Abstract

We demonstrate two non-destructive methods of studying the gradual poling of thin-film lithium niobate waveguides by the application of a sequence of high-voltage pulses, and we show the transition from under-poling to over-poling and the identification of the optimal stopping point of the poling process. The first diagnostic method is based on changes in continuous-wave light transmission through a hybrid waveguide as it is gradually poled by using a second set of monitoring electrodes fabricated alongside the principal poling electrodes. The second method is based on confocal back-reflected second-harmonic microscopy by using femtosecond optical probe pulses. The results from the two methods are in agreement with each other and may be useful as non-destructive in situ diagnostic methods for optimized poling of integrated waveguides.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Second-harmonic generation in periodically-poled thin film lithium niobate wafer-bonded on silicon

Ashutosh Rao, Marcin Malinowski, Amirmahdi Honardoost, Javed Rouf Talukder, Payam Rabiei, Peter Delfyett, and Sasan Fathpour
Opt. Express 24(26) 29941-29947 (2016)

Second harmonic generation in nano-structured thin-film lithium niobate waveguides

Cheng Wang, Xiao Xiong, Nicolas Andrade, Vivek Venkataraman, Xi-Feng Ren, Guang-Can Guo, and Marko Lončar
Opt. Express 25(6) 6963-6973 (2017)

High conversion efficiency single-pass second harmonic generation in a zinc-diffused periodically poled lithium niobate waveguide

Lu Ming, Corin B. E. Gawith, Katia Gallo, Martin V. O’Connor, Gregory D. Emmerson, and Peter G. R. Smith
Opt. Express 13(13) 4862-4868 (2005)

References

  • View by:
  • |
  • |
  • |

  1. S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. Demicheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
    [Crossref]
  2. S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
    [Crossref] [PubMed]
  3. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
    [Crossref]
  4. S. D. Butterworth, V. Pruneri, and D. C. Hanna, “Optical parametric oscillation in periodically poled lithium niobate based on continuous-wave synchronous pumping at 1.047 microm,” Opt. Lett. 21, 1345–1347 (1996).
    [Crossref] [PubMed]
  5. L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. Smith, D. C. Hanna, and D. H. Jundt, Efficient, low-threshold synchronously-pumped parametric oscillation in periodically-poled lithium niobate over the 1.3 μm to 5.3 μm range,” Opt. Commun. 152, 55–58 (1998).
    [Crossref]
  6. K. R. Parameswaran, J. R. Kurz, R. V. Roussev, and M. M. Fejer, “Observation of 99% pump depletion in single-pass second-harmonic generation in a periodically poled lithium niobate waveguide,” Opt. Lett. 27, 43–45 (2002).
    [Crossref]
  7. R. V. Roussev, C. Langrock, J. R. Kurz, and M. M. Fejer, “Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths,” Opt. Lett. 29, 1518–1520 (2004).
    [Crossref] [PubMed]
  8. L. Chen, Q. Xu, M. G. Wood, and R. M. Reano, “Hybrid silicon and lithium niobate electro-optical ring modulator,” Optica 1, 112–118 (2014).
    [Crossref]
  9. P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Reports 6, 22301 (2016).
    [Crossref]
  10. L. Chang, M. H. P. Pfeiffer, N. Volet, M. Zervas, J. D. Peters, C. L. Manganelli, E. J. Stanton, Y. Li, T. J. Kippenberg, and J. E. Bowers, “Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon,” Opt. Lett. 42, 803–806 (2017).
    [Crossref] [PubMed]
  11. L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3, 531–535 (2016).
    [Crossref]
  12. A. Rao and S. Fathpour, “Second-harmonic generation in periodically-poled thin film lithium niobate wafer-bonded on silicon,” Opt. Express 24, 29941–29947 (2016).
    [Crossref]
  13. C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5, 1438–1441 (2018).
    [Crossref]
  14. K. Nassau, H. J. Levinstein, and G. M. Loiacono, “The domain structure and etching of ferroelectric lithium niobate,” Appl. Phys. Lett. 6, 228–229 (1965).
    [Crossref]
  15. S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, “Second-harmonic imaging of ferroelectric domain walls,” Appl. Phys. Lett. 73, 1814–1816 (1998).
    [Crossref]
  16. S. Kurimura and Y. Uesu, “Application of the second harmonic generation microscope to nondestructive observation of periodically poled ferroelectric domains in quasi-phase-matched wavelength converters,” J. Appl. Phys. 81, 369–375 (1997).
    [Crossref]
  17. M. Flörsheimer, R. Paschotta, U. Kubitscheck, C. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67, 593–599 (1998).
    [Crossref]
  18. P. Mackwitz, M. Rüsing, G. Berth, A. Widhalm, K. Müller, and A. Zrenner, “Periodic domain inversion in x-cut single-crystal lithium niobate thin film,” Appl. Phys. Lett. 108, 152902 (2016).
    [Crossref]
  19. B. J. Rodriguez, R. J. Nemanich, A. Kingon, A. Gruverman, S. V. Kalinin, K. Terabe, X. Y. Liu, and K. Kitamura, “Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy,” Appl. Phys. Lett. 86, 012906 (2005).
    [Crossref]
  20. E. Soergel, “Visualization of ferroelectric domains in bulk single crystals,” Appl. Phys. B 81, 729–752 (2005).
    [Crossref]
  21. S. Wang, V. Pasiskevicius, and F. Laurell, “High-efficiency frequency converters with periodically-poled Rb-doped KTiOPO4,” Opt. Mater. 30, 594–599 (2007).
    [Crossref]
  22. G. Lindgren, A. Zukauskas, V. Pasiskevicius, F. Laurell, and C. Canalias, “Studies of sub-millisecond domain dynamics in periodically poled Rb-doped KTiOPO4, using online in situ second harmonic generation,” Opt. Express 23, 20332–20339 (2015).
    [Crossref] [PubMed]
  23. M. Missey, S. Russell, V. Dominic, R. Batchko, and K. Schepler, “Real-time visualization of domain formation in periodically poled lithium niobate,” Opt. Express 6, 186–195 (2000).
    [Crossref] [PubMed]
  24. S. Grilli, P. Ferraro, M. Paturzo, D. Alfieri, and P. De Natale, “In-situ visualization, monitoring and analysis of electric field domain reversal process in ferroelectric crystals by digital holography,” Opt. Express 12, 1832–1842 (2004).
    [Crossref] [PubMed]
  25. H. Karlsson, F. Laurell, and L. K. Cheng, “Periodic poling of RbTiOPO4 for quasi-phase matched blue light generation,” Appl. Phys. Lett. 74, 1519–1521 (1999).
    [Crossref]
  26. J. Hellström, R. Clemens, V. Pasiskevicius, H. Karlsson, and F. Laurell, “Real-time and in situ monitoring of ferroelectric domains during periodic electric field poling of KTiOPO4,” J. Appl. Phys. 90, 1489–1495 (2001).
    [Crossref]
  27. C. Eigner, M. Santandrea, L. Padberg, M. F. Volk, C. E. Rüter, H. Herrmann, D. Kip, and C. Silberhorn, “Periodically poled ridge waveguides in KTP for second harmonic generation in the UV regime,” Opt. Express 26, 28827–28833 (2018).
    [Crossref] [PubMed]
  28. P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, A. L. Starbuck, C. T. DeRose, A. L. Lentine, G. Rebeiz, and S. Mookherjea, “Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth,” Opt. Express 26, 23728–23739 (2018).
    [Crossref] [PubMed]
  29. G. D. Miller, “Periodically poled lithium niobate: modeling, fabrication, and nonlinear optical performance,” Ph.D. thesis, Stanford University (1998).
  30. G. Berth, V. Quiring, W. Sohler, and A. Zrenner, “Depth-resolved analysis of ferroelectric domain structures in Ti:PPLN waveguides by nonlinear confocal laser scanning microscopy,” Ferroelectrics 352, 78–85 (2007).
    [Crossref]
  31. J. Kaneshiro, Y. Uesu, and T. Fukui, “Visibility of inverted domain structures using the second harmonic generation microscope: Comparison of interference and non-interference cases,” J. Opt. Soc. Am. B 27, 888–894 (2010).
    [Crossref]
  32. S. Cherifi-Hertel, H. Bulou, R. Hertel, G. Taupier, K. D. H. Dorkenoo, C. Andreas, J. Guyonnet, I. Gaponenko, K. Gallo, and P. Paruch, “Non-Ising and chiral ferroelectric domain walls revealed by nonlinear optical microscopy,” Nat. Commun. 8, 15768 (2017).
    [Crossref] [PubMed]
  33. S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169, 391–405 (1993).
    [Crossref]
  34. E. Fatuzzo and W. J. Merz, Ferroelectricity (North-Holland, 1967).
  35. L. Gui, H. Hu, M. Garcia-Granda, and W. Sohler, “Local periodic poling of ridges and ridge waveguides on X- and Y-Cut LiNbO3 and its application for second harmonic generation,” Opt. Express 17, 3923–3928 (2009).
    [Crossref] [PubMed]
  36. S. Sanna and W. G. Schmidt, “LiNbO3 surfaces from a microscopic perspective,” J. Phys. Condens. Matter 29, 413001 (2017).
    [Crossref]
  37. J. W. Choi, D. K. Ko, J. H. Ro, and N. E. Yu, “Sidewise domain wall velocity of MgO doped stoichiometric lithium niobate by real-time visualization,” Ferroelectrics 439, 13–19 (2012).
    [Crossref]
  38. X. Huang, D. Wei, Y. Wang, Y. Zhu, Y. Zhang, X. P. Hu, S. N. Zhu, and M. Xiao, “Second-harmonic interference imaging of ferroelectric domains through a scanning microscope,” J. Phys. D Appl. Phys. 50, 485105 (2017).
    [Crossref]
  39. D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
    [Crossref]
  40. D. Sandkuijl, A. E. Tuer, D. Tokarz, J. E. Sipe, and V. Barzda, “Numerical second- and third-harmonic generation microscopy,” J. Opt. Soc. Am. B 30, 382–395 (2013).
    [Crossref]
  41. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965).
    [Crossref]
  42. D. E. Zelmon, D. L. Small, and D. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol% magnesium oxide – doped lithium niobate,” J. Opt. Soc. Am. B 14, 3319–3322 (1997).
    [Crossref]
  43. T. R. Volk, R. V. Gainutdinov, and H. H. Zhang, “Domain-wall conduction in AFM-written domain patterns in ion-sliced LiNbO3 films,” Appl. Phys. Lett. 110, 132905 (2017).
    [Crossref]
  44. C. Godau, T. Kämpfe, A. Thiessen, L. M. Eng, and A. Haußmann, “Enhancing the domain wall conductivity in lithium niobate single crystals,” ACS Nano 11, 4816–4824 (2017).
    [Crossref] [PubMed]
  45. J. T. Nagy and R. M. Reano, “Periodic poling of ion-sliced X-cut magnesium oxide doped lithium niobate thin films,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), paper SF2I.2.

