Abstract

Dual-comb spectroscopy has been developed into a high-precision technique that is capable of sensing many important species of samples, such as methane. Recent studies on single-cavity, dual-comb light sources further reduce the system complexity of such schemes. In contrast to the previous demonstrations around the lasing spectrum, this work significantly expands the spectral coverage of a dual-comb spectroscopy setup using one free-running laser to a region far beyond the laser’s emission wavelengths. Nonlinear wavelength conversion based on soliton self-frequency shift is adopted to convert and tune the wavelengths of both dual-comb pulses to ~1650nm. It is shown that this process has introduced little additional intensity noise. The 2ν3 absorption band of methane from 1647 nm to 1663nm is measured with very good agreement with HITRAN, and the standard deviation of the residual is < ~0.006 after averaging ~1.96 seconds of data. Our results further elucidate the potential of dual-comb spectroscopy using one laser, and could pave the way for the development of low-cost, power-efficient, and compact dual-comb instrument targeting more spectral regions.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dual-comb spectroscopy

Ian Coddington, Nathan Newbury, and William Swann
Optica 3(4) 414-426 (2016)

Accurate frequency referencing for fieldable dual-comb spectroscopy

Gar-Wing Truong, Eleanor M. Waxman, Kevin C. Cossel, Esther Baumann, Andrew Klose, Fabrizio R. Giorgetta, William C. Swann, Nathan R. Newbury, and Ian Coddington
Opt. Express 24(26) 30495-30504 (2016)

Dual-comb spectroscopy in the spectral fingerprint region using OPGaP optical parametric oscillators

Oguzhan Kara, Luke Maidment, Tom Gardiner, Peter G. Schunemann, and Derryck T. Reid
Opt. Express 25(26) 32713-32721 (2017)

