Abstract

Achieving ultrahigh-speed electro-optic modulators (subterahertz modulation bandwidths) is shown to be feasible in the thin-film lithium niobate integrated photonic platform. Design guidelines for optimization of the main radio-frequency and optical parameters are presented, and 3-dB modulation bandwidth up to 400 GHz is proved attainable in 3-mm-long devices. Such unprecedented bandwidths pave the path towards utilizing the devices in advanced optical communication systems.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth

Peter O. Weigel, Jie Zhao, Kelvin Fang, Hasan Al-Rubaye, Douglas Trotter, Dana Hood, John Mudrick, Christina Dallo, Andrew T. Pomerene, Andrew L. Starbuck, Christopher T. DeRose, Anthony L. Lentine, Gabriel Rebeiz, and Shayan Mookherjea
Opt. Express 26(18) 23728-23739 (2018)

High-performance and linear thin-film lithium niobate Mach–Zehnder modulators on silicon up to 50  GHz

Ashutosh Rao, Aniket Patil, Payam Rabiei, Amirmahdi Honardoost, Richard DeSalvo, Arthur Paolella, and Sasan Fathpour
Opt. Lett. 41(24) 5700-5703 (2016)

Nanophotonic lithium niobate electro-optic modulators

Cheng Wang, Mian Zhang, Brian Stern, Michal Lipson, and Marko Lončar
Opt. Express 26(2) 1547-1555 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. Yao, “Microwave photonics,” IEEE J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  2. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photon. 1, 319–330 (2007).
    [Crossref]
  3. J. Yu, X. Li, and W. Zhou, “Tutorial: Broadband fiber-wireless integration for 5G+ communication,” APL Phot. 3(11), 111101 (2018).
    [Crossref]
  4. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Quant. Elec. 6(1), 69–82 (2000).
    [Crossref]
  5. K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti:LiNbO 3 optical modulators,” IEEE J. Lightwave Technol. 16(4), 615–619 (1998).
    [Crossref]
  6. A. Rao and S. Fathpour, “Compact lithium niobate electrooptic modulators,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–14 (2018).
  7. P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21(21), 25573–25581 (2013).
    [Crossref] [PubMed]
  8. A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon,” Opt. Express 23(17), 22746–22752 (2015).
    [Crossref] [PubMed]
  9. A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. DeSalvo, A. Paolella, and S. Fathpour, “High-performance and linear thin-film lithium niobate Mach-Zehnder modulators on silicon up to 50 GHz,” Opt. Lett. 41(24), 5700–5703 (2016).
    [Crossref] [PubMed]
  10. I. Krasnokutska, J. Tambasco, X. Li, and A. Peruzzo, “Ultra-low loss photonic circuits in lithium niobate on insulator,” Opt. Express 26(2), 897–904 (2018).
    [Crossref] [PubMed]
  11. M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Loncar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4(12), 1536–1537 (2018).
    [Crossref]
  12. A. Rao, K. Abdelsalam, T. Sjaardema, G. F. Camacho Gonzalez, A. Honardoost, and S. Fathpour, “Highly efficient nonlinear integrated photonics in ultracompact periodically-poled lithium niobate on silicon,” in Frontiers in Optics (Optical Society of America, 2018), paper JTu3A.59.
  13. P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, A. L. Starbuck, C. T. DeRose, A. L. Lentine, G. Rebeiz, and S. Mookherjea, “Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth,” Opt. Express 26(18), 23728–23739 (2018).
    [Crossref] [PubMed]
  14. C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
    [Crossref] [PubMed]
  15. A. Honardoost, R. Safian, A. Rao, and S. Fathpour, “High-speed modeling of ultracompact electrooptic modulators,” IEEE J. Lightwave Technol. 36(24), 5893–5902 (2018).
    [Crossref]
  16. A. J. Mercante, S. Shi, P. Yao, L. Xie, R. M. Weikle, and D. W. Prather, “Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth,” Opt. Express 26(11), 14810–14816 (2018).
    [Crossref] [PubMed]
  17. R. A. Becker and B. E. Kincaid, “Improved electrooptic efficiency in guided-wave modulators,” IEEE J. Lightwave Technol. 11(12), 2076–2079 (1993).
    [Crossref]
  18. S. -J. Chang, C. -L. Tsi, Y. -B. Lin, J. -F. Liu, and W. -S. Wang, “Improved electrooptic modulator with ridge structure in X-cut LiNbO 3,” IEEE J. Lightwave Technol. 17(5), 843–847 (1999).
    [Crossref]

2018 (8)

J. Yu, X. Li, and W. Zhou, “Tutorial: Broadband fiber-wireless integration for 5G+ communication,” APL Phot. 3(11), 111101 (2018).
[Crossref]

A. Rao and S. Fathpour, “Compact lithium niobate electrooptic modulators,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–14 (2018).