2018 (3)

2017 (6)

L. Chang, M. H. P. Pfeiffer, N. Volet, M. Zervas, J. D. Peters, C. L. Manganelli, E. J. Stanton, Y. Li, T. J. Kippenberg, and J. E. Bowers, “Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon,” Opt. Lett. 42, 803–806 (2017).
[Crossref] [PubMed]

S. Cherifi-Hertel, H. Bulou, R. Hertel, G. Taupier, K. D. H. Dorkenoo, C. Andreas, J. Guyonnet, I. Gaponenko, K. Gallo, and P. Paruch, “Non-Ising and chiral ferroelectric domain walls revealed by nonlinear optical microscopy,” Nat. Commun. 8, 15768 (2017).
[Crossref] [PubMed]

S. Sanna and W. G. Schmidt, “LiNbO3 surfaces from a microscopic perspective,” J. Phys. Condens. Matter 29, 413001 (2017).
[Crossref]

X. Huang, D. Wei, Y. Wang, Y. Zhu, Y. Zhang, X. P. Hu, S. N. Zhu, and M. Xiao, “Second-harmonic interference imaging of ferroelectric domains through a scanning microscope,” J. Phys. D Appl. Phys. 50, 485105 (2017).
[Crossref]

T. R. Volk, R. V. Gainutdinov, and H. H. Zhang, “Domain-wall conduction in AFM-written domain patterns in ion-sliced LiNbO3 films,” Appl. Phys. Lett. 110, 132905 (2017).
[Crossref]

C. Godau, T. Kämpfe, A. Thiessen, L. M. Eng, and A. Haußmann, “Enhancing the domain wall conductivity in lithium niobate single crystals,” ACS Nano 11, 4816–4824 (2017).
[Crossref] [PubMed]

2016 (4)

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Reports 6, 22301 (2016).
[Crossref]

P. Mackwitz, M. Rüsing, G. Berth, A. Widhalm, K. Müller, and A. Zrenner, “Periodic domain inversion in x-cut single-crystal lithium niobate thin film,” Appl. Phys. Lett. 108, 152902 (2016).
[Crossref]

L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3, 531–535 (2016).
[Crossref]

A. Rao and S. Fathpour, “Second-harmonic generation in periodically-poled thin film lithium niobate wafer-bonded on silicon,” Opt. Express 24, 29941–29947 (2016).
[Crossref]

2015 (1)

2014 (1)

2013 (1)

2012 (1)

J. W. Choi, D. K. Ko, J. H. Ro, and N. E. Yu, “Sidewise domain wall velocity of MgO doped stoichiometric lithium niobate by real-time visualization,” Ferroelectrics 439, 13–19 (2012).
[Crossref]

2010 (1)

2009 (1)

2007 (2)

G. Berth, V. Quiring, W. Sohler, and A. Zrenner, “Depth-resolved analysis of ferroelectric domain structures in Ti:PPLN waveguides by nonlinear confocal laser scanning microscopy,” Ferroelectrics 352, 78–85 (2007).
[Crossref]

S. Wang, V. Pasiskevicius, and F. Laurell, “High-efficiency frequency converters with periodically-poled Rb-doped KTiOPO4,” Opt. Mater. 30, 594–599 (2007).
[Crossref]

2005 (3)

B. J. Rodriguez, R. J. Nemanich, A. Kingon, A. Gruverman, S. V. Kalinin, K. Terabe, X. Y. Liu, and K. Kitamura, “Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy,” Appl. Phys. Lett. 86, 012906 (2005).
[Crossref]

E. Soergel, “Visualization of ferroelectric domains in bulk single crystals,” Appl. Phys. B 81, 729–752 (2005).
[Crossref]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref] [PubMed]