References

  • View by:
  • |
  • |
  • |

  1. I. Coddington, N. R. Newbury, and W. C. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
    [Crossref]
  2. G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hansch, and N. Picque, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
    [Crossref]
  3. N. Hoghooghi, R. J. Wright, A. S. Makowiecki, W. C. Swann, E. M. Waxman, I. Coddington, and G. B. Rieker, “Broadband coherent cavity-enhanced dual-comb spectroscopy,” Optica 6(1), 28–33 (2019).
    [Crossref]
  4. B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100(1), 3–8 (2010).
    [Crossref]
  5. T. Yasui, E. Saneyoshi, and T. Araki, “Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition,” Appl. Phys. Lett. 87(6), 061101 (2005).
    [Crossref]
  6. X. Zhao, G. Hu, B. Zhao, C. Li, Y. Pan, Y. Liu, T. Yasui, and Z. Zheng, “Picometer-resolution dual-comb spectroscopy with a free-running fiber laser,” Opt. Express 24(19), 21833–21845 (2016).
    [Crossref] [PubMed]
  7. T. Ideguchi, T. Nakamura, Y. Kobayashi, and K. Goda, “Kerr-lens mode-locked bidirectional dual-comb ring laser for broadband dual-comb spectroscopy,” Optica 3(7), 748–753 (2016).
    [Crossref]
  8. S. Mehravar, R. A. Norwood, N. Peyghambarian, and K. Kieu, “Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser,” Appl. Phys. Lett. 108(23), 231104 (2016).
    [Crossref]
  9. S. M. Link, D. J. H. C. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356(6343), 1164–1168 (2017).
    [Crossref] [PubMed]
  10. Q.-F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Counter-propagating solitons in microresonators,” Nat. Photonics 11(9), 560–564 (2017).
    [Crossref]
  11. N. B. Hébert, J. Genest, J.-D. Deschênes, H. Bergeron, G. Y. Chen, C. Khurmi, and D. G. Lancaster, “Self-corrected chip-based dual-comb spectrometer,” Opt. Express 25(7), 8168–8179 (2017).
    [Crossref] [PubMed]
  12. E. Lucas, G. Lihachev, R. Bouchand, N. G. Pavlov, A. S. Raja, M. Karpov, M. L. Gorodetsky, and T. J. Kippenberg, “Spatial multiplexing of soliton microcombs,” Nat. Photonics 12(11), 699–705 (2018).
    [Crossref]
  13. X. Zhao, Z. Zheng, L. Liu, Y. Liu, Y. Jiang, X. Yang, and J. Zhu, “Switchable, dual-wavelength passively mode-locked ultrafast fiber laser based on a single-wall carbon nanotube modelocker and intracavity loss tuning,” Opt. Express 19(2), 1168–1173 (2011).
    [Crossref] [PubMed]
  14. X. Zhao, T. Li, Y. Liu, Q. Li, and Z. Zheng, “Polarization-multiplexed, dual-comb all-fiber mode-locked laser,” Photon. Res. 6(9), 853–857 (2018).
    [Crossref]
  15. Y. Liu, X. Zhao, G. Hu, C. Li, B. Zhao, and Z. Zheng, “Unidirectional, dual-comb lasing under multiple pulse formation mechanisms in a passively mode-locked fiber ring laser,” Opt. Express 24(19), 21392–21398 (2016).
    [Crossref] [PubMed]
  16. H. Jiang, Y. Wang, S. Y. Set, and S. Yamashita, “Bidirectional Mode-locked Soliton Fiber Laser in 2μm Using CNT Saturable Absorber,” in Laser Congress, OSA Technical Digest (OSA, 2017), pp.JM5A.21.
    [Crossref]
  17. N. Abdukerim, M. I. Kayes, A. Rekik, and M. Rochette, “Bidirectional mode-locked thulium-doped fiber laser,” Appl. Opt. 57(25), 7198–7202 (2018).
    [Crossref] [PubMed]
  18. R. Li, H. Shi, H. Tian, Y. Li, B. Liu, Y. Song, and M. Hu, “All-polarization-maintaining dual-wavelength mode-locked fiber laser based on Sagnac loop filter,” Opt. Express 26(22), 28302–28311 (2018).
    [Crossref] [PubMed]
  19. M. Kolano, O. Boidol, D. Molter, and G. Von Freymann, “Single-laser, polarization-controlled optical sampling system,” Opt. Express 26(23), 30338–30346 (2018).
    [Crossref] [PubMed]
  20. Y. Nakajima, Y. Hata, and K. Minoshima, “High-coherence ultra-broadband bidirectional dual-comb fiber laser,” Opt. Express 27(5), 5931–5944 (2019).
    [Crossref] [PubMed]
  21. J. Fellinger, G. Winkler, A. S. Mayer, L. R. Steidle, and O. H. Heckl, “Tunable dual-color operation of Yb:fiber laser via mechanical spectral subdivision,” Opt. Express 27(4), 5478–5486 (2019).
    [Crossref] [PubMed]
  22. R. Liao, Y. Song, W. Liu, H. Shi, L. Chai, and M. Hu, “Dual-comb spectroscopy with a single free-running thulium-doped fiber laser,” Opt. Express 26(8), 11046–11054 (2018).
    [Crossref] [PubMed]
  23. J. Guo, Y. Ding, X. Xiao, L. Kong, and C. Yang, “Multiplexed static FBG strain sensors by dual-comb spectroscopy with a free running fiber laser,” Opt. Express 26(13), 16147–16154 (2018).
    [Crossref] [PubMed]
  24. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  25. H.-Y. Chung, W. Liu, Q. Cao, L. Song, F. X. Kärtner, and G. Chang, “Megawatt peak power tunable femtosecond source based on self-phase modulation enabled spectral selection,” Opt. Express 26(3), 3684–3695 (2018).
    [Crossref] [PubMed]
  26. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11(10), 662–664 (1986).
    [Crossref] [PubMed]
  27. N. Nishizawa and T. Goto, “Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers,” IEEE J. Sel. Top. Quantum Electron. 7(4), 518–524 (2001).
    [Crossref]
  28. B. Li, M. Wang, K. Charan, M. J. Li, and C. Xu, “Investigation of the long wavelength limit of soliton self-frequency shift in a silica fiber,” Opt. Express 26(15), 19637–19647 (2018).
    [Crossref] [PubMed]
  29. G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1(5), 290–298 (2014).
    [Crossref]
  30. S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0-1.9 μm,” Appl. Phys. Express 8(8), 082402 (2015).
    [Crossref]
  31. K. C. Cossel, E. M. Waxman, F. R. Giorgetta, M. Cermak, I. R. Coddington, D. Hesselius, S. Ruben, W. C. Swann, G.-W. Truong, G. B. Rieker, and N. R. Newbury, “Open-path dual comb spectroscopy to an airborne retroreflector,” Optica 4(7), 724–728 (2017).
    [Crossref] [PubMed]
  32. N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18(8), 7929–7945 (2010).
    [Crossref] [PubMed]