I. Krasnokutska, J. Tambasco, X. Li, and A. Peruzzo, “Ultra-low loss photonic circuits in lithium niobate on insulator,” Opt. Express 26(2), 897–904 (2018).
[Crossref] [PubMed]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Loncar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4(12), 1536–1537 (2018).
[Crossref]

P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, A. L. Starbuck, C. T. DeRose, A. L. Lentine, G. Rebeiz, and S. Mookherjea, “Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth,” Opt. Express 26(18), 23728–23739 (2018).
[Crossref] [PubMed]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref] [PubMed]

A. Honardoost, R. Safian, A. Rao, and S. Fathpour, “High-speed modeling of ultracompact electrooptic modulators,” IEEE J. Lightwave Technol. 36(24), 5893–5902 (2018).
[Crossref]

A. J. Mercante, S. Shi, P. Yao, L. Xie, R. M. Weikle, and D. W. Prather, “Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth,” Opt. Express 26(11), 14810–14816 (2018).
[Crossref] [PubMed]

2016 (1)

2015 (1)

2013 (1)

2009 (1)

J. Yao, “Microwave photonics,” IEEE J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

2007 (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photon. 1, 319–330 (2007).
[Crossref]

2000 (1)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Quant. Elec. 6(1), 69–82 (2000).
[Crossref]

1999 (1)

S. -J. Chang, C. -L. Tsi, Y. -B. Lin, J. -F. Liu, and W. -S. Wang, “Improved electrooptic modulator with ridge structure in X-cut LiNbO 3,” IEEE J. Lightwave Technol. 17(5), 843–847 (1999).
[Crossref]

1998 (1)

K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti:LiNbO 3 optical modulators,” IEEE J. Lightwave Technol. 16(4), 615–619 (1998).
[Crossref]

1993 (1)

R. A. Becker and B. E. Kincaid, “Improved electrooptic efficiency in guided-wave modulators,” IEEE J. Lightwave Technol. 11(12), 2076–2079 (1993).
[Crossref]

Abdelsalam, K.

A. Rao, K. Abdelsalam, T. Sjaardema, G. F. Camacho Gonzalez, A. Honardoost, and S. Fathpour, “Highly efficient nonlinear integrated photonics in ultracompact periodically-poled lithium niobate on silicon,” in Frontiers in Optics (Optical Society of America, 2018), paper JTu3A.59.

Al-Rubaye, H.

Attanasio, D. V.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Quant. Elec. 6(1), 69–82 (2000).
[Crossref]

Becker, R. A.

R. A. Becker and B. E. Kincaid, “Improved electrooptic efficiency in guided-wave modulators,” IEEE J. Lightwave Technol. 11(12), 2076–2079 (1993).
[Crossref]

Bertrand, M.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref] [PubMed]

Bossi, D. E.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Quant. Elec. 6(1), 69–82 (2000).
[Crossref]

Camacho Gonzalez, G. F.

A. Rao, K. Abdelsalam, T. Sjaardema, G. F. Camacho Gonzalez, A. Honardoost, and S. Fathpour, “Highly efficient nonlinear integrated photonics in ultracompact periodically-poled lithium niobate on silicon,” in Frontiers in Optics (Optical Society of America, 2018), paper JTu3A.59.

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photon. 1, 319–330 (2007).
[Crossref]

Chandrasekhar, S.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref] [PubMed]

Chang, S. -J.

S. -J. Chang, C. -L. Tsi, Y. -B. Lin, J. -F. Liu, and W. -S. Wang, “Improved electrooptic modulator with ridge structure in X-cut LiNbO 3,” IEEE J. Lightwave Technol. 17(5), 843–847 (1999).
[Crossref]

Chen, X.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref] [PubMed]

Cheng, R.