2004 (2)

2002 (2)

K. R. Parameswaran, J. R. Kurz, R. V. Roussev, and M. M. Fejer, “Observation of 99% pump depletion in single-pass second-harmonic generation in a periodically poled lithium niobate waveguide,” Opt. Lett. 27, 43–45 (2002).
[Crossref]

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. Demicheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
[Crossref]

2001 (1)

J. Hellström, R. Clemens, V. Pasiskevicius, H. Karlsson, and F. Laurell, “Real-time and in situ monitoring of ferroelectric domains during periodic electric field poling of KTiOPO4,” J. Appl. Phys. 90, 1489–1495 (2001).
[Crossref]

2000 (1)

1999 (1)

H. Karlsson, F. Laurell, and L. K. Cheng, “Periodic poling of RbTiOPO4 for quasi-phase matched blue light generation,” Appl. Phys. Lett. 74, 1519–1521 (1999).
[Crossref]

1998 (3)

M. Flörsheimer, R. Paschotta, U. Kubitscheck, C. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67, 593–599 (1998).
[Crossref]

L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. Smith, D. C. Hanna, and D. H. Jundt, Efficient, low-threshold synchronously-pumped parametric oscillation in periodically-poled lithium niobate over the 1.3 μm to 5.3 μm range,” Opt. Commun. 152, 55–58 (1998).
[Crossref]

S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, “Second-harmonic imaging of ferroelectric domain walls,” Appl. Phys. Lett. 73, 1814–1816 (1998).
[Crossref]

1997 (2)

S. Kurimura and Y. Uesu, “Application of the second harmonic generation microscope to nondestructive observation of periodically poled ferroelectric domains in quasi-phase-matched wavelength converters,” J. Appl. Phys. 81, 369–375 (1997).
[Crossref]

D. E. Zelmon, D. L. Small, and D. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol% magnesium oxide – doped lithium niobate,” J. Opt. Soc. Am. B 14, 3319–3322 (1997).
[Crossref]

1996 (1)

1995 (1)

1993 (1)

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169, 391–405 (1993).
[Crossref]

1983 (1)

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
[Crossref]

1965 (2)

I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965).
[Crossref]

K. Nassau, H. J. Levinstein, and G. M. Loiacono, “The domain structure and etching of ferroelectric lithium niobate,” Appl. Phys. Lett. 6, 228–229 (1965).
[Crossref]

Alfieri, D.

Alibart, O.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref] [PubMed]

Al-Rubaye, H.

Andreas, C.

S. Cherifi-Hertel, H. Bulou, R. Hertel, G. Taupier, K. D. H. Dorkenoo, C. Andreas, J. Guyonnet, I. Gaponenko, K. Gallo, and P. Paruch, “Non-Ising and chiral ferroelectric domain walls revealed by nonlinear optical microscopy,” Nat. Commun. 8, 15768 (2017).
[Crossref] [PubMed]

Aspnes, D. E.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
[Crossref]

Baldi, P.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref] [PubMed]

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. Demicheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
[Crossref]

Barzda, V.

Batchko, R.

Belmonte, M.

S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, “Second-harmonic imaging of ferroelectric domain walls,” Appl. Phys. Lett. 73, 1814–1816 (1998).
[Crossref]

Berth, G.

P. Mackwitz, M. Rüsing, G. Berth, A. Widhalm, K. Müller, and A. Zrenner, “Periodic domain inversion in x-cut single-crystal lithium niobate thin film,” Appl. Phys. Lett. 108, 152902 (2016).
[Crossref]

G. Berth, V. Quiring, W. Sohler, and A. Zrenner, “Depth-resolved analysis of ferroelectric domain structures in Ti:PPLN waveguides by nonlinear confocal laser scanning microscopy,” Ferroelectrics 352, 78–85 (2007).
[Crossref]

Bosenberg, W. R.

Bowers, J. E.

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, “Second-harmonic imaging of ferroelectric domain walls,” Appl. Phys. Lett. 73, 1814–1816 (1998).
[Crossref]

Brillert, C.

M. Flörsheimer, R. Paschotta, U. Kubitscheck, C. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67, 593–599 (1998).
[Crossref]

Bulou, H.

S. Cherifi-Hertel, H. Bulou, R. Hertel, G. Taupier, K. D. H. Dorkenoo, C. Andreas, J. Guyonnet, I. Gaponenko, K. Gallo, and P. Paruch, “Non-Ising and chiral ferroelectric domain walls revealed by nonlinear optical microscopy,” Nat. Commun. 8, 15768 (2017).
[Crossref] [PubMed]

Butterworth, S. D.

L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. Smith, D. C. Hanna, and D. H. Jundt, Efficient, low-threshold synchronously-pumped parametric oscillation in periodically-poled lithium niobate over the 1.3 μm to 5.3 μm range,” Opt. Commun. 152, 55–58 (1998).
[Crossref]

S. D. Butterworth, V. Pruneri, and D. C. Hanna, “Optical parametric oscillation in periodically poled lithium niobate based on continuous-wave synchronous pumping at 1.047 microm,” Opt. Lett. 21, 1345–1347 (1996).
[Crossref] [PubMed]

Byer, R. L.

Canalias, C.

Chang, L.

Chen, L.

Cheng, L. K.

H. Karlsson, F. Laurell, and L. K. Cheng, “Periodic poling of RbTiOPO4 for quasi-phase matched blue light generation,” Appl. Phys. Lett. 74, 1519–1521 (1999).
[Crossref]

Cherifi-Hertel, S.

S. Cherifi-Hertel, H. Bulou, R. Hertel, G. Taupier, K. D. H. Dorkenoo, C. Andreas, J. Guyonnet, I. Gaponenko, K. Gallo, and P. Paruch, “Non-Ising and chiral ferroelectric domain walls revealed by nonlinear optical microscopy,” Nat. Commun. 8, 15768 (2017).
[Crossref] [PubMed]

Choi, J. W.

J. W. Choi, D. K. Ko, J. H. Ro, and N. E. Yu, “Sidewise domain wall velocity of MgO doped stoichiometric lithium niobate by real-time visualization,” Ferroelectrics 439, 13–19 (2012).
[Crossref]

Clemens, R.

J. Hellström, R. Clemens, V. Pasiskevicius, H. Karlsson, and F. Laurell, “Real-time and in situ monitoring of ferroelectric domains during periodic electric field poling of KTiOPO4,” J. Appl. Phys. 90, 1489–1495 (2001).
[Crossref]

Cremer, C.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169, 391–405 (1993).
[Crossref]

Dallo, C.

De Natale, P.

De Riedmatten, H.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. Demicheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
[Crossref]

Demicheli, M.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. Demicheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
[Crossref]

DeRose, C. T.

Desiatov, B.

Dominic, V.

Dorkenoo, K. D. H.

S. Cherifi-Hertel, H. Bulou, R. Hertel, G. Taupier, K. D. H. Dorkenoo, C. Andreas, J. Guyonnet, I. Gaponenko, K. Gallo, and P. Paruch, “Non-Ising and chiral ferroelectric domain walls revealed by nonlinear optical microscopy,” Nat. Commun. 8, 15768 (2017).
[Crossref] [PubMed]

Eckardt, R. C.

Eigner, C.

Eng, L. M.