2019 (3)

2018 (9)

R. Liao, Y. Song, W. Liu, H. Shi, L. Chai, and M. Hu, “Dual-comb spectroscopy with a single free-running thulium-doped fiber laser,” Opt. Express 26(8), 11046–11054 (2018).
[Crossref] [PubMed]

J. Guo, Y. Ding, X. Xiao, L. Kong, and C. Yang, “Multiplexed static FBG strain sensors by dual-comb spectroscopy with a free running fiber laser,” Opt. Express 26(13), 16147–16154 (2018).
[Crossref] [PubMed]

E. Lucas, G. Lihachev, R. Bouchand, N. G. Pavlov, A. S. Raja, M. Karpov, M. L. Gorodetsky, and T. J. Kippenberg, “Spatial multiplexing of soliton microcombs,” Nat. Photonics 12(11), 699–705 (2018).
[Crossref]

X. Zhao, T. Li, Y. Liu, Q. Li, and Z. Zheng, “Polarization-multiplexed, dual-comb all-fiber mode-locked laser,” Photon. Res. 6(9), 853–857 (2018).
[Crossref]

N. Abdukerim, M. I. Kayes, A. Rekik, and M. Rochette, “Bidirectional mode-locked thulium-doped fiber laser,” Appl. Opt. 57(25), 7198–7202 (2018).
[Crossref] [PubMed]

R. Li, H. Shi, H. Tian, Y. Li, B. Liu, Y. Song, and M. Hu, “All-polarization-maintaining dual-wavelength mode-locked fiber laser based on Sagnac loop filter,” Opt. Express 26(22), 28302–28311 (2018).
[Crossref] [PubMed]

M. Kolano, O. Boidol, D. Molter, and G. Von Freymann, “Single-laser, polarization-controlled optical sampling system,” Opt. Express 26(23), 30338–30346 (2018).
[Crossref] [PubMed]

H.-Y. Chung, W. Liu, Q. Cao, L. Song, F. X. Kärtner, and G. Chang, “Megawatt peak power tunable femtosecond source based on self-phase modulation enabled spectral selection,” Opt. Express 26(3), 3684–3695 (2018).
[Crossref] [PubMed]

B. Li, M. Wang, K. Charan, M. J. Li, and C. Xu, “Investigation of the long wavelength limit of soliton self-frequency shift in a silica fiber,” Opt. Express 26(15), 19637–19647 (2018).
[Crossref] [PubMed]

2017 (4)

2016 (6)

2015 (1)

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0-1.9 μm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

2014 (1)

2011 (1)

2010 (2)

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100(1), 3–8 (2010).
[Crossref]

N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18(8), 7929–7945 (2010).
[Crossref] [PubMed]

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

2005 (1)

T. Yasui, E. Saneyoshi, and T. Araki, “Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition,” Appl. Phys. Lett. 87(6), 061101 (2005).
[Crossref]

2001 (1)

N. Nishizawa and T. Goto, “Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers,” IEEE J. Sel. Top. Quantum Electron. 7(4), 518–524 (2001).
[Crossref]

1986 (1)

Abdukerim, N.

Araki, T.

T. Yasui, E. Saneyoshi, and T. Araki, “Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition,” Appl. Phys. Lett. 87(6), 061101 (2005).
[Crossref]

Baumann, E.