Chiles, J.

Dallo, C.

DeRose, C. T.

DeSalvo, R.

Fang, K.

Fathpour, S.

A. Honardoost, R. Safian, A. Rao, and S. Fathpour, “High-speed modeling of ultracompact electrooptic modulators,” IEEE J. Lightwave Technol. 36(24), 5893–5902 (2018).
[Crossref]

A. Rao and S. Fathpour, “Compact lithium niobate electrooptic modulators,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–14 (2018).

A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. DeSalvo, A. Paolella, and S. Fathpour, “High-performance and linear thin-film lithium niobate Mach-Zehnder modulators on silicon up to 50 GHz,” Opt. Lett. 41(24), 5700–5703 (2016).
[Crossref] [PubMed]

A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon,” Opt. Express 23(17), 22746–22752 (2015).
[Crossref] [PubMed]

P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21(21), 25573–25581 (2013).
[Crossref] [PubMed]

A. Rao, K. Abdelsalam, T. Sjaardema, G. F. Camacho Gonzalez, A. Honardoost, and S. Fathpour, “Highly efficient nonlinear integrated photonics in ultracompact periodically-poled lithium niobate on silicon,” in Frontiers in Optics (Optical Society of America, 2018), paper JTu3A.59.

Fritz, D. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Quant. Elec. 6(1), 69–82 (2000).
[Crossref]

Hallemeier, P. F.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Quant. Elec. 6(1), 69–82 (2000).
[Crossref]

Honardoost, A.

A. Honardoost, R. Safian, A. Rao, and S. Fathpour, “High-speed modeling of ultracompact electrooptic modulators,” IEEE J. Lightwave Technol. 36(24), 5893–5902 (2018).
[Crossref]

A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. DeSalvo, A. Paolella, and S. Fathpour, “High-performance and linear thin-film lithium niobate Mach-Zehnder modulators on silicon up to 50 GHz,” Opt. Lett. 41(24), 5700–5703 (2016).
[Crossref] [PubMed]

A. Rao, K. Abdelsalam, T. Sjaardema, G. F. Camacho Gonzalez, A. Honardoost, and S. Fathpour, “Highly efficient nonlinear integrated photonics in ultracompact periodically-poled lithium niobate on silicon,” in Frontiers in Optics (Optical Society of America, 2018), paper JTu3A.59.

Hood, D.

Khan, S.

Kincaid, B. E.

R. A. Becker and B. E. Kincaid, “Improved electrooptic efficiency in guided-wave modulators,” IEEE J. Lightwave Technol. 11(12), 2076–2079 (1993).
[Crossref]

Kissa, K. M.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Quant. Elec. 6(1), 69–82 (2000).
[Crossref]

Krasnokutska, I.

Lafaw, D. A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Quant. Elec. 6(1), 69–82 (2000).
[Crossref]

Lentine, A. L.

Li, X.

I. Krasnokutska, J. Tambasco, X. Li, and A. Peruzzo, “Ultra-low loss photonic circuits in lithium niobate on insulator,” Opt. Express 26(2), 897–904 (2018).
[Crossref] [PubMed]

J. Yu, X. Li, and W. Zhou, “Tutorial: Broadband fiber-wireless integration for 5G+ communication,” APL Phot. 3(11), 111101 (2018).
[Crossref]

Lin, Y. -B.

S. -J. Chang, C. -L. Tsi, Y. -B. Lin, J. -F. Liu, and W. -S. Wang, “Improved electrooptic modulator with ridge structure in X-cut LiNbO 3,” IEEE J. Lightwave Technol. 17(5), 843–847 (1999).
[Crossref]

Liu, J. -F.

S. -J. Chang, C. -L. Tsi, Y. -B. Lin, J. -F. Liu, and W. -S. Wang, “Improved electrooptic modulator with ridge structure in X-cut LiNbO 3,” IEEE J. Lightwave Technol. 17(5), 843–847 (1999).
[Crossref]

Loncar, M.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref] [PubMed]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Loncar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4(12), 1536–1537 (2018).
[Crossref]

Ma, J.

Maack, D.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Quant. Elec. 6(1), 69–82 (2000).
[Crossref]

Malinowski, M.