C. Godau, T. Kämpfe, A. Thiessen, L. M. Eng, and A. Haußmann, “Enhancing the domain wall conductivity in lithium niobate single crystals,” ACS Nano 11, 4816–4824 (2017).
[Crossref] [PubMed]

Fang, K.

Fathpour, S.

Fatuzzo, E.

E. Fatuzzo and W. J. Merz, Ferroelectricity (North-Holland, 1967).

Fejer, M. M.

Ferraro, P.

Flörsheimer, M.

M. Flörsheimer, R. Paschotta, U. Kubitscheck, C. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67, 593–599 (1998).
[Crossref]

Fuchs, H.

M. Flörsheimer, R. Paschotta, U. Kubitscheck, C. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67, 593–599 (1998).
[Crossref]

Fukui, T.

Gainutdinov, R. V.

T. R. Volk, R. V. Gainutdinov, and H. H. Zhang, “Domain-wall conduction in AFM-written domain patterns in ion-sliced LiNbO3 films,” Appl. Phys. Lett. 110, 132905 (2017).
[Crossref]

Gallo, K.

S. Cherifi-Hertel, H. Bulou, R. Hertel, G. Taupier, K. D. H. Dorkenoo, C. Andreas, J. Guyonnet, I. Gaponenko, K. Gallo, and P. Paruch, “Non-Ising and chiral ferroelectric domain walls revealed by nonlinear optical microscopy,” Nat. Commun. 8, 15768 (2017).
[Crossref] [PubMed]

Gaponenko, I.

S. Cherifi-Hertel, H. Bulou, R. Hertel, G. Taupier, K. D. H. Dorkenoo, C. Andreas, J. Guyonnet, I. Gaponenko, K. Gallo, and P. Paruch, “Non-Ising and chiral ferroelectric domain walls revealed by nonlinear optical microscopy,” Nat. Commun. 8, 15768 (2017).
[Crossref] [PubMed]

Garcia-Granda, M.

Gisin, N.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref] [PubMed]

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. Demicheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
[Crossref]

Godau, C.

C. Godau, T. Kämpfe, A. Thiessen, L. M. Eng, and A. Haußmann, “Enhancing the domain wall conductivity in lithium niobate single crystals,” ACS Nano 11, 4816–4824 (2017).
[Crossref] [PubMed]

Grilli, S.

Gruverman, A.

B. J. Rodriguez, R. J. Nemanich, A. Kingon, A. Gruverman, S. V. Kalinin, K. Terabe, X. Y. Liu, and K. Kitamura, “Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy,” Appl. Phys. Lett. 86, 012906 (2005).
[Crossref]

Gui, L.

Guyonnet, J.

S. Cherifi-Hertel, H. Bulou, R. Hertel, G. Taupier, K. D. H. Dorkenoo, C. Andreas, J. Guyonnet, I. Gaponenko, K. Gallo, and P. Paruch, “Non-Ising and chiral ferroelectric domain walls revealed by nonlinear optical microscopy,” Nat. Commun. 8, 15768 (2017).
[Crossref] [PubMed]

Halder, M.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref] [PubMed]

Hanna, D. C.

L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. Smith, D. C. Hanna, and D. H. Jundt, Efficient, low-threshold synchronously-pumped parametric oscillation in periodically-poled lithium niobate over the 1.3 μm to 5.3 μm range,” Opt. Commun. 152, 55–58 (1998).
[Crossref]

S. D. Butterworth, V. Pruneri, and D. C. Hanna, “Optical parametric oscillation in periodically poled lithium niobate based on continuous-wave synchronous pumping at 1.047 microm,” Opt. Lett. 21, 1345–1347 (1996).
[Crossref] [PubMed]

Haußmann, A.

C. Godau, T. Kämpfe, A. Thiessen, L. M. Eng, and A. Haußmann, “Enhancing the domain wall conductivity in lithium niobate single crystals,” ACS Nano 11, 4816–4824 (2017).
[Crossref] [PubMed]

Hell, S.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169, 391–405 (1993).
[Crossref]

Hellström, J.

J. Hellström, R. Clemens, V. Pasiskevicius, H. Karlsson, and F. Laurell, “Real-time and in situ monitoring of ferroelectric domains during periodic electric field poling of KTiOPO4,” J. Appl. Phys. 90, 1489–1495 (2001).
[Crossref]

Herrmann, H.

Hertel, R.

S. Cherifi-Hertel, H. Bulou, R. Hertel, G. Taupier, K. D. H. Dorkenoo, C. Andreas, J. Guyonnet, I. Gaponenko, K. Gallo, and P. Paruch, “Non-Ising and chiral ferroelectric domain walls revealed by nonlinear optical microscopy,” Nat. Commun. 8, 15768 (2017).
[Crossref] [PubMed]

Heuer, L.

M. Flörsheimer, R. Paschotta, U. Kubitscheck, C. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67, 593–599 (1998).
[Crossref]

Hofmann, D.

M. Flörsheimer, R. Paschotta, U. Kubitscheck, C. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67, 593–599 (1998).
[Crossref]

Hood, D.

Hu, H.

Hu, X. P.

X. Huang, D. Wei, Y. Wang, Y. Zhu, Y. Zhang, X. P. Hu, S. N. Zhu, and M. Xiao, “Second-harmonic interference imaging of ferroelectric domains through a scanning microscope,” J. Phys. D Appl. Phys. 50, 485105 (2017).
[Crossref]

Huang, X.

X. Huang, D. Wei, Y. Wang, Y. Zhu, Y. Zhang, X. P. Hu, S. N. Zhu, and M. Xiao, “Second-harmonic interference imaging of ferroelectric domains through a scanning microscope,” J. Phys. D Appl. Phys. 50, 485105 (2017).
[Crossref]

Hvam, J. M.

S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, “Second-harmonic imaging of ferroelectric domain walls,” Appl. Phys. Lett. 73, 1814–1816 (1998).
[Crossref]

Jankowski, M.

Jundt, D.

Jundt, D. H.

L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. Smith, D. C. Hanna, and D. H. Jundt, Efficient, low-threshold synchronously-pumped parametric oscillation in periodically-poled lithium niobate over the 1.3 μm to 5.3 μm range,” Opt. Commun. 152, 55–58 (1998).
[Crossref]

Kalinin, S. V.

B. J. Rodriguez, R. J. Nemanich, A. Kingon, A. Gruverman, S. V. Kalinin, K. Terabe, X. Y. Liu, and K. Kitamura, “Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy,” Appl. Phys. Lett. 86, 012906 (2005).
[Crossref]

Kämpfe, T.

C. Godau, T. Kämpfe, A. Thiessen, L. M. Eng, and A. Haußmann, “Enhancing the domain wall conductivity in lithium niobate single crystals,” ACS Nano 11, 4816–4824 (2017).
[Crossref] [PubMed]

Kaneshiro, J.

Karlsson, H.

J. Hellström, R. Clemens, V. Pasiskevicius, H. Karlsson, and F. Laurell, “Real-time and in situ monitoring of ferroelectric domains during periodic electric field poling of KTiOPO4,” J. Appl. Phys. 90, 1489–1495 (2001).
[Crossref]

H. Karlsson, F. Laurell, and L. K. Cheng, “Periodic poling of RbTiOPO4 for quasi-phase matched blue light generation,” Appl. Phys. Lett. 74, 1519–1521 (1999).
[Crossref]

S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, “Second-harmonic imaging of ferroelectric domain walls,” Appl. Phys. Lett. 73, 1814–1816 (1998).
[Crossref]

Kingon, A.