Becker, T.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100(1), 3–8 (2010).
[Crossref]

Bendahmane, A.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hansch, and N. Picque, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
[Crossref]

Bergeron, H.

Bernhardt, B.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100(1), 3–8 (2010).
[Crossref]

Boidol, O.

Bouchand, R.

E. Lucas, G. Lihachev, R. Bouchand, N. G. Pavlov, A. S. Raja, M. Karpov, M. L. Gorodetsky, and T. J. Kippenberg, “Spatial multiplexing of soliton microcombs,” Nat. Photonics 12(11), 699–705 (2018).
[Crossref]

Cao, Q.

Cermak, M.

Chai, L.

Chang, G.

Charan, K.

Chen, G. Y.

Chung, H.-Y.

Coddington, I.

Coddington, I. R.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Cossel, K. C.

Cromer, C.

Deschênes, J.-D.

Ding, Y.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Fellinger, J.

Genest, J.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Giorgetta, F. R.

Goda, K.

Gordon, J. P.

Gorodetsky, M. L.

E. Lucas, G. Lihachev, R. Bouchand, N. G. Pavlov, A. S. Raja, M. Karpov, M. L. Gorodetsky, and T. J. Kippenberg, “Spatial multiplexing of soliton microcombs,” Nat. Photonics 12(11), 699–705 (2018).
[Crossref]

Goto, T.

N. Nishizawa and T. Goto, “Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers,” IEEE J. Sel. Top. Quantum Electron. 7(4), 518–524 (2001).
[Crossref]

Guo, J.

Hansch, T. W.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hansch, and N. Picque, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
[Crossref]

Hänsch, T. W.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100(1), 3–8 (2010).
[Crossref]

Hata, Y.

Hébert, N. B.

Heckl, O. H.

Hesselius, D.

Hoghooghi, N.

Hong, F. L.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0-1.9 μm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

Hosaka, K.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0-1.9 μm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

Hovhannisyan, T.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hansch, and N. Picque, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
[Crossref]

Hu, G.

Hu, M.

Ideguchi, T.

Inaba, H.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0-1.9 μm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

Iwakuni, K.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0-1.9 μm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

Jacquet, P.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100(1), 3–8 (2010).
[Crossref]

Jiang, Y.

Karpov, M.

E. Lucas, G. Lihachev, R. Bouchand, N. G. Pavlov, A. S. Raja, M. Karpov, M. L. Gorodetsky, and T. J. Kippenberg, “Spatial multiplexing of soliton microcombs,” Nat. Photonics 12(11), 699–705 (2018).
[Crossref]

Kärtner, F. X.

Kayes, M. I.

Keller, U.

S. M. Link, D. J. H. C. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356(6343), 1164–1168 (2017).
[Crossref] [PubMed]

Khurmi, C.

Kieu, K.

S. Mehravar, R. A. Norwood, N. Peyghambarian, and K. Kieu, “Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser,” Appl. Phys. Lett. 108(23), 231104 (2016).
[Crossref]

Kippenberg, T. J.

E. Lucas, G. Lihachev, R. Bouchand, N. G. Pavlov, A. S. Raja, M. Karpov, M. L. Gorodetsky, and T. J. Kippenberg, “Spatial multiplexing of soliton microcombs,” Nat. Photonics 12(11), 699–705 (2018).
[Crossref]

Kobayashi, Y.

Kofler, J.

Kolano, M.

Kong, L.

Lancaster, D. G.

Li, B.

Li, C.

Li, M. J.

Li, Q.

Li, R.

Li, T.

Li, Y.

Liao, R.

Lihachev, G.

E. Lucas, G. Lihachev, R. Bouchand, N. G. Pavlov, A. S. Raja, M. Karpov, M. L. Gorodetsky, and T. J. Kippenberg, “Spatial multiplexing of soliton microcombs,” Nat. Photonics 12(11), 699–705 (2018).
[Crossref]

Link, S. M.

S. M. Link, D. J. H. C. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356(6343), 1164–1168 (2017).
[Crossref] [PubMed]

Liu, B.

Liu, L.

