref] [PubMed]

J. Albero, I. Moreno, and J. Campos, “Enhancement of the broadband modulation diffraction efficiency of liquid-crystal displays,” Opt. Lett. 37, 52–54 (2012).
[Crossref] [PubMed]

N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, and D. R. Williams, “Use of a microelectromechanical mirror for adaptive optics in the human eye,” Opt. Lett. 27, 1537–1539 (2002).
[Crossref]

E. J. Fernández, I. Iglesias, and P. Artal, “Closed-loop adaptive optics in the human eye,” Opt. Lett. 26, 746–748 (2001).
[Crossref]

Opt. letters (1)

N. Davidson, A. A. Friesem, and E. Hasman, “Holographic axilens: high resolution and long focal depth,” Opt. letters 16, 523–525 (1991).
[Crossref]

Optom. Vis. Sci. (3)

D. A. Atchison, W. N. Charman, and R. L. Woods, “Subjective depth of focus of the eye,” Optom. Vis. Sci. 74, 511–520 (1997).
[Crossref] [PubMed]

L. N. Thibos and A. Bradley, “Use of liquid-crystal adaptive-optics to alter the refractive state of the eye,” Optom. Vis. Sci. 74, 581–587 (1997).
[Crossref] [PubMed]

M. Bach, “The Freiburg visual acuity test - automatic measurement of visual acuity,” Optom. Vis. Sci. 73, 49–53 (1996).
[Crossref] [PubMed]

Surv. Ophthalmol. (1)

B. Wang and K. J. Ciuffreda, “Depth-of-focus of the human eye: theory and clinical implications,” Surv. Ophthalmol. 51, 75–85 (2006).
[Crossref] [PubMed]

Vis. Res. (2)

R. T. Hennessy, T. Iida, K. Shiina, and H. Leibowitz, “The effect of pupil size on accommodation,” Vis. Res. 16, 587–589 (1976).
[Crossref] [PubMed]

S. Marcos, E. Moreno, and R. Navarro, “The depth-of-field of the human eye from objective and subjective measurements,” Vis. Res. 39, 2039–2049 (1999).
[Crossref] [PubMed]

Other (1)

A. Travinsky and Z. Ninkov, “Measurement of Modulation Transfer Function using Digital Micromirror Devices,” in Imaging and Applied Optics, vol. 2018 (2018), pp. 1–2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of the system used in the experiment. L1 to L6 were achromatic doublets with focal length of 100 mm. For objective measurements, a camera was placed in the intermediate image plane between lenses L1 and L2. The tunable lens was removed. For visual operation, the camera was removed, while the tunable lens was inserted back in the plane between lenses L2 and L3. All the planes optically conjugated to the entrance pupil are shown with green color. Further explanations are provided in the text.
Fig. 2
Fig. 2 Tested object and its image after passing through the phase mask corresponding to a pupil with a diameter of 3 mm. Left panel – object on the DLP, right panel – image on the camera.
Fig. 3
Fig. 3 Phase mask used for simultaneous phase modulation and pupil control. Red dashed circle shows the separation of the two zones. Inside the circle – phase modulation, in this case induced defocus. Outside the circle – phase mask used for controlling the size of the pupil, changing the amplitude of the image.
Fig. 4
Fig. 4 Modulation transfer functions (MTFs) produced by the physical pupil and by the LCoS-SLM modulated pupil for different pupil sizes. Diffraction limited MTF for each pupil size is shown for reference.
Fig. 5
Fig. 5 MTF curves for simultaneous control of pupil size and phase. Left panel represents the case when pupil is controlled by a motorized iris with defocus modulated on the LCoS-SLM, while right panel shows the case with the LCoS-SLM controlling both defocus and pupil diameter.
Fig. 6
Fig. 6 VA through focus for two pupil sizes. Top row – subject S1, bottom – subject S2. The right panels show the phase mask corresponding to the pupil of 6 mm with the correction of the aberrations (inside the blue dashed circle). Red dashed circles indicate the 2 mm pupil.
Fig. 7
Fig. 7 Effect of different object sizes on the image. Top row, from left to right, images of the object subtending: 200, 400, 600, 800 and 1000 pixels. Bottom row: normalized averaged intensity of yellow shaded parts. Red dashed lines show borders of the object. Blue dashed line shows the background intensity.
Fig. 8
Fig. 8 Image of E letter for different values of defocus. Pupil of 5 mm in diameter is modulated on the LCoS-SLM. Images are overexposed in order to highlight the ring produced by the aperture mask, which keeps its size constant, independent of the induced defocus.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

exp ( i ψ ( ξ ) ) = R ( ξ ) exp ( i ϕ ( ξ ) ) + R ¯ ( ξ ) exp ( i α ( ξ ) ) ,
R ( ξ ) = { 1 if M ( ξ ) > rnd ( ξ ) , 0 if M ( ξ ) rnd ( ξ ) ,
MTF sys ( ξ ) = PSD i ( ξ ) PSD w ( ξ ) PSD o ( ξ ) ,
k nonmod = ( 1 ν ) R t 2 R p 2 R p 2 ,

Metrics