B. J. Rodriguez, R. J. Nemanich, A. Kingon, A. Gruverman, S. V. Kalinin, K. Terabe, X. Y. Liu, and K. Kitamura, “Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy,” Appl. Phys. Lett. 86, 012906 (2005).
[Crossref]

Kip, D.

Kippenberg, T. J.

Kitamura, K.

B. J. Rodriguez, R. J. Nemanich, A. Kingon, A. Gruverman, S. V. Kalinin, K. Terabe, X. Y. Liu, and K. Kitamura, “Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy,” Appl. Phys. Lett. 86, 012906 (2005).
[Crossref]

Ko, D. K.

J. W. Choi, D. K. Ko, J. H. Ro, and N. E. Yu, “Sidewise domain wall velocity of MgO doped stoichiometric lithium niobate by real-time visualization,” Ferroelectrics 439, 13–19 (2012).
[Crossref]

Kubitscheck, U.

M. Flörsheimer, R. Paschotta, U. Kubitscheck, C. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67, 593–599 (1998).
[Crossref]

Kurimura, S.

S. Kurimura and Y. Uesu, “Application of the second harmonic generation microscope to nondestructive observation of periodically poled ferroelectric domains in quasi-phase-matched wavelength converters,” J. Appl. Phys. 81, 369–375 (1997).
[Crossref]

Kurz, J. R.

Langrock, C.

Laurell, F.

G. Lindgren, A. Zukauskas, V. Pasiskevicius, F. Laurell, and C. Canalias, “Studies of sub-millisecond domain dynamics in periodically poled Rb-doped KTiOPO4, using online in situ second harmonic generation,” Opt. Express 23, 20332–20339 (2015).
[Crossref] [PubMed]

S. Wang, V. Pasiskevicius, and F. Laurell, “High-efficiency frequency converters with periodically-poled Rb-doped KTiOPO4,” Opt. Mater. 30, 594–599 (2007).
[Crossref]

J. Hellström, R. Clemens, V. Pasiskevicius, H. Karlsson, and F. Laurell, “Real-time and in situ monitoring of ferroelectric domains during periodic electric field poling of KTiOPO4,” J. Appl. Phys. 90, 1489–1495 (2001).
[Crossref]

H. Karlsson, F. Laurell, and L. K. Cheng, “Periodic poling of RbTiOPO4 for quasi-phase matched blue light generation,” Appl. Phys. Lett. 74, 1519–1521 (1999).
[Crossref]

S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, “Second-harmonic imaging of ferroelectric domain walls,” Appl. Phys. Lett. 73, 1814–1816 (1998).
[Crossref]

Lefort, L.

L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. Smith, D. C. Hanna, and D. H. Jundt, Efficient, low-threshold synchronously-pumped parametric oscillation in periodically-poled lithium niobate over the 1.3 μm to 5.3 μm range,” Opt. Commun. 152, 55–58 (1998).
[Crossref]

Lentine, A. L.

Levinstein, H. J.

K. Nassau, H. J. Levinstein, and G. M. Loiacono, “The domain structure and etching of ferroelectric lithium niobate,” Appl. Phys. Lett. 6, 228–229 (1965).
[Crossref]

Li, Y.

Lindgren, G.

Liu, X. Y.

B. J. Rodriguez, R. J. Nemanich, A. Kingon, A. Gruverman, S. V. Kalinin, K. Terabe, X. Y. Liu, and K. Kitamura, “Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy,” Appl. Phys. Lett. 86, 012906 (2005).
[Crossref]

Loiacono, G. M.

K. Nassau, H. J. Levinstein, and G. M. Loiacono, “The domain structure and etching of ferroelectric lithium niobate,” Appl. Phys. Lett. 6, 228–229 (1965).
[Crossref]

Loncar, M.

Mackwitz, P.

P. Mackwitz, M. Rüsing, G. Berth, A. Widhalm, K. Müller, and A. Zrenner, “Periodic domain inversion in x-cut single-crystal lithium niobate thin film,” Appl. Phys. Lett. 108, 152902 (2016).
[Crossref]

Malitson, I. H.

Manganelli, C. L.

Marandi, A.

Merz, W. J.

E. Fatuzzo and W. J. Merz, Ferroelectricity (North-Holland, 1967).

Miller, G. D.

G. D. Miller, “Periodically poled lithium niobate: modeling, fabrication, and nonlinear optical performance,” Ph.D. thesis, Stanford University (1998).

Missey, M.

Mookherjea, S.

Mudrick, J.

Müller, K.

P. Mackwitz, M. Rüsing, G. Berth, A. Widhalm, K. Müller, and A. Zrenner, “Periodic domain inversion in x-cut single-crystal lithium niobate thin film,” Appl. Phys. Lett. 108, 152902 (2016).
[Crossref]

Myers, L. E.

Nagy, J. T.

J. T. Nagy and R. M. Reano, “Periodic poling of ion-sliced X-cut magnesium oxide doped lithium niobate thin films,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), paper SF2I.2.

Nassau, K.

K. Nassau, H. J. Levinstein, and G. M. Loiacono, “The domain structure and etching of ferroelectric lithium niobate,” Appl. Phys. Lett. 6, 228–229 (1965).
[Crossref]

Nemanich, R. J.

B. J. Rodriguez, R. J. Nemanich, A. Kingon, A. Gruverman, S. V. Kalinin, K. Terabe, X. Y. Liu, and K. Kitamura, “Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy,” Appl. Phys. Lett. 86, 012906 (2005).
[Crossref]

Ostrowsky, D. B.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. Demicheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
[Crossref]

Padberg, L.

Parameswaran, K. R.

Paruch, P.

S. Cherifi-Hertel, H. Bulou, R. Hertel, G. Taupier, K. D. H. Dorkenoo, C. Andreas, J. Guyonnet, I. Gaponenko, K. Gallo, and P. Paruch, “Non-Ising and chiral ferroelectric domain walls revealed by nonlinear optical microscopy,” Nat. Commun. 8, 15768 (2017).
[Crossref] [PubMed]

Paschotta, R.

M. Flörsheimer, R. Paschotta, U. Kubitscheck, C. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67, 593–599 (1998).
[Crossref]

Pasiskevicius, V.

G. Lindgren, A. Zukauskas, V. Pasiskevicius, F. Laurell, and C. Canalias, “Studies of sub-millisecond domain dynamics in periodically poled Rb-doped KTiOPO4, using online in situ second harmonic generation,” Opt. Express 23, 20332–20339 (2015).
[Crossref] [PubMed]

S. Wang, V. Pasiskevicius, and F. Laurell, “High-efficiency frequency converters with periodically-poled Rb-doped KTiOPO4,” Opt. Mater. 30, 594–599 (2007).
[Crossref]

J. Hellström, R. Clemens, V. Pasiskevicius, H. Karlsson, and F. Laurell, “Real-time and in situ monitoring of ferroelectric domains during periodic electric field poling of KTiOPO4,” J. Appl. Phys. 90, 1489–1495 (2001).
[Crossref]

Paturzo, M.

Pedersen, K.