Liu, W.

Liu, Y.

Lucas, E.

E. Lucas, G. Lihachev, R. Bouchand, N. G. Pavlov, A. S. Raja, M. Karpov, M. L. Gorodetsky, and T. J. Kippenberg, “Spatial multiplexing of soliton microcombs,” Nat. Photonics 12(11), 699–705 (2018).
[Crossref]

Maas, D. J. H. C.

S. M. Link, D. J. H. C. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356(6343), 1164–1168 (2017).
[Crossref] [PubMed]

Makowiecki, A. S.

Mayer, A. S.

Mehravar, S.

S. Mehravar, R. A. Norwood, N. Peyghambarian, and K. Kieu, “Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser,” Appl. Phys. Lett. 108(23), 231104 (2016).
[Crossref]

Millot, G.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hansch, and N. Picque, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
[Crossref]

Minoshima, K.

Molter, D.

Nakajima, Y.

Nakamura, T.

Newbury, N. R.

Nishizawa, N.

N. Nishizawa and T. Goto, “Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers,” IEEE J. Sel. Top. Quantum Electron. 7(4), 518–524 (2001).
[Crossref]

Norwood, R. A.

S. Mehravar, R. A. Norwood, N. Peyghambarian, and K. Kieu, “Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser,” Appl. Phys. Lett. 108(23), 231104 (2016).
[Crossref]

Okubo, S.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0-1.9 μm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

Onae, A.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0-1.9 μm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

Pan, Y.

Pavlov, N. G.

E. Lucas, G. Lihachev, R. Bouchand, N. G. Pavlov, A. S. Raja, M. Karpov, M. L. Gorodetsky, and T. J. Kippenberg, “Spatial multiplexing of soliton microcombs,” Nat. Photonics 12(11), 699–705 (2018).
[Crossref]

Petron, G.

Peyghambarian, N.

S. Mehravar, R. A. Norwood, N. Peyghambarian, and K. Kieu, “Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser,” Appl. Phys. Lett. 108(23), 231104 (2016).
[Crossref]

Picque, N.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hansch, and N. Picque, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
[Crossref]

Picqué, N.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100(1), 3–8 (2010).
[Crossref]

Pitois, S.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hansch, and N. Picque, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
[Crossref]

Raja, A. S.

E. Lucas, G. Lihachev, R. Bouchand, N. G. Pavlov, A. S. Raja, M. Karpov, M. L. Gorodetsky, and T. J. Kippenberg, “Spatial multiplexing of soliton microcombs,” Nat. Photonics 12(11), 699–705 (2018).
[Crossref]

Rekik, A.

Rieker, G. B.

Rochette, M.

Ruben, S.

Saneyoshi, E.

T. Yasui, E. Saneyoshi, and T. Araki, “Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition,” Appl. Phys. Lett. 87(6), 061101 (2005).
[Crossref]

Sasada, H.

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0-1.9 μm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

Shi, H.

Sinclair, L. C.

Song, L.

Song, Y.

Sorokin, E.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100(1), 3–8 (2010).
[Crossref]

Sorokina, I. T.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100(1), 3–8 (2010).
[Crossref]

Steidle, L. R.

Swann, W.

Swann, W. C.

Sweeney, C.

Tans, P. P.

Thon, R.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100(1), 3–8 (2010).
[Crossref]

Tian, H.

Truong, G.-W.

Vahala, K.

Q.-F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Counter-propagating solitons in microresonators,” Nat. Photonics 11(9), 560–564 (2017).
[Crossref]

Von Freymann, G.

Waldburger, D.

S. M. Link, D. J. H. C. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356(6343), 1164–1168 (2017).
[Crossref] [PubMed]

Wang, M.

Waxman, E. M.

Winkler, G.

Wright, R. J.

Xiao, X.

Xu, C.

Yan, M.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hansch, and N. Picque, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
[Crossref]

Yang, C.

Yang, K. Y.

Q.-F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Counter-propagating solitons in microresonators,” Nat. Photonics 11(9), 560–564 (2017).
[Crossref]

Yang, Q.-F.