McBrien, G. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Quant. Elec. 6(1), 69–82 (2000).
[Crossref]

Mercante, A. J.

Mitomi, O.

K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti:LiNbO 3 optical modulators,” IEEE J. Lightwave Technol. 16(4), 615–619 (1998).
[Crossref]

Miyazawa, H.

K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti:LiNbO 3 optical modulators,” IEEE J. Lightwave Technol. 16(4), 615–619 (1998).
[Crossref]

Mookherjea, S.

Mudrick, J.

Murphy, E. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Quant. Elec. 6(1), 69–82 (2000).
[Crossref]

Noguchi, K.

K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti:LiNbO 3 optical modulators,” IEEE J. Lightwave Technol. 16(4), 615–619 (1998).
[Crossref]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photon. 1, 319–330 (2007).
[Crossref]

Novak, S.

Paolella, A.

Patil, A.

Peruzzo, A.

Pomerene, A. T.

Prather, D. W.

Rabiei, P.

Rao, A.

A. Honardoost, R. Safian, A. Rao, and S. Fathpour, “High-speed modeling of ultracompact electrooptic modulators,” IEEE J. Lightwave Technol. 36(24), 5893–5902 (2018).
[Crossref]

A. Rao and S. Fathpour, “Compact lithium niobate electrooptic modulators,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–14 (2018).

A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. DeSalvo, A. Paolella, and S. Fathpour, “High-performance and linear thin-film lithium niobate Mach-Zehnder modulators on silicon up to 50 GHz,” Opt. Lett. 41(24), 5700–5703 (2016).
[Crossref] [PubMed]

A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon,” Opt. Express 23(17), 22746–22752 (2015).
[Crossref] [PubMed]

A. Rao, K. Abdelsalam, T. Sjaardema, G. F. Camacho Gonzalez, A. Honardoost, and S. Fathpour, “Highly efficient nonlinear integrated photonics in ultracompact periodically-poled lithium niobate on silicon,” in Frontiers in Optics (Optical Society of America, 2018), paper JTu3A.59.

Rebeiz, G.

Richardson, K.

Safian, R.

A. Honardoost, R. Safian, A. Rao, and S. Fathpour, “High-speed modeling of ultracompact electrooptic modulators,” IEEE J. Lightwave Technol. 36(24), 5893–5902 (2018).
[Crossref]

Shams-Ansari, A.

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Loncar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4(12), 1536–1537 (2018).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref] [PubMed]

Shi, S.

Sjaardema, T.

A. Rao, K. Abdelsalam, T. Sjaardema, G. F. Camacho Gonzalez, A. Honardoost, and S. Fathpour, “Highly efficient nonlinear integrated photonics in ultracompact periodically-poled lithium niobate on silicon,” in Frontiers in Optics (Optical Society of America, 2018), paper JTu3A.59.

Starbuck, A. L.

Tambasco, J.

Trotter, D.

Tsi, C. -L.

S. -J. Chang, C. -L. Tsi, Y. -B. Lin, J. -F. Liu, and W. -S. Wang, “Improved electrooptic modulator with ridge structure in X-cut LiNbO 3,” IEEE J. Lightwave Technol. 17(5), 843–847 (1999).
[Crossref]

Wang, C.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref] [PubMed]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Loncar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4(12), 1536–1537 (2018).
[Crossref]

Wang, W. -S.

S. -J. Chang, C. -L. Tsi, Y. -B. Lin, J. -F. Liu, and W. -S. Wang, “Improved electrooptic modulator with ridge structure in X-cut LiNbO 3,” IEEE J. Lightwave Technol. 17(5), 843–847 (1999).
[Crossref]

Weigel, P. O.

Weikle, R. M.

Winzer, P.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref] [PubMed]

Wooten, E. L.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Quant. Elec. 6(1), 69–82 (2000).
[Crossref]

Xie, L.

Yao, J.

J. Yao, “Microwave photonics,” IEEE J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

Yao, P.

Yi-Yan, A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Quant. Elec. 6(1), 69–82 (2000).
[Crossref]

Yu, J.

J. Yu, X. Li, and W. Zhou, “Tutorial: Broadband fiber-wireless integration for 5G+ communication,” APL Phot. 3(11), 111101 (2018).
[Crossref]

Zhang, M.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref] [PubMed]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Loncar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4(12), 1536–1537 (2018).
[Crossref]

Zhao, J.