S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, “Second-harmonic imaging of ferroelectric domain walls,” Appl. Phys. Lett. 73, 1814–1816 (1998).
[Crossref]

Peters, J.

Peters, J. D.

Pfeiffer, M. H. P.

Pierce, J. W.

Pomerene, A. T.

Pruneri, V.

Puech, K.

L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. Smith, D. C. Hanna, and D. H. Jundt, Efficient, low-threshold synchronously-pumped parametric oscillation in periodically-poled lithium niobate over the 1.3 μm to 5.3 μm range,” Opt. Commun. 152, 55–58 (1998).
[Crossref]

Quiring, V.

G. Berth, V. Quiring, W. Sohler, and A. Zrenner, “Depth-resolved analysis of ferroelectric domain structures in Ti:PPLN waveguides by nonlinear confocal laser scanning microscopy,” Ferroelectrics 352, 78–85 (2007).
[Crossref]

Rao, A.

Reano, R. M.

L. Chen, Q. Xu, M. G. Wood, and R. M. Reano, “Hybrid silicon and lithium niobate electro-optical ring modulator,” Optica 1, 112–118 (2014).
[Crossref]

J. T. Nagy and R. M. Reano, “Periodic poling of ion-sliced X-cut magnesium oxide doped lithium niobate thin films,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), paper SF2I.2.

Rebeiz, G.

Reiner, G.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169, 391–405 (1993).
[Crossref]

Ro, J. H.

J. W. Choi, D. K. Ko, J. H. Ro, and N. E. Yu, “Sidewise domain wall velocity of MgO doped stoichiometric lithium niobate by real-time visualization,” Ferroelectrics 439, 13–19 (2012).
[Crossref]

Rodriguez, B. J.

B. J. Rodriguez, R. J. Nemanich, A. Kingon, A. Gruverman, S. V. Kalinin, K. Terabe, X. Y. Liu, and K. Kitamura, “Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy,” Appl. Phys. Lett. 86, 012906 (2005).
[Crossref]

Ross, G. W.

L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. Smith, D. C. Hanna, and D. H. Jundt, Efficient, low-threshold synchronously-pumped parametric oscillation in periodically-poled lithium niobate over the 1.3 μm to 5.3 μm range,” Opt. Commun. 152, 55–58 (1998).
[Crossref]

Roussev, R. V.

Rüsing, M.

P. Mackwitz, M. Rüsing, G. Berth, A. Widhalm, K. Müller, and A. Zrenner, “Periodic domain inversion in x-cut single-crystal lithium niobate thin film,” Appl. Phys. Lett. 108, 152902 (2016).
[Crossref]

Russell, S.

Rüter, C. E.

Sandkuijl, D.

Sanna, S.

S. Sanna and W. G. Schmidt, “LiNbO3 surfaces from a microscopic perspective,” J. Phys. Condens. Matter 29, 413001 (2017).
[Crossref]

Santandrea, M.

Savanier, M.

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Reports 6, 22301 (2016).
[Crossref]

Schepler, K.

Schmidt, W. G.

S. Sanna and W. G. Schmidt, “LiNbO3 surfaces from a microscopic perspective,” J. Phys. Condens. Matter 29, 413001 (2017).
[Crossref]

Schreiber, G.

M. Flörsheimer, R. Paschotta, U. Kubitscheck, C. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67, 593–599 (1998).
[Crossref]

Silberhorn, C.

Sipe, J. E.

Skettrup, T.

S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, “Second-harmonic imaging of ferroelectric domain walls,” Appl. Phys. Lett. 73, 1814–1816 (1998).
[Crossref]

Small, D. L.

Smith, P. G.

L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. Smith, D. C. Hanna, and D. H. Jundt, Efficient, low-threshold synchronously-pumped parametric oscillation in periodically-poled lithium niobate over the 1.3 μm to 5.3 μm range,” Opt. Commun. 152, 55–58 (1998).
[Crossref]

Soergel, E.

E. Soergel, “Visualization of ferroelectric domains in bulk single crystals,” Appl. Phys. B 81, 729–752 (2005).
[Crossref]

Sohler, W.

L. Gui, H. Hu, M. Garcia-Granda, and W. Sohler, “Local periodic poling of ridges and ridge waveguides on X- and Y-Cut LiNbO3 and its application for second harmonic generation,” Opt. Express 17, 3923–3928 (2009).
[Crossref] [PubMed]

G. Berth, V. Quiring, W. Sohler, and A. Zrenner, “Depth-resolved analysis of ferroelectric domain structures in Ti:PPLN waveguides by nonlinear confocal laser scanning microscopy,” Ferroelectrics 352, 78–85 (2007).
[Crossref]

M. Flörsheimer, R. Paschotta, U. Kubitscheck, C. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67, 593–599 (1998).
[Crossref]

Stanton, E. J.

Starbuck, A. L.

Stelzer, E. H. K.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169, 391–405 (1993).
[Crossref]

Stenger, V.

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Reports 6, 22301 (2016).
[Crossref]

Studna, A. A.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
[Crossref]

Tanzilli, S.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref] [PubMed]

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. Demicheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
[Crossref]

Taupier, G.

S. Cherifi-Hertel, H. Bulou, R. Hertel, G. Taupier, K. D. H. Dorkenoo, C. Andreas, J. Guyonnet, I. Gaponenko, K. Gallo, and P. Paruch, “Non-Ising and chiral ferroelectric domain walls revealed by nonlinear optical microscopy,” Nat. Commun. 8, 15768 (2017).
[Crossref] [PubMed]

Terabe, K.

B. J. Rodriguez, R. J. Nemanich, A. Kingon, A. Gruverman, S. V. Kalinin, K. Terabe, X. Y. Liu, and K. Kitamura, “Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy,” Appl. Phys. Lett. 86, 012906 (2005).
[Crossref]

Thiessen, A.

C. Godau, T. Kämpfe, A. Thiessen, L. M. Eng, and A. Haußmann, “Enhancing the domain wall conductivity in lithium niobate single crystals,” ACS Nano 11, 4816–4824 (2017).
[Crossref] [PubMed]

Tittel, W.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref] [PubMed]

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. Demicheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
[Crossref]

Tokarz, D.

Trotter, D.

Tuer, A. E.

Uesu, Y.

J. Kaneshiro, Y. Uesu, and T. Fukui, “Visibility of inverted domain structures using the second harmonic generation microscope: Comparison of interference and non-interference cases,” J. Opt. Soc. Am. B 27, 888–894 (2010).
[Crossref]

S. Kurimura and Y. Uesu, “Application of the second harmonic generation microscope to nondestructive observation of periodically poled ferroelectric domains in quasi-phase-matched wavelength converters,” J. Appl. Phys. 81, 369–375 (1997).
[Crossref]

Verbeek, C.

M. Flörsheimer, R. Paschotta, U. Kubitscheck, C. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67, 593–599 (1998).
[Crossref]

Volet, N.

Volk, M. F.

Volk, T. R.

T. R. Volk, R. V. Gainutdinov, and H. H. Zhang, “Domain-wall conduction in AFM-written domain patterns in ion-sliced LiNbO3 films,” Appl. Phys. Lett. 110, 132905 (2017).
[Crossref]

Wang, C.

Wang, L.

Wang, S.

S. Wang, V. Pasiskevicius, and F. Laurell, “High-efficiency frequency converters with periodically-poled Rb-doped KTiOPO4,” Opt. Mater. 30, 594–599 (2007).
[Crossref]

Wang, Y.