Q.-F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Counter-propagating solitons in microresonators,” Nat. Photonics 11(9), 560–564 (2017).
[Crossref]

Yang, X.

Yasui, T.

X. Zhao, G. Hu, B. Zhao, C. Li, Y. Pan, Y. Liu, T. Yasui, and Z. Zheng, “Picometer-resolution dual-comb spectroscopy with a free-running fiber laser,” Opt. Express 24(19), 21833–21845 (2016).
[Crossref] [PubMed]

T. Yasui, E. Saneyoshi, and T. Araki, “Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition,” Appl. Phys. Lett. 87(6), 061101 (2005).
[Crossref]

Yi, X.

Q.-F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Counter-propagating solitons in microresonators,” Nat. Photonics 11(9), 560–564 (2017).
[Crossref]

Zhao, B.

Zhao, X.

Zheng, Z.

Zhu, J.

Zolot, A. M.

Appl. Opt. (1)

Appl. Phys. B (1)

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, “Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers,” Appl. Phys. B 100(1), 3–8 (2010).
[Crossref]

Appl. Phys. Express (1)

S. Okubo, K. Iwakuni, H. Inaba, K. Hosaka, A. Onae, H. Sasada, and F. L. Hong, “Ultra-broadband dual-comb spectroscopy across 1.0-1.9 μm,” Appl. Phys. Express 8(8), 082402 (2015).
[Crossref]

Appl. Phys. Lett. (2)

T. Yasui, E. Saneyoshi, and T. Araki, “Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition,” Appl. Phys. Lett. 87(6), 061101 (2005).
[Crossref]

S. Mehravar, R. A. Norwood, N. Peyghambarian, and K. Kieu, “Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser,” Appl. Phys. Lett. 108(23), 231104 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

N. Nishizawa and T. Goto, “Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers,” IEEE J. Sel. Top. Quantum Electron. 7(4), 518–524 (2001).
[Crossref]

Nat. Photonics (3)

Q.-F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Counter-propagating solitons in microresonators,” Nat. Photonics 11(9), 560–564 (2017).
[Crossref]

E. Lucas, G. Lihachev, R. Bouchand, N. G. Pavlov, A. S. Raja, M. Karpov, M. L. Gorodetsky, and T. J. Kippenberg, “Spatial multiplexing of soliton microcombs,” Nat. Photonics 12(11), 699–705 (2018).
[Crossref]

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hansch, and N. Picque, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2016).
[Crossref]

Opt. Express (13)

X. Zhao, G. Hu, B. Zhao, C. Li, Y. Pan, Y. Liu, T. Yasui, and Z. Zheng, “Picometer-resolution dual-comb spectroscopy with a free-running fiber laser,” Opt. Express 24(19), 21833–21845 (2016).
[Crossref] [PubMed]

R. Li, H. Shi, H. Tian, Y. Li, B. Liu, Y. Song, and M. Hu, “All-polarization-maintaining dual-wavelength mode-locked fiber laser based on Sagnac loop filter,” Opt. Express 26(22), 28302–28311 (2018).
[Crossref] [PubMed]

M. Kolano, O. Boidol, D. Molter, and G. Von Freymann, “Single-laser, polarization-controlled optical sampling system,” Opt. Express 26(23), 30338–30346 (2018).
[Crossref] [PubMed]

Y. Nakajima, Y. Hata, and K. Minoshima, “High-coherence ultra-broadband bidirectional dual-comb fiber laser,” Opt. Express 27(5), 5931–5944 (2019).
[Crossref] [PubMed]

J. Fellinger, G. Winkler, A. S. Mayer, L. R. Steidle, and O. H. Heckl, “Tunable dual-color operation of Yb:fiber laser via mechanical spectral subdivision,” Opt. Express 27(4), 5478–5486 (2019).
[Crossref] [PubMed]

R. Liao, Y. Song, W. Liu, H. Shi, L. Chai, and M. Hu, “Dual-comb spectroscopy with a single free-running thulium-doped fiber laser,” Opt. Express 26(8), 11046–11054 (2018).
[Crossref] [PubMed]