Zhou, W.

J. Yu, X. Li, and W. Zhou, “Tutorial: Broadband fiber-wireless integration for 5G+ communication,” APL Phot. 3(11), 111101 (2018).
[Crossref]

APL Phot. (1)

J. Yu, X. Li, and W. Zhou, “Tutorial: Broadband fiber-wireless integration for 5G+ communication,” APL Phot. 3(11), 111101 (2018).
[Crossref]

IEEE J. Lightwave Technol. (5)

J. Yao, “Microwave photonics,” IEEE J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti:LiNbO 3 optical modulators,” IEEE J. Lightwave Technol. 16(4), 615–619 (1998).
[Crossref]

A. Honardoost, R. Safian, A. Rao, and S. Fathpour, “High-speed modeling of ultracompact electrooptic modulators,” IEEE J. Lightwave Technol. 36(24), 5893–5902 (2018).
[Crossref]

R. A. Becker and B. E. Kincaid, “Improved electrooptic efficiency in guided-wave modulators,” IEEE J. Lightwave Technol. 11(12), 2076–2079 (1993).
[Crossref]

S. -J. Chang, C. -L. Tsi, Y. -B. Lin, J. -F. Liu, and W. -S. Wang, “Improved electrooptic modulator with ridge structure in X-cut LiNbO 3,” IEEE J. Lightwave Technol. 17(5), 843–847 (1999).
[Crossref]

IEEE J. Quant. Elec. (1)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Quant. Elec. 6(1), 69–82 (2000).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Rao and S. Fathpour, “Compact lithium niobate electrooptic modulators,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–14 (2018).

Nat. Photon. (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photon. 1, 319–330 (2007).
[Crossref]

Nature (1)

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Optica (1)

Other (1)

A. Rao, K. Abdelsalam, T. Sjaardema, G. F. Camacho Gonzalez, A. Honardoost, and S. Fathpour, “Highly efficient nonlinear integrated photonics in ultracompact periodically-poled lithium niobate on silicon,” in Frontiers in Optics (Optical Society of America, 2018), paper JTu3A.59.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) 3-D schematic of the thin-film LN MZ EOMs; (b) Cross-section of the EOMs in the lateral y-z plane. The zoomed section shows the misalignment (ΔD = D2D1) of the rib’s center (D1) from the middle of the gap between the electrodes (D2).
Fig. 2
Fig. 2 RF design considerations (all performed at 100 GHz for wl = 12.0 μm (wc = 8.0 μm for (a), (c), and (e))): Variation of (a) RF loss vs. wg for different values of t2; (b) RF loss vs. wc for different values of wg and t2; (c) nRF vs. wg for different values of t2; (d) nRF vs. wc for different values of wg and t2; (e) Z0 vs. t2 for different values of wg and wc; and (f) Z0 vs. wc for different values of wg.
Fig. 3
Fig. 3 Simulated RF mode profile for (a) rib-loaded and (b) all-LN EOMs with identical dimensions. Arrows are proportional to the magnitude of the field. Identical plot settings have been employed for COMSOL plots in both cases. Simulated TE optical mode profile for (c) rib-loaded and (d) all-LN waveguides with the same wrib = 1.3 μm, trib = 0.5 μm, and a 1-μm-thick top cladding SiO2 layer.
Fig. 4
Fig. 4 Γ for (a) rib-loaded; (b) all-LN EOMs; Vπ. L for (c) rib-loaded; (d) all-LN EOMs, vs. ΔD (see Fig. 1(b)).
Fig. 5
Fig. 5 Metal-induced optical propagation loss vs. ΔD (see Fig. 1(b)) for D2 = 7.5 μm.
Fig. 6
Fig. 6 (a) nRF; (b) Z0 and RF loss; (c) EO response (S21) of the EOMs for different lengths. The horizontal dashed line shows the 3-dB electrical BW, and the inset depicts Δn.

Tables (2)

Tables Icon

Table 1 Values of the geometrical dimensions in Fig. 1(b) for the optimized EOMs.

Tables Icon

Table 2 Comparison between rib-loaded and all-LN design for a fixed drive voltage.

Metrics