X. Huang, D. Wei, Y. Wang, Y. Zhu, Y. Zhang, X. P. Hu, S. N. Zhu, and M. Xiao, “Second-harmonic interference imaging of ferroelectric domains through a scanning microscope,” J. Phys. D Appl. Phys. 50, 485105 (2017).
[Crossref]

Wei, D.

X. Huang, D. Wei, Y. Wang, Y. Zhu, Y. Zhang, X. P. Hu, S. N. Zhu, and M. Xiao, “Second-harmonic interference imaging of ferroelectric domains through a scanning microscope,” J. Phys. D Appl. Phys. 50, 485105 (2017).
[Crossref]

Weigel, P. O.

Widhalm, A.

P. Mackwitz, M. Rüsing, G. Berth, A. Widhalm, K. Müller, and A. Zrenner, “Periodic domain inversion in x-cut single-crystal lithium niobate thin film,” Appl. Phys. Lett. 108, 152902 (2016).
[Crossref]

Wood, M. G.

Xiao, M.

X. Huang, D. Wei, Y. Wang, Y. Zhu, Y. Zhang, X. P. Hu, S. N. Zhu, and M. Xiao, “Second-harmonic interference imaging of ferroelectric domains through a scanning microscope,” J. Phys. D Appl. Phys. 50, 485105 (2017).
[Crossref]

Xu, Q.

Yu, N. E.

J. W. Choi, D. K. Ko, J. H. Ro, and N. E. Yu, “Sidewise domain wall velocity of MgO doped stoichiometric lithium niobate by real-time visualization,” Ferroelectrics 439, 13–19 (2012).
[Crossref]

Zbinden, H.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref] [PubMed]

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. Demicheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
[Crossref]

Zelmon, D. E.

Zervas, M.

Zhang, H. H.

T. R. Volk, R. V. Gainutdinov, and H. H. Zhang, “Domain-wall conduction in AFM-written domain patterns in ion-sliced LiNbO3 films,” Appl. Phys. Lett. 110, 132905 (2017).
[Crossref]

Zhang, M.

Zhang, Y.

X. Huang, D. Wei, Y. Wang, Y. Zhu, Y. Zhang, X. P. Hu, S. N. Zhu, and M. Xiao, “Second-harmonic interference imaging of ferroelectric domains through a scanning microscope,” J. Phys. D Appl. Phys. 50, 485105 (2017).
[Crossref]

Zhao, J.

Zhu, S. N.

X. Huang, D. Wei, Y. Wang, Y. Zhu, Y. Zhang, X. P. Hu, S. N. Zhu, and M. Xiao, “Second-harmonic interference imaging of ferroelectric domains through a scanning microscope,” J. Phys. D Appl. Phys. 50, 485105 (2017).
[Crossref]

Zhu, Y.

X. Huang, D. Wei, Y. Wang, Y. Zhu, Y. Zhang, X. P. Hu, S. N. Zhu, and M. Xiao, “Second-harmonic interference imaging of ferroelectric domains through a scanning microscope,” J. Phys. D Appl. Phys. 50, 485105 (2017).
[Crossref]

Zrenner, A.

P. Mackwitz, M. Rüsing, G. Berth, A. Widhalm, K. Müller, and A. Zrenner, “Periodic domain inversion in x-cut single-crystal lithium niobate thin film,” Appl. Phys. Lett. 108, 152902 (2016).
[Crossref]

G. Berth, V. Quiring, W. Sohler, and A. Zrenner, “Depth-resolved analysis of ferroelectric domain structures in Ti:PPLN waveguides by nonlinear confocal laser scanning microscopy,” Ferroelectrics 352, 78–85 (2007).
[Crossref]

Zukauskas, A.

ACS Nano (1)

C. Godau, T. Kämpfe, A. Thiessen, L. M. Eng, and A. Haußmann, “Enhancing the domain wall conductivity in lithium niobate single crystals,” ACS Nano 11, 4816–4824 (2017).
[Crossref] [PubMed]

Appl. Phys. B (2)

M. Flörsheimer, R. Paschotta, U. Kubitscheck, C. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67, 593–599 (1998).
[Crossref]

E. Soergel, “Visualization of ferroelectric domains in bulk single crystals,” Appl. Phys. B 81, 729–752 (2005).
[Crossref]

Appl. Phys. Lett. (6)

H. Karlsson, F. Laurell, and L. K. Cheng, “Periodic poling of RbTiOPO4 for quasi-phase matched blue light generation,” Appl. Phys. Lett. 74, 1519–1521 (1999).
[Crossref]

P. Mackwitz, M. Rüsing, G. Berth, A. Widhalm, K. Müller, and A. Zrenner, “Periodic domain inversion in x-cut single-crystal lithium niobate thin film,” Appl. Phys. Lett. 108, 152902 (2016).
[Crossref]

B. J. Rodriguez, R. J. Nemanich, A. Kingon, A. Gruverman, S. V. Kalinin, K. Terabe, X. Y. Liu, and K. Kitamura, “Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy,” Appl. Phys. Lett. 86, 012906 (2005).
[Crossref]

K. Nassau, H. J. Levinstein, and G. M. Loiacono, “The domain structure and etching of ferroelectric lithium niobate,” Appl. Phys. Lett. 6, 228–229 (1965).
[Crossref]

S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, “Second-harmonic imaging of ferroelectric domain walls,” Appl. Phys. Lett. 73, 1814–1816 (1998).
[Crossref]

T. R. Volk, R. V. Gainutdinov, and H. H. Zhang, “Domain-wall conduction in AFM-written domain patterns in ion-sliced LiNbO3 films,” Appl. Phys. Lett. 110, 132905 (2017).
[Crossref]

Eur. Phys. J. D (1)

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. Demicheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
[Crossref]

Ferroelectrics (2)

G. Berth, V. Quiring, W. Sohler, and A. Zrenner, “Depth-resolved analysis of ferroelectric domain structures in Ti:PPLN waveguides by nonlinear confocal laser scanning microscopy,” Ferroelectrics 352, 78–85 (2007).
[Crossref]

J. W. Choi, D. K. Ko, J. H. Ro, and N. E. Yu, “Sidewise domain wall velocity of MgO doped stoichiometric lithium niobate by real-time visualization,” Ferroelectrics 439, 13–19 (2012).
[Crossref]

J. Appl. Phys. (2)

J. Hellström, R. Clemens, V. Pasiskevicius, H. Karlsson, and F. Laurell, “Real-time and in situ monitoring of ferroelectric domains during periodic electric field poling of KTiOPO4,” J. Appl. Phys. 90, 1489–1495 (2001).
[Crossref]

S. Kurimura and Y. Uesu, “Application of the second harmonic generation microscope to nondestructive observation of periodically poled ferroelectric domains in quasi-phase-matched wavelength converters,” J. Appl. Phys. 81, 369–375 (1997).
[Crossref]

J. Microsc. (1)

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169, 391–405 (1993).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (4)

J. Phys. Condens. Matter (1)

S. Sanna and W. G. Schmidt, “LiNbO3 surfaces from a microscopic perspective,” J. Phys. Condens. Matter 29, 413001 (2017).
[Crossref]