J. Guo, Y. Ding, X. Xiao, L. Kong, and C. Yang, “Multiplexed static FBG strain sensors by dual-comb spectroscopy with a free running fiber laser,” Opt. Express 26(13), 16147–16154 (2018).
[Crossref] [PubMed]

X. Zhao, Z. Zheng, L. Liu, Y. Liu, Y. Jiang, X. Yang, and J. Zhu, “Switchable, dual-wavelength passively mode-locked ultrafast fiber laser based on a single-wall carbon nanotube modelocker and intracavity loss tuning,” Opt. Express 19(2), 1168–1173 (2011).
[Crossref] [PubMed]

N. B. Hébert, J. Genest, J.-D. Deschênes, H. Bergeron, G. Y. Chen, C. Khurmi, and D. G. Lancaster, “Self-corrected chip-based dual-comb spectrometer,” Opt. Express 25(7), 8168–8179 (2017).
[Crossref] [PubMed]

Y. Liu, X. Zhao, G. Hu, C. Li, B. Zhao, and Z. Zheng, “Unidirectional, dual-comb lasing under multiple pulse formation mechanisms in a passively mode-locked fiber ring laser,” Opt. Express 24(19), 21392–21398 (2016).
[Crossref] [PubMed]

H.-Y. Chung, W. Liu, Q. Cao, L. Song, F. X. Kärtner, and G. Chang, “Megawatt peak power tunable femtosecond source based on self-phase modulation enabled spectral selection,” Opt. Express 26(3), 3684–3695 (2018).
[Crossref] [PubMed]

B. Li, M. Wang, K. Charan, M. J. Li, and C. Xu, “Investigation of the long wavelength limit of soliton self-frequency shift in a silica fiber,” Opt. Express 26(15), 19637–19647 (2018).
[Crossref] [PubMed]

N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18(8), 7929–7945 (2010).
[Crossref] [PubMed]

Opt. Lett. (1)

Optica (5)

Photon. Res. (1)

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Science (1)

S. M. Link, D. J. H. C. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356(6343), 1164–1168 (2017).
[Crossref] [PubMed]

Other (1)

H. Jiang, Y. Wang, S. Y. Set, and S. Yamashita, “Bidirectional Mode-locked Soliton Fiber Laser in 2μm Using CNT Saturable Absorber,” in Laser Congress, OSA Technical Digest (OSA, 2017), pp.JM5A.21.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of dual-comb spectroscopy setup with a free-running Er fiber laser. EDFA: Erbium-doped fiber amplifier; MFD: mode-field-diameter; BPF: band-pass filter; BPD: balanced photodetector. Inset: grating-lens-pair-based tunable filter.
Fig. 2
Fig. 2 Performance of the dual-comb laser. (a) Spectra of laser output and after EDFA’s. (b) RF spectrum of the laser output. (c) Monitored repetition rates and their difference.
Fig. 3
Fig. 3 (a) Measured spectra after the small MFD fiber for the 1552 nm seed pulse. (b) Center wavelength and −10dB spectral widths of SSFS pulse with respect to the power into the small MFD fiber. (c) Pulse intensity distributions with Gaussian fittings.
Fig. 4
Fig. 4 Nonlinearly converted spectra, seeded by the 1552 nm or 1565 nm pulse, centered at (a) 1648.2 nm; (b) 1650.5 nm; (c) 1653.5 nm; (d) 1656 nm; (e) 1658.5 nm and (f) 1661.5 nm. The blue shadow shows the corresponding passband of the tunable filter’s.
Fig. 5
Fig. 5 (a) ASOPS temporal interferogram. The inset shows the zoom-in of the center burst of the Sample path. (b) Fourier transformed dual-comb spectroscopy curves under different number of averaging. Inset: The inverse of σH vs. the number of averaged curves.
Fig. 6
Fig. 6 Transmission spectrum of 12CH4. Black: dual-comb spectroscopy result, red: HITRAN database, and blue: the residual. Inset: the zoom-in spectrum around 1654nm.

Metrics