J. Phys. D Appl. Phys. (1)

X. Huang, D. Wei, Y. Wang, Y. Zhu, Y. Zhang, X. P. Hu, S. N. Zhu, and M. Xiao, “Second-harmonic interference imaging of ferroelectric domains through a scanning microscope,” J. Phys. D Appl. Phys. 50, 485105 (2017).
[Crossref]

Nat. Commun. (1)

S. Cherifi-Hertel, H. Bulou, R. Hertel, G. Taupier, K. D. H. Dorkenoo, C. Andreas, J. Guyonnet, I. Gaponenko, K. Gallo, and P. Paruch, “Non-Ising and chiral ferroelectric domain walls revealed by nonlinear optical microscopy,” Nat. Commun. 8, 15768 (2017).
[Crossref] [PubMed]

Nature (1)

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref] [PubMed]

Opt. Commun. (1)

L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. Smith, D. C. Hanna, and D. H. Jundt, Efficient, low-threshold synchronously-pumped parametric oscillation in periodically-poled lithium niobate over the 1.3 μm to 5.3 μm range,” Opt. Commun. 152, 55–58 (1998).
[Crossref]

Opt. Express (7)

A. Rao and S. Fathpour, “Second-harmonic generation in periodically-poled thin film lithium niobate wafer-bonded on silicon,” Opt. Express 24, 29941–29947 (2016).
[Crossref]

L. Gui, H. Hu, M. Garcia-Granda, and W. Sohler, “Local periodic poling of ridges and ridge waveguides on X- and Y-Cut LiNbO3 and its application for second harmonic generation,” Opt. Express 17, 3923–3928 (2009).
[Crossref] [PubMed]

C. Eigner, M. Santandrea, L. Padberg, M. F. Volk, C. E. Rüter, H. Herrmann, D. Kip, and C. Silberhorn, “Periodically poled ridge waveguides in KTP for second harmonic generation in the UV regime,” Opt. Express 26, 28827–28833 (2018).
[Crossref] [PubMed]

P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, A. L. Starbuck, C. T. DeRose, A. L. Lentine, G. Rebeiz, and S. Mookherjea, “Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth,” Opt. Express 26, 23728–23739 (2018).
[Crossref] [PubMed]

G. Lindgren, A. Zukauskas, V. Pasiskevicius, F. Laurell, and C. Canalias, “Studies of sub-millisecond domain dynamics in periodically poled Rb-doped KTiOPO4, using online in situ second harmonic generation,” Opt. Express 23, 20332–20339 (2015).
[Crossref] [PubMed]

M. Missey, S. Russell, V. Dominic, R. Batchko, and K. Schepler, “Real-time visualization of domain formation in periodically poled lithium niobate,” Opt. Express 6, 186–195 (2000).
[Crossref] [PubMed]

S. Grilli, P. Ferraro, M. Paturzo, D. Alfieri, and P. De Natale, “In-situ visualization, monitoring and analysis of electric field domain reversal process in ferroelectric crystals by digital holography,” Opt. Express 12, 1832–1842 (2004).
[Crossref] [PubMed]

Opt. Lett. (4)

Opt. Mater. (1)

S. Wang, V. Pasiskevicius, and F. Laurell, “High-efficiency frequency converters with periodically-poled Rb-doped KTiOPO4,” Opt. Mater. 30, 594–599 (2007).
[Crossref]

Optica (3)

Phys. Rev. B (1)

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
[Crossref]

Sci. Reports (1)

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Reports 6, 22301 (2016).
[Crossref]

Other (3)

E. Fatuzzo and W. J. Merz, Ferroelectricity (North-Holland, 1967).

G. D. Miller, “Periodically poled lithium niobate: modeling, fabrication, and nonlinear optical performance,” Ph.D. thesis, Stanford University (1998).

J. T. Nagy and R. M. Reano, “Periodic poling of ion-sliced X-cut magnesium oxide doped lithium niobate thin films,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), paper SF2I.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic illustration of the poling monitoring process. Inset shows the not-to-scale cross-section of the hybrid Si-TFLN waveguide. (b) Top-view optical micrograph of the fabricated chip, which includes hybrid Si-TFLN waveguides and two sets of poling and monitoring electrodes.
Fig. 2
Fig. 2 Numerically simulated electric field distributions (all shown in Ez component) with 400 V applied to the monitoring electrodes (separated by 150 μm, not shown here). (a) Ez distribution in the y–z plane, at a slice through the middle of the TFLN region. The white solid lines indicate the edges of three pairs of poling electrodes, and the “+”, “−” labels show the polarity of the electrodes. (b) Ez variation in the z direction along the two dashed lines shown in (a). Simulated E field intensity of the fundamental TE optical mode is overlayed in the plot, which shows the electrical field distribution seen by the optical mode. (c) Ez distribution in the x–z plane. The “+”, “−” labels show the polarity of the electrodes.
Fig. 3
Fig. 3 (a) Not-to-scale schematic cross section of the hybrid Si-TFLN waveguide. (b) Simulated TE and TM mode Poynting vector components along the direction of propagation at 1550 nm. (c) Calculated TE and TM mode refractive index variation as a function of the applied electric field in hybrid Si-TFLN waveguides (solid line) and bulk LN (dashed line). (d) Calculated 1−cos[Γ(Ez)] as a function of the applied electric field with different poling duty cycles.
Fig. 4
Fig. 4 Schematic illustrations of the poling and poling monitoring setup (a), measurement process (b), and the SH microscopy setup (c).
Fig. 5
Fig. 5 (a) Typical SH microscopy scan result of a poled sample. For clarity the waveguide and electrodes are highlighted in red and yellow, respectively. (b) Sketch of the imaging and domain geometry of the scanned region in (a). Poled regions are marked in orange, while unpoled lithium niobate is colored in gray. (c) Not-to-scale cross-section of the sample highlighting the involved processes, i.e. BW SHG, FW SHG and reflections at the interfaces. (d) Simulated SH signal for a varying relative domain depth x. (e)–(f) Line scans of the nonlinear signal taken along the lines highlighted in (a). (g)–(h) Sketches of the suggested depth profile of the domains estimated from the simulation results in (d).
Fig. 6
Fig. 6 (a) Measured poling voltage and current waveforms. (b) Recorded poling monitoring signals. (c) Second-harmonic confocal microscope images, after the indicated number of poling pulses were applied.
Fig. 7
Fig. 7 Comparison of the predicted poling duty cycles (ξm) inferred from the recorded monitoring signals, and the calculated poling duty cycles (ξSH) based on the measured SH images.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P out ( 1 cos Γ ) ,
Γ = 2 π λ ( n z n x ) L + 2 π λ E z [ ( n x 3 2 r 13 n z 3 2 r 33 ) ( L x ) ( n x 3 2 r 13 n z 3 2 r 33 ) x ] = 2 π λ ( n z n x ) L + 2 π λ E z ( n x 3 2 r 13 n z 3 2 r 33 ) ( L 2 x ) .
Γ = 2 π λ ( n eff TE n eff TM ) L + 2 π λ { [ Δ n eff TE ( E z ) Δ n eff TM ( E z ) ] ( L x ) + [ Δ n eff TE ( E z ) Δ n eff TM ( E z ) ] x } ,
P out = A × ( 1 cos [ Δ ϕ in ( ξ m ) + Δ ϕ ( ξ m ) + θ ] ) + C .
ξ SH = A O A in A O × 100 % .

Metrics